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ABSTRACT
We address the distributed setting for enforcement of a centralized
Role-Based Access Control (RBAC) protection state. We present
a new approach for time- and space-efficient access enforcement.
Underlying our approach is a data structure that we call a cas-
cade Bloom filter. We describe our approach, provide details about
the cascade Bloom filter, its associated algorithms, soundness and
completeness properties for those algorithms, and provide an em-
pirical validation for distributed access enforcement of RBAC. We
demonstrate that even in low-capability devices such as WiFi net-
work access points, we can perform thousands of access checks in
a second.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms
Security, Algorithms

Keywords
Access Control, Enforcement, Bloom filter, Efficiency

1. INTRODUCTION
Distributed enforcement of a system-wide protection state is

an important setting in access control [1, 2, 3, 6, 13, 14]. We
consider this setting in the context of Role-Based Access Con-
trol (RBAC) [12, 21]. In RBAC users acquire permissions
via roles, and the protection state is characterized by the triple
〈UA,PA,RH 〉 where UA is the user-role assignment relation, PA
is the permission-role assignment relation and RH is a relation be-
tween roles called the role hierarchy. A users creates a session, for
which he activates a subset of the roles to which he is authorized.
When the user requests the right to exercise a permission, it is done
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as part of a session, and the enforcement mechanism needs to check
whether a role associated with the session is authorized to the per-
mission. We discuss an example of an RBAC protection state and
sessions in Section 2.1.

We are not the first to consider such a setting for RBAC; in-
deed, our work can be seen as a follow-up to the work of Wei et
al. [26]. We adopt the setting they propose that we reproduce in
Figure 1. The centralized protection state is maintained in a Policy
Decision Point (PDP). Such centralization eases administration of
the system-wide protection state. Enforcement is performed at dis-
tributed sites each of which comprises a Police Enforcement Point
(PEP) and a Secondary Decision Point (SDP). The PEP receives
and interprets an access request from a user and consults the SDP
to resolve whether the request should be allowed or denied. The
SDP is sent a portion of the protection state by the PDP, and it uses
the portion it has to make a decision. If the SDP is unable to make
a decision, the request is forwarded to the PDP.

We address two challenges that such a setting poses for access
enforcement in RBAC. One is that we want to avoid reliance on
the PDP as much as possible for decisions on individual access re-
quests. The motivation is that the PDP can become a single point of
failure in such a situation. Another challenge is efficiency. We want
access decisions to be made quickly (say, within milliseconds). It
is typical for networks within enterprises to experience propagation
delays of tens of milliseconds. If every request must be routed to
the PDP, this significantly decreases the frequency of access deci-
sions that can be made.

The use of an SDP that is collocated with a PEP is certainly the
start of a solution. We must resolve exactly what data the PDP
sends the SDP, and how frequently. We must also resolve how the
SDP is updated if changes are made to the protection state stored
in the PDP (the well-known problem of “cache consistency”). This
is the focus of our work. We propose the use of a data structure
that we call a cascade Bloom filter (see Section 3) that is based
on the Bloomier filter [8]. A cascade Bloom filter is constructed
by the PDP and sent to an SDP, and then used by the SDP for ac-
cess enforcement. Our objective is efficiency of time and space in
access enforcement. We demonstrate empirically that access en-
forcement of RBAC configurations can be performed in constant
time and with reasonable space requirements.

Our particular interest is in evaluating the feasibility of our ap-
proach for the deployment of an SDP in inexpensive, low capabil-
ity devices. Network access devices such as WiFi access points
(for example [16]) are such devices. Such devices have limited
memory (about 64 MBytes), and low processing power (about 200
MHz). As such devices perform other functions as well and are not
dedicated to RBAC access enforcement, our assumption is that the
space available to us is only a few megabytes.
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Figure 1: The distributed access enforcement architecture.

We have two motivations for considering such devices as our en-
forcement points. One is that such devices already perform access
enforcement in other contexts - for example, firewalling and net-
work adminission control. It seems natural to enhance their capa-
bility rather than dedicate a completely separate machine for other
kinds of access enforcement. Our second motivation is that we seek
to investigate access enforcement for RBAC in novel settings, and
we feel that such low capability devices may be used as access en-
forcement points in situations such as remote or temporary office
locations for enterprises.

We seek to also address what we consider a particular shortcom-
ing of the approach of Wei et al. [26] - the issue of “cache warm-
ness.” In their approach, a PDP does not push state to the SDP.
Rather, if the SDP does not have sufficient state to make an access
decision, it forwards the request to the PDP, and then augments its
state based on the response. This means that the state at the SDP
(the “cache”) may not be “warm,” i.e., have sufficient information
to make decisions on an access request. Our approach, which we
discuss in Section 2, is to anticipate requests based on session es-
tablishment, and thereby eliminate the issue of cache warmness.
Apart from the obvious benefits in terms of response time, this ap-
proach is also fair - all legitimate requests associated with a session
have the same response time.

Yet another issue regards the encoding of elements such as roles,
users, sessions and permissions. We seek to decouple the time and
space needed to store what is needed for access enforcement in an
SDP as much as possible from the encoding that may be adopted
for these RBAC elements. It is in this regard that our data structure
that is based on the Bloom filter [5] is particularly useful.

The remainder of the paper is organized as follows. In the next
section, we discuss our approach in the setting shown in Figure 1
and present an example of how our approach to access enforce-
ment works. In Section 3, we discuss the cascade Bloom filter,
and present algorithms for it. We discuss our implementation and
present empirical results in Section 4. We discuss related work in
Section 5, and conclude with Section 6.

2. OUR APPROACH
As we show in Figure 1, the user first establishes a session by is-

suing a request to the PEP. A session establishment request is of the
form 〈U, {R1, . . . , Rn}〉 where U is the user that attempts to estab-

Alice Bob

Loan
Officer

Employee

Teller

Accounts
Manager

Loan
RecordsCash

Accounts
Data

Branch
Access

Figure 2: An example of an RBAC state with users Alice
and Bob. Alice is assigned to the role AccountsManager ,
which inherits from Teller . Bob is assigned to LoanOfficer .
All other roles inherit from Employee . The permission
Branch Access is assigned to Employee , Accounts Data is as-
signed to Accounts Manager , Cash is assigned to Teller and
Loan Records is assigned to Loan Officer .

lish the session and {R1, . . . , Rn} is the set of roles the use wants
associated with that session. The PEP forwards this request to the
SDP, which in turn forwards it to the PDP. The PDP validates the
request - it checks whether U is indeed authorized to R1, . . . , Rn

in the RBAC protection state.
The PDP then computes an access enforcement structure that the

SDP can use to enforce access control. The PDP communicates this
to the SDP. The user may then issue access requests for the session.
The PEP validates each request before passing it on to the SDP. The
SDP uses the access enforcement structures it has from the PDP to
evaluate the request and issue an “allow” or “deny” access decision.

We impose no restrictions on how core RBAC elements (users,
roles and permissions) are encoded. We feel that this allows for
flexibility in RBAC deployments and makes our approach broadly
applicable. We assume that sessions are identified using some kind
of session ID. We assume also that given a session ID, it is possible
to identify the unique SDP with which the session is associated.
That is, there exists a function from the set of all valid session IDs
to the set of SDPs.

We also do not mandate any format for an access request that is
made to a PEP. This is again to allow implementations the flexibil-
ity to adopt the best approach for their particular situations. The
PEP communicates an access request to its SDP as 〈s, p〉 where s
is the session ID and p is an RBAC permission. To construct an ac-
cess request of the form 〈s, p〉, the PEP validates that the requester
is indeed bound to the session ID s. The PEP also constructs p
from the request it receives. For example, if the request pertains to
an object o and a right r, and in the implementation, a permission
is a pair 〈o, r〉, then the PEP constructs p as such for the SDP.

Consequently, an access request received by the SDP is of the
form 〈s, p〉 where s is a valid session ID and p ∈ P. The SDP then
uses the access enforcement structure it has from the PDP to make
an access decision.

2.1 An example
We discuss an example to help explain how our approach works.

Consider an RBAC protection state as shown in Figure 2. The
user Alice initiates a session s1,Alice at a PEP-SDP site and acti-
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vates the AccountsManager role for that session. This associates
the permissions Accounts Data,Cash and Branch Access with
s1,Alice . In our approach, the PDP sends a data structure that repre-
sents the set A = {〈s1,Alice ,Accounts Data〉 , 〈s1,Alice ,Cash〉 ,
〈s1,Alice ,Branch Access〉} to the SDP.

If Bob initiates a session s1,Bob and activates the role
LoanOfficer , then the PDP updates the state at the SDP,
with the new state as A′ = A ∪ {〈s1,Bob ,Loan Records〉 ,
〈s1,Bob ,Branch Access〉}.

Finally, if Alice creates a new session s2,Alice and activates the
role Teller in it, then the PDP updates the SDP’s state so that it
is A′′ = A′ ∪ {〈s2,Alice ,Cash〉 , 〈s2,Alice ,Branch Access〉}. If
Alice’s session with session ID s2,Alice requests an access that re-
quires the permission Accounts Data , then it is denied by the SDP.
This is consistent with the notion of RBAC sessions [12, 21], and
indeed, this nuance does not appear to have been captured in previ-
ous work [26].

2.2 Our Approach - More Details
We now clarify in more detail how the PDP and the SDP work

in our approach. When a user creates a session, the PDP sends
the SDP a new cascade Bloom filter, or updates the SDP’s exist-
ing cascade Bloom filter as its access enforcement structure. The
cascade Bloom filter is based on the traditional Bloom filter [5];
we give a precise characterization of it and the associated routines
in Section 3. In this section, we give a summary of the operations
and how the PDP and SDP use them. We then present the empirical
validation of our approach in Section 4. Once the SDP has a new or
updated cascade Bloom filter, it is able to service access requests,
and issue decisions that are consistent with the RBAC state that is
maintained by the PDP.

A cascade Bloom filter is used to represent a set of elements A
that is drawn from a universal set (henceforth, simply universe) U .
In our case, the set A is one of the following:

Positive authorizations This is the set of doubles
〈session id , permission〉 for valid session id and
permission that is authorized for that session.
In our example shown in Figure 2, if the only
session that has been activated is s1,Alice , then
A = {〈s1,Alice ,Accounts Data〉 , 〈s1,Alice ,Cash〉 ,
〈s1,Alice ,Branch Access〉}.

Negative authorizations This is the set of doubles
〈session id , permission〉 for valid session id and
permission that are not authorized for that session. In
our example from Figure 2, if the only session that has been
activated is s1,Alice , then A = {〈s1,Alice ,Loan Records〉}.

The universe, U , is the set of all 〈session id , permission〉 for
all valid session id , and all permissions from the RBAC protection
state. In our example from Figure 2, if the valid sessions are s1,Alice

and s1,Bob , then U = {s1,Alice , s2,Bob} × {Accounts Data,
Cash, Branch Access, Loan Records}, where × is the carte-
sian product of two sets. Clearly, whether A is instantiated to be
positive or negative authorizations, A ⊆ U .

The PDP instantiates A to the smaller of the positive and negative
authorization sets. That is, if P is the set of positive authorizations,
then A is instantiated to P if |P | ≤ |U−P | and to U−P otherwise.
The reason is that the cascade Bloom filter is more time- and space-
efficient with such a choice; we clarify this further in Section 3.

For the PDP to construct a cascade Bloom filter from A and U ,
we provide:

ConstructCascadeBF - a sound algorithm for creating a cascade

Bloom filter from a set A with universe U . We present the
algorithm and assert its soundness property in Section 3.

For the SDP to use the cascade Bloom filter provided to it by the
PDP, we provide:

MemberCascadeBF - a sound and complete algorithm that takes as
input a pair 〈s, p〉 ∈ U and returns true if 〈s, p〉 ∈ A and
false if 〈s, p〉 ∈ U −A. The SDP then issues an “allow” or
“deny” decision based on whether A is the set of positive or
negative authorizations. For example, if A is the set of neg-
ative authorizations and MemberCascadeBF returns true,
then the request for access is denied. It is important that only
members of U are presented as input to MemberCascadeBF;
its behaviour is undefined for any input not in U . This is en-
sured by the PEP. We discuss MemberCascadeBF and assert
its soundness and completeness properties in Section 3.

The access enforcement structure at the SDP may need to be
updated, for example, if a new session is created at that site, or if
there is a change to the global RBAC state at the PDP that affects
the SDP. For this, we provide:

InsertIntoCascadeBF - a sound and complete algorithm to add
elements to the set A that is represented by the cascade
Bloom filter, and also optionally add elements to U . The
feature of simultaneously expanding U when expanding A
is necessary when a new session is created because U is the
cartesian product of valid session IDs and all permissions,
and the creation of a new session results in the creation of a
new session ID. It is also needed, for example, when a new
permission is created and assigned to roles that have been
activated in sessions that are currently valid. An example of
when it is not needed, is when we authorize a role that has
been activated in a session to an existing permission. In this
case, A would need to be expanded if it is the set of positive
authorizations. We discuss InsertIntoCascadeBF and as-
sert its soundness and completeness properties in Section 3.

There is also the complementary operation,
RemoveFromCascadeBF to shrink A and, optionally, U .
Its description is straightforward given our discussions on
InsertIntoCascadeBF, and we present it and assert its sound-
ness and completeness properties in the technical report version of
this paper [25].

3. THE CASCADE BLOOM FILTER
We now provide details of the data structure that underlies our

approach, the cascade Bloom filter. We recognize that this data
structure may have broader applicability; therefore, our discussions
in this section are somewhat more general than in the others. We
first discuss the Bloom filter, and the counting Bloom filter data
structures that form the bases for the cascade Bloom filter.

A Bloom filter [5] is a space- and time-efficient data structure
that is used to represent a set of items, A; we say that the Bloom
filter represents A. A Bloom filter is an array of m bits and it is as-
sociated with a family of hash functions, hi: U → {0, . . . , m − 1}
for i = 1, . . . , k. To store an element a ∈ A in the Bloom filter,
the indices hi(a) for i = 1, . . . , k are computed and the corre-
sponding bit in the array is set for each index. To check whether an
element e is in A using the Bloom filter, the indices hi(e) are com-
puted and the value of the bit at each index in the array is tested. If
any bit is zero, we deem that e 	∈ A as represented by the Bloom
filter; otherwise we deem that e ∈ A. It is possible that some
e 	∈ A tests positive with the Bloom filter for membership in A.
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Such an element is called a false positive, and the probability of
such an event is called the false positive rate. The false positive
rate is the same for all elements not in A if the hash functions hi

are uniform - each element in the domain has the same probability
of mapping to the different elements in the range. Uniform hash
functions can be realized in practice [18]. Given the uniformity
assumption for the hash functions, and with an optimal value for
k, a Bloom filter with a false positive rate of ε can be realized with
log2(e)× log2(1/ε) ≈ 1.44log2(1/ε) bits per element to be stored
in the Bloom filter [5].

Adding elements to a Bloom filter is easy, but removing elements
is not. We address this issue by adopting a counting Bloom fil-
ter [11]. A counting Bloom filter is an array of m counters. The
initial value of each counter is 0. To insert an element, e, we com-
pute the indices hi(e) for i = 1, . . . , k, and increment each counter
by 1. To remove an element, we compute the indices hi and decre-
ment each by 1. To test for membership, we compute the indices hi

and check that the counter at every index is at least 1. In this man-
ner, the counting Bloom filter trades off space for ease of removal.
Counters can be implemented in O(log (C)) space, with constant-
time increment, decrement and check for 0 operations, where C
is the maximum value we expect to store in the counter [9, 19].
Henceforth, when we refer to a Bloom filter, we mean a counting
Bloom filter.

We assume that the following functions related to Bloom filters
are available to us. (We use an object-oriented style; these methods
are invoked on a Bloom filter object.)

CreateBF(A, U, m, E) - instantiates the Bloom filter to be of m
bits, and represents the set A ⊆ U , with the set of false pos-
itives E ⊆ U − A. We call U the universe. We assume
that each counter within the Bloom filter is allocated a fixed
number of bits (e.g., 8) that is specified a priori. We expect
(in a probabilistic sense) that |E| = ε|U − A| where ε is the
false positive rate of the Bloom filter. We assume that the
parameter k (number of hashes) is determined and stored in-
ternally by the Bloom filter. Our choice of k in our algorithm
that constructs a cascade Bloom filter (see Algorithm 2) is
the one that minimizes ε.

MemberBF(e) - returns true if e is in the Bloom filter and
false otherwise.

AddToBF(e) - adds the element e to the Bloom Filter.

RemoveFromBF(e) - removes e from the Bloom Filter.

To achieve our goal of encoding a set of elements in a space ef-
ficient manner, but without incurring the penalty imposed by the
false positive rate of a Bloom filter, we employ a cascade of Bloom
filters. The idea of using multiple Bloom filters has been proposed
before [8, 10]. Indeed, what we call a cascade Bloom filter can be
seen as an adapted version of the Bloomier filter [8]. We discuss in
what way we have adapted the Bloomier filter for our purposes in
Section 5 on related work. We certainly do not require the general-
izations that are discussed by Chazelle et al. [8] (for example, the
ability to test for membership in arbitrary functions). Therefore, we
provide efficient algorithms that we feel are suited to the purpose
of access checking in this section.

We specify a depth d and a Bloom filter at each level 1, . . . , d.
We denote the Bloom filter at level i as BFi and the set that BFi

represents as Ai. The Bloom filter BF1 at level 1 represents the set
A from the universe U ; that is, A1 = A. A2 is the set of elements
from U − A1 that are false positives of BF1. Subsequently, each
Ai comprises those elements from Ai−2 that are false positives of

A1
A2

U
A4

A3

A5

E1

E4

E6

Figure 3: How the universe U is divided into the Ai sets for a
cascade Bloom filter with depth 4. Each Ai+1 is the set of false
positives from Ai−1 in the Bloom filter that represents Ai, with
A0 = U . We point out that A1 ⊇ A3 ⊇ A5, and A2 ⊇ A4.
The last set, A5 does not have a corresponding Bloom filter,
but is instead represented explicitly (e.g., as a hashtable). The
element E1 ∈ A1, and none of the other sets. Consequently, a
test for its membership evaluates to true for BF 1 and false

for BF 2. The element E4 ∈ A4 ⊆ A2. Therefore, a test for
its membership evaluates to true in all of BF 1, . . . ,BF 4, and
the fact that E4 	∈ A5 establishes that it is not a false positive of
BF 3 and therefore E4 	∈ A1 = A. Finally, the element E6 	∈ Ai

for any Ai, and therefore its test for membership evaluates to
false in BF 1.

BFi−1. We specify the elements of Ad−1 that are false positives
of Bd as an explicit list stored, for example, as a hashtable; we
call this set Ad+1. Figure 3 illustrates the structure of a set A with
universe U represented by a cascade Bloom filter of depth 4.

To see the advantage of a cascade of Bloom filters, we consider
an example. Let A and U be such that |A| = 400, and |U | = 1000.
If we restrict our space usage to 2500 bits for the Bloom filter, then
the best false positive rate we can achieve is about 0.05. We achieve
this for k = 4. This results in an explicit list to deal with false
positives of approximately 30.

We can instead use a cascade of depth d = 2, with the Bloom
filter B1 at level 1 encoding the set |A|, and the Bloom filter B2

at level 2 encoding the false positives of B1 from U − A. If we
allocate 2000 bits for B1 and 500 bits for B2, we have the same
total number of bits allocated for Bloom filters as for the single
Bloom filter above. Also, we specify that the false positive rate
for B2 is 0.05; this results in an explicit list of size 20, which is
33% more space efficient than the first approach. We observe that
we can achieve this with number of hashes for B1 as k1 = 2, and
number of hashes for B2 as k2 = 2. In other words, we achieve
space efficiency with no additional hashes. The reason is that we
have a false positive rate ε1 ≈ 0.105 for B1. This in turn results in
the set represented by B2 conaining about 63 elements, which can
be done with ε2 ≈ 0.05 with 500 bits allocated for B2.

We now provide a more precise definition for a cascade Bloom
filter. In the next section, we present the algorithms that we as-
sociate with cascade Bloom filters, to which we referred in Sec-
tion 2.2.

DEFINITION 1 (CASCADE BLOOM FILTER). A cascade
Bloom filter C is 〈B, E〉, where B = 〈BF 1, . . . ,BF d〉 is a list
of Bloom filters and E ⊆ U is a set of elements from a universe
U . d is called the depth of the cascade and each l = 1, . . . , d is
called a level. Each BF i represents a set Ai ⊆ U , such that for
i = 2, . . . , d, Ai is the set of false positives from Ai−2 in BF i−1,
with A0 = U . The set E is the set of false positives from Ad−1 in
BF d. We say that C represents A = A1 with universe U .
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3.1 Operations on Cascade Bloom Filters
In this section, we present the MemberCascadeBF,

ConstructCascadeBF and InsertIntoCascadeBF routines. We
also discuss the soundness and completeness properties for them.

Algorithm 1 An algorithm to verify membership of an element
e in the set represented by a cascade Bloom filter.

1 Operation MemberCascadeBF(e)
2 # Invoked on a cascade Bloom filter which
3 # has data field BF[ ], the list of Bloom
4 # filters, and E, the set of elements.
5
6 for level := 1 to d do
7 if (BF[level].MemberBF(e) = false) then
8 if level is even then return true;
9 else return false;
10 fi
11 fi
12 od
13 if d is even then
14 if E.contains(e) then return true;
15 else return false;
16 fi
17 else
18 if E.contains(e) then return false;
19 else return true;
20 fi
21 fi

MemberCascadeBF(e). Algorithm 1 presents our algorithm for
checking membership of e ∈ U in a cascade Bloom filter C =
〈B, E〉. In lines 6–12 we iterate through each level of B. If, at any
level, e tests false for membership, we are able to immediately
make an inference about the membership of e in A. If the level at
which false is returned is even, then we know that e 	∈ U − A,
and therefore e ∈ A. Conversely, if the level at which false is
returned is odd, then we have two cases. One case is that the level
is 1, in which case we know that e 	∈ A (a Bloom filter has no
false negatives). If the level > 1, then we know that is not a false
positive of BF level−1 and therefore e ∈ U − A.

If, at all levels, the Bloom filters return true in lines 6–12, then
we test for membership in the list E. Again, we decide e’s mem-
bership in A based on whether E is at an even or odd level. We
emphasize that if MemberCascadeBF returns true, this does not
necessarily mean that the access decision on e = 〈s, p〉 is “allow.”
As we mention in Section 2.2, the SDP then checks whether A
comprises positive or negative authorizations, and the final “allow”
or “deny” decision is based on this as well.

We now assert the soundness and completeness property of
MemberCascadeBF.

THEOREM 1. For a cascade Bloom filter C = 〈B, E〉 that rep-
resents A with universe U , C.MemberCascadeBF (e) is:

Sound - if it returns true then e ∈ A, and if it returns false
then e ∈ U − A.

Complete - if e ∈ A then it returns true, and if e ∈ U − A then
it returns false.

The proof for the theorem is in [25]. The intuition is expressed in
our description of the algorithm above.

ConstructCascadeBF(A,U ,m,Elen). Algorithm 2 is our algo-
rithm for constructing a cascade Bloom filter. It encodes a heuristic,
and in lines 36–39 attempts to find a cascade Bloom filter of some
depth upto a maximum. It is constrained by the inputs m and Elen

that specify the maximum number of counters that may be used for
the Bloom filters, and the maximum size of the final list of false
positives, respectively. We fix the sizes of counters to a constant
value a priori.

Algorithm 2 An algorithm for creating a cascade Bloom fil-
ter based on the sizes of A and U , assuming uniform hash
functions. ConstructCascadeBF is invoked from the outside.
ConstructCascadeBF in turn invokes tryToConstruct.

30 Operation ConstructCascadeBF (A, U, m, Elen)
31 # m is the total number of bits for Bloom filters,
32 # Elen is the max length of E.
35
36 for depth := 1 to MAX_DEPTH do
37 tryToConstruct (1, depth, |A| , |U| , m, Elen) ;
38 On success goto line 42;
39 od
40 return failure;
41
42 # On success for some depth
43 A0 := U; A1 := A;
43 for level := 1 to depth do
44 for each e ∈ Alevel do
45 BFlevel.AddToBF (e) ;
46 od
47 for each e ∈ Alevel−1 − Alevel do
48 if BFlevel.MemberBF (e) then
49 if level = depth then E.add (e) ;
50 else
51 BFlevel+1.AddToBF (e) ;
52 Alevel+1.add (e) ;
53 od od fi fi

60 Operation tryToConstruct(level, depth, Asize,
61 Usize, m, Elen)
62 # try to construct a Bloom filter
63 # at level and below
64
65 if m ≤ 0 then return failure;

66 trials :=
⌊

m
Asize

⌋
− 1;

67 for i := trials− 1 to 0 do

68 mi :=
(⌊

m
Asize

⌋
− i

)
× Asize; # mi ≥ 2× Asize

69 ki := round
(
ln 2× mi

Asize

)
; # minimizes εi

70 εi :=
(
1− e−ki×Asize/mi

)ki
;

71 newAsize :=
⌈
εi × (Usize− Asize)

⌉
;

72 if level = depth then
73 if newAsize ≤ Elen then
74 construct Bloom filter of mi bits and ki
75 hashes at level; set |E| := newASize;
76 return success;
77 fi
78 else
79 if tryToConstruct(level + 1, depth, newAsize,
80 newAsize + Asize, m− mi, Elen) succeeds
81 then construct Bloom filter of mi bits and ki
82 hashes at level and return success;
83 od fi fi
84 return failure;

The method tryToConstruct is invoked recursively. Each exe-
cution of tryToConstruct allocates counters for the Bloom filter
at a particular level, and identifies the expected size of the set that
needs to be represented at the next level. This it does, in line 70, by
estimating the false positive rate for the current level. Our choice
of number of hashes in line 69 is always the closest integer that
minimizes the false positive rate. Our choice for the number of
counters to be allocated at each level in line 68 is always a multi-
ple of the number of elements in the set to be represented, with a
number of double the size of that set. This is part of our heuristic.
The recursion in tryToConstruct bottoms out in lines 72–77. If
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the condition newAsize ≤ Elen in line 73 evaluates to true, this
means that the size of the set to be represented is at most the maxi-
mum size allowed by the argument Elen , which in turn means that
the algorithm has successfully identified a cascade Bloom filter that
satisfies the constraints.

We now assert the soundness property of
ConstructCascadeBF.

THEOREM 2. ConstructCascadeBF is sound - if it re-
turns successfully with a cascade Bloom filter C = 〈B, E〉
that represents A with universe U , with m total bits used
by all the Bloom filters in B, then it was invoked as
ConstructCascadeBF (A, U, M, Elen) where M ≥ m and
Elen ≥ |E|.

The proof for the theorem is in [25]. We point out that
ConstructCascadeBF is not complete; there may be inputs for
which a cascade Bloom filter exists, but the algorithm does not find
it. We see a complete algorithm for the construction of a cascade
Bloom filter as one of multivariate optimization, and leave an inves-
tigation into the exact complexity (or whether it is even decidable
in general) as future work.

InsertIntoCascadeBF(level , I, U ′). In Algorithm 3 we present
our algorithm for the elements in the set I into a cascade Bloom
filter. The new universe U ′ is also provided as input; U ′ is al-
lowed to be a superset of the current universe U , and this is also
incorporated in to the cascade Bloom filter that is returned by
InsertIntoCascadeBF.

Each execution of InsertIntoCascadeBF processes two levels
at a time; an odd level and the next even level. The exceptions are
when only the explicit list, E, at the end remains to be processed.
This latter case is addressed by lines 100–105. In lines 107–112,
the algorithm adds new elements from I into the set Alevel and
the Bloom filter BF level. Note that we refer to the sets Ai that
are represnted by the Bloom filters at each level for convenience
only. The PDP may or may not explicitly store these sets. If it
does not store these sets, it can infer these sets based on the cas-
cade Bloom filter when it needs to insert new elements (i.e., invoke
InsertIntoCascadeBF). This would be a straightforward trade-
off between time and space.

After inserting element at the current layer, what the algorithm
does in lines 113–142 is consider the next (even) level. Two things
need to be done at the next level. One is to add any new false pos-
itives as a result of adding elements from I to this level. Second is
to remeove any old false positives that are no longer false positives.
An example of such an element is a member of I .

Finally, in lines 144–155, algorithm recurses through the remain-
der of the cascade. It sets up the corresponding I (line 148) and U ′

(line 151) sets for the ensuing levels. We now assert the soundness
and completeness properties of InsertIntoCascadeBF.

THEOREM 3. Given a cascade Bloom filter C that represents
A with universe U , C.InsertIntoCascadeBF (e) is:

Sound - if it returns with C that represents A′

with universe U ′, then it was invoked as
InsertIntoCascadeBF (1, (A′ − A) ∪ S, U ′), where
S ⊆ A.

Complete - if it is invoked as InsertIntoCascadeBF (1, I, U ′)
where A ∪ I ⊆ U ′, then it returns with C that represents
A ∪ I with universe U ′.

The proof for the theorem is in [25]. We use induction on the num-
ber of recursions we perform. We observe that the algorithm is
proportional in time to the size of the new universe, U ′.

Algorithm 3 Algorithm to insert elements into the cascade
Bloom filter. The parameter level is the level at which to begin
insertion. The operation is invoked at first with level = 1; re-
cursive invocations invoke the operation with level > 1. I is
the set of elements to be inserted and U ′ is the, possibly new,
universe.
90 Operation InsertIntoCascadeBF(level, I, U′)
91 # Insert the elements of I into a cascade Bloom
92 # filter that represents A from universe U.
93 # The set U′ ⊇ U is the new universe.
94 # It is first invoked with level = 1.
95
96 if (level is even or level > d + 1) return error;
97 if I 	⊆ U′ return error;
98
99 # If this is the last layer
100 if (level = d + 1) then
101 for each e ∈ I do
102 if (e /∈ E) then E.add(e); fi
103 od
104 return;
105 fi
106 # Add I to this layer
107 for each e ∈ I do
108 if (e /∈ A[level]) then
109 A[level].add(e);
110 BF[level].addToBF(e);
111 fi
112 od
113 # Now do the next level as well
114 # If this is the last layer
115 if (level = d) then
116 for each e in I do
117 if (e ∈ E) then E.remove(e); fi
118 od
119 # Consider new false positives
120 F := U′ − (Alevel ∪ E) ;
121 for each e in F do
122 if (BF[level].MemberBF(e)) then E.insert(e); fi
123 od
124 return;
125 fi
126 # Remove false positives that are no longer so
127 for each e in I do
128 if (A[level + 1].contains(e)) then
129 A[level + 1].remove(e);
130 BF[level + 1].RemoveFromBF(e);
131 fi
132 od
133 # Add new false positives
134 F := U′ − (Alevel ∪ Alevel+1) ;
135 for each e in F do
136 if (BF[level].contains(e)) then
137 if (e 	∈ A[level + 1]) then
138 A[level + 1].add(e);
139 BF[level + 1].AddToBF(e);
140 fi
141 fi
142 od
143 # Prepare for recursion
144 I′ := ∅;
145 # Generate set to be inserted in A[level + 2]
146 for each e in A[level] do
147 if (BF[level + 1].MemberBF(e)) then
148 I′ := I′ ∪ e;
149 fi
150 od
151 U′′ := I′ ∪ A[level + 1];
152 # Recurse
153 if (I′ 	= ∅ || U′′ 	= ∅) then
154 InsertIntoCascadeBF(level + 2, I′, U′′);
155 fi
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Figure 4: Evolution in time of the number of membership queries an SDP can perform, as the number of sessions in the system
increases from 1 to 100, for (a) the first strategy, m=1 million counters and (b) the second strategy, m=100000 counters.
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Figure 5: Evolution in time of the time to initiate a new session. The x axis shows the insertion index (between 1 and 100 sessions) and
the y axis shows the time to perform an insertion when: (a) the cascade Bloom filter is initialized with a total of 1 million counters
for the Bloom filters and the maximum allowed size of the explicit list is 2000 elements. The red ovals indicate calls to the create
function. (b) the cascade Bloom filter is initialized with a total of 100000 counters for the Bloom filters and the maximum allowed
size of the explicit list is 2000 elements. The blue, dotted ovals indicate several regular calls of the create function. The red, plain
ovals indicate the 3 calls that fail to create a cascade structure satisfying the current requirements.
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Figure 6: Evolution in time for the two strategies of the (a) cascade Bloom filter depth and (b) size of the counting Bloom filters. The
read ovals and arrows show the points where calls to the create function fail for the second strategy.
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A complementary operation is one to remove elements from the
set A that is represented by a cascade Bloom filter, and optionally
shrink the universe U . This is necessary when a session is ter-
minated by a user. We present it in [25]. It is a straightforward
complement of the InsertIntoCascadeBF algorithm. One dif-
ference is that it does not need to take the new (possibly smaller)
universe as a parameter as no new false positives are introduced
when elements are removed. Consequently, we can infer the new
universe simply from correctly removing any elements that are no
longer false positives as a consequence of the removal of elements.

4. EMPIRICAL VALIDATION
We have implemented the cascade Bloom filter and its associ-

ated algorithms, and tested it for various RBAC protection states
and session profiles. We present some of these results here. Our
baseline test is an RBAC protection state with 100 users, 3,000 per-
missions and 50 roles – the same baseline used by Wei at al [26].
We have also tried our algorithms on larger RBAC sizes; for exam-
ple, each of the users, permissions and roles an order of magnitude
larger.

Our tests were conducted on a commodity laptop personal com-
puter that has an Intel Celeron processor that clocks at 1.85 GHz,
and has 1.25 MBytes of RAM running a Linux distribution. The
code is in Java, and runs on Sun’s 1.5.0 Java Runtime Environment
(JRE). To simulate a lower capability machine such as a WiFi net-
work access point, we used the cpulimit program [23]. We used
SHA-512 [24] as our hash function.

Comprehensive performance results, and a comparison with
other approaches that are tuned for high performance such as
CPOL [6] are beyond the scope of this paper. We also do not
include comparisons to more basic approaches, such as the tradi-
tional Bloom filter. The reason is that our choice of the Cascade
Bloom filter is motivated by other considerations than performance
— specifically, that it saves space over a traditional Bloom filter.
Such comparisons are certainly valid and interesting, and are top-
ics for subsequent work.

4.1 Performance at the SDP
Of primary concern, of course, is the performance of

MemberCascadeBF at an SDP. This is the routine that is used to
perform access enforcement.

Our observations for the baseline RBAC protection state are
shown in Figure 4. We begin with |U | = 3, 000 and |A| = 600,
and with each insertion (shown on the horizontal axis), we incre-
ment U by 3, 000 and A by 600. That is, we assume that each user
is authorized to 600 permissions that he activates in a session. We
have tried cascade Bloom filters with both 1 million and 100,000
counters. The space consumed by the former is about 4 MBytes,
and the latter is about 400 KBytes. We allocated an explicit list, E,
of length 2000.

Our main observation from Figure 4 is that access enforcement is
very fast, even for the smaller number of counters. We find that we
are able to check for membership in about 50μs. When we dampen
the processing power using cpulimit to 10%, we observe that
the speed falls commensurately, i.e., to about 10%. This still means
that we are able to make one access decision is less than 1 ms. That
is, even if we were to support up to 100 sessions on a low-capability
device such as a WiFi network access point, we would be able to
processes thousands of access requests per second. This compares
favourably to today’s network access devices such as packet filters
and firewalls, and is therefore encouraging from the standpoint of
prospects for distributed deployments of RBAC.

We point out that our results are about 1 to 2 orders of magni-

ture better than what is reported by Wei et al. [26], given that their
tests were conducted on a more powerful machine. The reason is,
of course, that we use the cascade Bloom filter, while there, our
understanding is that the built-in set data structures in Java were
used.

We observe that both graphs in Figure 4 follow a slow downward
slope, with rapid dips at some points. These low points correspond
to when the ConstructCascadeBF returned a cascade Bloom filter
of higher depth. That is, there is a correlation between the depth of
the cascade Bloom filter and the number of membership queries we
are able to process.

4.2 Performance at the PDP
While the performance at the SDP is of most concern, we are

also concerned about the performance of the algorithms at the PDP.
We have followed the same two stratgies at the PDP as at the SDP.
In one strategy the cascade Bloom filter is created by allowing it to
allocate as much as 1 million counters for the Bloom filters, while
reserving up to 2,000 entries for elements to be stored in the ex-
plicit list. In the other strategy we used the same maximum size
of 2,000 for the explicit list, but we allowed only up to 100,000
counters for all the counting Bloom filters in the cascade. For both
strategies, whenever the insertion of a new session, i.e., a invoca-
tion of InsertIntoCascadeBF, exceeds the size of the explicit
list, a new cascade Bloom filter is created with an invocation to
ConstructCascadeBF.

Figure 5 shows the evolution of the time to insert a new session
for the two strategies, as sessions are generated by users. The first
strategy, of m = 106 is shown in Figure 5(a). The spikes indicated
in red for the first strategy denote the moments when the size of
the explicit list is exceeded, leading to the creation of a new Bloom
filter with an invocation to ConstructCascadeBF. Calls to cre-
ate a new cascade Bloom filter never failed for the first strategy.
Calls to ConstructCascadeBF are more expensive than calls to
InsertIntoCascadeBF; however, they occur infrequently. The
overall increase in time to perform an InsertIntoCascadeBF is
linear and the increment between consecutive inserts that occur be-
tween two spikes is very small – around 200ms. This increment is
due mainly to the fact that whenever a new session is created, 600
elements are inserted into the top level Bloom filter of the cascade,
leading to increased false positive rates in that level and the subse-
quent levels. Then, more elements from the universe that are not
inserted in the top level, will need to be inserted in the cascade’s
second level.

Figure 5(b) shows the evolution of the time to insert for the sec-
ond strategy, where initially m is 100,000. On three occasions (de-
noted with red circles) the creation of a new cascade filter fails,
leading to the allocation of more space for the counting Bloom fil-
ters (we double m each time a failure of ConstructCascadeBF
happens). The reason for this is that in the second strategy, the in-
vocation to ConstructCascadeBF receives a smaller upper bound
value for the space dedicated to counters than the first strategy.
However, the approach of severely limiting the space allocated
for counters leads to more frequent re-allocations (invocations to
ConstructCascadeBF) of the cascade Bloom filter. In the end,
this leads to larger values for the time to insert a new session.
Specifically, while in the first strategy the time to perform an
InsertIntoCascadeBF ranges between half a second to 8 sec-
onds, for the second strategy the maximum time is around 10 sec-
onds.

It is discouraging that by the 100th session, the PDP takes be-
tween 8 and 14 seconds to update the cascade Bloom filter. This
means that a user must wait at least that long before he is able to
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exercise his permissions. Improving this performance is certainly a
topic for future work. We should point out, also, that our tests re-
garding the PDP were conducted on the same 1.85 GHz laptop with
1.25 MBytes of RAM. It is reasonable to assume that a commercial
PDP will be more powerful, and therefore decrease the time signif-
icantly.

Figure 6(a) compares the two strategies on the evolution in time
of the depth of the cascade Bloom filter for this experiment. For
each data point on the horizontal axis that represents the index of
a session insertion, we represent two values (bars) one being the
depth of the cascade structure for the first strategy (left bar) and one
for the second strategy (right bar). The depth of the cascade Bloom
filter generated in the first strategy, where m is set initially to 1 mil-
lion counters, is always 2. That is, ConstructCascadeBF always
has enough space to allocate to the counting Bloom filter of the first
level of the cascade, and can afford to have just one more level,
which is the explicit list. However, the sparse memory available
for counters in the second strategy requires ConstructCascadeBF
to allocate more levels in the cascade Bloom filter. In the worst
case for the scenarios we studied, the depth is 6. However, it
quickly drops to 3 due when ConstructCascadeBF is (re-) in-
voked. The spikes in depth of the cascade structure correspond to
when ConstructCascadeBF fails.

The higher depth values of the cascade Bloom filter generated by
the second strategy is an important factor in explaining the higher
times for insertion displayed in Figure 5(b). In the second strategy
an element may have to be inserted into up to 6 levels of the cascade
structure, whereas in the first strategy an element may be inserted
in at most two levels. However, the more economic use of memory
of the second strategy pays off when it comes to the total size of the
counting Bloom filters. Figure 6(b)shows the total space allocated
to counting Bloom filters for the two strategies that we considered.
It shows that throughout our experiment, the second strategy (sec-
ond bar for each data point) consistently requires less space, which
is often half the space required by the first strategy (left bar).

In conclusion, each strategy has advantages, which have to be
carefully weighed when designing the RBAC access enforcement
system. If speed of inserting a new session (session initiation) is
important, the first strategy should be chosen. If however, the space
at the SDP, where the counting Bloom filters will be stored, is of
concern, the second strategy should be the choice. Certainly, other
strategies do exist. For instance, instead of doubling the value of m
whenever the create function fails, the value of m could be incre-
mented by a constant or increased by a factor higher than 2. While
the first approach would be more space-efficient, the second ap-
proach would most certainly reduce the time required to insert a
new session.

We should mention also that we implemented two optimizations
at the PDP with regards to cascade Bloom filters. First, whenever
an element is inserted, removed or its presence in the counting
Bloom filter at any level in the cascade structure is checked, the
positions corresponding to that element in the filter, derived from
the invocation of a SHA-512 cryptographic hash, are stored locally.
Subsequently, if that element is ever accessed at that level, its po-
sitions in the counting Bloom filter are no longer computed using
relatively expensive SHA-512 invocations, but instead are retrieved
from the local storage. This is a straightforward trade-off of time
and space at the PDP.

The other optimization is that of reducing the number of SHA-
512 calls from k to 1. SHA-512 returns a 64 byte hash. If we
only need 4 bytes to generate a position in a counting Bloom filer,
a single SHA-512 call can handle k values smaller than or equal to
16. For larger k values we need to invoke SHA-512 only �k/16�

times. As it turns out, in our experiments the value of k for any
level in the cascade structure never exceeded 16.

5. RELATED WORK
There has been considerable research in distributed deployments

for access control. See for example [1, 2, 3, 6, 13, 14]. Moreover,
as Wei et al. [26] point out, previous work has considered caching
at the PEP. However, the caching is based on individual access re-
quests. In our case, the PDP proactively pushes out the entire por-
tion of the state that pertains to a session at the SDP. While this
can be seen as a form of caching, it is quite different from what has
been considered in the past. Also, to our knowledge, only Wei et
al. [26] consider such distributed access enforcement for RBAC.

Their work is indeed the closest to ours, and our work can be seen
as a follow-up, which specifically addresses the time- and space-
efficiency issues around such distributed access enforcement. The
focus of Wei et al. [26] is on authorization recycling, and not perfor-
mance. And, as we point out in Section 4.1, our access enforcement
performance is an order to two orders of magnitude better than the
results they report for similar RBAC protection states and request
profiles. Our approach also does not suffer from the issue of “cache
warmness,” as we discuss in Section 1.

The other piece of work that is related to ours regards Bloom fil-
ters. The original work is due to Bloom [5], and since then, there
has been a lot of work that analyzes and extends Bloom filters, for
example [7, 8, 10, 11, 17, 19, 20, 22]. Our work builds upon count-
ing bloom filters [11]. Our work is most closely related to that of
Chazelle et al. [8] on Bloomier filters. Indeed, the cascade Bloom
filter we discuss in Section 3 can be seen as a specialization of the
Bloomier filter. The most significant difference is that we explicitly
consider the universe, U . A consequence of this is that while the
Bloom filters get exponentially larger in a Bloomier filter as we go
down levels, ours get smaller. Their exponential increase can be
attributed to their desire for a fast convergence to a desired false
positive rate. Our setting does not appear to require such fast con-
vergence; our empirical studies suggest that we achieve fairly fast
convergence in any case for our application of distributed RBAC
enforcement.

Another difference between our discussion of cascade Bloom fil-
ters and the work on Bloomier filters [8] is that their objective is to
represent and test for membership in an arbitrary function, while
our goal is for a binary check for access. A consequence is that
we are able to present pragmatic algorithms with soundness and
completeness properties for creation of and insertion into a cascade
Bloom filter. It is unclear to us how pragmatic the algorithms for
the general Bloomier filter are.

There has also been work on high-performance policy evalua-
tion, notably, CPOL [6]. Borders et al. [6] compare CPOL to
KeyNote [4], and it is unclear in what way CPOL would support
RBAC, rather than a Trust Management system. As indicated by Li
and Tripunitara [15], the mapping of a Trust Management scheme
to RBAC can be non-trivial.

6. CONCLUSIONS
We have addressed the issue of time- and space-efficient access

enforcement of a centralized RBAC protection state. We have pro-
posed the use of a novel data structure, the cascade Bloom filter, for
this. We have presented algorithms to manipulate cascade Bloom
filters and asserted their soundness and completeness properties.
We have empirically validated our approach with example RBAC
configurations, and demonstrated that even low-capability devices
can perform up to a thousand access checks per second.
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There are a number of issues that remain to be investigated in
future work. A rather foundational issue regards the complexity, in
an asymptotic sense, of the multivariate optimization problem that
we need to solve to create a cascade Bloom filter to which we al-
lude in Section 3.1. Assuming that the problem is not undecidable
in general, we seek an efficient, complete algorithm for creating a
cascade Bloom filter. Another issue regards the efficiency at the
PDP. As we point out in Section 4.2, the time for creation and in-
sertion is somewhat discouraging. We first need to investigate how
much difference a more powerful machine than the one on which
we tested would make.

With regards to performance, as we discuss in Section 4, a com-
prehensive comparison with other approaches such as CPOL [6]
and the traditional Bloom filter are certainly called for. While those
issues are beyond the scope of this paper, they make for interesting
future work. Still another issue is the protocol that the PDP uses to
communicate with the SDP. For example, it may be more efficient
for the PDP, in some cases, to have the SDP update its cascade
Bloom filter. In other cases, it may be more efficient to have the
SDP completely replace its cascade Bloom filter with a new one. A
thorough study of such issues is a topic for future work.
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