
20

Resiliency Policies in Access Control

NINGHUI LI and QIHUA WANG
Purdue University
and
MAHESH TRIPUNITARA
Motorola Labs

We introduce the notion of resiliency policies in the context of access control systems. Such policies
require an access control system to be resilient to the absence of users. An example resiliency
policy requires that upon removal of any s users, there should still exist d disjoint sets of users such
that the users in each set together possess certain permissions of interest. Such a policy ensures
that even when emergency situations cause some users to be absent, there still exist independent
teams of users that have the permissions necessary for carrying out critical tasks. The Resiliency
Checking Problem determines whether an access control state satisfies a given resiliency policy.
We show that the general case of the problem and several subcases are intractable (NP-hard), and
identify two subcases that are solvable in linear time. For the intractable cases, we also identify
the complexity class in the polynomial hierarchy to which these problems belong. We discuss the
design and evaluation of an algorithm that can efficiently solve instances of nontrivial sizes that
belong to the intractable cases of the problem. Furthermore, we study the consistency problem
between resiliency policies and static separation of duty policies. Finally, we combine the notions
of resiliency and separation of duty to introduce the resilient separation of duty policy, which is
useful in situations where both fault-tolerance and fraud-prevention are desired.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access

controls; K.6.5 [Management of Computing and Information Systems]: Security and Protec-
tion; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Complexity of proof procedures

General Terms: Security, Theory

Additional Key Words and Phrases: Access control, fault-tolerant, policy design

ACM Reference Format:

Li, N., Wang, Q., and Tripunitara, M. 2009. Resiliency policies in access control. ACM Trans. Inf.
Syst. Secur. 12, 4, Article 20 (April 2009), 34 pages. DOI = 10.1145/1513601.1513602.
http://doi.acm.org/10.1145/1513601.1513602.

Author’s address: Q. Wang, Purdue University; email: wangq@purdue.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c© 2009 ACM 1094-9224/2009/04-ART20 $5.00 DOI: 10.1145/1513601.1513602.

http://doi.acm.org/10.1145/1513601.1513602.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 2 · N. Li et al.

1. INTRODUCTION

While policy analysis has been a main research area in access control for
several decades, almost all existing work focuses on properties which ensure
that users who should not have access do not get access. For example, safety
analysis [Harrison et al. 1976; Lipton and Snyder 1977; Sandhu 1988a] stud-
ies whether an access right can be leaked to unauthorized users. Separation
of duty (SoD) policies [Clark and Wilson 1987; Saltzer and Schroeder 1975]
ensure that no single user (or a set of users of size less than some threshold)
is able to perform a sensitive task. Such focus on safety properties probably
stems from the fact that access control has been mostly viewed as a tool for
restricting access. However, an equally important aspect of access control is to
enable access (selectively).

We introduce the notion of resiliency policies which state properties about
enabling access in access control. Resiliency policies require that the access
control state is resilient to absent users. For example, the access control system
of an institution has three separate permissions regarding release of funds:
one permission is an endorsement that the request for funds is legitimate, the
second permission is the issuance of a check, and the third one is for logging
the transaction. The institution’s financial office, which takes charge of fund-
ing, is composed of a senior treasurer and a number of junior treasurers. In
compliance of the separation of duty principle, the senior treasurer has all per-
missions except the one for logging, while each of the junior treasurers has
only one of the three permissions. As issuing funds is a critical task, the insti-
tution would like to ensure that even if a few (e.g., two) treasurers (that may
include the senior treasurer) are absent (e.g., due to sickness), the remaining
personnel in the financial office still have enough privileges to release funds.

Another example resiliency policy requirement is as follows: There must
exist three mutually disjoint sets of users such that each set has no more than
four users and the users in each set together have all permissions to carry out
a critical task. Such a policy would be needed when one needs to be able to
send up to three teams of users to different sites to perform a certain task,
perhaps in response to some events. One needs to ensure that each team has
enough permissions to perform the task, and each team consists of no more
than four users (e.g., due to the limit of transportation means).

Such policies are particularly useful when evaluating whether the access
control configuration of a system is ready for emergency response. When an
emergency such as a natural diaster or a terrorist attack occurs, an organiza-
tion may need to send out teams of employees to respond to the emergency. At
the same time, such an emergency may prevent employees from reporting to
work, causing them to be absent. These policies ensure that even when emer-
gency situations cause some users to be absent, there still exist independent
teams of users that have the necessary permissions for carrying out critical
tasks. In other words, these policies mandate that there is a certain level of
redundancy in assigning permissions to users so that the system can tolerate
some users being absent.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 3

Some level of resilience to absent users must already exist in most en-
terprise authorization management system. For example, every organization
needs to make sure that when certain key personnel is absent, the organiza-
tion can still function. However, to the best of our knowledge, such resiliency
requirements have not been formalized in the computer security literature be-
fore. Our contributions in this article are as follows:

(1) We introduce the notion of Resiliency Policies which express requirements
about enabling access rather than restricting access. We give a concrete
formulation for a resiliency policy which captures the intuition discussed
above.

(2) We study computational complexities of the Resiliency Checking Problem,
which determines whether an access control state satisfies a given re-
siliency policy. We show that this problem is NP-hard in the general case
and is in coNPNP, a complexity class in the Polynomial Hierarchy. We
show that several subcases are NP-complete. We identify two subcases
that are solvable in linear time.

(3) We show that, notwithstanding the intractability results, many instances
of the Resiliency Checking Problem of nontrivial sizes may still be ef-
ficiently solvable. We present an algorithm for the Resiliency Checking
Problem. Our algorithm uses a pruning technique that reduces the number
of combinations that need to be considered. The experimental results show
that this pruning technique can reduce the search space by several orders
of magnitude. Our algorithm also takes advantage of the observation that
the problem of checking whether the state can tolerate the removal of a
particular absent set can be naturally formulated as the boolean satisfia-
bility problem. This enables us to use existing SAT solvers in our imple-
mentation and benefit from several decades of research in designing SAT
solvers. Our experimental results show that our algorithm can efficiently
solve instances of nontrivial sizes.

(4) Resiliency policies may conflict with safety-oriented policies such as sta-
tic separation of duty (SSoD) policies [Li et al. 2004]. We study the pol-
icy consistency problem between resiliency policies and SSoD policies and
we demonstrate how to simplify the problem and present criteria for
determining consistency for a number of special cases. Finally, we show
that determining consistency is both NP-hard and coNP-hard, and is in
NPNP.

(5) In many situations, both fault-tolerance and fraud-prevention are re-
quired. Even though one can express the two requirements using a re-
siliency policy plus a separation of duty policy, it is more desirable to use
a single policy to capture the requirements. We introduce the resilient sep-
aration of duty policy to serve the purpose. This new type of policy is the
combination of a separation of duty policy and a particular form of re-
siliency policy. We study the satisfaction problem as well as the optimiza-
tion problem on resiliency separation of duty policies.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 4 · N. Li et al.

The remainder of this article is organized as follows. In Section 2, we
define resiliency policies and the Resiliency Checking problem. We present
computational complexities of the Resiliency Checking problem in Section 3
and an algorithm for the problem and an implementation of the algorithm
in Section 4. In Section 5, we explore the policy consistency problem. In
Section 6, we introduce the resilient separation of duty policy. We discuss
related work in Section 7. Finally, we conclude and present open problems
related to the concept of resiliency in Section 9.

2. RESILIENCY POLICIES AND THE RESILIENCY CHECKING PROBLEM

Definition 1 (Resiliency Policies). A resiliency policy takes the form

rp
〈

P, s, d, t
〉

where rp is a keyword, P = {p1, . . . , pn} is a set of permissions, s ≥ 0 and d ≥ 1
are integers, and t is either a positive integer or the special symbol ∞.

We say that an access control state satisfies such a resiliency policy if and
only if upon removal of any set of s users, there still exist d mutually disjoint
sets of users such that each set contains no more than t users and the users in
each set together are authorized for all permissions in P.

Intuitively, a resiliency policy rp
〈

P, s, d, t
〉

specifies a fault tolerance require-
ment with respect to a certain critical task. The set P includes all permissions
that are needed to carry out the task. The faults that we would like to tolerate
are absent users. The parameter s specifies the number of absent users that we
want to be able to tolerate. The parameter d is motivated by the requirement
that several teams may be needed to carry out multiple instances of the task.
If only one team is needed, then d can be set to 1. The parameter t specifies the
size limit of each team. This is motivated by limitations on the maximal num-
ber of users that can be involved in any instance of task. If no such limitation
exists, then t can be set to ∞.

We initially formed the notion of resiliency policies (as given in Definition 1)
in the wake of Hurricane Katrina. What kind of resiliency requirements should
one place on the authorization system to respond to such emergency? First,
some number of users may be absent, motivating the parameter s. Second, the
organization may need to send out multiple teams to respond to the emergency,
hence the parameter d. Each team must possess all permissions in P to be
able to effectively respond, and the team size may be limited by transportation
or other cost considerations, hence the parameter t. Resiliency requirements
are certainly also needed in nonemergency situations, for which we given an
example below.

Example 1 (Business Office). Consider the access control state of a business
office from Figure 1. It relates to the example we introduce in Section 1. To
issue funds, all three permissions Endorse, Issue, and Log must be possessed
by a set of users. In our resiliency policy, we set P =

{

Endorse, Issue, Log
}

.
If we set s = 1 in our policy, then we want the system to be resilient to the
absence of any (one) user. If we set d = 2, this means that we require two sets

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 5

Fig. 1. An example of an access control state with five users, Alice, Bob, Carl, Doris and Earl,
and 3 permissions, Endorse, Issue and Log. A line segment connects a user (e.g., Alice) to a permis-
sion (e.g., Endorse) to indicate that the user has the permission. This corresponds to the example
from Section 1 on releasing funds; all three permissions must be possessed by a group of users
that together want to release funds.

of users such that users in each set together possess all permissions. If we set
t = ∞, this means that the set of users that together possess all permissions
can be of any size.

We observe that in our example, rp
〈

P, 1, 2,∞
〉

is satisfied. For instance,
after removing Alice, the two users Carl and Earl together have all three per-
missions, as are Bob and Doris. The cases in which another user is removed
can be verified similarly. However, rp

〈

P, 2, 2,∞
〉

is not satisfied because if
Alice and Bob are absent, the only user that possesses Endorse is Carl, and
one user cannot belong to two disjoint sets. Similarly, rp

〈

P, 2, 1,∞
〉

is satisfied,
but rp

〈

P, 3, 1,∞
〉

is not satisfied because if Alice, Bob, and Carl are absent,
then no user possesses Endorse. And finally, we observe that rp

〈

P, 1, 1, 2
〉

is
satisfied, but not rp

〈

P, 1, 1, 1
〉

because for the latter case, there exists no single
user that has all three permissions.

The two parameters s and d are related. If an access control state satisfies
rp

〈

P, s, d, t
〉

, then it also satisfies rp
〈

P, s + i, d − i, t
〉

for any i such that 0 < i < d.
For example, if, after removing any two users, there exist three mutually
disjoint sets of users such that each set covers all permissions in P, then
after removing any three users, there are at least two sets left. However,
if a state satisfies rp

〈

P, s + 1, d − 1, t
〉

, it may not satisfy rp
〈

P, s, d, t
〉

. For our
example shown in Figure 1, we observe that rp

〈

P, 1, 2,∞
〉

is satisfied. How-
ever rp

〈

P, 0, 3,∞
〉

is not satisfied because we need the three users Alice, Bob,

and Carl that possess Endorse to belong to distinct sets; this still leaves one
permission that needs to be covered by each set, and we have only two users
that remain.

Resiliency policies can be defined in any access control system in which there
are users and permissions. This includes almost all access control systems,
including Discretionary Access Control systems [Lampson 1971; Graham and
Denning 1972] and Role-Based Access Control systems [Sandhu et al. 1996].
We assume that an access control state is given by a binary relation UP ⊆

U × P , where U represents the set of all users, and P represents the set of all

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 6 · N. Li et al.

Fig. 2. Time complexity of the Resiliency Checking Problem (RCP) and its various subcases.

permissions. Note that by assuming that a state is given by a binary relation
UP ⊆ U × P , we are not assuming permissions are directly assigned to users;
rather, we assume only that one can calculate the relation UP from the access
control state.

Definition 2 (Resiliency Checking Problem (RCP)). Given a resiliency pol-
icy r and an access control state UP, determining whether UP satisfies r is
called the Resiliency Checking Problem (RCP).

A resiliency policy has three parameters: s, d, and t. In some situations, one
may need to consider only those policies with one or more of these parameters
degenerated. The parameter s, which denotes the number of absent users that
the system needs to tolerate, may be degenerated to always be 0. The parame-
ter d, which denotes the number of sets of users required, may be degenerated
to always be 1. Finally, the parameter t, which denotes the size bound on each
set, may be degenerated to always be ∞. There are eight cases where some of
the three parameters are degenerated. For example, a resiliency policy in the
subcase RCP

〈

s = 0, d = 1
〉

has the form rp(P, 0, 1, t), which asks whether there
exists a set of users of size at most t that together have all permissions in P;
while the subcase RCP

〈

t = ∞
〉

asks whether there exists several distinct sets
of users (d sets) each of whose users together have all permissions in P, even
after any set of s users is removed from the state. In particular, RCP

〈 〉

is the
general case of the problem.

3. COMPUTATIONAL COMPLEXITIES OF THE RESILIENCY CHECKING
PROBLEM

The following theorem summarizes the computational complexity results for
RCP and its various subcases. These results are also shown in Figure 2.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 7

THEOREM 1. The computational complexities of the Resiliency Policy Check-

ing problem are as follows.

—RCP
〈 〉

, the most general case, is NP-hard and is in coNPNP, as are the two

subcases RCP
〈

d = 1
〉

and RCP
〈

t = ∞
〉

.

—RCP
〈

s = 0, d = 1
〉

, RCP
〈

s = 0, t = ∞
〉

, and RCP
〈

s = 0
〉

are NP-complete.

—RCP
〈

d = 1, t = ∞
〉

and RCP
〈

s = 0, d = 1, t = ∞
〉

can be solved in linear time.

Our complexity results show that RCP is in coNPNP. This means that the
complement of RCP can be solved by a nondeterministic Oracle Turing Ma-
chine that has oracle access to a machine that can answer any NP queries.
(See Appendix A for a brief overview of Oracle Turing Machines.) Intuitively,
given an access control state and a resiliency policy r = rp(P, s, d, t), to decide
nondeterministically that the state does not satisfy r, one can guess a set of
s users to be removed, and then query the NP oracle whether the remaining
users contain d mutually disjoint sets of users such that each set is of size at
most t and the users in each set together have all the permissions in P.

Another way to understand the computational complexity of RCP is to ob-
serve that an RCP instance has the form ∀ size-s subset, ∃d sets of users that
satisfy some requirements that can be efficiently verified. Problems in NP

have the form of ∃ an evidence that satisfies some polynomial-time verifiable
requirements. Problems in coNP has the form ∀ choices, some polynomial-
time verifiable requirements hold. RCP has one alternation of ∀ followed by ∃,
which makes it in coNPNP.

We have shown that RCP (and its two subcases RCP
〈

d = 1
〉

and RCP
〈

t = ∞
〉)

are NP-hard and are in coNPNP. It remains open whether these three prob-
lems are coNPNP-complete or not. Readers who are familiar with computa-
tional complexity theory will recognize that coNPNP is a complexity class in
the Polynomial Hierarchy. (See Appendix 9 for a brief introduction to the Poly-
nomial Hierarchy.) Because the Polynomial Hierarchy collapses when P = NP,
showing that an NP-hard decision problem is in the Polynomial Hierarchy, al-
though is not equivalent to showing that the problem is NP-complete, has the
same consequence: the problem can be solved in polynomial time if and only if
P =NP.

In the rest of this section, we prove the results in Theorem 1. The following
lemmas prove that RCP

〈

s = 0
〉

is in NP, RCP
〈

s = 0, d = 1
〉

and RCP
〈

s = 0, t = ∞
〉

are NP-hard, RCP
〈 〉

is in coNPNP, and RCP
〈

d = 1, t = ∞
〉

is in P. The complex-
ities of other subcases can be implied from these results.

LEMMA 2. RCP
〈

s = 0
〉

is in NP.

PROOF. An instance consists of an access control state UP and a policy
rp

〈

P, 0, d, t
〉

. UP satisfies rp
〈

P, 0, d, t
〉

if and only if there exist d mutually dis-
joint sets of users such that the users in each set together cover all permissions
in P and each set has at most t users. If these d sets are given, they can be
verified in polynomial time. Therefore, RCP

〈

s = 0
〉

is in NP.

LEMMA 3. RCP
〈

s = 0, d = 1
〉

is NP-hard.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 8 · N. Li et al.

PROOF. We reduce the NP-complete set covering problem [Papadimitriou
1994] (also referred to as minimum covering problem in Garey and Johnson
[1979]) to RCP

〈

s = 0, d = 1
〉

. In set covering, we are given a set S, n subsets
of S: S1, . . . , Sn, and a budget K, and need to determine whether the union of
K subsets is the same as S. An instance of RCP

〈

s = 0, d = 1
〉

asks whether an
access control state UP satisfies a policy rp

〈

P, 0, 1, t
〉

. In our reduction, each
element in S is mapped to a permission in P and each subset Si is mapped
to a user ui. In other words, if the subset Si contains an element, then ui is
authorized for the permission corresponding to the element. We now argue
that the mapping ensures that there exists a set of users of size at most K

together have all the permissions in P if and only if K subsets cover S. Assume
that a set of users of size at most K exists such that those users together have
all the permissions in P. Then, we pick the subsets that are mapped to those
users, and their union gives us S. For the other direction, assume that K

subsets cover S. Then, the K users to which the subsets are mapped together
have all the permissions in P.

LEMMA 4. RCP
〈

s = 0, t = ∞
〉

is NP-hard.

PROOF. We reduce the NP-complete domatic number problem [Garey and
Johnson 1979] to RCP

〈

s = 0, t = ∞
〉

. Given a graph G(V, E), the domatic
number problem asks whether V can be partitioned into k disjoint sets
V1, V2, · · · , Vk, such that each Vi is a dominating set for G. V ′ is a domi-
nating set for G = (V, E) if for every node u in V − V ′, there is a node v in V ′

such that (u, v) ∈ E. An instance of RCP
〈

s = 0, t = ∞
〉

asks whether an access
control state UP satisfies a policy rp

〈

P, 0, d,∞
〉

. Given a graph G = (V, E), we
construct an access control state UP with n users u1, u2, · · · , un and n permis-
sions p1, p2, · · · , pn, where n is the number of nodes in V. Each user corre-
sponds to a node in G, and v(ui) denotes the node corresponding to user ui. In
UP, user ui is authorized for the permission p j if and only if either i = j or
(v(ui), v(uj)) ∈ E. Let P denote the set {p1, p2, · · · , pn}. A dominating set in G

corresponds to a set of users that together have all the permissions in P. UP

satisfies rp
〈

P, 0, k,∞
〉

if and only if V contains k disjoint dominating sets.

LEMMA 5. RCP
〈 〉

is in coNPNP.

PROOF. We show that the complement of RCP
〈 〉

is in NPNP. Assume that
we have an oracle that decides the Resiliency Checking problem when s = 0,
which, as we know, is NP-complete. We construct a nondeterministic oracle
Turing machine M that accepts UP and rp

〈

P, s, d, t
〉

when UP does not sat-
isfy rp

〈

P, s, d, t
〉

. M nondeterministically removes s users, and then queries the
oracle. If the oracle machine returns “yes”, M rejects; otherwise, M accepts, be-
cause it has found a set of users, the removal of which violates the Resiliency
policy. The construction of M shows that the complement of RCP

〈 〉

is in NPNP.

Therefore, RCP
〈 〉

is in coNPNP.

LEMMA 6. RCP
〈

d = 1, t = ∞
〉

can be solved in linear time.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 9

To prove this lemma, we introduce the notion of tolerance bounds. Intu-
itively, a tolerance bound is the number of users that are authorized for the
permission that is assigned to the fewest users.

Definition 3 (The Tolerance Bound). Given an access control state UP and
a set {p1, · · · , pm} of permissions, we define the tolerance bound of UP and
{p1, · · · , pm}, denoted by tb (UP, {p1, · · · , pm}), to be min1≤i≤m #(pi), where #(pi)
denotes the number of users who are authorized for pi in the state UP.

Given an RCP
〈

d = 1, t = ∞
〉

instance that asks whether UP satisfies
rp

〈

P, s, 1,∞
〉

, the answer is yes if and only if the tolerance bound is greater
than s. If the tolerance bound is at most s, then there is a permission that is
assigned to at most s users, removing all these users results in no user having
that permission. On the other hand, if the tolerance bound is greater than s,
then after removing any set of s users, each permission is still assigned to at
least one user, which means that the set of all remaining users together have
all the permissions in P.

The tolerance bound can be computed in linear time. A straightforward
algorithm is to first go through all pairs in UP to count how many users each
permission is assigned to, maintaining a counter for each permission, and then
return the minimal value among the counters. This, together with the above
observations, suffices to prove Lemma 6.

The tolerance bound can be used to answer other RCP instances negatively
as well. Given an RCP instance that asks whether UP satisfies rp

〈

P, s, d, t
〉

, if
s + d > tb (UP, P), then the answer is “no”, as removing s users can result in
fewer than d users have a particular permission. On the other hand, when
d ≥ 2 and s + d ≤ tb (UP, P), we do not immediately know whether UP satisfies
rp

〈

P, s, d, t
〉

or not.

3.1 Implications of the Complexity Results

As can be seen in Figure 2, RCP is tractable when only one instance of a task
must be performed (d = 1) and the team-size is not a concern (t = ∞). The RCP
problem becomes intractable when either t or d is not degenerated and is an
input to the problem.

Note that the team-size limitation is needed only when one wants to limit
the number of involved users to be less than |P|, the number of permissions
needed for the task. To see this, every user in a team should has a permission
in P that is not authorized to any other members in the team, or the user may
be removed from the team without affecting the team’s capability to complete
the task. Also note that the parameter d is needed only when the teams of
users for performing difference instances of a given task must be disjoint. We
believe that in many practical cases, the resiliency requirements are likely
to not require explicit team size limit or disjoint teams, in which case such
resiliency policies fall into the tractable side.

However, even if a resiliency requirement does not fall into the tractable
case, that is, it needs disjoint teams or team-size limitation, it does not mean
that such a requirement cannot be encoded and checked in practice. That RCP

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 10 · N. Li et al.

is intractable (NP-hard) in general does not mean that all instances are in-
feasible to solve in practice. The intractability result simply means that there
exist difficult problem instances that take exponential time in the worst case.
Many instances that will be encountered in practice may still be efficiently
solvable. Experiences have shown that many important problems, such as
boolean satisfaction (SAT) and integer linear programming (ILP), which are
intractable in theory, have algorithms that are efficient in practice. We will
introduce an algorithm for RCP and report its performance in the next section.

4. AN ALGORITHM FOR RCP

We now describe an algorithm for RCP. We first describe an algorithm for the
subcase RCP

〈

t = ∞
〉

, that is, there is no limit on the number of users in any of
the d mutually disjoint sets. We then describe how to extend the algorithm to
deal with the parameter t when it is not degenerated. In Section 4.2 we discuss
our implementation of this algorithm and its effectiveness using experimental
results.

4.1 Description of the Algorithm

To determine whether UP satisfies rp
〈

P, s, d,∞
〉

, a straightforward algorithm
is to enumerate all sets of s users, and for each such set A (which we call an
absent set), remove the users in A from UP and check whether among the
remaining users there are d mutually disjoint sets of users such that each
set covers the permissions. If the answer is “no” for any absent set, then we
know that UP does not satisfy rp

〈

P, s, d,∞
〉

. If we have enumerated through
all absent sets, and the answer is “yes” for each of them, then we know that
UP satisfies rp

〈

P, s, d,∞
〉

.
Our algorithm, which is based on the above straightforward approach, has

a number of improvements which greatly reduce the runtime. First, we pre-
process the given access control state to remove irrelevant users and permis-
sions. Second, we use a static pruning technique so as to minimize the number
of absent sets that need to be considered. Finally, for each absent set A, we
reduce the problem of checking whether the given access control state can tol-
erate the removal of A to an instance of the propositional satisfiability (SAT)
problem. SAT is the problem of determining if the variables of a given proposi-
tional formula can be assigned in such a way that makes the formula evaluate
to TRUE. In the rest of this section, we discuss our improvements in detail.

4.1.1 Preprocessing. Given the state UP and the policy rp
〈

P, s, d,∞
〉

, we
first remove (u, p) from UP if p 6∈ P, as we do not need to consider permissions
not in the policy. Also, we only consider those users who are authorized for at
least one permission in P. Finally, we calculate the tolerance bound tb (UP, P),
using the methods described in the end of Section 3. If s + d > tb (UP, P), then
we know the answer is “no”.

4.1.2 Reduction to SAT. A key step to solve RCP is to determine whether,
after removing a certain set of users, there still exist d mutually disjoint sets
of users such that each set covers all permissions in P. We observe that such

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 11

a problem can be translated into a SAT instance. This enables us to benefit
from the extensive research on SAT and to use existing SAT solvers. SAT
has been studied extensively for several decades (see, for example, Du et al.
[1997]), and many clever algorithms have been developed. Problems in many
fields, including databases, planning, computer-aided design, machine vision,
and automated reasoning, have been reduced to SAT and solved using SAT
solvers. Often times, this results in better performance than using existing
domain-specific algorithms for those problems.

The translation works as follows. Let U be the set of users after removing
users in an absent set. For each user ui in U and each integer j from 1 to d,
we have a propositional variable vi, j. This variable is true if the i’th user is
assigned to the j’th group. Then we have the following two kinds of clauses.
The first kind of clauses ensures that all permissions are covered in each of
the d groups: For each permission p in P, let ui1 , ui2 , · · · , uix be users in U

who are authorized for p. Then for each j from 1 to d, we add the clause
vi1, j ∨ vi2, j ∨ · · · ∨ vix, j. There are |P| · d of such clauses. The second kind of
clauses ensure that no user is selected in two groups at the same time: For
each user ui, and for each pair k, ℓ such that 0 < k < ℓ ≤ d, we add the clause
¬vi,k ∨¬vi,ℓ. There are nd(d−1)/2 such clauses, where n is the number of users.
It is clear that the total number of clauses added is polynomial to the size of
the RCP instance.

4.1.3 Static pruning. The number of size-s user sets among n users is close
to ns when s is small compared with n. For example, there are more than one
billion such sets for s = 6 and n = 100. We observe that not all these sets need
to considered. There is a partial order relation among these sets such that if
A1 dominates A2, and the RCP instance can tolerate the removal of A1, then it
can also tolerate the removal of A2. This means that we only need to consider
A1. We now explain this pruning technique.

Definition 4 (Absent Set Domination). Among all users in UP, we say a user
u1 dominates another user u2 if u1’s set of permissions is a superset (not neces-
sarily strict superset) of u2’s. We say a set of users, A1, dominates another set
A2 if there is a bijection between users in A2 and A1 such that for every user
u in A2, the corresponding user in A1 dominates the user u.

LEMMA 7. Assuming that A1 dominates A2, if an RCP instance can tolerate

removing A1, then it can also tolerate removing A2.

PROOF. We need to show that, if after removing A1, there are d mutually
disjoint sets of users such that each set covers all permissions in P, then after
removing A2, there are also d mutually disjoint sets each of which covers all
permissions in P.

By definition, if A1 dominates A2, then there exists a bijection f between
A2 and A1, such that f (u) = v implies user v ∈ A1 dominates user u ∈ A2.
Without loss of generality, we assume that f satisfies the property that if u ∈

A1 ∩ A2, then f (u) = u. Observe that if f does not satisfy this property for
some u ∈ A1 ∩ A2, then there exist u1 ∈ A1 and u2 ∈ A2 such that f (u) = u1

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 12 · N. Li et al.

and f (u2) = u. It follows that u1 dominates u and u dominates u2. Because
the domination relation is transitive, we have u1 dominating u2. We can then
assign f (u) = u and f (u2) = u1. By repeating this process, we can arrive at a
bijection f such that if u ∈ A1 ∩ A2, then f (u) = u. This property implies that
if u ∈ A2\A1, then f (u) ∈ A1\A2.

Let S1, · · · , Sd be the disjoint sets of users after the removal of A1, we now
construct S1

′, · · · , S′
d such that (1) these sets consists only of users not in A2,

(2) they are mutually disjoint, and (3) users in each set together have all the
permissions in P.

For each k ∈ [1, d], S′
k is constructed as follows: for every user u in Sk, if

u ∈ A2, then u is replaced with f (u). Observe that because u ∈ Sk, then u 6∈ A1,
and thus u ∈ A2\A1 and f (u) ∈ A1\A2. Therefore, each S′

k includes only users
not in A2. To show that they are mutually disjoint, we need to show, for each
w ∈ S′

k, that w does not appear in S′
j, where j 6= k. There are two cases. Case 1:

w is the result of replacing x ∈ A2, in which case w = f (x) is a member of A1,
implying w does not appear in Sj. Hence, if w also appears in S′

j, it must also
be from replacement of x. This is impossible, because x cannot appear both in
Sk and Sj. Case 2: w appears in Sk, in which case w 6∈ Sj. Furthermore, w 6∈ A1,
and therefore w cannot be used as replacement for any other user. Therefore,
w does not appear in S′

j. Finally, by definition of dominance, user f (u)’s set of
permissions is a superset of u’s. Since Sk has all permissions in P, S′

k also has
all permissions in P.

4.1.4 Enumerate all absent sets that need to be considered. We would like
to systematically generate only size-s user sets that we need to consider. That
is, we need to ensure that (1) any size-s user set is dominated by at least one
generated user set, and (2) we do not generate two sets such that one of them
dominates the other. The naı̈ve way of finding all such sets is to generate all
size-s user sets and, for each such set, check whether it is dominated by any
other size-s set. However, this would be very inefficient. We now describe an
algorithm that directly generates only the user sets that need to be considered.

The algorithm works as follows. First of all, we sort all users based on the
number of permissions they have, in decreasing order, and assign each user an
index, that is, users are listed as u0, · · · , un−1. If 0 ≤ i < j ≤ n−1, then ui has at
least as many permissions as uj. By definition of dominance, if ui dominates uj,
then either i < j or ui and uj have exactly the same set of permissions. Second,
we use an index e that initially has the value s− 1. We generate the first size-s
set {u0, · · · , ue}, and then increase the index e by one each time and generate
all user sets that include ue and are not dominated by any other set generated
before. A key observation is that we only need to generate user sets that have
the closure property. We now explain this observation.

Definition 5 (Closure Property). Given a set of users U = {u0, · · · , un−1}, we
say a set A ⊆ U has the closure property if and only if for any uk ∈ A, and any
ui ∈ U such that i < k and ui dominates uk, we have ui ∈ A.

In other words, if a set A has the closure property, then any user that
dominates a user in A and comes before that user must also be in A. The

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 13

relationships between the closure property and the set dominance relation are
established in the following two lemmas.

LEMMA 8. Let A be a size-s user set that satisfies the closure property and let

e be the index of the user with largest index in A, then there is no size-s subset

of {u0, u1, · · · , ue−1} that dominates A.

PROOF. Because A satisfies the closure property, then ue and all users
among {u0, u1, · · · , ue−1} that dominate ue are also in A. Let k be the num-
ber of users in {u0, u1, · · · , ue−1} that dominate ue, then A has k + 1 users that
dominate ue (including ue itself). By the definition of set domination, any set
that dominates A must have at least k+1 users that dominate ue. Whereas any
subset of {u0, u1, · · · , ue−1} has at most k users that dominate ue. Therefore, no
subset of {u0, u1, · · · , ue−1} dominates A.

Lemma 8 shows that if A satisfies the closure property, then none of the sets
that have been considered so far dominates A, so A needs to be considered.

LEMMA 9. Let A be a size-s user set that does not satisfy the closure property

and let e be the index of the user with largest index in A, then there exists a

size-s subset of {u0, u1, · · · , ue−1, ue} that dominates A and satisfies the closure

property.

PROOF. Since A does not have the closure property, there is a user uk ∈ A

such that there exists ui such that i < k, ui dominates uk, and ui 6∈ A. We
change A to A1 by substituting uk with ui, that is, A1 = A\{uk} ∪ {ui}. Clearly,
A1 dominates A. If A1 still does not satisfy the closure property, we can repeat
the substitution process until the resulting set has closure property.

Lemma 9 shows that if A does not satisfy the closure property, then there
must exist a set that dominates A and either has been considered or will be
generated and considered, so there is no need to consider A. The above two
lemmas together show that we need to generate only the users sets that satisfy
the closure property.

4.1.5 Dynamic pruning. When an absent set A is generated, we invoke a
SAT solver to evaluate whether after users in A are removed, the remaining
users still satisfy the requirements. If the answer is “yes”, then we would get
back a solution, which consists of d sets of users such that each set covers all
permissions. Let E be the set of all users that appear in any of the d sets;
we call E a solution set for A. Let U be the set of all users in UP. Clearly,
E ⊆ U − A. If E contains fewer users than U − A, then it is possible that
when another set A ′ is generated we have E ∩ A ′ = ∅. When this happens,
we know that we do not need to consider A ′, as E is also a solution set for A ′.
Based on this observation, one can store the solution sets returned by the SAT
solver, and use them to check whether absent sets generated later need to be
considered.

4.1.6 Handling the case that t 6= ∞. The reduction to SAT described
above works only when t = ∞. To handle the case that t 6= ∞, we can use

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 14 · N. Li et al.

pseudo-boolean constraints. In Pseudo-Boolean (PB) constraints, all variables
take values of either 0 (false) or 1 (true). Constraints are linear inequalities
with integer coefficients, for example, 2x + y + z ≥ 2 is a PB constraint. A
disjunctive clause encountered in SAT is a special case of PB constraints; for
example, x ∨ y ∨ z is equivalent to x + y + z ≥ 1. Many SAT solvers also support
PB constraints. In particular, the SAT solver we use, SAT4J [Le Berre 2006],
supports PB constraints.

When t 6= ∞, we can translate the problem of determining whether d sets
of size no more than t exist to the satisfiability problem with PB constraints.
The translation works as follows. For each user ui and each integer j from
1 to d, we have a propositional variable vi, j. This variable is true if the i’th
user is assigned to the j ’th group. Then we have the following three kinds
of constraints. The first kind ensures that all permissions are covered: For
each permission p in P, let ui1 , ui2 , · · · , uix be the users who are authorized
for the permission p. Then, for each j from 1 to d, we add the constraint
vi1, j + · · · + vix, j ≥ 1. There are |P| · d of such constraints. The second kind
ensures that each set contains at most t users: for each j from 1 to d, we add
the constraint v0, j + v1, j + · · · + vn−1, j ≤ t. There are d such constraints. The
third kind ensures that no user is selected in two groups: For each user i, add
the constraint vi,1 + · · · + vi,d ≤ 1. There are n such constraints, where n is the
number of users.

4.2 Implementation and Evaluation

We have implemented the algorithm described in Section 4.1, and performed
several experiments using randomly generated instances. Our goals of imple-
menting the algorithm and performing these experiments are to understand
the effectiveness of the pruning techniques developed in Section 4 and to un-
derstand how well the algorithm scales with different parameters.

The implementation of our algorithm was written in Java. We use SAT4J
[Le Berre 2006], an open source satisfiability library in Java. Experiments
were carried out on a PC with an Intel Pentium 4 CPU running at 3.2 GHz
with 1 GB of RAM running Microsoft Windows XP Professional 2002. Our
time units are milliseconds. In this subsection, n, s, and d denote the number
of total users, the number of users that may be absent, and the number of
disjoint sets of users we seek after the removal of a set of users respectively.
The methodology that we use in generating testing instances is explained in
Appendix B.

Our experimental results show that our algorithm is able to solve nontrivial
size of RCP instance in reasonable amount of time. For example, our imple-
mentation spent approximately 500ms on instances with 60 to 100 users, 10
permissions, s = 3 and d = 6; and around 2 seconds on instances with 80 to 100
users, 10 permissions, s = 3 and d = 4. We discuss our observations from the
experiments in the rest of this section.

4.2.1 The algorithm scales reasonably well with n when d is small; however

when d is more than approximately 8, the algorithm stops scaling. The run-
time of the algorithm depends on the total number of absent sets that need

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 15

Fig. 3. This graph shows the effect on runtime (in milliseconds) as the number of users n and the
number of disjoint sets d increase. The size of absent sets is 3 and there are 10 permissions. The
value of n increases from 40 to 100 and the value of d increases from 2 to 7.

to be examined and the time it takes for the SAT solver to solve each SAT
instance. The time spent in the SAT solver is greatly influences by d, which
is the number of distinct sets of users we seek after an absent set of users is
removed. In Figure 3, we plot the runtime of the algorithm for cases in which
the instance is true, for increasing n (number of users) and d. For smaller
values of n (say, n = 40), increasing d has almost no effect on the runtime so
long as d is no larger than 7. The reason is that relatively few absent sets
need to be considered. However, for larger values of n (say, n = 90), increas-
ing d has a pronounced effect on the runtime. In particular, we observe that
up to a particular value for d (7 in this case), the algorithm scales well as n

increases. For example, for n = 100 and d = 6, the algorithm takes only about
1.7 seconds. However, as d becomes larger, the algorithm stops scaling. A ma-
jor reason is that as d increases beyond a certain threshold (8 in our case), each
SAT instance that is generated is time-consuming for the SAT solver to solve.
Consequently, lots of time is spent in the SAT solver, which results in increase
of runtime of our algorithm. This threshold of around 8 seems to hold for many
other experiments we have performed.

We expect d to be small in most practical cases, as people normally do not
need a large number of disjoint groups to perform different instances of a task.
Since our algorithm scales well when d is small, it should perform well in
practice.

4.2.2 Static pruning is very effective. Table I shows the effect of static
pruning for increasing values of n (number of users) and s (size of absent sets).
While static pruning always reduces the number of absent sets to be consid-
ered, its effect is especially pronounced for large values of n and s. For example,
for n = 100 and s = 8, we see a reduction of 7 orders of magnitude in the num-
ber of absent sets that need to be considered. We point out also that the effect

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 16 · N. Li et al.

Table I. A Table that Shows that Static Pruning is Effective

n
40 60 80 100

s

2
45 28 40 36

780 1770 3160 4950

4
1042 694 684 640

9.1 · 104 4.9 · 105 1.6 · 108 3.9 · 106

6
9713 9248 5310 6653

3.8 · 106 5.0 · 107 3.0 · 108 1.2 · 109

8
7.7 · 106 6.1 · 104 1.2 · 105 8.7 · 104

7.7 · 107 2.6 · 109 2.9 · 1010 1.9 · 1011

Note: The columns are values for n (number of users) and rows are values for s (size of
the absent set). The number of permissions is 10. For each cell in the table, the entry
above the dotted line is the number of absent sets that need to be considered with static
pruning in effect, and the number below the dotted line is the number of absent sets to

be considered without pruning (i.e.,
(n

s

)

).

of static pruning is increasingly pronounced for larger values of n when s is
constant. For example, for s = 6 and increasing n from 40 to 100, the reduc-
tion in the number of absent sets that need to be considered improves from a
difference of 3 orders of magnitude to 6. For a fixed number of permissions (10
in this case), occurrences of dominance may increase as n increases (because
there are likely more users who have a lot of permissions that dominate other
users). This explains why the number of absent sets after pruning is fewer, for
example, for s = 4, n = 100 (640 absent sets) than for s = 4, n = 40 (1,042 absent
sets).

4.2.3 Dynamic pruning is not effective. The basic idea of dynamic pruning
is to store, for each absent set A, the set E of users that are used in the solution
returned by the SAT solver. When encountering another absent A ′, we check
whether A ′ ∩ E = ∅; if so, then we can skip A ′. Somewhat unexpected for
us, it turns out that dynamic pruning is not effective. In fact, using dynamic
pruning is often slower than without dynamic pruning. After analyzing this
effect, the reason became clear. Dynamic pruning adds additional processing
time for each absent set. It is cost effective only when invoking the SAT solver
is expensive so that it is worthwhile to take more effort to further decrease the
number of absent sets needed to be examined. However, when invoking the
SAT solver is expensive, that is, when it is difficult to find d mutually disjoint
sets of users such that each set has all permissions, the solution returned by
the SAT solver likely includes all users that are not in A, which means that
this solution set will not be able to prune any other absent set.

5. ON THE CONSISTENCY OF RESILIENCY AND SEPARATION
OF DUTY POLICIES

As we have discussed in the introduction, resiliency policies are a natural
complement to traditional safety policies in access control. Consequently,
a question arises regarding the consistency of resiliency policies with other

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 17

policies. In this section, we explore the consistency of resiliency policies and
static separation of duty (SSoD) policies.

The intent of an SSoD policy is to preclude any group of users from possess-
ing too many permissions. We adopt the concrete formulation of such policies
from Li et al. [2004]. An SSoD policy is of the form ssod

〈

P, k
〉

, where P is a set
of permissions and 1 < k ≤ |P| is an integer. An access control state satisfies
the policy if there exists no set of fewer than k users that together possess all
permissions in P. In the policy ssod

〈

P, k
〉

, P denotes the set of permissions that
are needed to perform a sensitive task, and k denotes the minimal number of
users that are allowed to perform the task. If the policy is satisfied, then no
set of k − 1 users can together perform the task, because they do not have all
the permissions; thus at least k users need to be involved, achieving the goal
of separation of duty. For example, the policy ssod

〈

{p1, p2}, 2
〉

means that no
single user is allowed to have both p1 and p2.

In many cases, it is desirable for an access control system to have both re-
siliency and SSoD policies. If an access control system has only resiliency
policies, then they can be satisfied by giving all permissions to all users,
resulting in each single user able to perform any task. Similarly, if an ac-
cess control system has only SSoD policies, then they can be satisfied by not
giving any permission to any user, resulting in no task able to be performed. It
is clear that neither kind of policy by itself is sufficient to capture the security
requirements. When both kinds of policies coexist, safety and functionality
requirements can all be specified.

Due to their opposite focus, resiliency policies and separation of duty poli-
cies can conflict with each other. For example, a separation of duty policy
ssod

〈

P, 2
〉

requires that no user possess all permissions in P. A resiliency pol-
icy rp

〈

P, s, d, 1
〉

requires the existence of a user that has all permissions in P.
Clearly, the two policies cannot be satisfied simultaneously. We formally define
our notion of consistency amongst such policies in the following definition.

Definition 6. Given a set F of resiliency and separation of duty policies, the
policies in F are consistent if and only if there exists an access control state UP

such that UP satisfies every policy in F. Determining whether F is consistent
is called the Policy Consistency Checking Problem (PCCP).

The following lemma asserts that the actual value of s and d in a resiliency
does not affect its compatibility with SSoD policies. This enables us to replace
all resiliency policies in the form of rp

〈

Pi, si, di, ti
〉

in F with the special form
rp

〈

Pi, 0, 1, ti
〉

when studying PCCP. This greatly simplifies the problem.

LEMMA 10. F is a set of policies and R = rp
〈

P, s, d, t
〉

∈ F. Let R′ =
rp

〈

P, 0, 1, t
〉

and F′ = (F − {R}) ∪ {R′}. F is consistent if and only if F′ is

consistent.

PROOF. It is clear that if F is consistent then F′ is consistent. In the follow-
ing, we prove that if F′ is consistent then F is consistent. Assume that state
UP′ satisfies all policies in F′. UP′ satisfying R′ implies that there is a set U of
no more than t users together have all the permissions in P. We then construct
a new state UP by adding s + d − 1 copies of all users in U to UP′. Note that

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 18 · N. Li et al.

adding copies of existing users in UP′ will not lead to violation of SSoD policies
in F′. In this case, UP satisfies R plus all policies in F′. In other words, UP

satisfies all policies in F and F is consistent.

The following theorem gives the computational complexity results about
general cases of PCCP. Observe that the case with one SSoD policy and an
arbitrary number of resiliency policies is coNP-hard, and the case with one
resiliency policy and an arbitrary number of SSoD policies is NP-hard. There-
fore, it is unlikely that the general case is in NP or in coNP; however, we show
that the problem is in NPNP.

THEOREM 11. The computational complexities for PCCP are as follows:

(1) PCCP
〈

1, n
〉

is coNP-hard, where PCCP
〈

1, n
〉

denotes the subcase that

there is a single SSoD policy, and an arbitrary number of resiliency policies.

(2) PCCP
〈

m, 1
〉

is NP-hard, where PCCP
〈

m, 1
〉

denotes the subcase that

there is an arbitrary number of SSoD policies, and a single resiliency policy.

(3) PCCP
〈

m, n
〉

, that is, the most general case of PCCP, is in NPNP.

We prove Theorem 11 by proving Lemmas 12, 13, and 14. Without loss of
generality, we assume that for any static separation of duty policy sod

〈

P, k
〉

, we
have k ≤ |P|. We also assume that in any resiliency policy rp

〈

P, s, d, t
〉

, we have
either t = ∞ or t ≤ |P|.

LEMMA 12. PCCP
〈

1, n
〉

is coNP-hard, where PCCP
〈

1, n
〉

denotes the

subcase that there is a single SSoD policy, and an arbitrary number of resiliency

policies.

PROOF. We reduce the NP-complete set covering problem [Papadimitriou
1994] (also referred to as minimum covering problem in Garey and
Johnson [1979]) to the complement of PCCP. In set covering, we are given
a set X = {e1, · · · , em}, n subsets of X : X1, . . . , Xn, and a budget b , and
need to determine whether the union of b subsets is the same as X . Given
an instance of the set covering problem, we construct one SSoD policy S =
sod

〈

P, b + 1
〉

and b rp policies Ri = rp
〈

Pi, 0, 1, 1
〉

(1 ≤ i ≤ b), where P =
{p1, · · · , pm} corresponds to X and Pi = {p j | e j ∈ X i} corresponds to X i. Let
F = {S, R1, · · · , Rn}. In the following, we prove that F is inconsistent if and
only if the answer to the set covering problem is “yes”.

On the one hand, if F is inconsistent, there does not exist any state that
satisfies all polices in F. In other words, if a state satisfies all resiliency policies
in F, there exists no more than b users in the state who together have all the
permission in P. Let UP be a state with n users u1, · · · , un such that (ui, p j) ∈

UP if and only if p j ∈ Pi. It is clear that UP satisfies all resiliency policies in F,
and hence there exist no more than b users together have all the permissions
in P. In other words, there exist no more than b elements in {P1, · · · , Pn}

whose union is P. Thus, the answer to the set covering problem is “yes”.
On the other hand, if the answer to the set covering problem is “yes”, then

there exist no more than b elements in {P1, · · · , Pn} whose union is P. For any
state UP that satisfies all resiliency policies in F, let U be the set of users that

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 19

satisfy at least one resiliency policy. u ∈ U if and only if there exists Pi such
that u has all permissions in Pi. In this case, there exist no more than b users
in U who together have all the permissions in P. Hence, UP does not satisfy S,
which implies that no state satisfies all policies in F.

LEMMA 13. PCCP
〈

m, 1
〉

is NP-hard, where PCCP
〈

m, 1
〉

denotes the sub-

case that there is an arbitrary number of SSoD policies, and a single resiliency

policy.

PROOF. We reduce the NP-complete set splitting problem to PCCP. In the
set splitting problem, we are given a set X = {e1, · · · , en}, m subsets of X :
X1, . . . , Xm, and need to determine whether there exist Y1 and Y2 such that
Y1 ∪ Y2 = X and there does not exist X i (1 ≤ i ≤ m) such that X i ⊆ Y1 or
X i ⊆ Y2. Given an instance of the set splitting problem, construct a resiliency
policy R = rp

〈

P, 0, 1, 2
〉

and m SSoD policies Si = sod
〈

Pi, 2
〉

(1 ≤ i ≤ m), where
P = {p1, · · · , pn} corresponds to X and Pi = {p j | e j ∈ X i} corresponds to X i. Let
F = {R, S1, · · · , Sm}. In the following, we prove that F is consistent if and only
if the answer to the set splitting problem is “yes”.

On the one hand, if F is consistent, then there exists a state UP that satisfies
all policies in F. UP satisfying R implies that there exist two users u1 and u2 in
UP such that u1 and u2 together have all the permissions in P. Furthermore,
UP satisfying Si implies that neither u1 nor u2 has all permissions in Pi. Let
Y1 = {ei | (u1, pi) ∈ UP} and Y2 = {ei | (u2, pi) ∈ UP}. We have Y1 ∪ Y2 = X

and neither Y1 nor Y2 is a superset of any X i. The answer to the set splitting
problem is “yes”.

On the other hand, if the answer to the set splitting problem is “yes”, then
such Y1 and Y2 exist. We construct a state UP containing only two users u1 and
u2 such that (ui, p j) ∈ UP (1 ≤ i ≤ 2) if and only if p j ∈ Yi. Since Y1 ∪ Y2 = X ,
u1 and u2 together have all the permissions in P. Furthermore, since there
does not exist X i such that X i is a subset of Y1 or Y2, neither u1 nor u2 has all
permissions in Pi, which implies that UP satisfies Si. Therefore, UP satisfies
all policies in F.

LEMMA 14. Let F = {S1, S2, · · · Sm, R1, · · · , Rn}, where Si = sod
〈

Pi, ki

〉

(1 ≤ i ≤ m) and R j = rp
〈

Q j, sj, dj, tj (1 ≤ j ≤ n)
〉

. Checking whether policies

in F are consistent is in NPNP.

PROOF. We construct a set of policies F′ by replacing every Ri (1 ≤ i ≤ n)
in F with rp

〈

Pi, 0, 1, ti
〉

. From Lemma 10, F is consistent if and only if F′ is
consistent.

We construct a nondeterministic Oracle Turing machine M that makes use
of an NP oracle machine to determine whether F′ is consistent. M first non-
deterministically selects an integer a such that max(k1, · · · , km) ≤ a ≤ 6n

i=1|Qi|

and then generates ausers. Note that at least max(k1, · · · , km) users are needed
to satisfy all SSoD policies in F′, and at most 6n

i=1|Qi| users are needed to
satisfy all resiliency policies in F′. (The state can have more than 6n

i=1|Qi|

users, but in order to show that all resiliency policies in F′ are satisfied, at
most 6n

i=1|Qi| users need to be involved.) Then M constructs a state UP by

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 20 · N. Li et al.

nondeterministically assigning a subset of Q to u, where Q =
⋃n

i=1 Qi is the
set of all permissions that appear in the resiliency policies. Next, M nonde-
terministically construct n sets U1, · · · ,Un of users in UP, and then, for every
i ∈ [1, n], checks whether users in Ui together have all the permissions in Pi

and |Ui| ≤ ti. If the answer is “no”, then M returns False. Finally, M invokes
the NP oracle to check whether UP violates any SSoD policy. (In order to prove
that a state violates a static separation of duty policy sod

〈

P, k
〉

, we just need
to present a set of no more than k users in the state who together have all the
permissions in P. Therefore, checking whether a state violates an SSoD policy
is in NP.) If the oracle machine answers “yes”, M returns False. Otherwise,
M returns True, which means that UP satisfies all policies in F′ and hence F′

is consistent. It is clear that M terminates in polynomial time if the oracle
machine returns an answer instantaneously. Therefore, PCCP is in NPNP in
general.

6. THE RESILIENT SEPARATION OF DUTY POLICY

In the previous section, we discuss the policy consistency problem in which dif-
ferent policies may apply to different sets of permissions. A set of permissions
are usually those that are necessary for a certain task to be accomplished.
We call the consistency problem in the previous section the system-level con-

sistency problem, as it considers policies that apply to different tasks in the
system. In this section, we consider the policy consistency problem at task-

level, which means that the policies we consider apply to the same task (or,
equivalently, the same set of permissions). In particular, we consider the con-
sistency between one static separation of duty policy (SSoD) and one resiliency
policy. The combination of an SSoD policy and a resiliency policy is useful
in situations where a task requires both fraud-prevention and fault-tolerance.
We propose the notion of resilient separation of duty (ReSoD) policy to express
such a policy combination.

Example 2. Consider the business office scenario in Example 1 where the
task of issuing funds requires a set P of three permissions and we have five
users. A resiliency policy states that upon the absence of any single user, the
remaining users should still have enough permissions to complete the task.
Also, in order to prevent frauds, it is required that the task cannot be com-
pleted by a single user. These two requirements are captured by a resiliency
policy rp

〈

P, 1, 1,∞
〉

and a static separation of duty policy ssod
〈

P, 2
〉

. And it can
be verified that the access control state presented in Figure 1 satisfies both
policies.

The combination of an SSoD policy ssod
〈

P, k
〉

and a resiliency policy in the
form of rp

〈

P, s, 1,∞
〉

provides both fraud-prevention and fault-tolerance for
the task that requires the permissions in P. When both policies are about the
same set of permissions, they are closely related to each other, as increasing
resiliency may come at a cost of decreasing separation of duty. We thus use a
single policy, which we call the ReSoD policy, to express the combination of the
two kinds of policies and we also study the property of ReSoD policies, such as

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 21

whether they can be satisfied at all. In most of today’s enterprise authoriza-
tion management systems, concerns about SoD and resiliency are often part
of the considerations when managing permissions; however, typically they are
not formally specified as such specification is not supported by today’s autho-
rization management systems. The notion of ReSoD policy enables the formal
specification and verification of such requirements.

Definition 7 (ReSoD). A resilient separation of duty policy (ReSoD) is given
as a tuple resod

〈

P, k, s
〉

, where P is a set of permissions, and k and s are integers
where k > 1 and s ≥ 0.

An access control state UP satisfies resod
〈

P, k, s
〉

, if and only if UP satisfies
both ssod

〈

P, k
〉

and rp
〈

P, s, 1,∞
〉

.

In Example 2, the resiliency and SoD requirements can be expressed as
resod

〈

P, 2, 1
〉

.
We would like to point out that it is possible to define a more general form

of ReSoD policies by also incorporating the two additional parameters d and t

that are part of resiliency policies. In such a case, UP satisfies resod
〈

P, k, s, d, t
〉

if and only if it satisfies both ssod
〈

P, k
〉

and rp
〈

P, s, d, t
〉

. Definition 7 keeps
ReSoD policy in a simpler form by setting d = 1 and t = ∞. Such a simple form
is sufficient in many practical situations. Studying the more general form of
ReSoD policies is future work.

Given an ReSoD policy, a natural problem that arises is to check whether
an access control state UP satisfies the policy, which is called the ReSoD sat-

isfaction problem. The following theorem states the computational complexity
of this problem.

THEOREM 15. Given an access control state UP and an ReSoD policy

resod
〈

P, k, s
〉

, the problem of checking whether UP satisfies resod
〈

P, k, s
〉

is

coNP-complete.

PROOF. Checking whether UP satisfies ssod
〈

P, k
〉

is coNP-complete [Li
et al. 2004]. Also, from Theorem 1, checking whether UP satisfies rp

〈

P, s, 1,∞
〉

is in P. Therefore, the problem is coNP-complete.

Besides the satisfaction problem, another fundamental problem related to
ReSoD is the ReSoD Satisfiability Problem (ReSAT), which asks whether there
exists a state UP that satisfies a given ReSoD policy. Clearly, resod

〈

P, k, s
〉

is
satisfiable, if and only if ssod

〈

P, k
〉

and rp
〈

P, s, 1,∞
〉

are consistent (see Defin-
ition 6 in the previous section) with each other. The following lemma states a
necessary and sufficient condition for satisfiability of ReSoD policies.

LEMMA 16. resod
〈

P, k, s
〉

is satisfiable if and only if |P| ≥ k.

PROOF. Assume for the purpose of contradiction that UP satisfies
resod

〈

P, k, s
〉

, where |P| < k. In this case, UP contains a set of users who
together have all the permissions in P. In other words, every permission in
P is assigned to at least one user in UP. Therefore, there exists a set of no
more than |P| users who together have all the permissions in P. Since |P| < k,
ssod

〈

P, k
〉

is violated, which indicates that UP does not satisfy resod
〈

P, k, s
〉

which is the desired contradiction.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 22 · N. Li et al.

On the other hand, when |P| ≥ k, we can create a state UP with |P|(s + 1)
users, such that every permission in P is assigned to exactly s + 1 users and
every user has exactly one permission. In this case, at least |P| users are
required to have all the permissions in P. Also, after removing s users, for
every permission p ∈ P, there is at least one remaining user that has p. In
general, UP satisfies resod

〈

P, k, s
〉

.

Lemma 16 asserts that given resod
〈

P, k, s
〉

, as long as the number of permis-
sions in P is at least the minimal number of users required for the task (for
concern of separation of duty), then it is always satisfiable no matter how high
is the required number of absent users to be tolerated. The proof of this lemma
exploits the fact that one can use an unbounded number of users where each
user is assigned a single permission. This result is not very interesting as in
any practical system the number of users is bounded and one cannot always
assign only a single permission to a user. Also observe that any state that has
too few (e.g., s) users cannot satisfy resod

〈

P, k, s
〉

.
We say that resod

〈

P, k, s
〉

is satisfiable with m users if and only if there
exists at least one state with m users that satisfies resod

〈

P, k, s
〉

. Clearly, if
resod

〈

P, k, s
〉

is satisfiable with m users, it is also satisfiable with n > m users.
Let mo be the smallest m such that resod

〈

P, k, s
〉

is satisfiable with m users.
Such a bound mo must exist, and for any integer n < mo , there does not exist
any state with n users that satisfies resod

〈

P, k, s
〉

.
This bound mo can be useful in practice. Consider Example 2 again. Assume

that we would like to minimize the number of employees in the business office.
Then we need to calculate this bound. Note that three users are sufficient. For
example, we may assign Endorse to Alice and Bob, Issue to Alice and Carl, and
Log to Bob and Carl. But we cannot construct a state with fewer than three
users that satisfies the ReSoD policy. Therefore, the bound is three.

Given resod
〈

P, k, s
〉

, calculating the exact bound mo can be difficult. Whether
this is tractable or not is an open problem. In the rest of this section, we
present techniques for computing upper-bound mu and lower-bound ml such
that if m ≥ mu, then resod

〈

P, k, s
〉

is satisfiable with m users, and if m < ml,
then resod

〈

P, k, s
〉

is not satisfiable with m users. The following lemma com-
putes ml.

LEMMA 17. resod
〈

P, k, s
〉

is satisfiable with m users only if m ≥ k + s and

m ≥ ⌈ (s+1)n
n−(k−1) ⌉, where n = |P|.

PROOF. When m < k + s, removing a set of s users from a set of m users
results in a set of fewer than k users. And if these remaining users together
have all the permissions in P, then ssod

〈

P, k
〉

is violated.

When m < ⌈ (s+1)n
n−(k−1)

⌉, as each permission is assigned to s + 1 users, the total

number of assignments is (s + 1)n. m < ⌈ (s+1)n
n−(k−1) ⌉ indicates that there exist at

least one user u′ who has more than n − (k − 1) permissions. Let P′ be the set
of permissions of u′. Since every permission in P has been assigned to users,
there exist a set U1 of no more than |P − P′| < n − (n − (k − 1)) = k − 1 users
who together have all the permissions in P − P′. In this case, users in U1 ∪ {u′}

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 23

together have all the permissions in P, and |U1 ∪ {u′}| < k, which violates
ssod

〈

P, k
〉

.

Note that when n < k + s, we have ⌈ (s+1)n
n−(k−1) ⌉ < k + s, while when n ≥ k + s, we

have ⌈ (s+1)n
n−(k−1) ⌉ ≥ k + s. Hence, which of the two lower-bounds is tighter depends

on how the value of n (which is |P|) compares to k + s.
Next, we consider m-ReSAT in special cases and then compute mu in general

cases. First of all, we show that m-ReSAT is essentially a matrix marking
problem.

Definition 8 (MMP). Given an m × n matrix M and two integer k and x, the
Matrix Marking Problem, denoted as MMP

〈

m, n, k, x
〉

, asks whether one can
mark the cells in M with either 0 or 1 in such a way that both of the following
conditions are true.

—For every column, there are at least x cells marked with 1.

—There does not exist a set R of fewer than k rows, such that for every column,
there is a row in R whose cell in that column is marked with 1.

Let M(i, j) denote the cell on the ith row and jth column of matrix M. In-
tuitively, in Definition 8, the matrix M represents an access control state UP.
Rows and columns in M correspond to users and permissions in UP, respec-
tively. M(i, j) being marked with 1 indicates that user ui has permission p j

in UP. M satisfying the first condition in Definition 8 indicates that UP sat-
isfies rp

〈

P, s, 1,∞
〉

, while M satisfying the second condition indicates that UP

satisfies ssod
〈

P, k
〉

. The following lemma states that MMP
〈

m, |P|, k, s + 1
〉

is
equivalent to m-ReSAT of resod

〈

P, k, s
〉

.

LEMMA 18. Given resod
〈

P, k, s
〉

and an integer m, the answer to m-ReSAT is

“yes”, if and only if the answer to MMP
〈

m, n, k, s + 1
〉

is “yes”, where n = |P|.

The proof for this lemma is straightforward and we omit it in this article .
As the two problems are equivalent, in the rest of this section, we discuss

MMP instead of m-ReSAT. Given MMP
〈

m, n, k, s + 1
〉

, mo denotes the smallest
m that makes MMP

〈

m, n, k, s + 1
〉

satisfiable. We summarize our results on
computing mo in below. Results in Lemma 17 are included as well.

Exact Answer

—When s = 0, mo = k

—When k = 2, mo = ⌈ (s+1)n
n−1

⌉

—When k = n, mo = (s + 1)k

—When n ≥ Ck+s
s+1, mo = k + s

Upper-Bound

—When k ≤ n < Ck+s
s+1, see Theorem 23 for mu

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 24 · N. Li et al.

Lower-Bound

—When n ≥ k + s, ml = k + s

—When k ≤ n < k + s, ml = ⌈ (s+1)n
n−(k−1) ⌉

In the rest of this section, we prove the above results.

LEMMA 19. The following are true.

—When s = 0, MMP
〈

m, n, k, s + 1
〉

is satisfiable if and only if m ≥ k.

—When k = 2, MMP
〈

m, n, k, s + 1
〉

is satisfiable if and only if m ≥ ⌈ (s+1)n
n−1 ⌉.

—When k = n, MMP
〈

m, n, k, s + 1
〉

is satisfiable if and only if m ≥ (s + 1)k.

PROOF. When s = 0 and m ≥ k, for every i ∈ [1, k], we mark M(i, i) with 1.
For every other column, we arbitrarily mark one cell in the column with 1. In
this case, at least k rows are required to have a cell marked with 1 in every
column. Therefore, MMP

〈

m, n, k, s + 1
〉

is satisfiable. Also, from Lemma 17,
MMP

〈

m, n, k, s + 1
〉

is not satisfiable if m < k + s = k. Therefore, MMP
〈

m, n,

k, s + 1
〉

is satisfiable if and only m ≥ k.
When k = 2, each row can have as many as n − 1 cells marked with 1. Also,

the total number of cells marked with 1 in the matrix is (s + 1)n. If each row
has n − 1 cells with 1, ⌈ (s+1)n

n−1 ⌉ rows is enough. Therefore, MMP
〈

m, n, 2, s + 1
〉

is

satisfiable when m ≥ ⌈ (s+1)n
n−1

⌉. However, if m < ⌈ (s+1)n
n−1

⌉, in order to have (s + 1)n
cells marked with 1, there must exist a row having all the n cells marked with
1, which violates the second condition in Definition 8.

When k = n, each row can have at most one cell marked with 1. In this case,
at least (s+1)k rows are needed to ensure that every column contains s+1 cells
marked with 1.

The following lemma states a special case where the number of columns in
the matrix is no smaller than a certain threshold.

LEMMA 20. When n ≥ Ck+s
s+1, MMP

〈

m, n, k, s + 1
〉

is satisfiable if and only if

m ≥ k + s, where Ck+s
s+1 is the total number of (s + 1)-combinations from a set of

k + s elements1.

Since k + s is a lower-bound of m when MMP
〈

m, n, k, s + 1
〉

is satisfiable, we
only need to prove the “if” part of Lemma 20. We design an algorithm that
marks an m × n matrix M. The algorithm is described in Figure 4. Generally
speaking, the algorithm marks each column of M based on (s+1)-combinations
from {1, · · · , s + k}. The proof for the correctness of the algorithm with respect
to MMP is in Appendix 9. The following example illustrates how the algorithm
works.

Example 3. Let M be a 4 × 6 matrix, k = 3 and s = 1. We have
Ck+s

s+1 = C4
2 = 6. The set of 2-combinations out of {1, 2, 3, 4} is E4

2 =
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. The algorithm Mark(M, k, s) marks the

1Given integers x and y (x ≥ y), Cx
y = x!

y!(x−y)! .

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 25

Fig. 4. An algorithm that marks an m × n matrix. M(i, j) denotes the cell in the ith row and jth
column of M, and Ex

y is the set of y-combinations from {1, · · · , x}.

6 columns of M based on the six elements in E4
2. For instance, for the first col-

umn, (1, 2) indicates marking the cells in row 1 and row 2 with 1. The output
of the algorithm is shown in Table II. It can be verified that at least three rows
are needed to have a cell marked with 1 in every column.

Next, we use Lemma 20 to compute mu for MMP
〈

m, n, k, s + 1
〉

in general
cases. The following lemma states an important fact that we can make use of.

LEMMA 21. Let k1 and k2 be integers such that k1 > 0, k2 > 0 and k1+k2 = k.

We have C
k1+s
s+1 + C

k2+s
s+1 ≤ Ck+s

s+1.

Lemma 21 can be easily verified by arithmetic computation. We omit the
proof in this article.

According to Lemma 21, even if n < Ck+s
s+1, there may exist k1, · · · , kx such

that k = 6x
i=1ki and n ≥ 6x

i=1C
ki+s
s+1 . This leads to the following Lemma 22, which

gives an upper-bound of mo in general case. Intuitively, we may come up with
x matrices M1, . . . , Mx such that Mi (i ∈ [1, x]) is an mi×ni matrix that satisfies
MMP

〈

mi, ni, ki, s + 1
〉

. We may then place these x matrices inside a bigger matrix
M so that none of the x matrices share a row or a column in M. Then, M

satisfies MMP
〈

6x
i=1mi,6

x
i=1ni,6

x
i=1ki, s + 1

〉

.

LEMMA 22. Let {k1, . . . , kx} be a set of integers such that ki > 0 and k =
6x

i=1ki. If n ≥ 6x
i=1C

ki+s
s+1 , then MMP

〈

m, n, k, s + 1
〉

is satisfiable if m ≥ k + xs.

PROOF. Let {M1, . . . , Mx} be a set of matrices, such that Mi is an mi × ni

matrix, where 6x
j=1mj = m, ni ≥ C

ki+s
s+1 and 6x

j=1nj = n.

From Lemma 20, since ni ≥ C
ki+s
s+1 , MMP

〈

mi, ni, ki, s
〉

is satisfiable if mi ≥ ki + s.
Let M′

i be the marked version of Mi such that M′
i satisfies MMP

〈

mi, n, ki, s
〉

,
where i ∈ [1, x]. This implies that, every column in M′

i has at least s + 1 cells

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 26 · N. Li et al.

Table II. The Output Matrix of Algorithm Mark(M,k, s), When m = 4, n = 6, k = 3 and s = 1

C1 C2 C3 C4 C5 C6

R1 1 1 1 0 0 0

R2 1 0 0 1 1 0

R3 0 1 0 1 0 1

R4 0 0 1 0 1 1

marked with 1, and no fewer than ki rows together have a cell marked with 1
in every column.

We integrate M′
1, · · · , M′

x into an m × n matrix M′ to form a marked version
of M. Initially, every cell in M′ is marked with 0. Since 6x

j=1mj = m and

6x
j=1nj = n, we can place M′

1, · · · , M′
x into M′ in such a way that no pair of

these x matrices share a row or a column in M′. According to the properties of
M′

1, · · · , M′
x, at least 6x

i=1ki = k rows are required to have a cell marked with
1 in every column of M′. Also, since M′

1, · · · , M′
x together spans all columns of

M′ (because 6x
j=1nj = n) and there are at least s+ 1 cells marked with 1 in every

column of M′
i (i ∈ [1, x]), every column of M′ has at least s+ 1 cells marked with

1. In general, M′ satisfies MMP
〈

m, n, k, s + 1
〉

.

Note that when k ≤ n, we can always find a set of x integers {k1, · · · , kx}

such that k = 6x
i=0ki and n ≥ 6x

i=1C
ki+s
s+1 . In the extreme case, let x = k and we

have k1 = · · · = kx = 1. In this case, 6x
i=1C

ki+s
s+1 = 6k

i=1Cs+1
s+1 = k ≤ n. That is to say,

Lemma 22 applies regardless of the value of n and k.
The following theorem improves the upper-bound (k+xs) given by Lemma 22.

THEOREM 23. Given k and s, let x and y be two integers such that x ∈ [1, k]
and y ∈ [1, (s + 1)]. Let dx = ⌊k/x⌋, rx = k mod x, dy = ⌊(s + 1)/y⌋ and ry =
(s + 1) mod y. MMP

〈

m, n, k, s + 1
〉

is satisfiable if the following conditions hold.

• n ≥ (x − 1)C
dx+dy+ry−1

dy+ry
+ C

dx+rx+dy+ry−1

dy+ry
(1)

• m ≥ yk + x(s + 1) − xy (2)

The proof to this theorem is in Appendix C. The intuition is that, in addition
to “splitting” k into k1, · · · , kx as stated in Lemma 22, we can “split” (s+ 1) into
s1, · · · , sy as well to acquire a tighter upper-bound. Our proof makes use of the
following facts that are derived from Definition 8.

Fact 1. If MMP
〈

m, n, k, x
〉

is satisfiable, then MMP
〈

m − x′, n, k, x − x′
〉

is satis-
fiable, where x′ ∈ [0, x).

Fact 2. If both MMP
〈

m1, n, k, x1

〉

and MMP
〈

m2, n, k, x2

〉

are satisfiable, then
MMP

〈

m1 + m2, n, k, x1 + x2

〉

is satisfiable.

Let mo denote the smallest value of m such that MMP
〈

m, n, k, s + 1
〉

is satis-
fiable. The upper-bound of mo given by Theorem 23 is the minimum value of
yk + x(s + 1) − xy, provided that Condition (1) is satisfied. Since x ∈ [1, k] and
y ∈ [1, s + 1], we need to try at most k(s + 1) combinations of x and y before
finding the minimum value. In Figure 5, we compare the upper-bound given
by Theorem 23 with the exact value of mo computed by a brute-force algorithm

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 27

Fig. 5. Comparing the upper-bound given in Theorem 23 with the exact value of mo . All listed
cases have n < Cs+k

s+1 .

which tries all possible ways to mark matrix M2. We can see that the upper-
bound given in Theorem 23 is close to the exact value in the cases we tested.
Recall that it is unclear whether we can solve MMP (or ReSAT) in polynomial-
time. Theorem 23 essentially presents an O(k(s + 1))-time algorithm which
gives an approximated answer to the problem.

7. RELATED WORK

To our knowledge, there is no prior work in resiliency policies in the context of
access control. Prior analysis work in access control deals mostly with safety
and security analysis, and separation of duty.

Simple safety analysis, that is, determining whether an access control sys-
tem can reach a state in which an unsafe access is allowed, was first formal-
ized by Harrison et al. [1976] in the context of the well-known access ma-
trix model [Graham and Denning 1972; Lampson 1971], and was shown to
be undecidable in the HRU model [Harrison et al. 1976]. Following that, there
have been various efforts in designing access control systems in which simple
safety analysis is decidable or efficiently decidable, for example, the take-grant
model [Lipton and Snyder 1977], the schematic protection model [Sandhu
1988a], and the typed access matrix model [Sandhu 1992]. Koch et al. [2002a]
considered safety in RBAC with the RBAC state and state-change rules posed
as a graph formalism [Koch et al. 2002b]. Li et al. [2005] proposed the notion
of security analysis which generalizes safety analysis; it was considered in the
context of a trust management framework. Security analysis has since been
considered also in the context of RBAC [Li and Tripunitara 2004].

Separation of duty (SoD) has long existed in the physical world, sometimes
under the name “the two-man rule,” for example, in the banking industry and
the military. To our knowledge, in the information security literature the no-
tion of SoD first appeared in Saltzer and Schroeder [1975] under the name
“separation of privilege.” Clark and Wilson’s commercial security policy for in-
tegrity [1987] identified SoD along with well-formed transactions as two major
mechanisms of fraud and error control. Separation of Duty policies were also
studied in Ahn and Sandhu [2000], Crampton [2003], Gligor et al. [1998],
Jaeger and Tidswell [2001], Li et al. [2004], Nash and Poland [1990], Sandhu
[1990; 1988b], and Simon and Zurko [1997].

Another related concept is availability policies in Li et al. [2005] and Li
and Tripunitara [2004], which asks whether a user always possesses certain
permissions across state changes. In that work, checking whether an avail-
ability policy is satisfied in a state is straightforward; the challenges arises

2We do not have the results for larger parameters as the brute-force algorithm does not scale.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 28 · N. Li et al.

from the fact that the access control state may be changed by administrative
operations, and the possible state space may be infinite. Unlike availability
policies, resiliency policies such as the ones we consider in this article do not
specify a permission requirement on any individual user; rather, they specify
requirements about tolerating absent users and the overall ability of groups of
users to perform critical tasks. Consequently, resiliency policies are more pow-
erful and checking whether a state satisfies a resiliency policy is a challenging
problem in itself.

Following the preliminary version of this paper, Wang and Li [2007] studied
resiliency in workflow authorization systems. They proposed three levels of re-
siliency in workflow systems, namely, static resiliency, decremental resiliency,
and dynamic resiliency.

8. DISCUSSIONS AND OPEN PROBLEMS

To our knowledge, this is the first work in access control research to clearly for-
mulate properties on enabling access, rather than restricting access. Because
this work opens up a new area, even though we have presented a number of re-
sults in this article, many more interesting problems remain open. One fruitful
area of future research lies in the interaction between resiliency policies and
other policies. In addition to resiliency and separation of duty policies, other
kinds policies may exist. For example, an assignment range policy states that a
set of permissions can be possessed only by a certain set of users. This may be
motivated by the fact that not all users are qualified to receive these permis-
sions. For example, the permission to install software on campus-wide network
servers may be assigned only to qualified and authorized staff, and should not
be given to others. The interaction among resiliency policies, SSoD policies,
and assignment range policies is an interesting and challenging problem for
future work.

Another open area lies in designing techniques to enforce resiliency policies.
The resiliency checking problem studied in this paper essentially assumes that
the permission authorization for any user does not change, even if some users
become absent. With such a static approach, an access control state satisfies
a resiliency policy only if the state contains enough redundancy on users and
user-permission authorization. A dynamic approach may allow us to enforce
resiliency policies with less resources. Delegation, which allows a user to act
on another user’s behalf, is such an approach. When a user is absent, some
of her permissions can be temporarily delegated to one or more other users so
that the remaining users still have enough permissions to complete the critical
tasks. Naturally, we may require delegation activities satisfy separation of
duty policies when applicable. The following example illustrates the ideal of
using delegation to enforce resiliency policies.

Example 4. Task T requires two permissions p1 and p2. In order to prevent
frauds, an SoD policy sod

〈

{p1, p2}, 2
〉

has been specified, which indicates that
a user can only have either p1 or p2. Thus, at least four users are needed
for an access control state to satisfy the resiliency policy rp

〈

{p1, p2}, 1, 1,∞
〉

, if
user-permission authorization cannot be changed dynamically.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 29

However, with delegation, only three users are required to enforce
rp

〈

{p1, p2}, 1, 1,∞
〉

without violating the SoD policy. Let Alice, Bob, and Carl

be three users in the access control state. Alice is given p1, Bob is given p2,
while Carl has neither p1 nor p2. We have a delegation rule stating that when
Alice is absent but Bob is available, p1 is made available to Carl (until Alice

comes back). Similarly, we have another delegation rule stating that when Bob

is absent but Alice is available, p2 is available to Carl. It is easy to see that
the access control state with the two delegation rules can tolerate the absence
of any one of the three users.

How to design delegation rules to effectively enforce resiliency policies with
limited number of users is an open research problem that is of both theoretical
and practical interests.

Finally, the computational complexity of m-ReSAT is unknown.

9. CONCLUSION AND FUTURE WORK

We have introduced the notion of resiliency policies in the context of access
control systems. Unlike most existing work on policy analysis in access con-
trol, resiliency policies are about enabling access rather than restricting access.
Resiliency policies are particularly useful when evaluating whether the access
control configuration of a system is ready for emergency response. To the best
of our knowledge, such resiliency policies have not been previously studied in
access control.

We have shown that the problem of checking whether an access control state
satisfies a resiliency policy in the general case is intractable (NP-hard), and
is in the Polynomial Hierarchy (in coNPNP). We have shown also that sev-
eral subcases of the problem remain intractable. Notwithstanding these in-
tractability results, many instances that will be encountered in practice may
be efficiently solvable. In an effort to seek an efficient solution for practical in-
stances of the problem and to understand what the hard instances are, we have
designed and implemented an algorithm for RCP. Our algorithm takes advan-
tages of an effective static pruning approach and the existence of fast SAT
solvers. Our experimental results have shown that the algorithm is capable
to solve RCP instances of nontrivial sizes in a reasonable amount of time. We
have also explored the co-existence of resiliency policies with static separation
of duty (SSoD) policies. In particular, we have presented several computational
complexity results on checking whether a set of resiliency policies and SSoD
policies are consistent. Finally, we have combined the notion of resiliency and
separation of duty to introduce the resilient separation of duty policy, which
is useful in situations where both fault-tolerance and fraud-prevention are de-
sired. We have studied the satisfaction problem as well as the optimization
problem of resilient separation of duty policy.

APPENDIX A. BACKGROUND ON ORACLE TURING MACHINES AND
POLYNOMIAL HIERARCHY

Oracle Turing Machines. An oracle Turing machine, with oracle L, is denoted
as ML . L is a language. ML can use the oracle to determine whether a string

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 30 · N. Li et al.

is in L or not in one step. More precisely, ML is a two-tape deterministic Tur-
ing machine. The extra tape is called the oracle tape. ML has three additional
states: q? (the query state), and qyes and qno (the answer states). The computa-
tion of ML proceeds like in any ordinary Turing machine, except for transitions
from q?. When ML enters q?, it checks whether the contents of the oracle tape
are in L. If so, ML moves to qyes. Otherwise, ML moves to qno. In other words,
ML is given the ability to “instantaneously” determine whether a particular
string is in L or not.

Polynomial Hierarchy. The polynomial hierarchy provides a more detailed
way of classifying NP-hard decision problems. The complexity classes in this
hierarchy are denoted by 6kP,5kP,1kP, where k is a nonnegative integer.
They are defined as follows:

60P = 50P = 10P = P,
and for all k ≥ 0,

1k+1P = P6kP,
6k+1P = NP6kP,
5k+1P = co-6k+1P = coNP6kP.

Some classes in the hierarchy are

11P = P , 61P = NP , 51P = coNP,
12P = PNP, 62P = NPNP,
52P = coNPNP.

APPENDIX B. METHODOLOGY FOR GENERATING TESTING INSTANCES

Our goals of implementing the algorithm and performing experiments are to
understand the effectiveness of the pruning techniques developed in Section 4
and to understand how well the algorithm scales with different parameters.
To achieve such goals, we try to generate instances to approximate realistic in-
stances. We generate instances for testing using combinations of the following
approaches.

—Purely Random. For each permission pi and user uj, we assign pi to uj with
a certain probability. The probability is an adjustable parameter which is
called the density parameter.

—With Constraints. Often times, an access control system may include (ex-
plicit or implicit) constraints that restrict user-permission assignment. For
example, there may be a requirement that no user is authorized for permis-
sions pi and p j at the same time. To model this aspect, mutual exclusion con-
straints among permissions are randomly generated. Two permissions are
mutually exclusive if no user can be authorized for both permissions. The to-
tal number of pairs of permissions is p(p − 1)/2. The number of constraints
to be generated is determined by an adjustable parameter that specifies the
ratio of the constraints to p(p − 1)/2. After the generation of constraints
and user-permission assignment, if a user is assigned to two permissions

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 31

that are mutually exclusive, we randomly remove one permission from the
assignment.

—Density Variation: In situations where resiliency is an issue, it is likely that
some permissions are assigned only to a small number of people. To model
these situations, we assign different permissions with different densities.
We have two parameters that specify the lower bound and the upper bound
for the permission assignment densities respectively. The sequence of all
permissions p1, · · · , pm will be assigned with nondecreasing density, with p1

being assigned with the lower bound density and pm with the upper bound
density.

Finally, if a user is not assigned any permission, we randomly assign one
permission to the user, so that we do not have a useless user in the generated
instance.

APPENDIX C. PROOFS IN SECTION 6

Proof of Lemma 20

We need to prove that the matrix generated by Mark(M, k, s) (see Figure 4) sat-
isfies MMP

〈

m, n, k, s + 1
〉

. From the description of the algorithm, each column
contains exactly s+1 cells marked with 1’s. What remains to show is that there
does not exist a set of k − 1 rows who together have a cell marked with 1 in
every column. Without loss of generality, we consider the case where n = Ck+s

s+1.
Let M′ be the marked version of M generated by Mark(M, k, s). We prove by

induction on s and k.

Based Case 1. When s = 0, we have n = Ck+s
s+1 = Ck

1 = k and m = k + s = k.
Ek

1 = {(1), (2), · · · , (k)}. According to the algorithm, each of the k rows contains
exactly one cell marked with 1. The statement holds.

Based Case 2. When k = 1, the statement trivially holds.

Inductive Case. Assume that the statement is true for Mark(M, k − 1, s) and
Mark(M, k, s−1), where k ≥ 2 and s ≥ 1. We need to prove that it remains true
for Mark(M, k, s).

According to the algorithm, the number of cells that are marked with 1 in
each row is Ck+s−1

s . In particular, in Row 1, cells M(1, 1), · · · , M(1, Ck+s−1
s) are

marked with 1. Let M
〈

i1, j1, i2, j2
〉

denote the submatrix of M whose top-left
cell is M(i1, j1) and bottom-right cell is M(i2, j2).

First of all, we show that Row 1 plus any other k − 2 rows together do
not have cells marked with 1 in every column. According to the algorithm,
the submatrix M

〈

2, Ck+s−1
s + 1, k + s, Ck+s

s+1

〉

is identical to Mb , where Mb is a

(k + s − 1) × Ck+s−1
s+1 matrix marked by Mark(Mb , k − 1, s) (See Table III, cells

marked with ‘1b ’). By induction hypothesis, no k − 2 rows in Mb together have
a cell marked with 1 in every column of Mb . Therefore, Row 1 plus any other
k − 2 rows in M together do not have a cell marked with 1 in every column
of M.

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 32 · N. Li et al.

Table III. The Output of Mark(M,3, 2).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

R1 1 1 1 1 1 1

R2 1a 1a 1a 1b 1b 1b

R3 1a 1a 1a 1b 1b 1b

R4 1a 1a 1a 1b 1b 1b

R5 1a 1a 1a 1b 1b 1b

Note: Cells marked with “1a” and “1b ” are the outputs of Mark(Ma, 3, 1)
and Mark(Mb , 2, 2), respectively. Empty cells are marked with 0.

Second, we show that no k − 1 rows other than Row 1 together have cells
marked with 1 in every column. According to the algorithm, the submatrix
M

〈

2, 1, k + s, Ck+s−1
s

〉

is identical to Ma, where Ma is a (k+s−1)×Ck+s−1
s matrix

marked by Mark(Ma, k, s − 1) (See Table III, cells marked with ‘1a’). By induc-
tion hypothesis, no k−1 rows in Ma together have cells marked with 1 in every
column.

In general, the statement holds.
We conclude that the algorithm Mark(M, k, s) marks M in a way that satis-

fies MMP. Therefore, Lemma 20 holds.

Proof of Theorem 23

We prove, without loss of generality, that when yk + x(s + 1) − xy = m and

(x − 1)C
dx+dy+ry−1

dy+ry
+ C

dx+rx+dy+ry−1

dy+ry
= n, both MMP

〈

y(dx − 1) + s + 1, C
dx+dy+ry−1

dy+ry
, dx,

s + 1
〉

and MMP
〈

y(dx + rx − 1) + s + 1, C
dx+rx+dy+ry−1

dy+ry
, dx + rx, s + 1

〉

are satisfiable,

where dx = ⌊k/x⌋, rx = k mod x, dy = ⌊(s + 1)/y⌋ and ry = (s + 1) mod y.

We start with MMP
〈

y(dx − 1) + s + 1, C
dx+dy+ry−1

dy+ry
, dx, s + 1

〉

. First of all, accord-

ing to Lemma 20, MMP
〈

dx + dy + ry − 1, C
dx+dy+ry−1

dy+ry
, dx, dy + ry

〉

is satisfiable.

From Fact 1, MMP
〈

dx + dy − 1, C
dx+dy+ry−1

dy+ry
, dx, dy

〉

is satisfiable as well. Note

that dy × (y − 1) + dy + ry = s + 1. Also, (dx + dy − 1) × (y − 1) + dx + dy + ry − 1 =

y(dx − 1) + s + 1. Hence, from Fact 2, MMP
〈

y(dx − 1) + s + 1, C
dx+dy+ry−1

dy+ry
, dx, s + 1

〉

is satisfiable.
Similarly, we can prove that MMP

〈

y(dx + rx − 1) + s + 1, C
dx+rx+dy+ry−1

dy+ry
,

dx + rx, s + 1
〉

is satisfiable.

Let M1 be the marked version of a (y(dx − 1) + s + 1) × C
dx+dy+ry−1

dy+ry
ma-

trix that satisfies MMP
〈

y(dx − 1) + s + 1, C
dx+dy+ry−1

dy+ry
, dx, s + 1

〉

, and M2 be the

marked version of a (y(dx + rx − 1) + s + 1) × C
dx+rx+dy+ry−1

dy+ry
matrix that sat-

isfies MMP
〈

y(dx + rx − 1) + s + 1, C
dx+rx+dy+ry−1

dy+ry
, dx + rx, s + 1

〉

. Note that (x −

1)(y(dx − 1) + s + 1) + y(dx + rx − 1) + s + 1 = yk + x(s + 1) − xy = m and

(x − 1)C
dx+dy+ry−1

dy+ry
+ C

dx+rx+dy+ry−1

dy+ry
= n. Thus, we can place x − 1 copies of M1

and one copy of M2 into an m × n matrix M, such that no pair of these
x copies share a row or a column in M. Also, dx × (x − 1) + dx + rx = k.
According to the properties of M1 and M2, no less than k rows in M together

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

Resiliency Policies in Access Control · 20: 33

have a cell marked with 1 in every column of M. Furthermore, every column
in M1 and M2 contains s + 1 cells marked with 1. In general, M satisfies
MMP

〈

m, n, k, s + 1
〉

. The theorem holds.

REFERENCES

AHN, G.-J. AND SANDHU, R. S. 2000. Role-based authorization constraints specification. ACM

Trans. Inf. Syst. Sec. 3, 4, 207–226.

CLARK, D. D. AND WILSON, D. R. 1987. A comparision of commercial and military computer

security policies. In Proceedings of the IEEE Symposium on Security and Privacy (SP’87). IEEE
Computer Society Press, 184–194.

CRAMPTON, J. 2003. Specifying and enforcing constraints in role-based access control. In Pro-

ceedings of the 8th ACM Symposium on Access Control Models and Technologies (SACMAT’03).
43–50.

DU, D., GU, J., AND PARDALOS, P. M., Eds. 1997. Satisfiability problem: Theory and applications.
In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 35. AMS Press.

GAREY, M. R. AND JOHNSON, D. J. 1979. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company.

GLIGOR, V. D., GAVRILA, S. I., AND FERRAIOLO, D. F. 1998. On the formal definition of
separation-of-duty policies and their composition. In Proceedings of IEEE Symposium on

Research in Security and Privacy (SP’98). 172–183.

GRAHAM, G. S. AND DENNING, P. J. 1972. Protection—Principles and practice. In Proceedings

of the American Federation of Information Processing Societies National Semiannual Computer

Conference Spring Joint Computer Conference (AFIPS’72). 40, 417–429.

HARRISON, M. A., RUZZO, W. L., AND ULLMAN, J. D. 1976. Protection in operating systems.
Comm. ACM 19, 8, 461–471.

JAEGER, T. AND TIDSWELL, J. E. 2001. Practical safety in flexible access control models. ACM

Trans. Inf. Syst. Sec. 4, 2, 158–190.

KOCH, M., MANCINI, L. V., AND PARISI-PRESICCE, F. 2002a. Decidability of safety in graph-
based models for access control. In Proceedings of the 7th European Symposium on Research in

Computer Security (ESORICS’02). Springer, 229–243.

KOCH, M., MANCINI, L. V., AND PARISI-PRESICCE, F. 2002b. A graph-based formalism for RBAC.
ACM Trans. Inf. Syst. Sec. 5, 3 (Aug.), 332–365.

LAMPSON, B. W. 1971. Protection. In Proceedings of the 5th Princeton Conference on Information

Sciences and Systems (CISS’71). (Reprinted in ACM Operat. Syst. Rev. 8, 1, 18–24).

LE BERRE, D. 2006. SAT4J: A satisfiability library for Java. Retrieved from http://www.sat4j.org/.

LI, N., BIZRI, Z., AND TRIPUNITARA, M. V. 2004. On mutually-exclusive roles and separation
of duty. In Proceedings of the ACM Conference on Computer and Communications Security

(CCS’04). ACM Press, 42–51.

LI, N., MITCHELL, J. C., AND WINSBOROUGH, W. H. 2005. Beyond proof-of-compliance: Security
analysis in trust management. J. ACM 52, 3, 474–514.

LI, N. AND TRIPUNITARA, M. V. 2004. Security analysis in role-based access control. In Pro-

ceedings of the 9th ACM Symposium on Access Control Models and Technologies (SACMAT’04).
126–135.

LIPTON, R. J. AND SNYDER, L. 1977. A linear time algorithm for deciding subject security. J. ACM

24, 3, 455–464.

NASH, M. J. AND POLAND, K. R. 1990. Some conundrums concerning separation of duty. In
Proceedings of IEEE Symposium on Research in Security and Privacy (SP’90). 201–209.

PAPADIMITRIOU, C. H. 1994. Computational Complexity. Addison Wesley Longman.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer systems.
Proc. IEEE 63, 9, 1278–1308.

SANDHU, R. 1990. Separation of duties in computerized information systems. In Proceedings of

the International Federation Information Processing WG11.3 Workshop on Database Security

(IFIP’90).

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

20: 34 · N. Li et al.

SANDHU, R. S. 1988a. The schematic protection model: Its definition and analysis for acyclic
attenuating systems. J. ACM 35, 2, 404–432.

SANDHU, R. S. 1988b. Transaction control expressions for separation of duties. In Proceedings of

the 4th Annual Computer Security Applications Conference (ACSAC’88).

SANDHU, R. S. 1992. The typed access matrix model. In Proceedings of the IEEE Symposium on

Security and Privacy (SP’92). IEEE Computer Society Press, 122–136.

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access
control models. IEEE Comput. 29, 2, 38–47.

SIMON, T. T. AND ZURKO, M. E. 1997. Separation of duty in role-based environments. In Proceed-

ings of the 10th Computer Security Foundations Workshop (CSFW’97). IEEE Computer Society
Press, 183–194.

WANG, Q. AND LI, N. 2007. Satisfiability and resiliency in workflow systems. In Proceedings of

the European Symposium on Research in Computer Security (ESORICS’07).

Received May 2007; revised June 2008; accepted July 2008

ACM Transactions on Information and Systems Security, Vol. 12, No. 4, Article 20, Pub. date: April 2009.

