
Appendix A

The Peabody Object Representation

Peabody is a representation for complex articulated geometric objects. It represents �gures composed of
segments connected by joints, also under the inuence of constraints.

Jack is an interactive system for constructing and manipulating peabody objects. It is crucial to un-
derstand peabody before using Jack, since so many of the features of Jack deal intrinsically with peabody
objects and rely heavily on the syntax of the peabody language. You may design peabody environments
without using Jack at all, but Jack was designed to make this task easier.

A.1 Introduction to Peabody

A peabody environment consists of a number of individual �gures, each of which is a collection of segments.
The segments are the basic building blocks of the environment. Each segment has a \geometry." It represents
a single physical object or \part", which has shape and mass but no movable components. The geometry of
each segment is represented by a psurf, which is generally a polyhedron or a polygonal mesh.

The term \�gure" applies not only to articulated, jointed �gures such as a human body: any single
\object" is a �gure. It need not have moving parts. A �gure may have only a single segment, such as a co�ee
cup, or it may be composed of several segments connected by joints, such as a robot. The term \object"
is used here very loosely; it has no special signi�cance. We use it only to denote some part of the peabody
environment.

The term psurf refers only to the representation for the geometry of a segment, which is the graph of
nodes and edges typically drawn as the wireframe or shaded image of the segment. In the case of a �gure
with a single segment, it is sometimes convenient to refer to it as a \psurf", but that is not technically
correct.

Joints connect segments at attachment points called sites. A site is a local coordinate frame speci�ed
relative to the coordinate frame of its segment. Each segment may have several sites. Joints connect sites
on di�erent segments within the same �gure. Sites need not lie on the surface of a segment, but generally
they will. A site is a coordinate frame which has an orientation as well as a location.

A.1.1 The Connectivity of Peabody Objects

The peabody environment can be visualized as a directed graph. The segments are the nodes of graph, and
the joints form the edges. Figures are maximal subgraphs spanned by joints. It is important to remember
that joints do not connect segments directly. Joints connect segments through sites.

A.1.1.1 The Hierarchy of Peabody Objects

Peabody avoids representing objects with a strict hierarchy by encouraging you to think of �gures as col-
lections of segments and joints. However, there is an underlying hierarchy, and as in the case of moving a
�gure or adjusting a joint, it is important to remember what the hierarchy is because it has an e�ect on
which objects remain �xed and which move when the joints change angles.

213



214 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

In order for the location of an articulated �gure to be well de�ned, we must designate some element of the
�gure as its origin. The location of a peabody �gure is speci�ed through a site designated as the root. The
root site roughly corresponds to the \origin" of the �gure, and it provides a handle by which the location of
the �gure may be speci�ed. Viewing the �gure as a tree, the root of the �gure is the root of the tree. The
root site of a �gure may be changed interactively in Jack from time to time depending upon how you want
to manipulate the �gure. This is important because the root of the �gure serves as the origin of rotation
and translation when you manipulate a �gure interactively.

It is not allowable to de�ne �gures with closed loops of joints in peabody, although the syntax of the
peabody language does not prevent you from doing so.

A.1.1.2 A Metaphor for the Connectivity of Peabody Objects

To visualize the graph of a peabody environment, imagine a collection of simple objects, such as machine
parts, oating around in zero-gravity space. Several of these objects are connected to each other with hinges.
The objects are the segments and the hinges are the joints. The placement of the hinges on the objects is
described by the placement of the sites on the segments. A collection of segments hinged together form
a �gure. There may be several �gures oating around. Some �gures may consist of lots of segments and
hinges. Other �gures may have only a single segment. No segment is part of a �gure unless it is hinged to
the rest of the �gure's segments. You need not think of the segments and joints in the �gure has having a
strict hierarchy. The joints connect segments in completely arbitrary ways.

Each �gure is nailed in place in space through its root site. The global placement of this �eld in space
de�nes in turn the placement of all other segments in the �gure. When you rotate a �gure interactively, it
rotates around its root site. When you translate a �gure, it may move along the global coordinate axes of
this frame. Jack allows you to interactively change the root, so if it becomes convenient to nail the �gure
down in a di�erent way, it is possible to do so.

When you bend a hinge at one of the joints of a �gure, the segments on one side of the joint will remain
�xed, and the ones on the other side will move. Which side moves and which remains �xed depends on how
the �gure is rooted: the ones on the rooted site remain �xed.

We described the graph of the environment as directed, and the joints have a distinct direction. However,
the directed-ness of a joint does not a�ect which segments stay �xed and which move as the joint angles
change. The direction de�nes only the order in which the rotations of a joint are applied to produce the
complete transformation between the sites which the joint connects. The details of joint de�nitions and
degrees of freedom will be discussed in Section A.3.5.1.

A.1.2 The Geometry of Peabody Objects

It is very important to understand how the geometry is associated with a peabody �gure. Each segment may
have a psurf associated with it, but the shape of the psurf itself does not a�ect the topology of the �gure.
In Jack, it serves only as the image for the segment. The underlying topology of the �gure, in terms of the
\lengths" of the segments and the placement of the joints, is de�ned by the site locations relative to each
segment, and it is completely independent of the psurf geometry. Sometimes sites will lie on the surface of
the psurf, but this is by design rather than requirement.

There is no enforced relationship between the geometry and the length of a segment. In fact, segments
don't really have a \length." If you de�ne the length of a segment as the distance between the joints at
either end, then this is only well de�ned when a segment has only two joints. But peabody allows segments
to have any number of joints.

The geometry of a psurf is speci�ed relative to the coordinate origin of the segment. This means that
the (x; y; z) coordinates of the vertices of the polygons of the psurf are interpreted and drawn relative to the
axes of the coordinate frame of the segment, not the world coordinate frame. Each psurf is designed in its
own coordinate system.

Take a moment to consider what (x; y; z) cartesian coordinates really mean. These coordinates are only
meaningful when interpreted in the context of a coordinate frame. Frequently, the coordinate frame is
implicitly the world coordinate frame, but this not necessarily true. The (x; y; z) coordinates of a point
de�ne the location of a point relative to the coordinate frame by specifying displacements from the origin



A.1. INTRODUCTION TO PEABODY 215

of the frame along the x, y, and z axes of the frame, respectively: start at the origin of the frame, travel x
units down the x axis, then travel y units along the y axis, then travel z units along the z axis.

As an example, consider the two cubes shown in Figures A.1 and A.2. Along with each picture is the
syntax for the psurf which de�nes the geometry. The details of the syntax for the psurf �les is described in
Section A.4. These two objects have the same \shape" but their origins are di�erent. In Figure A.1, the
origin is at the one of the corners. In Figure A.2, the origin is in the middle of the cube. It is important
to realize that this di�erence is in the nodes of the psurf, not in the de�nition of the location of the �gure
itself. The origin of the psurf is implicit: it is with respect to this frame that the polygons of the object
are interpreted. Peabody gives you great freedom in how psurfs are designed, since the sites may be place
anywhere on the segment. This gives you the ability to attach joints to segments in various places.

0.00 0.00 0.00

0.00 100.00 0.00

100.00 100.00 0.00

100.00 0.00 0.00

0.00 0.00 100.00

0.00 100.00 100.00

100.00 100.00 100.00

100.00 0.00 100.00

;;

1 2 3 4;

1 4 8 5;

3 7 8 4;

1 5 6 2;

5 8 7 6;

2 6 7 3;

;;

Figure A.1: A Cube

-50.00 -50.00 -50.00

-50.00 50.00 -50.00

50.00 50.00 -50.00

50.00 -50.00 -50.00

-50.00 -50.00 50.00

-50.00 50.00 50.00

50.00 50.00 50.00

50.00 -50.00 50.00

;;

1 2 3 4;

1 4 8 5;

3 7 8 4;

1 5 6 2;

5 8 7 6;

2 6 7 3;

;;

Figure A.2: Another Cube

This can sometimes be very confusing because it is the sites on the segment, and the joints which connect
them, which de�ne the location of the segment relative to other segments in the �gure. Many times, it is
convenient to de�ne a site which lies at the coordinate origin of a segment. This is particularly true of an



216 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

elongated segment like an arm, which has a distinct proximal and distal end. In this case, the proximal end
may lie at the coordinate origin of the segment, and the distal end may lie down the z axis, for example. In
this case, it may seem that the geometry is speci�ed relative to the proximal end, but remember that the
geometry is relative to the origin of the segment. The proximal site just happens to lie at that origin.

Drawing a diagrammay solve lots of confusion. It is usually a good idea to draw a diagram of the segment
with an explicitly labeled origin. Then draw the sites, such as proximal and distal, away from the origin,
even if in fact they are coincident. This will help to reinforce the fact that they are speci�ed relative to the
origin of the segment.

A.1.2.1 A Metaphor for the Construction of Peabody Figures

When designing the geometry of the segments of an articulated �gure, it is best to proceed logically in a
manner similar to what we might do if we were constructing a hinged mechanism out of wood, metal, or
plastic. The most logical thing to do is to design each part one at a time. We begin by choosing an origin
for the part and crafting its shape in terms of dimensions measured from that origin. After designing all of
the individual moving parts, we proceed to drill holes in each part into which to bolt the hinges. Where do
the holes go? We again calculate the location of the holes in terms of displacements from the origin of the
segment. Next, we bolt the hinges into the holes and bend them to the correct angles (Let's assume that the
hinges are sti� enough hold the �gure in place). Finally, we choose a special point on the �gure and place
this point at the proper place so that the contraption is located in the desired position on the table, oor,
or wall.

In the translation of this metaphor, the parts are the segments and the hinges are the joints. The shape
of the part is de�ned in terms of a psurf, whose coordinates are interpreted relative to the coordinate origin
of the segment. This coordinate origin is not relative to anything: other things are relative to it! The holes
for the hinges correspond to the sites: they are measured from the coordinate origin of the segment. The
special point on the contraption through which we �x it to the wall or oor corresponds to the �gure's root
site.

A.2 The Mechanics of the Peabody Language

The syntax of the peabody language somewhat resembles a programming language, except that it de�nes
static elements, not actions.

A.2.1 Arithmetic Expressions

The peabody language employs a powerful arithmetic expression parser and symbol table, so that any part
of the language which requires a numerical value accepts a general arithmetic expression. The syntax of the
expressions is similar to an ordinary programming language. The operators and their precedence are shown
in Figure A.3. The operators at the top have the greatest precedence.

() parentheses
- unary minus
^ exponentiation
/ division
* multiplication
- subtraction
+ addition

Figure A.3: The Precedence of Peabody Arithmetic Operators

Variables need not be declared before use: their type is determined by context, although a warning
message will be issued if a variable is used before being assigned a value.



A.2. THE MECHANICS OF THE PEABODY LANGUAGE 217

A.2.2 Units

Many numerical values in the peabody language refer to physical measurements: angle, distance, mass.
Peabody allows such values to be quanti�ed by their type, so that values may be entered in any particular
units. Whenever a value is speci�ed, its units should also be speci�ed so there is no confusion about which
units are being used. This convention will save much confusion as �les are written as used at later dates.

For angles, the legal types are radians and degrees, using the keywords rad and deg. The default is
degrees. For distances, the legal types are millimeters (mm), centimeters (cm), meters (m), inches (in), feet
(ft), and yards (yd). The default is centimeters.

A.2.3 Homogeneous Transformations

Peabody relies heavily on the speci�cation of homogeneous transformations, and the peabody language has
a rather simple mechanism for describing such transformations. Transformations may be expressed as a
sequence of simpler, primitive transformations such as rotation and translation. The translation operator is
trans, and it takes three arguments, giving the translation in x, y, and z. Rotation may be described with
the xyz operator, which speci�es rotation in terms of angles around the local x, y, and z axes, in that order.
For example,

t = xyz(10deg,20deg,30deg);

speci�es a rotation transformation which is formed by a rotation of 10� around the x axis, followed by
a rotation of 20� around the rotated y axis, followed by a rotation of 30� around the rotated z axis. This
operator can be used for simple rotations around a single coordinate axis by using zeros for two of the angles.

y

x

z

y
x

xyz(       ,       ,       )

zx

y

x

z y z z

y x

x y z

Figure A.4: The xyz Rotation Operator

A.2.3.1 Multiplying Homogeneous Transformations

The peabody language represents homogeneous transforms as 4� 4 matrices in the form:

2
664

x0

y0

z0

p0

x1

y1

z1

p1

x2

y2

z2

p2

0
0
0
1

3
775

The translation vector (p0; p1; p2) is in the bottom row of the matrix.
When transformations are multiplied, the product may be interpreted in two ways. The most intuitive

way corresponds to local transformations when applied right to left. For example, the transformation given
by

t = xyz(90deg,0,0) * trans(0,100cm,0);



218 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

may be interpreted as �rst a translation of 100 cm along the y axis, followed by a rotation of 90� around the
translated x axis. The ordering is critical, since transformations don't commute.

Alternatively, the product of transformations may be interpreted in global coordinates when read left to
right. The above transformation may be interpreted as a rotation of 90� around the x axis, followed by a
translation of 100 centimeters along the original y axis.

When Jack writes a transformation, it writes the rotation part followed by the translation part, expressed
in terms of the xyz operator, no matter how the expression was originally speci�ed. This product can be
interpreted as a rotation followed by a translation with respect to the base coordinate frame, or alternatively
a translation followed by a rotation around the translated axes.

The exponentiation operator may be applied to transforms, with the usual meaning. Raising a transform
to the power of -1 yields the inverse of the transform.

A.2.3.2 Manipulating Transformations Interactively in Jack

You can experiment interactively with these transformations in Jack by moving a �gure. As you move the
�gure, the peabody description of the �gure's root appears at the bottom of the window. You can see the
description of the transformation as it is being manipulated.

Another valuable exercise is to enter the transformations from the keyboard by hitting ^K while moving
the �gure. You will be prompted in the message window to enter the transformation. Experiment with
several transformations to get a feel for how this syntax works, particularly in terms of the ordering of the
transformations. The details of how to enter values from the keyboard in Jack are described in Section 5.8.

A.2.4 Names and Identi�ers

All constructs in the peabody language have names, and each name is local to the construct to which it
belongs. This ambiguity may be resolved by pre�xing the name of construct with the name of its parent,
separated by a period. For example, each �gure in the environment has a distinct name, and each segment
within each �gure has a name which is unique only within that �gure. Therefore, two �gures, say fred and
ethel, may have segments named head. The identi�er head does not uniquely specify which head, so the
use of head must be pre�xed with either fred or ethel, as in fred.head or ethel.head.

Likewise, joints are local to the �gures to which they belong, and sites are local to the segment to which
they belong. In the case of sites, a double pre�x must be used to uniquely specify a site in the environment.
This follows a general rule of thumb that when constructs are named, they must be properly quali�ed given
the context. When naming segments within a �gure, the �gure name is usually understood and may be
omitted.

One exception to the above rule is the pseudo-segment world, which is the base coordinate frame for the
environment. The world is not a part of any �gure, so a reference to one of its sites has only one pre�x, as
in world.base.

Names of constructs and variable identi�ers must consist of upper and lower case alphabetic characters,
digits, and underscores, and must not begin with a digit. It is important that names of constructs in peabody
do not conict with keywords. Since most keywords are frequently used terms, this rule must be carefully
considered when constructing peabody �gures. The peabody keywords are listed in Table A.1

It is important to remember the di�erence between identi�ers and strings, especially in places in the
peabody language where �le names are required. All strings, such as �le names, must be enclosed in double
quotes. Otherwise, they would be interpreted as variable references.

A.3 Peabody Construct Declarations

The term \construct" refers to any of the basic elements of the peabody object representation: �gures,
segments, sites, joints, attributes, and lights. The peabody language consists primarily of assignment state-
ments which de�ne the properties of the peabody constructs. Each assignment must be quali�ed with the
construct to which it applies. This is generally done by grouping the assignments together into blocks which
set forth the construct name and type, similar to a data structure declaration in a programming language.
The elements within the block are then automatically associated with that construct.



A.3. PEABODY CONSTRUCT DECLARATIONS 219

R

T

ambient

archive

asurf

attribute

attributes

blur

concentration

connect

constraint

damp

density

diffuse

displacement

dullness

edge

face

figure

globalforce

globalmoment

glossiness

hsv

include

inertia

intensity

joint

light

llimit

local

localforce

localmoment

location

mass

maxtrans

mintrans

moment

node

nstrength

patch

path

pstrength

psurf

quat

radius

refraction

rest

rgb

root

scale

segment

shademode

site

specular

sphere

stexture

stiff

stiffness

texture

texture

to

tolerance

trans

transexp

transparency

type

ulimit

vrpd

xyz

Table A.1: Peabody Keywords

The peabody construct declarations create objects implicitly, not explicitly. Figures, segments, sites, and
joints are created when they are de�ned for the �rst time. In this sense, the \de�nitions" of the constructs are
not really de�nitions by declarations. It is entirely legal to have duplicate declarations for the same object.
You should think of the process of reading a peabody �le as a sequential stream of assignment statements
which set the values of object parameters. The objects are created when they are �rst referenced. Duplicate
assignment statements reset the parameter values.

A.3.1 Figure Declarations

A �gure declaration begins with the keyword figure, followed by an identi�er. A �gure declaration may
not occur inside any other block. Inside the �gure block there may be:

� segment declarations

� site declarations

� joint declarations

� light declarations

� attribute declarations

� posture declarations

Site declarations must have names quali�ed with the segment name unless they are contained in a segment
block. In addition, �gures have the following assignment �elds:

archive The archive speci�es an archive �le in which to look for psurf �les for the segments in
the �gure. This �eld is optional, but if it is used it should occur before any segments which
reference psurfs in the archive. The value is a character string giving the name of the archive
�le.

root The root speci�es the root site for a �gure. This is the site with respect to which the
�gure's location �eld describes its global placement. The value is the name of the site.

location The location gives the transform which de�nes the global placement of the �gure's
root. The placement of all other sites and segments in the �gure is determined from this.
The value is a homogeneous transformation.



220 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

A.3.2 Segment Declarations

A segment declaration begins with the keyword segment, followed by an identi�er. A segment declaration
may occur inside a �gure block. If it lies outside a �gure block, its name must be quali�ed with a �gure
name. Site declarations and attribute de�nitions may occur inside the segment block.

In addition, segments have the following assignment �elds:

psurf The psurf gives the �le which describes the geometry of the segment. The value is a
character string which is the name of the psurf �le.

attributes The set of attributes describes which surface attributes are to be associated with
the psurf. The value is an array of attribute names, separated by commas. The number of
attributes in this array must match the number of attribute indices used in the psurf �le.
If the psurf has a single attribute, then the value may be just the attribute name, and you
may use the keyword attribute, without the 's'.

Peabody has a built-in set of rules for where it looks for psurf �les. See Section 9.3 for a description of these
rules. See Section A.4 for a description of the syntax of the psurf �les.

A.3.3 Path Declarations
4

A path is a set of n sites on a segment, named f pnt0; pnt1; : : :pntn g, with one additional site called point.
The peabody description of a path looks like:

segment paths {

site base->location = trans(0cm,0cm,0cm);

site point->location = trans(0cm,0cm,0cm);

site pnt0->location = trans(0cm,0cm,0cm);

site pnt1->location = xyz(0deg,0deg,-38deg) * trans(3cm,62cm,-11cm);

site pnt2->location = xyz(-180deg,-75deg,141deg) * trans(45cm,62cm,-86cm);

site pnt3->location = xyz(-180deg,-10deg,141deg) * trans(112cm,62cm,-1cm);

site pnt4->location = trans(136cm,62cm,75cm);

path = ("spline", 31, (site)point,

(site)pnt0, 0,

(site)pnt1, 0.25,

(site)pnt2, 0.50,

(site)pnt3, 0.75,

(site)pnt4, 1);

}

The path �eld of the segment de�nes the interpolation method (\spline"), the number of generated
samples (default 31), the point site, and the set of sites with their corresponding time values. The point site
is used when animating a path, and the point site moves to a position on the path corresponding to a time
fraction between 0 and 1 (i.e. the spline is evaluated at some time between 0 and 1, and the point site is
moved to that location.

A.3.4 Site Declarations

A site declaration begins with the keyword site. A site declaration may occur inside a segment block. If it
lies outside, its name must be fully quali�ed with the segment name. If it does not lie within a �gure block,
the name must also be quali�ed with the �gure name.

A site has a single following assignment �eld, giving its location.

location The location is a transform describing the position and orientation of the site with
respect to the coordinate frame of its segment. The value is a homogeneous transformation.



A.3. PEABODY CONSTRUCT DECLARATIONS 221

A.3.5 Joint Declarations

The declaration of a joint begins with the keyword joint. A joint connects two sites on two segments within
the same �gure, and represents a transformation between segments.

The principle statement in a joint declaration is the connect statement, which is not in the form of an
assignment. It speci�es the two sites which the joint connects, and it takes the form of \connect site1 to

site2"
The joint has the following assignment �elds:

type A functional expression describing the degrees of freedom of the joint. The value of the
expression is described below.

displacement A vector of numbers specifying the current angles of the joint, having as many
elements as the joint has degrees of freedom.

ulimit A vector of numbers describing the upper limit of the angle or distance of each degree of
freedom, having as many elements as the joint has degrees of freedom.

llimit A vector of numbers describing the lower limit of the angle or distance of each degree of
freedom, having as many elements as the joint has degrees of freedom.

By default, the transformation at a joint is an arbitrary homogeneous transformation, which speci�es the
relative position of the two sites which the joint connects. The connect statement speci�es that the joint
connects one site to another, and this de�nes the direction of the joint and the joint's displacement. The �rst
site in the connect statement is sometimes called the \from" site; the second site is called the \to" site. The
joint's displacement transform de�nes the global placement of the \to" site relative to the global placement
of the \from" site1. The directionality of the joint is de�ned in terms of how the joint would normally behave
in the �gure, when the �gure is rooted in its normal place. By \normal" behavior, we mean that when you
interactively adjust a joint, the \from" side remains stationary and the \to" side moves. This directionality
remains �xed even if the �gure is re-rooted and the actual �gure hierarchy is changed.

For example, in the human �gure model, the shoulder is de�ned to connect the clavicle to the upper
arm. This de�nition is convenient since we normally expect that when we change the transformation at the
shoulder,the arm will move and the upper torso will remain �xed. This will not be the case, however, if the
�gure is rooted through his hand, possibly hanging from a rope or oating in zero gravity. In this case, we
still de�ne the transformation across the joint in the direction \from" the clavicle \to" the arm.

A.3.5.1 Degrees of Freedom

Joints may have speci�c degrees of freedom which restrict the transformation across the joint. The type of
the joint is speci�ed by the type �eld, whose value is an arbitrary expression composed of primitive rotation
and translation operators. The rotation operator is R, and the translation operator is T. Each rotation and
translation speci�es an axis. The axis must be a coordinate axis of unit length: (1; 0; 0), (�1; 0; 0), (0; 1; 0),
(0;�1; 0), (0; 0; 1), or (0; 0;�1).

The current angle associated with the axis comprises the displacement of the joint and is not part of the
type. A simple joint may be de�ned as:

joint elbow f
connect lower arm.proximal to lower arm.distal;

type = R(1,0,0);

displacement = (90deg);

ulimit = (180deg);

llimit = (0deg);

g

This joint rotates only around the x axis. The displacement �eld speci�es that the transformation is a 90�

rotation around the x axis.

1The global placement of the \from" site is determined in turn by its location relative to its segment's base coordinate frame.

This in turn is determined by other site locations and joint displacements, up the �gure hierarchy to the root of the �gure,

where the global placement is �xed.



222 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

Joints may have up to three degrees of freedom by multiplying primitive operators. In this case, the
displacement �eld has the same number of arguments as the type expression has primitive elements. The
complete transformation at the joint is the product of each primitive operator instantiated with the appro-
priate angle. As in the case of homogeneous transforms, the operators should be interpreted right to left as
local transformations, i.e. with respect to the local, or current, transform. Alternatively, the displacement at
the joint may interpreted from left to right as primitive transformations with respect to the parent coordinate
frame, that is, the site on the \from" side of the joint.

For example, the transformation at the joint de�ned by:

joint luceille ball joint f
connect torso.shoulder to arm.base;

type = R(0,0,1) * R(0,1,0) * R(1,0,0);

displacement = (90deg,45deg,30deg);

ulimit = (180deg,90deg,60deg);

llimit = (0deg,0deg);

g

may be interpreted as a rotation of 30� around the x axis of site torso.shoulder, followed by a rotation
of 45� around the rotated x axis, followed again by a rotation of 90� around the rotated y axis. It may
alternatively be interpreted as a rotation of 90� around the x axis of the site torso.shoulder, followed by
a rotation of 45� around the y axis of the same frame, followed by a rotation of 30� around the x axis of the
same frame as well.

A.3.6 Constraint Declarations

Constraints specify desired geometric relationships. The parameters of constraints are described in Chap-
ter 10. The syntax of the constraint declaration in the peabody language has an assignment statement for
each of the constraint's properties. There can be no blocks within a constraint block.

A constraint has the following assignment �elds:

type The relationship type. The expression can be either a single string giving the position
or orientation type if there is only one, or its is a 3-vector, with the �rst element a string
describing the orientation relationship type, the second a string describing the position
relationship type, and the third element a number giving the position/orientation weight.

end The end e�ector. The value may be a site or a node. It must be typecast to determine
which type it is.

goal The goal. The value may be a site, node, face, or a matrix. A matrix type speci�es a hold
constraint. Otherwise, it must be typecast to determine which type it is.

startjoint The starting joint. If this �eld is absent, then the constraint is a rooting constraint.

weight The constraint weight.

A.3.7 Surface Attributes

Each polygon in the peabody environment has a surface attribute associated with it, and the surface at-
tributes may be speci�ed in the peabody �le. Surface attributes are de�ned in a block structured manner
similar to the other peabody constructs:

attribute brown f
diffuse = (0.48,0.26,0.00);

g

Surface attributes have the following assignment �elds

ambient This is a triplet of real numbers describing the ambient color of the surface in RGB
coordinates.

di�use This is a triplet of real numbers describing the di�use color of the surface in RGB
coordinates.



A.3. PEABODY CONSTRUCT DECLARATIONS 223

specular This is a triplet of real numbers describing the specular color of the surface in RGB
coordinates.

glossiness This is an integer exponent describing the glossiness.

Alternatively, you may specify the ambient and di�use parameters as scalar values and give the attribute
a color with the rgb �eld. This makes the ambient and di�use parameters di�erent intensities of the same
color. This is the most common way of describing attribute parameters.

The way in which the surface attribute parameters a�ect the shading of the surface is described in
Section 12.

A.3.8 Light Source Declarations

Light sources are necessary for rendering and are an integral part of a computer graphics and animation
environment. Light sources are represented in peabody as special types of segments. A light declaration
begins with the keyword light. Usually, a light source will consist of a �gure with a single segment, but it is
possible to give light source properties to any segment on any �gure. The origin of the light is the origin of
the light segment, and the light is emitted equally in all directions. Lights are not directed. In the peabody
grammar, lights are interchangeable with segments:

figure foo f
light bar f

site base->location = trans(0cm,0cm,0cm);

color = (1,1,1);

g
g

Lights have the following assignment assignment �elds:

ambient This is a triplet of real numbers describing the ambient color of the light in RGB
coordinates.

color This is a triplet of real numbers describing the color of the light's emission in RGB coor-
dinates.

The way in which the light source parameters a�ect the shading of a surface is described in Section 12.

A.3.9 Peabody Block Structure

The block structure of the peabody language facilitates pre�xing constructs with their \parent" construct by
e�ectively pre�xing everything within the block with the appropriate construct name. Thus, within a �gure
declaration, all segment names are taken relative to the �gure, so there is no need to pre�x them. Within a
segment declaration, the site names are taken relative to the segment. The joint declaration references sites,
which must always be quali�ed at least to the segment level.

The block structure exists primarily for convenience, since all constructs may occur in any arrangement
provided they are fully quali�ed. For example, a segment block normally belongs inside a �gure block, but
it may occur outside, provided the segment name is pre�xed with the proper �gure name.

The curly braces serve to pre�x each assignment statement in a construct with the proper construct name
and type. They may be replaced by the \arrow" notation:

segment cube->psurf = "cube.pss";

This short form may be used for any assignment �eld in the construct.
The traditional block structure resembles a \de�nition," but actually each construct is de�ned whenever

it is �rst used. There is no formal distinction between de�nitions and references. Any subsequent references
to the construct refer to the original rather than creating a new one. This allows the same �le to be read
multiple times without side e�ect. The e�ect of reading a peabody �le multiple times is to reset the values
of the assignment �elds rather than create new constructs. A common use of this is for separating joint
displacements from �gure de�nitions.

This also allows for very terse de�nitions. For example,



224 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

site fred.arm.base->location = trans(0,0,0);

is a valid �gure de�nition.
As Jack reads a peabody �le, it sets the given construct �eld regardless of its previous value. An exception

to this rule applies to psurfs. If a psurf for the segment already exists and it was read from a �le of the same
name, then the psurf is not re-read. This allows �gure de�nitions which include psurf speci�cations to be
re-read without the overhead of re-reading the psurfs.

A.3.9.1 Figure Files

Sometimes it is convenient to create a de�nition for a certain type of �gure, that is, a template which can
be used to create di�erent instances of the �gure.

A single environment �le cannot be used to create di�erent instantiations of the same �gure de�nition,
since the names are associated directly with the �gures, and �gures must have unique names. Peabody
allows you to de�ne �gures in special �gure �les. Di�erent �gures may be instantiated from a �gure �le with
di�erent names.

A �gure �le is simply a �le containing the de�nition of a single �gure, without the identi�er following
the figure keyword. For example, consider a �le called thing.fig:

figure f
segment x f

psurf = "cube.pss";

site base->location = trans(0,0,0);

site p->location = trans(100,100,100);

g
segment y f

psurf = "pyramid.pss";

site base->location = trans(0,0,0);

g
joint elbow f

connect x.p to y.base;

g
g

Now, another �le called, say things.env, could contain:

figure ["thing.fig"] a;

The syntax of the �gure instantiation speci�es the name of the �gure �le, thing.fig, in square brackets,
followed by the name of the instantiated �gure, a. Note that the name of the �le must be enclosed in double
quotes.

The �le things.env may include an additional \thing":

figure ["thing.fig"] a;

figure ["thing.fig"] b;

A.3.9.2 Figure Parameters

Figures may have parameters, much the same as function parameters in a programming language. This
makes it possible to generalize a �gure template to be instantiated with di�erent sizes, types, etc. For
example, the above �gure may have been de�ned as:

figure (height,width) f
segment x f

psurf = "x.pss";

site base->location = trans(0,0,0);

site p->location = trans(width,height,0);

g
segment y f

psurf = "y.pss";



A.3. PEABODY CONSTRUCT DECLARATIONS 225

site base->location = trans(0,0,0);

g
joint elbow f

connect x.p to y.base;

g
g

and the instantiation the �gure would look like:

figure ["thing.fig"] (50cm,100cm) a;

figure ["thing.fig"] (40cm,200cm) b;

A.3.10 Postures and Posture References
4

A posture block is declared within a �gure block. It's purpose is to capture a posture (joint angles, �gure
location, root, and constraints and behaviors) for a particular �gure. There are two forms of a posture
declaration inside a �gure block. The �rst one is called a posture reference, and uses the keyword postureref,
and looks like:

figure human f
postureref ["standing.post"] (10cm) standup;

postureref ["sitting.post"] sitdown;

g

The above declaration adds two named postures to the �gure human, and they are named standup and
sitdown. The important point to know here is that a postureref declaration will not read the posture �les
(in this case, .post) when the postureref is read. It only adds the named posture (along with �lename and
arguments) to the list of postures attached to the �gure. This is important, since the posture de�nition �le
(.post �le) may contain references to peabody objects that do not yet exist in the environment. The posture
�le is read when a Jack command requests the posture to be instantiated. This also allows postureref
declarations to be stored in �gure de�nition �les (.fig �les).

The other form of a posture declaration is called a posture instantiation and looks just like above, except
postureref is replaced with posture. It would look like:

figure human f
posture ["standing.post"] (10cm) standup;

posture ["sitting.post"] sitdown;

g

The di�erence here is that when the declaration is read, the posture �le is read, and therefore the posture
is instantiated (the �gure is moved to the corresponding posture). In the above example, the �gure would
be moved to the standup posture, then the sitdown posture.

Posture de�nition �les can be parameterized just like �gure �les and motion group �les (see above and
below). In the example above, the posture �le standing.post takes one parameter, a length measurement.
The �le standing.post could look like:

posture (length) f
root = lower torso.distal;

joint left shoulder->displacement = ...

...

location = trans(length, 0cm, 0cm);

g

A posture �le must always start with posture, not postureref. Inside a posture block, you may have
joint displacements, site locations, constraints, behaviors, root speci�cations, etc (any �eld or block which
may appear in a �gure block may appear in a posture block). Note that all segment/site/joint names are
relative, they are not pre�xed with the �gure name. This allows posture �les to be shared between similarly
structured �gures (i.e. the human).



226 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

A.3.11 Motion and Motion Group Declarations
4

The declaration of a motion begins with the keyword motion, followed by a name for the motion. The naming
convention is the same as that for segments. A motion should not be declared inside any other peabody
construct, except a motiongroup or at the top level by itself (in which case it belongs to the defaultmotion
group. A sample motion in peabody format looks like:

motion hand {

figure = (figure)human5;

type = "hand control";

starttime = 0sec;

duration = 2sec;

off = 1;

velocitycontrol = "ease in/ease out";

data = ("right","site",(site)hand.paths.point,"waist");

}

Every motion type has a set of common �elds (�gure, type, starttime, duration, o�, and velocitycontrol).
Additionally, each motion type de�nes a �eld called data which is simply a vector of values. This vector
is generated by the motion to save whatever parameters it needs. It is also parsed by the motion when
being read from a peabody �le. The only restriction on the values is that it must be a valid parse-able
peabody value. The assignment �elds for a motion must appear in the order that they are shown above.
The assignment �elds for a motion are:

�gure This is a �gure reference to the �gure to which this motion is applied. Since this is a �gure reference,
you must precede a �gure name with the (figure) casting operator. If this is a peabody variable, it
must be a �gure reference. (See the motiongroup below).

type The type �eld is a string describing the type of this motion. The type tells peabody how to interpret
the data �eld below. Please see the table below for the values of type, and the corresponding format
of the data �eld.

starttime This is the time, in seconds, when the motionwill start. This may be ant valid peabody expression
which resolves to a number.

duration An expression, evaluating to the duration, in seconds, of the motion.

o� This �eld is optional, and if 1, means the motion is actually turned o� (it won't execute).

velocitycontrol For motions which interpolate between a beginning and ending value, this is the method for
controlling the velocity function of the interpolation. Valid values are: "constant", "accelerate",

"decelerate", "ease in/ease out".

data The data �eld is a vector of values representing the information needed by each motion type. It is
di�erent for each type. Below is a few examples from the simpler motion types:

joint (n; jointname1; (displacement1) : : : jointnamen; (displacementn))

n is the number of joints involved. For each joint involved, the jointnamei is listed, followed by
a vector giving the goal joint displacement.

�gure (xform)

The xform is the global transform for the goal of the �gure motion.

camera (xform;windowname; vrpd)

The xform is the global transform for the camera, the windowname is the name of the peabody
window, and vrpd is the view reference point depth for the camera.



A.3. PEABODY CONSTRUCT DECLARATIONS 227

light (segmentp; (sR ; sG; sB); (eR; eG; eB))

The segmentp is a segment pointer (to the light source), followed by the starting rgb color vector
(s), and the ending color vector (e). If s is (�1;�1;�1), the starting color is just the current
color of the light source (when the motion starts).

item[path] (segmentp; traversal)

The segmentp is a segment pointer to the path, followed by traversal, which can be either
``forward'' or ``reverse''.

item[�gure path] (segmentp; traversal; figurep)

Same as above, except figurep points to the �gure which moves along the path.

command (preactionJCL; applyJCL; postactionJCL)

These are three JCL command strings. The preactionJCL is executed on the �rst frame of the
motion, the applyJCL is executed on each frame of the motion, and the postactionJCL is executed
on the �nal frame of the motion. If the JCL has double-quotes, they must be appropriately escaped
(i.e. " becomes
").

Each motion can also be a member of a motion group. Motion groups can also be parameterized similar
to the way �gure �les can be parameterized (See Section A.3.9.1). An example motion group �le:

motiongroup (fig, start, durate) {

motion arm4_arm1 {

figure = fig;

type = "joint";

starttime = start + (0 * durate);

duration = 0.67 * durate;

velocitycontrol = "constant";

data = (3,jointref(fig,''joint4''),(0.00deg,0.00deg)

,jointref(fig,''joint3''),(0.00deg,0.00deg)

,jointref(fig,''joint2''),(0.00deg,0.00deg)

);

}

motion chain {

figure = fig;

type = "figure";

starttime = start + (0.33 * durate);

duration = 0.67 * durate;

velocitycontrol = "constant";

data = (trans(5.62cm,0.00cm,-202.27cm));

}

}

If this motion group were in a �le call move.mgp, then a valid peabody reference to create this motion
would be:

motiongroup ["move.mgp"] ((figure)chain, 0sec, 1.50sec) move;

The motiongroup structure is useful for grouping related motions together, and the intention of it is also
to be used for creating composite motion templates. But there is a major problem : : : The problem is that
peabody name references within the data �eld of motions need to be relative to the �gure of the motion or
relative to some parameter of the motiongroup.

A solution to this problem is to use the peabody built-in functions (siteref), segmentref, and jointref.
These function takes two arguments, the �rst can either be a �gure name (string) or a �gure reference,
and the second is a relative site/segment/joint name (i.e. of the form segment.site, segment, or joint
respectively). These function will return a reference pointer to the actual object (site, segment or joint).



228 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

A.3.12 The Include Statement

The include statement nests a peabody �le in another �le, similar to the #include preprocessor control
statement in the C programming language. Its format is simple:

include "file.env";

The e�ect is identical to inserting the entire contents of the �le into the original �le at the location of the
include statement. Files may be nested to a level of 8.

A.4 The Syntax of Psurf Files

Psurfs may be described syntactically in text �les. A psurf �le is a textual representation for the nodes and
faces of the psurf. By convention, these �les have the su�x .pss. The �le lists a set of nodes and faces.

f a cube: 8 nodes, 6 faces g
0.00 0.00 0.00

0.00 100.00 0.00

100.00 100.00 0.00

100.00 0.00 0.00

0.00 0.00 100.00

0.00 100.00 100.00

100.00 100.00 100.00

100.00 0.00 100.00

;; f end of nodes g
1 2 3 4; f back g
1 4 8 5; f bottom g
3 7 8 4; f right side g
1 5 6 2; f left side g
5 8 7 6; f front g
2 6 7 3; f top g
;;

Figure A.5: An Example psurf

A psurf �le begins with a list of nodes, which are speci�ed as triplets of real numbers. There may be an
optional comma between the triplets. The numbers may contain decimal points, but the decimals are not
necessary. No leading 0 is required for fractions less than 1.0. The nodes are numbered implicitly starting
at 1. The node table is terminated with two semicolons.

Following the nodes are the faces, which are lists of indices into the nodes. Each list speci�es the vertices
of the face, and is terminated with a semicolon. The faces are terminated by an empty vertex list, i.e. two
adjacent semicolons. There is a prede�ned limit of 256 vertices in each face. The vertices should be in
counter-clockwise order. This is discussed in greater detail in Section A.4.5.

Comments may appear anywhere in the �le and are delimited by curly braces. The indices listed in the
psurf �le all start at 1 for historical reasons. A single psurf �le may contain several individual \psurfs."
In other words, is is legal to concatenate several psurf �les into one, which will make a single psurf out of
several disconnected components.

Psurfs may be in any general scale, but it is best to make the coordinates correspond to centimeters.
Jack assumes that all objects are scaled in centimeters, and it initializes the view so that objects in the
same general scale as human bodies are displayed conveniently on the screen. You can change this scale if
necessary, but it is still best to keep all object in the same basic range of sizes.



A.4. THE SYNTAX OF PSURF FILES 229

A.4.1 Surface Attributes

Between the index of the last vertex of each face and the semicolon which ends the face, there may be an
attribute speci�cation, which is the keyword attribute followed by an index into the psurf's attribute table,
all delimited by square brackets. By default, the attribute index is 0, and its value carries over from one face
to the next, so the attribute speci�cation actually sets the \current" value, to be assigned to all subsequent
faces until its value is changed again.

This is only part of the attribute information. The psurf itself does not de�ne the material properties
associated with each face, but it does specify which faces are made of the same material. When a psurf is
associated with a segment, it will be instantiated with a set of surface attributes. The number of attributes
will match the number of attribute indices speci�ed in the psurf �le, and the attributes will be associated
with the faces according to each face's attribute index. The details of how attributes are associated with
faces is described in Section A.3.7.

A.4.2 Face Smoothness

Along with the attribute speci�cation, each face has a smoothness ag. This ag tells whether the face
models a at surface like a polyhedron, or whether it is being used to model a small piece of a curved
surface. In computer graphics, it is sometimes convenient to model curved surfaces with a mesh of small
polygons. The polygons themselves are an artifact of the model, not a geometric property.

When an object is drawn in wireframe, it's drawn with its edges. When it is shaded, its faces are �lled
in. If a face is at, it has a constant surface normal across the entire face. If the face is smooth, the surface
normal is computed at each of the vertices of the face in terms of the normals of the adjacent faces, and
the normal at points in the interior of the face is interpolated from the values at the vertices. This is phong
shading.

It is important not to use smooth shading with psurfs which are not polygon meshes. If a psurf consists
of a few big faces and the angles between them are great, then the object will not look right if it is smooth
shaded.

A.4.3 Node Coloring

It is also possible to assign rgb color values to individual nodes in a psurf �le. The format is to place an
rgb value after the node de�nition in the psurf �le. A cube, with 7 white vertices and one red vertex, would
look like the following:

0.0 0.0 0.0 [ rgb( 1.0, 1.0, 1.0) ]

0.0 100.0 0.0 [ rgb( 1.0, 1.0, 1.0) ]

100.0 100.0 0.0 [ rgb( 1.0, 1.0, 1.0) ]

100.0 0.0 0.0 [ rgb( 1.0, 1.0, 1.0) ]

0.0 0.0 100.0 [ rgb( 1.0, 1.0, 1.0) ]

0.0 100.0 100.0 [ rgb( 1.0, 1.0, 1.0) ]

100.0 100.0 100.0 [ rgb( 1.0, 0.0, 0.0) ] {the red one}

100.0 0.0 100.0 [ rgb( 1.0, 1.0, 1.0) ]

;;

1 2 3 4 [smooth] [attribute 0];

1 4 8 5 [smooth] [attribute 0];

3 7 8 4 [smooth] [attribute 0];

1 5 6 2 [smooth] [attribute 0];

5 8 7 6 [smooth] [attribute 0];

2 6 7 3 [smooth] [attribute 0];

;;

You can use the command set node rgb to edit the color of a node. Note that you should use make segment

smooth to properly blend the node colors across a face, using Gouraud shading. Note that lighting will



230 APPENDIX A. THE PEABODY OBJECT REPRESENTATION

not e�ect segments that have node colors. Jack uses the node colors to display the results of a radiosity
rendering, therefore the lights are disabled in the environment for those segments which have node colors.

A.4.4 Big Psurfs

A psurf �le may also have an optional speci�cation [big] on the �rst line of the �le. This speci�cation will
inhibit Jack from generating display lists for the edges of the psurf. This is useful if the psurf is imported
from other CAD system that can't break up geometry and must send it as one long list of nodes and faces.
Jack usually creates edge lists for displaying psurfs in wireframe. This spec is only necessary if the psurf has
more then 1000-2000 nodes.

A.4.5 Face Orientation

Psurf faces have a speci�c orientation, which means that a face really has just one side. When viewing an
object in wireframe, this is of no consequence since the object is displayed with its edges. However, when
an object is shaded its intensity is de�ned in terms of the angle between the face and the light sources. The
orientation of the face depends upon the order of the vertices. The surface normal is de�ned to point in the
direction given by the right hand rule. This means that a counter-clockwise traversal by the right hand rule
yields an outward pointing normal. In other words, place your right hand on the polygon and sweep your
�ngers around the vertices in the order they occur in the �le. Your thumb then points in the direction of
the surface normal.

It is imperative that the faces of psurfs be oriented consistently. When objects are shaded in Jack, only
the side of the surface normal will be shaded correctly. The other side will be e�ectively shadowed and will
be illuminated with ambient light.

Psurfs usually represent collections of polyhedra, so the nodes, edges, and faces form a planar graph2.
This places some important restrictions on how the faces may be de�ned:

� Each edge (pair of nodes) should be contained in at most two faces.

� No pair of nodes (an edge) should be contained in two faces in the same order.

This means that if you traverse each face of a psurf, you should never travel along the same edge more than
twice, and you should never travel along the same edge twice in the same direction. If you have, the psurf
does not de�ne a valid polyhedron, and if you try to shade it, its surface normals are not well-de�ned.

There are exceptions to these rules, particularly in the case of open objects, i.e. sets of faces which are
connected but which do not bound a closed region in space.

A.4.6 Binary Psurfs and BPS

For faster reading and display, you may pre-process psurf �les and convert them into \binary psurfs" using
the program bps. bps reads a text psurf �le and produces another �le with the same base name but with
the su�x .bps. This is a binary psurf �le, and it represents the same geometric information about the psurf
in a form which is easier for Jack to read and more e�cient for it to display.

2A planar graph is a graph which is capable of be drawn in a plane without crossing edges. It does not mean that all nodes

of the graph lie in a plane in space


