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Abstract

We present a combination result for many-sorted first-order the-
ories whose signatures may share common symbols (i.e. overlapping
or non-disjoint signatures), extending the recent results by Ghilardi
for the unsorted case. Furthermore, we give practical conditions un-
der which the combination method becomes a semi-decision procedure,
and additional sufficient conditions which turn it into a decision pro-
cedure.

Several theories which are practically useful in formal verification
have overlapping signatures (e.g. linear arithmetic and bit-vectors).
We demonstrate how their decision procedures can be combined using
our results. In addition, we obtain a many-sorted version of the Nelson-
Oppen method as a special case of our combination result.
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1 Introduction

Decision procedures are becoming increasingly important in formal verifica-
tion and related areas. As a result, many efficient decision procedures have
been developed for various theories like linear arithmetic, theory of equality,
uninterpreted functions etc. However, practical verification problems often
yield formulas which span over several theories, and it is very desirable to
have a decision procedure for the combination of these theories.



A naive approach is to build a monolithic decision procedure for the
union of a chosen set of theories. A more systematic and modular approach
is to combine existing decision procedures for the individual theories into a
decision procedure for the combined theory. Modular combinations allow one
to take existing off-the-shelf decision procedures (either as an implementation
or as an algorithm) and add it to the combination framework as a component,
without having to re-implement the rest of the decision procedure for the
combined theory.

The most well-known combination approaches to date for unsorted first-
order logic (FOL) are the Nelson-Oppen [NO79| and Shostak [Sho84, RS01]
methods and their variations [Bar03| which enable one to combine decision
procedures for quantifier-free first-order theories with disjoint signatures.
Various extensions have been studied in [BT97, Ghi03].

Many tools have been built based on Nelson-Oppen and Shostak combi-
nation methods for FOL. Examples include ICS [FORS01], Simplify [DNS],
Verifun [FJOS03], etc.

However, it is our belief that many verification problems are naturally
expressed in many-sorted first-order logic (MSL) [Man96], since hardware and
software systems are usually written in typed languages. Consequently, we
believe that it is natural for the users to expect support for many-sorted input
languages in verification tools. Moreover, individual decision procedures are
usually written for theories with specific models in mind, for instance, finite
strings over {0,1} and integers. The FOL combination of the individual
theories over these models will have a model whose elements behave both
as strings and integers, which may be unnatural and confusing both to the
developers and the users. For instance, FOL formulas in the union theory
may have perfectly valid but ill-sorted behaviors. This could confuse the
users, thus lowering the utility of the combination. These considerations were
the primary motivation for us in deciding upon MSL as the input language
of CVC [SBD02] and its successor CVC Lite [BB03].

Since any MSL formula can be translated into an equivalent FOL formula
using relativization (i.e. introduction of unary sort predicates), one possible
implementation of such an input language is to translate MSL theories into
FOL theories and use an existing FOL combination algorithm. However,
Such a translation of MSL theories into FOL theories results in theories
whose signatures share the unary predicates corresponding to the sorts of
MSL, i.e. we have overlapping signatures (Note: we assume sharing of sort
symbols between the signatures of the individual MSL theories. This is a nec-



essary assumption, for otherwise the combination is uninteresting). The FOL
Nelson-Oppen method is no longer applicable and one has to use combination
results for FOL theories with overlapping signatures (such as [Ghi03]), which
are much more involved and do not guarantee decidability. Therefore, the
existing combination results for FOL become inadequate. This provides us
with the motivation to consider the MSL Nelson-Oppen combination result.
There are added benefits to considering MSL Nelson-Oppen Combinations.
It usually is easier to prove that a sorted theory is stably infinite over a
certain set of sorts, than it is to prove that its unsorted version is stably
infinite as a whole. Also, one can now combine theories with sorts admitting
only finite interpretations, as long as these sorts are not shared between the
theories.

There are practical settings in which MSL theories may have overlapping
signatures (not just sorts but constant, function and relation symbols), thus
motivating us go beyond MSL Nelson-Oppen Combinations, and to consider
combination results for MSL theories with overlapping signatures. For exam-
ple, it is natural to implement the theory of linear arithmetic and the theory
of bit-vectors as two separate theories within the combination framework
(here the sorts for the theory of linear arithmetic are R, Z and the sorts
for the theory of fixed bitvectors are Z and bit-vectors of length n for each
n € N). However, these two theories share integer constants and the ‘+’
operator, which implies that the MSL Nelson-Oppen method is inapplica-
ble. We have to establish a combination result for theories with overlapping
signatures to cover this case. In fact, in this paper we first establish such
a combination result, and then subsequently derive the MSL Nelson-Oppen
combination result from it.

A cursory knowledge of MSL might prompt one to ask “don’t the com-
bination results for MSL follow automatically from the results for FOL?”.
Logicians have noticed long ago that MSL is a quite different logic compared
to FOL. Although MSL can be translated into FOL, some properties of MSL
do not directly follow from their FOL counterparts [Fef68, Fef74, Man96|.

In particular, MSL combination results cannot be derived from the cor-
responding results for FOL. For instance, extending the FOL Nelson-Oppen
method to MSL yields a method in which only well-sorted arrangements are
considered. Thus, only a subset of all possible arrangements (relative to
the FOL case) are taken into account, and consequently, the completeness
for the MSL Nelson-Oppen combination method does not follow from the
completeness of the FOL Nelson-Oppen method. Similarly, the combination
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results for MSL theories with overlapping signatures do not follow directly
from the corresponding FOL results by Ghilardi [Ghi03|. In particular, the
theorems regarding the combination method in Section 7 differ from their
FOL counterparts in important ways.

There has been almost no work done in the area of combination results for
MSL. The only work we are aware are the unpublished results by Tinelli &
Zarba. In their work they consider only theories with disjoint signatures, but
have some results for order sorted logic (MSL with subsorts). We have not
considered order sorted logic in this work, but we believe that our methods
are more general, amenable to extensions and consequently can be extended
to theories in order sorted logic with overlapping signatures. Our work is
a non-trivial extension of Ghilardi’s combination results for FOL [Ghi03] to
many-sorted logic.

We now provide an overview of the paper. In Section 2 we present a
syntax and semantics for MSL. The logic in the rest of the paper is MSL
unless we specify otherwise. In Section 3 we provide a bird’s eye-view of how
the combination results for MSL have been derived from first principles and
give a high-level structure of the proofs of important results. In Section 4 we
provide some basic model theoretic notions for MSL and prove many useful
theorems that will be used in subsequent sections. In Section 5 we state
Feferman’s Interpolation Theorem [Fef74, Fef68] for MSL, which is one of
key ingredients for establishing the MSL combination results just as Craig’s
Interpolation Lemma [CK98] is for the FOL case and derive the many-sorted
version of Robinson’s Joint Consistency Theorem. In Section 6 we define the
all important notion of model-completion and the notion of Tj-compatible
theories. In Subsection 6.1 we show that a theory which admits elimination
of quantifiers is also submodel-complete. In Subsection 6.2 we use the idea
of submodel-completeness to establish that if two theories T} and T, are Tj-
compatible then so is their union 77 U 75, and furthermore, we show that if
both 77 and 75 are individually consistent then the union 77 UT5; is consistent
provided 77 and 75 have models M; and M, with a common submodel.

In Section 7 we finally state and prove the combination result for MSL
theories with overlapping signatures. In Section 8 we derive the MSL Nelson-
Oppen method from the results in the previous sections. In Section 9 we
provide a list of decidability conditions under which the combination is ren-
dered decidable. In Section 10 we present some instances where the results
are directly applicable to CVC Lite. Finally, we conclude in Section 11.



2 Preliminaries

This section describes the syntax and semantics of a first-order many-sorted
logic (MSL) and gives various basic model-theoretic definitions. For conve-
nience and clarity of definitions, we use a notion of decorated symbols, that
is, symbols which carry a sort declaration explicitly in them. While deco-
rated symbols are cumbersome to write in practice, at the theoretical level
they dramatically simplify or eliminate a number of problems that vex more
standard definitions of sorted logics. With decorated symbols sort inference
is trivial, terms have a unique sort, set operations on signatures are straight-
forward and ad-hoc overloading is a non-issue.

2.1 Syntax

We assume that there exist fixed, infinite and pairwise disjoint sets of sorts S,
function symbols F, constant symbols C, predicate symbols P, and variables
V. A decorated function symbol fs s, is a tuple (f, s, s,) € F x St x S, and
intuitively, it means that f expects arguments of the sorts § = (s1, ..., sp),
and returns the result of the sort s,. Similarly, a decorated predicate symbol
ps is a tuple (p, §) € P x §* (i.e. the predicate p takes n arguments of sorts
§=(s1, .-, Sn), and is true or false when n = 0). Finally, decorated constant
symbols and variables c; and x4 are pairs (¢, s) € C x S and (z, s) € V x S,
respectively. Here S* (similarly, S) denotes a set of tuples (non-empty
tuples) of elements of S.

For the rest of the paper, we assume that each symbol and variable is
uniquely decorated. Since every symbol is decorated uniquely, we will often
omit the decorations (subindices) when it is convenient, and will also omit
the word “decorated” when referring to variables and function, constant and
predicate symbols.

A first-order many-sorted signature is a tuple ¥ = (P, F, C, S), where
S C § is a set of sort symbols, P C P x §* is a set of decorated predicate
symbols, FF C F x ST x S is a set of decorated function symbols, and C' C
C x S is a set of decorated constant symbols. For two signatures ¥; =
(P, Fi, Cy, S1) and g = (Py, Fy, Cy, Ss), we define:

Zluzg == (P1UP2,F1UF2,01U02,51U52)
YN, = (PNP, INF, CiNCy, S1NS,)
X1CYy iff PLRCHR, F1 CF, CiCC(Cy S5 CS.



Definition. For a signature ¥ = (P, F, C, S) we define X-terms, Y-atoms,
and Y-formulas.

d-term t:
to=x|c|f(ty,...,tn)
where z € V is a variable and t1,...,t, are X-terms, c€ C, f € F.

Y-atom a:
a ==p(ty, ..., ty) | t1 =ty | false | true

where 14, .., t, are X-terms, and p € P. false is the universally false atom
and true is the universally true atom. In our logic, the equality predicate
symbol ~ is a logical symbol, and is not a part of any signature.

Y-formula ¢:
@ m=a|=p1| o1 Apa | (3z;) 1
where ¢, @9 are Y-formulas, a is a 3-atom, x; is a variable whose sort is
s, and d is the existential quantifier. We will also use logical connectives

—, <, <>,V and the universal quantifier V as the usual shorthands built
out of =, A and 4.

Definition. We define the notions of the sort of X-terms and well-formedness
of Y-terms and YX-formulas.

Sort of X-term: A term ¢ is well-formed and has a sort s (denoted by ¢ : s),
if ¢ : s can be derived by the following rules:

tllSl "'tnISn

Tg: S Cg: S fsl...sn,s(tla RN tn) 2 S

Well-formed Y-formula: A formula ¢ is well-formed (denoted by ¢ : wff
for well-formed formula) if ¢ : wff can be derived by the following rules:

t1:8, -ty :8 t1:8 to:8 - wif
true false L n-on ! 2 L4

Doy, (Bl ooy tn) s wWif & &ty s wif —p : wif

o1 s wff g wif @ : wif

w1 A g 1 wif (Fzs) = wif



The set of all such well-formed formulas is referred to as the first-order many-
sorted language L.

We have the usual notion of free and bound variables. A X-literal is a
Y-atom or its negation. A Y-clause is a disjunction of Y-literals. A Y-term
or a X-literal is called ground if it does not have any variables. A X-formula
is called closed if it does not contain any free variables. Closed Y-formulas
are also called Y-sentences. A sentence is called universal (eristential) if its
prenex normal form has only universal (existential) quantifiers.

Definition. Theory: A X-theory T is a non-empty set of X-sentences.

Notation 1. A formula with free variables x4, ..., z, is typically denoted as
o(x1, ..., x,). Formulas with free variables are also called open formulas.
Henceforth, we will drop the “3” from Y-formula, ¥-atom etc., if it is clear
from context.

2.2 Semantics

Following are definitions of a model, model of theory etc. These definitions
have some differences from their first-order counterpart. Most of these def-
initions are many-sorted versions of the definitions given in the Chang &
Keisler book on model theory [CK98|.

Definition. Model A, varable interpretation «, term and formula evaluation
™2, model of a theory A = T, consistent theory, complete theory.
Model A: For a signature ¥ = (P, F, C, S), a ¥-model is a pair:

A= (A, I),

where A = {A;|s € S} is an S-indexed family of non-empty sets, called
sort-domains, and I is a mapping of symbols from > to the corresponding
constants, functions and predicates over the sort-domains. Namely, a func-
tion symbol f, . s € F is interpreted as I(fs,. s,..s) = f4, where f4is a
total function from A,, x --- x A, to As; a constant symbol ¢; € C is inter-
preted as I(c,) = ¢* € A;, and a predicate symbol p,, , € P is interpreted
as a relation I(p,, ., ) =p* € A, X -+ x A, .

For any Y-model, we also say that symbols of X are interpreted in A, or
A interprets the symbols.



Variable Interpretation: Let V C V be a set of variables. Let V,; C
V' denote the set of all variables whose sort is s. A wvariable interpreta-
tion « of V over a ¥-model A is an S-indexed family of functions o =
{as: Vs = As | s € S}, where S is the set of sorts of X. For any z, € V,
a(zs) denotes a(xs). For any a € Ay, s € Vi and s € S, we denote by
a[zs — a] a new variable interpretation over A that maps z, to a and is
otherwise identical to a. We call the pair (A, ) a X-interpretation over V.
A Y-interpretation (A, o) over V induces a mapping (¢)**® over Y-terms into
elements of A (also referred to as evaluation of terms in A). This mapping
can be further extended to evaluate Y-formulas to {true, false} in the model
A, as defined below.

Evaluation of terms and formulas (Satisfaction of formulas): For a
Y-model A and a variable interpretation «, we denote the evauation of a
term in A as t»® € A, , where t is of sort s, and denote the evaluation of
formulas in the model A as ¢ € {true, false}. If o** = true, then we say
that A satisfies ¢ under the variable interpretation « or (A, a) satisfies ¢
(also denoted as A, a = ¢). We define the evaluation of terms and formulas
inductively in Figure 1.

For ground terms ¢ (similarily, closed formulas, or sentences ¢) it is easy to
see that the variable interpretation « is irrelevant in determining the value
of t4¢ (similarily for ¢**), and hence, we just write t(¢*) to denote their
evaluation in the model A. We say that a Y-sentence ¢ is true in a model A
(alternatively A satisfies ¢ or A is a model of ¢, written as A = ¢) iff every
Y-interpretation (A, o) satisfies ¢.

Model of a theory: If all sentences of a theory T are true in a model A
then we say A is a model of T and write A = T.

Entailment: We say that a theory entails a sentence ¢ (or ¢ is a consequence
of T), written as T |= ¢, iff every model of T is also a model of ¢. In
particular, ¥ = ¢ denotes that the sentence 1 entails . Similarly, T = T
for a set of sentences I' denotes that 7' = ¢ for every ¢ € T'.

Consistent theory: A theory is inconsistent if for every Y-sentence ¢ we
have T = ¢, and in particular, T |= false. A theory is consistent otherwise.
It can be easily shown that a consistent theory always has a model.
Complete Theory: A theory is complete if for all sentences ¢ either 7' = ¢
or T = =y but not both.

Axioms of a theory: We say that a subset Axr of sentences of T" are the
azioms of T if for every ¢ € T we have Azy = .



x a(x)
cA,a C‘A
f(tla ) tn)A,a A(tf’aa .
true
:t .A,Ot =
(t 2) false
Aa  _ true
p(tla ) tn) { false
false™® false
true true
Aa true
(=¢) o { false
Aa  _ true
(@1 A p2) { false
true
((Fzy) ) =
false

A«
coy )
if 5 & b
otherwise
if $h e e pA
otherwise

if o4 ¢ false

otherwise

if " € true and ¢"* € true
otherwise

if there exists a € A,

such that pAel=al = trye
otherwise

Figure 1: Evaluation of a formula
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Subtheory: We say that T" is a subtheory of T, written as T" C T, if every
sentence T" is entailed by 7.

Closure of a theory: Let T be a Y-theory and let Az be its axioms. The
set, of all X-sentences which are entailed by Az is called the closure of the
theory T or the clsosure of the set Axyp.

Union Theory (Combination theory, Combination of theories): Given
two theory 77 and T3, we say that the ¥; UXs-theory obtained by the closure
of the set Azy, U Azp, (the usual set union of the axioms of 77 and T3),
denoted by T7 U T, is called the union theory, or the union of T; and T5.
The Y1 U Xo-theory T7 U T, is also sometimes referred to as the combination
of theories T and T5.

Equivalence: We say that two YX-sentences ¢ and v are equivalent if the
evaluation of ¢ and 1 is the same in all models.

Equisatisfiability: We say that two X-sentences ¢ and i are equisatisfiable
if ¢ is satisfiable iff so is 9.

Decidable Theories: We say that a X-theory T is (semi)-decidable if there
is a (semi)-decision procedure which determines whether a Y-sentence ¢ is
entailed by 7. We also say that the problem T = ¢ is (semi)-decidable.
The set of all universal Y-sentences entailed by a Y-theory T is called the
universal fragment of T. We say that a 3-theory T is universally (semi)-
decidable if there is a (semi)-decision procedure D which determines whether
a universal Y-sentence ¢ is entailed by 7. We also call D a (semi)-decision
procedure for the universal fragment of 7.

Notation 2. Unless we explicitly specify, the terms models, theories, formulas
etc. refer to X-models, X-theories, X-formulas etc.

3 Overview of the Results

The problem that we are trying to solve in this paper is the following:

Suppose there is a Y;-theory T} and a Ys-theory T, with overlapping
signatures (i.e. Yo = ¥; N Xy is non-empty and there is common subtheory
Ty O Ty C Ty), and an arbitrary X; UX,-sentence ¢. The problem we want to
solve is “can we determine if 73 UT5 = ¢, provided that for any X;-sentence
©; we can determine whether T; = ¢; where i € {1,2}”. We call this the
entailment problem for the theory 77 U T5.

The entailment problem for 77 U7, can be further divided into two sub-
problems:
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Ty

Figure 2: Use of Robinson’s Consistency Theorem in Ghilardi’s approach.

1. If 77 and 75 are both individually consistent, then is their union 77 UT5
consistent as well? Clearly if either of them is inconsistent, then so is
the union.

2. Is there a method to determine whether 77 UT, = ¢, provided we have
methods to solve the entailment problem for each 7.

The naivest approach to solving the first subproblem is to check if 77 and
T, have models M; and M, respectively, such that the ¥g-reduct of M/ is
elementarily equivalent to the ¥y-reduct of Msy. Clearly, such an approach
is not very effective and infeasible in general. On the other hand, if certain
restrictions are placed on the common subtheory 7j such that the Yy-reducts
of the models of 77 and T, (and hence the models of Tj) are elementarily
equivalent, then the consistency of the union is easily established.

Abraham Robinson proposed one such restriction in his now famous the-
orem called the Robinson’s Joint Consistency Theorem [Rob56, CK98|, re-
garding the consistency of the union of two consistent first-order (unsorted)
theories. In order for the union theory 77 U 15 to be consistent for two in-
dividually consistent theories 77 and 75, Robinson’s Theorem requires the
existence of a theory T} D Ty C Tb, such that Tj is complete. Theorem 10
(in Section 5) is our many-sorted version of Robinson’s Theorem, which re-
lies on Feferman’s Interpolation Lemma |Fef68, Fef74] for many-sorted logics
(Lemma 9 in Section 5 as well). However, the completeness condition in The-
orem 10 is the same as in the FOL case and is too strong for most theories
of interest.
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Following Ghilardi’s work [Ghi03|, we introduce a different and more prac-
tical set of conditions on the consistent many-sorted theories 17 and T3 so
as to render the union 7; U T, consistent. Namely, both 7} and 75 must
be Ty-compatible for some theory Tj (see Definition 13 in Section 6), where
Ty 2O Ty C Ty, and there must exist two models M; = T} and My = Ty that
share a common substructure for the shared signature.

The idea here is that, if 77 and T, are Ty-compatible theories then one
can extend them suitably to 7] and T, respectively, such that there is a
complete common subtheory 7§ D T (Theorem 15 in Section 6, illustrated
in Figure 2). Hence, by our many-sorted version of Robinson’s Theorem their
union 77} U T3 is consistent, which in turn implies the consistency of 7} U T5.

Furthermore, we provide a mathematical construction (based on Ghi-
lardi’s approach [Ghi03|) for reducing the problem 77 UT, = ¢ to the entail-
ment problems 77 = ¢ and Ty = ¢, for the individual theories 77 and T
(Theorem 19 in Section 7), where ¢ is a universal 3; U YXo-sentence, ¢; is a
universal ¥;-sentence for i € {1,2}. The completeness of this construction is
guaranteed by the Finite Residue Chain Theorem (Theorem 20 in Section 7).

Following the approach pioneered by Nelson and Oppen [NOT79|, this
method can be described in two high-level steps:

1. Purify - into equisatisfiable sets of pure ground formulas I'y and I's
over the signatures 3¢ and 3§ respectively, where a is a finite set of
fresh constant symbols. The idea is that once the formulas are purified
then we can easily check if 7;UT; are individually consistent, i € {1, 2}.
Note that not all formulas can be purified, but universal sentences can
always be purified.

2. Check if T; U T; are individually consistent by exchanging information
between the decision procedures for the respective theories. If false is
exchanged at any point, then conclude that 73 UT; | ¢ (by the Finite
Residue Chain Theorem).

An immediate application of Theorems 15 and 20 (Sections 6 and 7) is the ex-
tension of the Nelson-Oppen combination result to many-sorted logic, when
the shared signature is empty (i.e. the only shared predicate symbol is equal-
ity (since it is infact a logical symbol), but there may be shared sorts). The
common subtheory in this case is the theory of pure equality T— over the
shared sorts.
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In the unsorted case, the Nelson-Oppen method requires that two quantifier-
free theories T} and Ty be stably-infinite [INO79| for the union theory 73 U T
to be consistent, provided that 77 and 75 are individually consistent.

In our many-sorted extension of the Nelson-Oppen method (Theorem 29
in Subsection 8.3), we require (a) stably-infiniteness of 7} and T» over the
shared sorts (see Definition 22 in section 8) and (b) the existence of models
M; =T, and My = T; such that the domains for the shared sorts are the
same in both models.

To establish the consistency of the union theory 77 U 75, in the many-
sorted Nelson-Oppen method we use Theorem 15. This theorem requires
that the individual theories 77 and 75 satisfy two conditions, namely the 7T_-
compatibility condition and the common submodel property. To satisfy the
T_-compatibility, we show that staby-infinteness (above condition (a)) im-
plies T_-compatibility (Lemma 27 in Subsection 8.2). Condition (b) provides
the common submodel property. Hence, the consistency of 77 U 75 follows
from the above conditions (a) and (b) by Theorem 15.

The proof of Lemma 27 relies on the fact that the theory of infinite
sorts T is the model completion of 7_ (see Definition 22 in Section 8 and
Definition 13 in Section 6), which in turn follows from the fact that Ts admits
elimination of quantifiers (Theorem 24 in Subsection 8.1).

A non-deterministic decision procedure for the consistency of 73 UT,U{ ¢},
for any universal 3; U ¥s-sentence ¢, consists of the following steps: purifi-
cation of terms in ¢ by introducing a finite set of fresh shared constants
¢ = {c, ..., ¢}, translating ¢ into an equisatisfiable set of pure ground
formulas T'; U I'y (that is, I'; and T’y are over the signatures ¥f and X,
respectively), picking an arrangement A (see Definition 22) over these con-
stants, and checking that 77 UT'; U {A} and T, UTy, U {A} are individually
consistent. Since the number of different arrangements A is finite, the ter-
mination of this procedure is obvious.

Notice, that we only consider the well-sorted arrangements, and there-
fore, the completeness of this algorithm does not immediately follow from
the completeness of the unsorted Nelson-Oppen procedure, since the latter
requires all the arrangements to be considered, even those that would be
ill-sorted in our case.

We show completeness of our many-sorted version of the Nelson-Oppen
method in Theorem 29 in Section 8.3. Namely, we show that if (73 Uy )U(ToU
I['y) is consistent, then there exists an arrangement A such that 73 UT; U{A}
and T U Ty U {A} are individually consistent. This fact follows from the
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existence of the common substructure guaranteed by Theorems 19 and 20,
and this substructure effectively provides the arrangement A.

In Section 9 we list several decidability conditions and in Section 10 we
provide some concrete applications of our results.

4 Some Basic Notions from Model Theory

Let ¥ = (P, F,C,S) and ¥ = (P, F',C",S") be two first-order many-
sorted signatures such that ¥ C /. We describe important notions such as
isomorphism between models, elementarily equivalent models etc. below.

Definition. Domain Mapping, Isomorphism, Elementarily equivalent, Sub-
model, Elementary submodel.

Domain mapping: Given two sets of S-indexed families of sort-domains
A ={A;|s € S} and B = {B;|s € S}, an S-indexed family of functions
H = {hs; : A; > B |s € S}is called a domain mapping. We write H(a) for
a € A to denote hg(a). Similarly, for a variable interpretation « over A,
f = H o «) is a variable interpretation over B such that f(z) = H o a(x).
Notice that we allow for overlapping sort-domains, although we do not limit
the universe of models to those with specific relationships over the sort-
domains (that would be order-sorted logic or MSL with subsorts). Even
in the presence of overlapping sort-domains the following definitions should
work fine provided the functions in the domain mappings behave identically
over the elements in the intersection of the sort-domains.

Isomorphism: A Y.-isomorphism between Y.-model A and and X'-model
B is a domain mapping H = {hs : A; — B|s € S} where each h; is a
bijection from the sort-domain A, into the sort-domain By, and the following
conditions are satisfied:

1. For every predicate symbol py,. s, € P we have
pMay, ..., a,)iffpP(H(ay), ..., H(ay))
for all tuples (ai, ..., a,) € A5, X -+ X A, .
2. For every function symbol fs, 5. s € F we have

H(fA(al, o)) = fB(H(ay), ..., H(a,))

for all tuples (a1, ..., a,) € A5, X -+ X A, .
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3. For each constant ¢ € A, the corresponding constant ¢® € B, is such
that H(c*) = c.

Isomorphic models: A Y-model A and a ¥'-model B are X-isomorphic
(written as A = B) if there exists a Y-isomorphism between A and 5.
Equivalence of models: Y-model A and ¥'-model A’ are said to be X-
equivalent (written as A ~ A') whenever for any quantifier-free Y-sentence
o (i-e. quantifier-free ground Y-formulas) we have

Aeciff A Eo

Elementary equivalence of models: Y-model A and Y'-model A’ are
said to be elementarily 3-equivalent (written as A = A’) whenever for any
Y-sentence o we have

AEociff A Eo
Submodel: A Y-model A is called a X-submodel of a ¥'-model B, or B a

Y'-extension of A (written as A C B), iff A; C B; for each sort s € S, and
the following conditions hold:

e For each predicate symbol py, ., € P, we have pA = pP N (4, x -+ X

As)-

e For each function symbol f;, ;. s € F and every tuple (a1, ..., a,) €
Ay x oo x A, we have fA(ay,...,a,) = fB(ay,...,a,).

e For each constant symbol ¢ € C, we have ¢* = 5.

Elementary Submodel: We say that a Y-model A is an elementary X-
submodel of ¥'-model B (written as A < B), if A C B and for all ¥-formulas
¢(z1, ..., T,) and all variable interpretations o over A, we have ¢t <=
©Be We also say that B is an elementary Y'-extension of A.

Embedding: An (elementary) X-embedding H : A — B from Y-model
A into Y'-model B is an isomorphism between A and C, where C is some
(elementary) Y-submodel of B.

We say that A is (elementarily) X-embedded into B (written as A — B)
if there exists an (elementary) Y-embedding from A to B. In other words,
there exists a X-model C such that A 2 C C B (or A & C < B for the
elementary case); that is, there is a ¥-model C isomorphic to .4, such that C
is an (elementary) submodel of B.
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Proposition 3. A domain mapping H = {hs : A; — Bs|s € S} is an
(elementary) Y-embedding from a ¥X-model A into a ¥'-model B iff for any
(X-formula) quantifier free L-formula ¢(x1, ..., x,) and every variable in-
terpretation o« over A, we have

AakEpiff BHoa = ¢.

Proof. An easy induction over the (3-formulas) quantifier free Y-formulas,
similar to the proof of Theorem 2.2.16 in [CK98] for FOL. O

5 Robinson’s Joint Consistency Theorem

Many of the well known theorems from model theory for FOL like the Com-
pactness Theorem and Substitution Lemma also hold for many-sorted first-
order logic [Man96]. We shall use these theorems in the subsequent sections
without proof. In this section, we state the Feferman’s Interpolation Lemma,
and prove the many-sorted analog of the Robinson’s Joint Consistency Theo-
rem (also known as Robinson’s Consistency Theorem). These theorems form
the basis for our combination result.

Definition. Expansion (reduction) of a model: Let ¥ = (P, F, C, S)
and X' = (P', F', C', S") be two first-order many-sorted signatures such that
Y. C Y. Let M’ be a ¥'-model. The Y-reduct of M’ (written as M’ |5 )
is the Y-model whose sort-domains are the same as the sort-domains of M’
over the sorts in S, for any p € P we have pM'lz = pM' for any f € F we
have fMIs = fM for any ¢ € C we have cM'® = M. We also call the
Y¥'-model M' a ¥'-ezpansion of the ¥-model M’ |x.

Notation 4. We denote by ¢(ay, ..., a,) the X-formula obtained by substitut-
ing a; for x1,...,a, for x, in the open X-formula p(z1, ..., x,), where ay, ..., a,
are decorated constant symbols of the appropriate sort in ¥. Note that Sub-
stitution Lemma holds for MSL [Man96|.

Definition. Ay, the canonical Y y-expansion of A.

Signature Y y: For a signature ¥ = (P, F, C, S), let A = (A, I) be a %-
model. Let X = {X; C A,|s € S} be an S-indexed family of non-empty
subsets of sort-domains of A. We define ¥y = (P, F, C, S) to be the
signature such that Cy = CU{as; € X, | X, € X'} (that is, we expand the set
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of constants C' with the (appropriately decorated) elements of all X, € X).
For reasons of convenience, we may denote, Xy, the expansion of ¥, as (X)x
(this notation is convenient when the signatures are already subscripted).

Canonical ¥ y-expansion of A: The ¥y-model Ay = (A, Ix) is the canon-
ical ¥ x-expansion of A such that Iy(w) = I(w) for all symbols w € CUFUP,
and Iy(a) = a for all a € X, X, € X. We often have the case that X = A,
in which case the expanded signature is denoted by ¥ 4, and the correspond-
ing canonical ¥ 4-expansion is denoted by A 4. Note that there may be other
Y x-models which extend A by interpreting the symbols from X as something
other than themselves. Such models are termed non-canonical ¥ y -expansions

of A.

Definition. Diagram A(A), elementary diagram EA(A), theory of a model
Th(A).

(Elementary) Diagram: The diagram A(A) of a ¥-model A is the set of
all quantifier-free ground ¥ 4-formulas true in Ay4. The elementary diagram
EA(A) of a ¥-model A is the set of all ¥ 4-sentences true in A 4.

Theory of a model: The theory Th(A) is the set of all X-sentences true
in A.

Theorem 5. Let A and B be ¥-models, where ¥ = (P, F, C, S). For each
Y-formula p(z1, ..., z,) and every variable interpretation o over A the fol-
lowing statements hold:

L AakEye iff AgEela(n),,. .., alz))

2. Let M = {m,; : As — B;|s € S} be a domain mapping from the
sort-domains of A to the corresponding sort-domains of B. Then

BMoalEye iff B Eoe(a(r),..., alz,)),

where B’ is a ¥ 4-expansion of B such that the constant symbols a € C4
in 34 corresponding to the elements of A are interpreted as M (a) in
B.

Proof. The proof is straightforward by a structural induction over ¢. O
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5.1 Robinson’s Diagram Lemmas

Theorem 6. (Robinson’s Diagram Lemma). Let A = (A, 14) and B =
(B, Ig) be X-models. Then the following statements hold:

1. A is embedded in B iff the X-model B can be expanded to a ¥ 4-model
of A(A), the diagram of A.

2. A is elementarily embedded in B iff B can be expanded to a X 4-model
of Th(A4), the theory of the ¥ 4-model A4 (Note: Th(Ay) is the same
as the EA(A)).

Proof. We first give the proof of statement 1.

(=) Let M : A — B be an embedding from A into B. We expand B to a
Y 4-model B’ by interpreting all constant symbols from X 4 that correspond
to a € As; as M(a). For every quantifier-free ¥ 4-formula (x4, ..., z,) and
a variable interpretation o over A we have:

Aa = ola(rr), .. alz,)) ff AakEgp by thm 5(1)
ifft B,M(a) =g by prop 3
ifft B'E p(a(zy), ..., a(z,)). by thm5(2)

This immediately implies that B’ = A(A).

(<) Suppose that the 3-model B can be expanded to a ¥ 4-model B’ of
A(A). Then we define a domain mapping M to be M (a) = o for all a € A,,
where A; € A, and show that M is an embedding from A into B. For any

quantifier-free ¥ 4-formula ¢(z1, ..., z,) and a variable interpretation « over
A we have:
B,M(a) =¢ iff B E=ola(z), ..., a(z,)) by thm 5(2)
iff AgkE o(a(z), --., a(z,)) by assump. B' = A(A)
iff A apEe. by thm 5(1)

Thus, ¢®M@) « 42 By proposition 3, M is an embedding from A to
B.

The proof of statement 2 is identical to the proof of statement 1, except
that A(A) is replaced by Th(A,). O

Theorem 7. A X-theory T is complete iff any two models of T are elemen-
tarily equivalent.
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Proof. Follows directly from the definitions of a complete theory and elemen-
tary equivalence of models. O

Theorem 8. Let A, B be two X-models. Then the following claims hold:

e If AC B then A~ B (a model is equivalent to its submodel)

If A < B then A= B (a model is elementary equivalent to its elemen-
tary submodel)

If A= B then A = B (isomorphic models are elementarily equivalent)

If A= B and B = C, then A = C (transitivity of elementary equiva-
lence).

o If A= B and B=C then A = C (transitivity of isomorphism).

Proof. The first two claims follow directly from the definition of submodel
and elementary submodel. The third claim is proven by a straightforward
induction over the structure of formulas, and the fourth claim follows from
the definition of elementary equivalence. The fifth claim follows easily from
the definition of isomorphism. O

5.2 Feferman’s Interpolation Lemma and Robinson’s
Consistency Theorem

We state the Feferman’s interpolation Lemma [Fef68, Fef74] and we use it
prove the many-sorted version of the Robinson’s Consistency Theorem.

Definition. Let ¢ be the negation normal form of a ¥-sentence ¢ (i.e. all the
negations in ¢ are applied only to the atomic formulas). Define Un(p) C S
and Ex(p) C S to be sets of sorts such that s € Un(y) (s € Ez(p)) iff ¢
contains a universal (existential) quantifier over a variable of the sort s. Let
Sort(y¢) be the set of sorts of all the terms in ¢. We write Const(y), Fun(y)
and Pred(y) respectively for the sets of constant, function and predicate
symbols in .

Given functions Fi, ..., F,, over arbitrary Y-sentences to sets, we say
that 0 is an interpolant for (¢ = ¢) w.r.t Fy, ..., F,, if (i) 6 is a X-sentence,
(ii) ¢ =0 and 0 = ¢ and (iii) F;(8) C Fi(¢)NFi(y) foreach of i =1, ..., m.
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Lemma 9. Feferman’s Interpolation Lemma: Suppose ¢ = 1 for ¥-sentences
@ and 1. Then there is an interpolant @ w.r.t the functions Const, Fun, Sort

and Pred, and in addition, Un(0) C Un(p) and Ex(0) C Exz(v).

Next, we use Feferman’s interpolation Lemma and compactness to prove
the many-sorted version of the Robinson Consistency Theorem.

Theorem 10. Robinson Joint Consistency Theorem (many-sorted version):
Let 31 and Yo be two signatures and let ¥ = X1 Ny, Suppose T is a complete
Y.-theory such that T1 O T C Ty, where Ty and T, are consistent theories in
31209, respectively. Then T, U Ty is a consistent 31 U Yo-theory.

Proof. Suppose T} U T, is inconsistent. Then by compactness (also refer
[Man96|), there exist finite subtheories L; C 77 and Ly C Ty such that
L, U Ly is inconsistent. Let o; be the conjunction of the sentences in L,
and oy be the conjunction of sentences in L. It follows that o1 = —0y. By
the Feferman Interpolation Lemma, we have an interpolant such that oy = 6
and 6 = —oy where 6 is a YX-sentence. Since T7 = o7 we have that T} = 6.
Since T is consistent, 77 = —6, and hence T' = —f. Moreover, T = —6 and
by consistency of 75 we have Ty ~ 0, hence T [~ 6. But this contradicts the
hypothesis that 7" is a complete >-theory. O

6 Compatibility and Consistency of the Union
Theory

Although Robinson’s Joint Consistency Theorem is a classic result which
allows one to establish the consistency of the union theory 77 U Ty of the
theories 77 and T5, the conditions it requires of 77 and T3 are too strong.
In order for the union theory 77 UT5 to be consistent for two individually
consistent theories 77 and 75, Robinson’s Theorem requires the existence of a
theory 17 D Ty C T, such that Tj is complete. Theories of practical interest
usually do not have common subtheories which are complete. Following
Ghilardi [Ghi03|, our goal is to weaken this condition so as to allow larger
classes of theories to be combined.

Specifically, instead of requiring that the common subtheory 7 be com-
plete, we require that 71 and 75 be Ty-compatible, and that there are models
M =Ty and My = T; with a common Yy-submodel A.
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Ty-compatibility of T; essentially translates into two ideas. First, T has
model-completion 7, which implies that 7 admits elimination of quan-
tifiers. This in turn implies that 7 is submodel-complete, i.e. if A is a
submodel of a model of T then T U A(A) is a complete theory. Second, if
A is a submodel of a model of T; then it is also a submodel of a model of T .

Hence, the idea here is that, if T} and T, are Ty-compatible theories then
one can extend them suitably to 77 and T} respectively, such that there is a
complete common subtheory T3 U A(A) D T (Theorem 15 in this section,
illustrated in Figure 2). By Robinson’s Consistency Theorem in the previous
section, T UTj is consistent, which trivially implies the consistency of T} UT5.

6.1 Submodel Completeness and Quantifier Elimination

We begin by defining the notions of quantifier elimination (QE), submodel-
completeness of a theory and subsequently show that QE implies the sub-
model completeness of a theory. We use the notion of QE, in fact the notion
of submodel-completeness of a theory, in Theorem 14 and Theorem 15 from
Section 6 to establish that the union of two individually 7j-compatible the-
ories is Tp-compatible.

Definition. Quantifier Elimination, Submodel-Completeness.

Quantifier Elimination: A Y-theory T is said to admit elimination of
quantifiers whenever for each ¥-formula ¢(xy,...,z,) there is a quantifier
free ¥-formula ¢(z4,...,z,) such that:

T =Vry.. Ve (o(x, ..o xn) (21, ..., T0)).

We assume that > has at least one constant symbol or n > 0.
Submodel Completeness: A Y-theory T is said to be submodel-complete
whenever T'U A(A) is a complete Y. 4-theory for every Y-submodel A of any
Y-model of T.

Lemma 11. (Embedding-Submodel Lemma) Assume there is an embedding
from a 3¥-model A into a X-model B, where ¥ = (P, F, C, S). Then there
exists a S-model D = B such that A C D.

Proof. Let A" C B be the submodel of B such that A’ =2 A, by the definition
of embedding. Let H = {hs: A; — A’ | s € S} be the isomorphism from .4
to A, and H' = H!. The model D = (D, Ip) is constructed by replacing the
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elements from the sort-domains of A’ in B with the corresponding elements
of A, and constructing the interpretation Ip as follows:

5 %, where ¢, € C
Cg otherwise.

H'(B), ifcfe Al
In(e) = { (cB)

Ip(foysn,s)ar, - an) = H'(f5_,, (M(a1),..., M(ay)))
for all (ay,...,a,) € Ay, X ---x A ,and f € F

Ip(psy..sn)(ar; - an) = p5, o, (H(a), ..., H(an))
for all (ay,...,a,) € As, X ---x A, ,andp € P

Next we show that B = D and A C D. Define a domain mapping
N ={ns: Bs — D | s € S} between B and D as follows:

(c2) hl.(es) ifes € AL
ng(es) =
€ otherwise.

It is easy to see that N is indeed an isomorphism between B and D, and
A C D is by construction of N and D. O

Now, we show that if 7" admits quantifier elimination then it is submodel-
complete.

Theorem 12. (QE-Submodel-Completeness Theorem) Let T be a X-theory
for a signature ¥ = (P, F, C, S). Then statement 1 below implies statement
2 which in turn implies statement 3.

1. T admits elimination of quantifiers.

2. Whenever A C G, A C H for ¥-models A, G and H of T, there exists a
Y-model D of T such that both G4 and H 4 are elementarily embedded
in D4 (here the existence of D4 implicitly requires that the domain of
D contains all the elements from the domain of A), where A4, G4, H 4
and D4 are the corresponding canonical ¥ 4-expansions.

3. T is submodel-complete.

The proof of this theorem follows the ideas presented in [WDO04].
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Proof. (1 = 2) Without loss of generality we can assume that XgNYy = ¥ 4.
Given that T admits elimination of quantifiers, and for Y-models A, G, ‘H of
T such that A C G, A C H, we have to show the existence of a ¥-model D
such that both G4 and H 4 elementarily embed into D 4.

We construct a X-model D by first finding a 3g4-model D’ of the theory
Th(Gg) UTh(Hy) and then building the X-reduct D of D'. We assume that
the constant symbols corresponding to the elements of A are interpreted as
themselves in D’ (otherwise we can always find another model D" isomorphic
to D' that satisfies this condition by Lemma 11). We then construct the
Y 4-reduct of D' which, by the above assumption, is exactly the canonical
Y 4-expansion D4 of D. Then we show that G4 and H 4 elementarily embed
into D 4, which completes the proof of (1 = 2) .

To show that such a D' exists we simply need to show that Th(Gg) U
Th(H4) is consistent, where we know trivially that Th(Gg) and Th(Hy)
are individually consistent. By the Robinson Joint Consistency Theorem
(Theorem 10), it suffices to show that there is no ¥ 4-sentence o such that

Th(Gg) =0 and Th(Hy) = —o.

Suppose o is a ¥ 4-sentence such that Th(Gg) = o and Th(Hy) E —o. Let
ai, ..., a, € C4 be the set of ¥ 4-constant symbols appearing in o, added to
Y from sort-domains of A. Let ¢(z1, ..., z,) be obtained from ¢ by replacing
each a; for a new variable x;. Since 7" admits elimination of quantifiers, there
exists a quantifier free ¥-formula ¢ (z1,...,z,) such that:

T EVz ... Ve,(p < ).

Let ¢* be ¥(ay, ..., a,) (i.e. the result of substituting a; for each z; in v).
Note that * is also quantifier free.

Since Gg = o we have that gog’a = true for a variable interpretation «
over A such that a(z;) = a; for i € {1...n} (by construction of ¢ and
Substitution Lemma). We are given that G = T and, therefore, 19* = true
for the same «. Hence we conclude that G4 = 9*. Since ¥* is quantifier free
and A4 C G4, we have Ay = 9" by Theorem 8; similarily, since Ay C H 4,
A4 = ¢* and ¢* is quantifier-free, we have H 4 = ¥*. Hence, we conclude
that 9" = true, and since H = T, we have ¢ = true. This implies
that H4 = o, and consequently, Hy = o. That is, Th(Hy) = o, which is
a contradiction. Therefore Th(Gg) U Th(Hy) is consistent establishing the
existence of the model D’.
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Next we show that the Y-reduct of D’ is the requisite model D. First,
observe that D 4, the canonical ¥ 4-expansion of D, is exactly the ¥ 4-reduct
of D' (this is shown in the first paragraph of the proof). Another observation
is that EA(Gg) = Th(Gg) and EA(Hy) = Th(Hy), because Xg, = Xg and
Yy, = Xy. It follows that D’ is a model of EA(Gg), and similarly, a model
of EA(H4). Since A C G, it trivially follows that D' is a model of EA(G4).
Similarly, D’ is a model of EA(#H 4). Hence, the ¥ 4-reduct Dy of D' is
also a model of both FA(G4) and EA(H_4). This implies that G4 and H 4
elementarily embed into D4 by the Robinson’s Diagram Lemma (Theorem 6,
the elementary version).

(2= 3) Let G =T be any model of T and A C G be any submodel of
G; we show that the ¥ 4-model T'U A(A) is complete. First observe that
Ga ETUA(A). By Theorem 7, it suffices to show that G4 = £ for each
Y 4-model €& where &€ = T U A(A). Note that G4 and £ may interpret
the constant symbols corresponding to the elements of A differently. In
particular, G4 interprets constant symbols from the sort-domains of A as
themselves, while £ might not.

Let £ be any X 4-model such that £ =T U A(A). Since £ = A(A) we
conclude that A embeds into £, by Robinson’s Diagram Lemma. Without
loss of generality, we assume that A C E|x (if it is not, then we can always
find £ = £ such that A C £'|s;, by Lemma 11). For each such ¥ 4-model &,
define H = &|x (the X-reduct of £). Since H is a X-reduct of &, it follows
that X =T and A C H.

It is easy to construct an isomorphism between H 4 (the canonical ¥ 4-
expansion of H) and &, hence H 4 = £. We started out with the assumption
that G =T and A C G. We have constructed a ¥-model H, different from
G, such that H =T and A C ‘H. We apply (2) to conclude that there is a
Y 4-model D4 into which both G4 and H 4 embed elementarily.

By Theorem 8, H 4 = £ implies Hy = &, and H g4 <X D4 implies H 4 = D 4.
Similarily we conclude that G4 = D 4. By transitivity of =, we conclude that
E=HA1=Dy= G4 and hence € = Gy4. O

6.2 Compatibility and Consistency

One of the most important notions that we use in this paper is Ty-compatibility
of a theory Ti, where Ty C T;. The idea of Ty-compatibility relies on the
notion of model completion of the theory 7. As explained in the begining of
Section 6, Ty-compatibility is a sufficient condition on two individually con-
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Figure 3: Diagram for the proof of Theorem 14 (Tj-compatibility of 77 UT5)

sistent theories 77 and 75 in order for the union 77 UT5 to be Ty-compatible.
Here we present a many-sorted version of the definition of model-completion,
Ty-compatibility, and prove that the union 77 U7T5 is Ty-compatible and con-
sistent, provided the individual theories are.

Definition 13. Model Completion, Compatibility, Stably Infinite theory

Model Completion: Let T' be a universal theory (i.e. its axioms are all
universal sentences) and 7' C T* for some X-theory T*. We say that T* is a
model-completion of T iff

1. Every model of T" has an embedding into a model of 7™ and
2. T* admits elimination of quantifiers.

Note. The standard definition of model completion is quite different from the
one given here. We refer the reader to the appendix where we show that the
standard definition and the defintion presented here are equivalent for MSL.
Compatibility: Let 7" be a Y-theory and let 7 be a universal theory in a
subsignature ¥o C . We say that 7" is Tj-compatible iff
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L4 TO g Ta
e T, has a model completion T ,

e every model of T embeds into a model of T"U 7.

We now prove two major results of this paper, namely, Union Compat-
ibility Theorem and the Union Consistency Theorem. The proofs are very
similar for both theorems.

Theorem 14. (Union Compatibility Theorem) Let Ty be a 3, -theory and T,
be a Xo-theory; suppose that they are both individually compatible with respect
to a unwversalXg-theory Ty, where g = X1 N YXy. Then the 31 U Xy-theory
Ty U Ty 1s Ty-compatible.

Proof. We only need to show that every model of 77 U T, embeds into a
model of T} U Ty U T}, since the other conditions for Tj-compatibility are
automatically satisfied. If T} U7T5 is inconsistent, then the conclusion follows
trivially.

Suppose 17 U T is consistent and M is a X1 U Xo-model of 77 U T5. We
need to show that M embeds into some ¥; U Xg-model N of the ¥; U Xo-
theory 71 UTy U Ty (The construction is depicted in Figure 3).

First we construct a suitable model for 73 U To U T .

Observe that since M |= Ty U T, we can conclude M = T; and M | Ts.
By the definition of Tj-compatibility, we have that M embeds into some
Y;-model M} =T, UTy, for i € {1,2}. In other words, M = M} C M3.

By the Embedding-Submodel Lemma (Lemma 11), the isomorphisms
M =2 M, and M =2 M), imply that there exist N and N isomorphic
to M7 and M; respectively, satisfying the following two conditions:

e M CN; and M C N and

e the sort-domains of M} and N} are the same except possibly for ele-
ments belonging to the submodels M) and M respectively.

Since M C N}, it follows that A(M) C EANT)UEA(N5). It is easy to see
that Ty C EA(N}) U EA(N5) and consequently T U A(M) C EAN;) U
EA(N5) (Note that trivially T3 U T, UTy € EA(NT) U EA(NS)).
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Observe that M is trivially a submodel of some model of 7§ (in fact,
M C N} where N¥ = T). Since T; admits elimination of quantifiers, it
follows that 77 is submodel-complete by QE Submodel-Completeness Theo-
rem (Theorem 12). By the definition of submodel-completeness, we conclude
that T U A(M) is a complete theory.

Since Tg U A(M) is a complete theory and Tj U A(M) C FA(NT) and
Ty UA(M) C EA(NG), we conclude that EA(NT) U EA(N5) is consistent,
by the many-sorted version of Robinson’s Joint Consistency Theorem (The-
orem 10). Let N be a (X1)y+ U (X2)az-model of EA(NY) U EA(NG). We
have established that T} U7, UTj is consistent.

We now show that M embeds into N' = N |5, us,-

Let H; be the embedding from M into M}, for i € {1,2}. Let J; be the em-
bedding from M} into N (in fact J; are isomorphisms which automatically
implies that they are embeddings as well) and K; be the embedding from N
into A/’ (The existence of K; follows from the Robinson Diagram Lemma).
Observe that for all elements m; of any sort-domain M, of M we have
Ki(ms) = Ko(ms). (Recall that M = (M, 1) where M = {M; | s € S} is
an S-indexed family of sort-domains.) The reasoning is as follows: Assume
that Ki(ms) # Ka(ms) and let Ki(ms) = as, Ko(ms) = bs, as # bs, where
as, by are distinct elements of sort-domain N, of M. Note that A/’ is a model
for EA(NY) U EA(NS) and that my is a constant symbols in the signature
(31)a U (B2) ;- By the defintion of embeddings K and K, it follows that

!
mY' = a,, mY

A A " = b, which implies a, = by. This is a contradiction and hence
Kl(ms) = KQ(ms).

Having established that K; behave the same for elements of M, it is easy

to see that the H; o J; o K1 U Hy o J5 0 K5 is an embedding from M into

N:N’ |21U22- D

Theorem 15. (Union Consistency Theorem). Let N7 be a ¥1-model of Ty
and let Ny be a Yo-model of Ty, where Ty, Ty are Ty-compatible theories
for the Yg-theory T) D Ty C Ty and Xy = X1 N Xy; suppose also that N;
and Ny share a common Yo-submodel A. Then there is a (X1 U X) 4-model
M E T UT, and two (X;) 4-embeddings Ny = M (i = 1,2).

Proof. We are given that T} and T3 are Ty-compatible and consequently we
can assume that N; is a submodel of a model M; of T} U T and N; is a
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submodel of a model My of T, U T (by Lemma 11), where 7§ is the model-
completion of T;. We can also assume that the sort-domains of M; and M,
corresponding to the non-shared sorts are pairwise disjoint. Also, it is easy
to see that A is a submodel of M; and M,. Our first goal is to show that
the elementary diagrams EA(M;) and EA(M;) of M; and M, respectively
are jointly consistent as a (X1)a, U (22) m,-theory.

Since Ty C T; and Ty, C T it follows that A is a Yp-submodel of some
model of T, (in fact, M; = Ty and A C M, for i € {1,2}). Since every
model of Ty embeds into a model of T, we have that A is a ¥y-submodel of
some model of T; (by Lemma 11).

Since T admits elimination of quantifiers (by definition of model com-
pletion), T; is submodel-complete by QE Submodel-Completeness Theorem
(Theorem 12). Consequently, we have that T U A(A) is a complete -
theory. Since A is a submodel of M; and My, and both are models of 1§,
it follows that EA(M;) and EA(M,) are (X1)u, and (3a)rr,-extensions
of the theory 75 U A(A), respectively. By the Robinson Joint Consistency
Theorem (Theorem 10) EA(M;) U EA(M,) is a consistent theory, and any
model M of EA(M;)UEA(My) is also a model of T} UT;,. The existence of
embeddings from M; and M, into M follows directly from the Robinson’s
Diagram Lemma (Lemma 6). O

7 The Combination Method

We now have all the tools necessary to build a complete combination pro-
cedure for the ¥; U Xo-theory 77 U Ty, i.e. a (semi)-decision procedure to
determine whether 77 U Ty |= ¢ for any universal ¥; U YXo-sentence ¢, where
Ty is a ¥q-theory, T; is a Yo-theory and X, ¥y may overlap (i.e ¥p = £, N3,
may have constant, function, predicate and sort symbols common to ¥; and
Y). We first describe a mathematical method which under certain sufficiency
conditions can be turned into a semi-decision procedure. In Subsection 7.2 &
Subsection 7.3, we prove the most important theorems of this work, namely
the Generated Common Submodel Theorem, Finite Residue Chain Theorem
and the Union Completeness Theorem. Although some of the theorems and
proofs are similar to the FOL case [Ghi03], there are significant differences.
We use these theorems to establish that the combination procedure is com-
plete.
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7.1 The Combination Procedure

We present a mathematical construction, which under certain sufficiency
conditions can be turned into a (semi)-decision procedure. Let 77 and T
be Ty-compatible where T} is a universal ¥o-theory and 77 2 Ty C T5,. The
following definitions are needed to describe this construction.

Notation 16. For better readability we shall denote the signature (¥;); as
Y2 the signature obtained by extending ¥; with constant symbols a =

{al, ce ey CLn}.
Definition. Positive residue chain, saturated set of clauses, generated model.

Positive residue chain. A finite list of positive ground Xy-clauses
Cla R Cna

is called a positive residue chain (or finite residue chain) if for every k =

1,...,n either
T, U{C,...,Cr_1} = Cy

or

5 U {Cl, .. ,Ck—l} }: Cy

Saturated set of clauses. A set Iy of positive ground X-clauses is satu-
rated iff it is closed under the following two rules:

T1UF1UF0)=C — CEFO
T2UP2UPO}:C - CEPO

for all positive ground X§-clauses C. Here @ = {ay, ..., a,} is a finite set of
constant symbols not occuring in ¥; U ¥y and decorated by the sorts from
Yo, the signatures X% are the extensions of ¥; with constant symbols @ for
j €{0,1,2}, and I'; are sets of ¥¢-sentences, i € {1,2}.

Generated model. Let A = (A, I4) be a ¥-model, ¥ = (P, F, C, S), and
let X = {X;|Xs; C A;, s € S} be an S-indexed family of sets, an element-
wise subset of A. We say that the Y-submodel B = (B, 14) of A is generated
by X if for every sort s € S we have

B, = {t(z1, ..., 2,)* | alzy) € Xy for all zy € {z1,..., 20},
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for all ¥-terms t(zy, ..., z,), where zy denotes a variable of sort s'.

Note that such a submodel B does not always exist, since it is possible for
a sort-domain B to be empty if constructed as above. Therefore, care must
be taken to ensure that every sort-domain in B is non-empty for each sort in
Y. For example, it is sufficient (although too strong in practice) to require
that if X, = () for some sort s € S, then there exists a constant symbol ¢, € C.

We now describe the mathematical construction for converting the problem
T1UT, = ¢ into a problem of checking whether false € Ty for a set of ground
formulas I'y (whose construction is described below), where ¢ is a universal
31 UXg-sentence, and theories 17 and 715 are Ty-compatible for 77 D Ty C 15,
a universal Y,-theory.

Formally, we define the combination method D for solving the entailment
problem 77 U T, = ¢ as follows:

1. Purify the negation of the given ¥; U Y,-sentence - into ['; and 'y
(the sets of ground X{ and X¢-formulas, respectively), which is always
possible whenever ¢ is a universal sentence.

2. Check whether false € 'y, where Iy is the set of all positive ground -
clauses from all the residue chains of 77 UT'; and T, U T',. If false € Ty,
then conclude that 73 UTs = ¢. Otherwise conclude that 73 UT, = .

The correctness and completeness of this method follows from the Finite
Residue Chain Theorem (20 below) and the fact that 'y is saturated (shown
below).

Step 2 is the only non-trivial step from the decidability point of view.
It is obvious that if ['y is recursively enumerable, then D is a semi-decision
procedure; i.e. it will always terminate with the correct answer when 7 U
T, = ¢, but might not terminate otherwise. Similarly, D becomes a decision
procedure whenever I'; is recursive.

Theorem 17. I'y is saturated.

Proof. We prove this by showing that for every positive ground¥3-clause C
such that T, UT; UTy = C, for i = 1 or ¢ = 2, we have a positive residue
chain for C, and hence, by construction of I'y, we have that C' € I'y thus
satisfying the conditions required of a saturated set.

Given T; UT; UTy = C, it follows that there is a finite subset F' of Iy
such that T; UT; U F | C, by compactness. By construction of 'y, each
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element of F' has a positive residue chain. To get a positive residue chain
for C, we simply chain the residue chains of F', and this works because for
any two positive residue chains R; and R; it is easily proved that R;, R, or
Ry, R, is also a positive residue chain. O

7.1.1 Semi-Decision Procedure for 77 U T,

Under the following additional conditions, the above mathematical construc-
tion can be turned into a semi-decision procedure D:

1. There is an algorithm to construct finite sets I'y and I's, such that
Ty UTy U {—p} E false iff Ty UT, UT; UTy = false, where I'; are
finite sets of ground X¢-formulas, @ is a finite set of fresh uninterpreted
constant symbols not present in ¥; U ¥y (new Skolem, or purification
constants), and ¢ is a universal ¥; U Xs-sentence.

2. There are algorithms D;, 1 = 1,2 for recursive enumeration of the sets
of positive ground ¥¢-clauses A;(I') = {¢ | T; UT |= ¢} for a finite set
of ground X¢-formulas I' and a finite set of constant symbols a.

It is easy to see that the procedure D is correct, that is, whenever D ter-
minates, it reports the correct answer. The completeness of the procedure
D (ie. if 1 UTy, = ¢, then D is garunteed to terminate and return true)
follows from the recursive enumerability of 'y (shown below) and the Finite
Residue Chain Theorem.

The proof for the recursive enumerability of I'j is essentially as follows:
Each positive ground X3-clauses ¢ € Ty is the last clause of a positive residue
chain, by construction of I'y. We map each positive residue chain to a tuple
of positive numbers. Conversely, each tuple of positive numbers corresponds
to only a finite number of positive residue chains. It is known that the set
of tuples of positive numbers is recursively enumerable. To recursively enu-
merate [y, we enumerate tuples of positive numbers, and hence the positive
residue chains and consequently the formulas in T'y.

Theorem 18. Under the above conditions, I'y is recursively enumerable.

Proof. Given the sets of sentences T}, T5 and sets of ground formulas I'y, I'y
satisfying the above conditons, we construct a recursive enumeration of a set
of positive ground Xg-clauses, and prove that it is indeed an enumeration of
[o.
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Let Ay(T, k) denote the k-th sentence in the recursive enumeration of
A;(T) (thus, A;(T, k) is a recursive function). For a tuple of integers

(ki, ..., kn) € NT,

define A((ki, ..., k,)) to be 6, which is the last element in the sequence
fp C 6, C---C 0, such that:

90 = Q)
ki+1
Oiy1 = 60;U U Ai mod 2(I'i moa 2 U b;, j).
j=1

Here I'; and I'y are the given finite sets of ground X3-formulas obtained from
purification of ¢ in step 1. Notice, that 6, is finite and computable from
(k1, ..., k), hence, A({(ky, ..., k,)) is a recursive function. Since the set
of all finite tuples of integers Nt is recursively enumerable, the set A =
Usea+ A(k) is also recursively enumerable.

Now we claim that A = I'g. The fact that A C I'y is obvious by con-
struction of A and definition of ['y. For the other direction, I'y C A, consider

an arbitrary clause ¢ € ['y and show that ¢ € A. From definition of [y, it

follows that there is a finite residue chain ¢, ..., ¢, such that ¢, = . This
residue chain can be partitioned into m subsequences @15 - - - @,, such that
nuly, = @

TLuT,Upr = @

TmmonUme0d2U@1U"'U(pmfl ): @m

Notice, that since A;(I';) is recursively enumerable, there exists k1 > 1
such that

k1
p1C0 = U A (T, 7).
7=1

Similarly, there exists ko > 1 such that

k2

P2 C O, =0, U U Ag(To U By, 5),

=1
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and so on. Effectively, we have constructed a tuple of natural numbers

(ki, ..., k) and a sequence of sets of clauses 6, ..., 6, such that @; C 0,
and 6; = A((ky, ..., k;)). In particular, ¢ = ¢, € 6,,, and hence, ¢ € A.
The proof is complete. O

7.2 Generated Common SubModel Theorem

The Generated Common Submodel Theorem (Theorem 19 below) states that
if there is a saturated set of clauses I'y and false ¢ I'y, then there exist models
M, = T1Ul' Ul and My = ToUT,UT g which share a common Yy-submodel
A generated by a. The proof of this theorem is essentially the construction
of A(A), the diagram of the common 3,-submodel A generated by a, from
the premise that a saturated I'y exists and false & T'y.

Note. The Theorem 19 does not require that 77 and 715 be Ty-compatible.
This assumption is needed for Finite Residue Chain Theorem (Theorem 20
below), its corollaries, and the Union Consistency and Compatibility Theo-
rems.

The existence of the gernerated common sub-model is one of the crucial
assumptions used in establishing the consistency of the union theory 77 U
T, for two Ty-compatible theories 77 D Ty C T3 in the Union Consistency
Theorem (Theorem 15 of Subsection 6.2).

Although the statement of Theorem 19 and its proof are similar to the
FOL case [Ghi03], there are some significant differences. In the corresponding
theorem for FOL, Ghilardi [Ghi03] allows for the possibility that ¥¢ may not
have any constant symbols, and in particular @ may be empty. Also, Ghilardi
allows for models with empty universes whereas we disallow that.

In the FOL case, if the signature 3§ has no constant symbols then clearly
the domain of the common Yj-submodel A generated by a is empty (A
with empty universe is also a model according to Ghilardi’s definition of a
model). Moreover, if @ is empty it means that no purification of the input
31 U Xs-sentence @ is necessary. In other words, ¢ is a Boolean combination
of some ¥;-sentence ¢; and Ys-sentence o, e.g. © = 1 A 5. In this case,
we can determine whether 77 U T, = ¢, by simply determining whether
Ti E piand Ty = . Hence, the combination problem in such cases is
trivial, and we don’t need to consider the combination procedure (or invoke
the associated theorems) to determine if 73 U T, = . The existence of a
common submodel generated by @ with empty universe is irrelevant and the
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corresponding theorems hold trivially.

Consider a similar scenario for MSL. Suppose that X% has no constant
symbols of a particular sort s € S, where S is the set of shared sorts, and a
is otherwise non-empty. This leads us to the possibility that the submodel
A generated by a is such that A, the sort-domain of sort s in the submodel
A, is emtpy. By definition of a model, we do not allow such possibilities.
For the sake of argument, assume that models can have empty sort-domains.
Since a is non-empty we have a non-trivial combination problem. An empty
sort domain A, implies that terms of sort s maybe non-denoting. Taking
into account non-denoting terms may require considerable alterations to the
existing framework that we have developed, not to mention altering the defi-
nition of a model to allow for empty sort-domains. Consequently, we assume
that the signature ¢ is such that the common X3-submodel A generated by
a may not have any emtpy sort-domains.

Theorem 19. (Generated Common Sub-model Theorem): Given ¥i-theory
T and Xo-theory Ty, and sets of ground X§ and X5%-formulas Ty and Ty,
respectively, for a finite set of fresh constants @ = {ay, ..., a,}. Assume
that X9 = 31 Ny s such that any >g-model has a Yo-submodel generated by
a.

Suppose that the set of positive L&-clauses Ty is saturated and does not
contain the empty clause (i.e the atom false). Then there are X¢-models M,
(1 =1,2) such that

My )Z T, Ul uly
M, )= T, Uy U Ty,

and moreover, the models M1 and My have a common ¥g-submodel.

Note that the assumption about the existence of a ¥3-submodel generated
by a for any ¥j-model is necessary for the theorem to hold. The following
counterexample satisfies all the conditions in the theorem except this one,
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violating the theorem.

¥ = <®’ {fs,s}: {Ci, C?}, {8: S’}>
O, {fs,s} {ds, &2}, {5, s'})
E0 = <®’ {fs,s}: Q)a {Sa SI}>
a = (ay)
Ax(T;) = {Fvsdws. v & w, Vo VyVes. e ryVr~zVy=z}
I, = {c#c f(c)~c, f() ~ P}
Ly = {d'#d&, f(d')~d* f(d®) ~d'}

&
I

Both theories T} and T5 restrict the sort-domain for s to contain exactly two
elements. The clauses in ['y are the ones constructed from the single literal
a =~ a. In particular, Iy does not contain false. The theories 77 U Ty U Ty
and T, U 'y U Ty are individually consistent, and therefore, have models M/
and Mjy. However, these models cannot have a common submodel for the
following reason. M must interpret the sort s over MS1 = {my, my} and
M (my) = my, for i € {1,2}. However, in M, we have M2 = {m;, m,} and
fM2(m;) # m;. Therefore, there is no common submodel of M; and M.

Observe that if @ contains a constant symbol ay of sort s (which guarantees
the existence of a Yy-submodel generated by a for any ¥g-model), then Ty
has both f(as) ~ ag and f(as) % ay derived from 77 U T and T, U Iy,
respectively, and hence, contains false as well.

Proof. (of Theorem 19) First we prove (by contradiction) that 7; UT; UT is
consistent for 7 = 1,2. Suppose T; U T'; U T is inconsistent. Then it follows
that all ground X§-formulas are entailed by 7; UT; U T including the empty
clause false. Since I'j is saturated it follows that false must be in I'y, which
is a contradiction.

The theorem requires us to show the existence of two X%-models (i = 1, 2)
M; =T Ul Uy and My = T, UT, UT such that they share the same
Yo-submodel generated by the elements corresponding to @. To show this we
construct an ezhaustive set of ground 3§-literals A, i.e. for every ground 3§-
literal ¢ either it or its negation is in A, and A is consistent with 7; UL, UT,
for i = 1,2. Then we show how to construct the required ¥3-submodel from
A.

In order to satisfy all clauses in T'y, it is sufficient to satisfy at least one
literal in each clause of I'y. Intuitively, A will provide a minimal assignment
to the literals in I'y to satisfy all the the clauses.
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We choose a strict total terminating order > over the Y¢-atoms and ex-
tend it to X3-clauses (treated as sets of atoms) as follows (the extension is
also a strict total terminating order). Let S; and S, be two sets of atoms.
We say that S; > S if for every atom as € S, there is some atom a; € 5
such that a; > as.

First, we define a 'p-indexed family of sets of atoms A}, by transfinite
induction. A clause C = AV A, V---V A, from Iy is called productive iff
Ay, ..., Ay & AL, where A is the largest atom in C, and AL, =, o A}-
(For convenience, we assume that the leftmost atom in a clause C is always
the largest w.r.t. >). If C' is productive, then we define Af = {4} U AL,
and otherwise AL = A%

Next, let AT = Ugep, AZ and A = AT U{=A | A ¢ A}, where A is
a ground Yg-atom. It is easy to see that A =Ty (since A* = T'y), and we
simply need to show that T; UT'; U A is consistent for i =1, 2.

Observe that if the clause C = AV A; V---V A, is productive, and A is

the maximum atom in C, then Ay,..., A, & AT,
Suppose now that 77 U T'; U A is not consistent. By compactness, this
implies that there is a finite set {—=By, ..., =B, A1, ..., A,} C A of ground

Y.2-literals which is inconsistent with 7 U T';:
Ty UTyU{=By, ..., 7By, A1, ..., A} E false,
or, equivalently:
TyUTyU{Ay,..., A} EB V.-V B,. (1)

By construction of A we know that By, ..., B, € A", and there are pro-
ductive clauses in ['y:

Cl = A1VA11V"‘VA1k1

Cn, = A, VALV ---V Ay,

corresponding to the finite set of ground Xg-atoms {A4;,..., 4,} in AT. By
simple boolean manipulations of (1) we have:

TyUT; U{Cy,...,Cu} =\ A VBV -V By,

Y]
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Since (4, ..., C, are clauses in I'y, and T’y is saturated, it follows that the
clause
0,

is also in I'y. By the construction of A* it follows that some of the atoms
{A11,..., Auk,, B1,..., By} are in A*. Since A;, ..., A, € AT it follows
that Aq1,..., Apk, are not in A1) implying that some of By, ..., B, are in
AT, Contradiction.

The consistency of T U T's U A is proven similarly. Thus, we have con-
structed an exhaustive set of atoms A consistent with 7; U T'; for i = 1, 2.
This implies that there exist models M; and M, such that:

Ml ): T1UF1UF0UA
My, E TobUTLUuTy UA.

Next, we show that these have a common Yj-submodel generated by @.

Let M; |yz be the Xg-reduct of M, for i = 1,2. For i = 1,2, let M
denote the Xg-submodel of M; |sa generated by @ (such submodel exists by
the assumption on %y and @). We show that M} is ¥y-isomorphic to MZ.

First observe that M® lsaE= A, since A is a set of ground Xf-literals.
Since My C M"® |5, we can apply proposition 3 to conclude that M} = A.

Let @ be the set of all ground X3-terms. Consider two arbitrary terms
t1,ty € Q. Since ML E A and A is exhastive, if ML E t; = to, then
the atom ¢; = t, must be in A, and since M3 E A, we also have that
M2 t; = ty. Similarly, M4 = t; = t, implies that MY = t; = t,.
Thus, for any two terms ti, t, € () we have that thlA = téWA if and only
if thzA = téWA. This, in turn, implies that there exists a bijective domain
mapping R between M} and M2 such that R(tMa) = tMA for any ¢ € Q,
due to the fact that M’ are submodels generated by a.!

We show that for any constant symbol ¢, function symbol f, predicate
symbol p in 3¢, and any variable interpretation o over M} we have:

R(CMIA) = CM2A
R(f (o1, - w5 = fa, ., )M
p(ﬂfl, AR xn)MlA’a = p(fl'l, ey .’En)MzA’R(a),

LA precise way to construct such bijective domain mzllpping R is the following: for any
a; from a sort-domain of M} find a term ¢ € Q s.t. t"a = ay, and define R(a;) = tMa.
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The first equality holds by construction of R, since ¢ € Q. Since M} is

1
generated by @, there exist terms ¢, ..., t, € @ such that a(z;) = tZMA for
each 7 = 1...n. Hence, we have:

R(f(x1, ..., )Ma®) = R(f(ty, ..., t,)M5) by subst. lemma

f(ty, ..., t,)Ma since f(t1,...,tn) € Q
= f(z1, ..., 2,)MaR@ by subst. lemma

1 2 . . .
My MaR(@) §s proven similarly.

O

The property p(x1, ..., Tn) =p(T1, .-, Tn)

7.3 Finite Residue Chain Theorem

The Finite Residue Chain Theorem (Theorem 20 below) states that 77 U
'y UT, UT's is inconsistent iff there exists a positive residue chain which
ends in false. A sketch of the proof of the contrapositive of Theorem 20 is
as follows. From the assumption that no positive residue chains end in false,
a saturated I’y is constructed such that false ¢ ['y. Applying the Generated
Common Submodel Theorem we conclude the existence of M; = T3 Uy UT
and My = T, UT'y UTy which share a common Yj-submodel A generated
by a. Now applying the Union Consistency Theorem we can conclude that
T, Ul'y UT5 U T, is consistent.

We now state some assumption needed to prove the next few theorems.

1. For a finite set of constant symbols @ = {a4, ..., a,} not occuring in
¥ U3, let 'y and T’y be finite sets of ground formulas over ¥¢ and
Y2, respectively.

2. There is a universal Yy-theory Ty such that both 77 and 75 are Ty-
compatible where 77 is a Yi-theory and 75 is a Y,-theory and ¥y =
>N Y,.

3. Y and a are such that every ¥y-model has a Yy-submodel generated
by a.

Theorem 20. (Finite Residue Chain Theorem) In the above assumptions,
(T UTy) U (To U Ty) is inconsistent iff there is a positive residue chain
Ci,...,C, such that C, is the false.
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Proof. 1f there is a positive residue chain ending with false, then it is easy
to show that (73 UT;) U (T, U Ty) k= false. Suppose there is no positive
residue chain ending up with false. Let [y be the set of all positive ground
Yg-clauses from all finite residue chains. Clearly, Iy is saturated and does
not contain false, hence, Theorem 19 applies. This means that there are
models My | T1UT; and My = ToUTy which have a common Yp-submodel
A generated by @. By Theorem 15, there is a model M = T} U T; which
embeds both M; and Ms. Since M; = T;, we also have M =T, and thus,
METIUTUT, UT,.

Following is an easy corollary. O

Theorem 21. (Union Completeness Theorem) In the above assumptions,
(Ty UT1) U (T UTy) is inconsistent iff there is a quantifier-free ground X§-
formula ¢ such that

TiUT i E¢ and ToUTy = —p.

Proof. If (T1 UT) U (T, UT,) is inconsistent, then by Finite Residue Chain
Theorem (Theorem 20) there exists a finite positive residue chain C1, ..., C,
such that C,, = false. Let Cj be an i-residue (i = 1,2), that is, T; U T; U
{C1,...,Ck-1) E Cy. Let 9 be the quantifier-free ground X8-formula ~C V
-V (%1 V C and let ¢ be the conjunction of all v, such that C} is a
1-residue. Clearly, T} UT'; = ¢. Moreover, by induction, it is easy to see that
T,Ul'yU{p} = Cjforall j =1,...,n, and in particular, T,UT'sU{p} = false
for j =mn. Thus, T, UTy E —o.
The other direction is trivial. O

8 The Many-Sorted Nelson-Oppen Method

One of the most interesting application of the results in the previous sec-
tions is the many-sorted version of the Nelson-Oppen combination result.
As always, we start this section with some useful definitions, followed by
theorems needed to establish the MSL Nelson-Oppen method and finally its
statement and proof. First, we establish that the theory of infinite sorts T
is the model completion of the theory of pure equality 7. Next, we show
that the notion of stably-infiniteness of a theory T follows from the notion
of T-compatibility of T, where T, C T and Ty is the theory of pure equal-
ity. We then proceed to derive the MSL Nelson-Oppen method from these
theorems and the combination results from section 7.
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Definition 22. Empty Signature, Empty theory, infinite model, theory of
Infinite sorts, T-equivalent formulas, Arrangement.

Empty Signature: By empty signature >, we mean a signature with
no constant, function and relation symbols. The set of sort symbols S of
Y~ may not be empty (there could be infinitely many (countably so) sort
symbols). As always, the predicate symbol = is part of the signature by
default.

Empty Theory: Also called the theory of pure equality T. It is the theory
over the empty signature ¥, with an empty set of axioms. The literals
are well-formed equalities and disequalities over sorted variables. Sentences
belonging to the empty theory are built out of these literals in the usual way.
Infinite Model: We say that a ¥-model is infinite in the sorts S = {s1,...},
where S is a subset of the set of sorts of X, if each sort-domain corresponding
to the sorts in S is at least countably infinite. Such models are sometimes
referred to as S-infinite model.

Theory of the Infinite sorts 7Tg: The Y -theory of the infinite sorts has
only those sentences which assert that “there are at least n distinct elements
of the sort s;” for each n € N and for each s; € S , where S is the set of
sorts of ¥. A model for such a theory is an infinite model in the sorts of
S (This follows from the well-known fact that for FOL, i.e., any theory that
has arbitrarily large finite models has an infinite model. Apply this fact on
a per sort basis to derive the above conclusion).

Stably Infinite Theories: Let 7" be a Y-theory. Let S denote the set of
sorts in Y. We say that a theory T is stably infinite over S if any quantifier
free X-formula is satisfiable in some Y-model of 7T iff it is satisfiable in a
Y-model of T infinite in the sorts in S.

T-equivalent formulas: Given a 3-theory T', two Y-formulas p(z1, ..., z,)
and (xy, ..., x,) are T-equivalent iff T = (Vzq...Vz,)p < 1.

Partition: A set P C 2V is called a partition of a set of variables V if P is
the set of equivalent classes of some equivalence relation R over V. Notice,
that a partition P completely specifies its equivalence relation R.
Arrangement: An arrangement ar(V') of a finite set of decorated variables
V = {wv1,...,v,} given by a partition P is the maximal set of well-formed
(w.r.t. sorts) equalities and disequalities consistent with the equivalence
relation R corresponding to P:

ar(V) = v; & v; | v;,v; €V and v; Rv; for v;, v; of sort s
j j j j

U{v; % v; | vi,v; € V and not v; Rv; for v;, vj of sort s}
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foralls,j € {1,...,n}. Forinstance, if V' := {vy, v1,v9,v3} and the partition
is P := {{vo,v1,v2},{vs}} (Note: wvy,v1,v9,03 1 must be of the same sort),
then

ar(V) = {Uo R U1, Vg R Vg, U1 RS V2, Vg % U3, U1 B U3, Vg U3}-

The conjunction of formulas in ar(V') is also referred to as an arrangement
of V.

Basic Formulas Over X..: For basic formulas we take all the well formed
equalities and well formed disequalities.

Inconsistent Formula: We say a formula is inconsistent if it is logically
equivalent to false.

Assignment: Any function from propositional variables to {true, false} is
called an assignment.

8.1 QE and the Theory of Infinite Sorts

In this subsection we establish that the theory of the infinite sorts admits
elimination of quantifiers. This coupled with the theorems in the previous
section allow us to conclude that the theory of infinite sorts T is submodel-
complete and also that 7T is the model completion of the theory of pure
equality 7. In general the method of elimination of quantifiers is as follows:
First, depending on the theory 7', we pick out an appropriate set of formulas,
called basic formulas. Then we show that every Y -formula is Tg-equivalent
to a boolean combination (i.e formulas built out of basic formulas and logical
connectives -, A, V) of basic formulas.

Lemma 23. Every quantifier-free Y -formula ¢(vy,...,v,) is either incon-
sistent (i.e. logically equivalent to false) or is equivalent to a disjunction of
finitely many arrangements over V.= {vy,...,v,} where V is the set of free
variables of p(v1, ..., Uy).

Proof. Any quantifier-free ¥ -formula ¢(z1, .. ., z,) is a boolean combination
of Y-literals (Xy-atoms and their negations, in particular Y-atoms are
equalities and false). Consider the set A of all arrangements over V' (there are
only finitely many). Construct a disjunction D of all those arrangements a €
A which are consistent with ¢ (i.e. the conjunction of every such arrangement
a with ¢ has an ¥-model). We now show that this disjunction D of finitely
many arrangements over V is equivalent to ¢.
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Let p. be a propositional variable corresponding to any X..-equality e
occuring in ¢ and —p, be the propositional literal corresponding to any .-
disequality —d, where —d occurs in ¢, and let () denote the set of all such
propositional literals. Construct ¢,,,, by replacing each equality in ¢ by
the corresponding propositional variable in () and replacing each disequality
by the corresponding literal in (). For any arrangement a over V' construct
Qprop Similarly. Let D be a disjunction of arrangements and D,,,, denote the
disjunction obtained by replacing the arrangements a in D with a,.qp.

(@prop = Dprop): SUPDPOSE @prop is true under some assignment f. We
show that there is an arrangement a such that a,, is true under f. We con-
struct a partition P over the set {vy,...,v,} as follows. For every equation
e =v; & v; in ¢ to which f assigns true, add the set {v;,v;} to P. For every
disequation d = v; % v; in ¢ to which f assigns false, add the set {v;, v;} to
P. For every e = v; =~ v; in ¢ to which f assigns false, add two sets {v;}, {v;}
to P. For every disequation d = v; % v; in ¢ to which f assigns true, add
the two sets {v;},{v;} to P. Merge those sets in P which have variables in
common. We have the requisite partition in P to construct a. Construct an
arrangement a over the variables in V' given by P and clearly a,,,p is true
under f. Add aprep to Dprgp. It is easy to see that both ¢pop and aprep
are true under f. Repeat this for every assignment (there are only finitely
many) which makes ¢, true and add the resulting a,o, as a disjunct to the
disjunction D,,,,. It is easy to check that D,,,, logically follows from ¢,y

(Dprop = @prop): Let f be any assignment under which D,y is true. This
implies that at least one disjunct, say ap,op, is true under f. It follows from
the construction of D,,,, that both a,.,, and ¢p,, are true under f. This
implies that Dp,.op = @prop-

It is easy to show that if ©,.4p < Dppop then ¢ & D. If Dy, is empty
then it follows that ¢ is inconsistent. O

Theorem 24. Fvery Yo -formula ¢ is Ts-equivalent to a boolean combination
Y of basic formulas. Moreover, if all the free variables of ¢ are among V =
{v1,...,v,} then ¥ may be chosen so that all its free variables are among
V1, ..., Un. In particular, if ¢ is a sentence, then so is .

Proof. We prove a slightly stronger statement, that every ¢ is Ts-equivalent
to a disjunction of arrangements of V. The proof is by induction over the
structure of .

The base case is trivial, since an atomic formula is already an arrange-
ment.
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For the Boolean connectives, the theorem follows directly from Lemma 23.
The only non-trivial case is the existential quantifier; that is, ¢ = 3((vo)s,) ¥ (0, - - -, Vn)-
By inductive hypothesis, 1(vo, ..., v,) is equivalent to a disjunction of ar-
rangements over V' = {vo} UV:

Y(vo, ..., Un) <= YoV -V,

Replacing ¢ with this disjunction in ¢ yields an equivalent formula:

o = F((vo)sy) ¥ (vo,.. Un,)
<= F((v0)so) (Yo V-V i)
< (I(v0)se) o) V-V (3((v0)s0) ¥)

Now we only need to show that a formula of the form 3(v,)p(v, V) is
equivalent to the disjunction of arrangements over V, where ¢ itself is an
arrangement over {v}U V.

Procedure: remove all the (dis)equalities from ¢ which have v, and turn
that into a disjunction of arrangements by Lemma 23. To prove: this reduc-
tion is Ts-equivalent to 3(vy) @.

Let ¥(vy, ..., v,) be an arbitrary boolean combination of basic formulas.
First, by inductive hypothesis it follows that 1 is equivalent to a formula of
the form (in disjunctive normal form)

AVASSRVETR

where each v; is an open formula. Also, it is easy to see that 3(v, : s,) ¥ is
logically equivalent to

(B((Wn)sn) o) V- ==V (3((vn)s,) ¥p)

Using Lemma 23, we conclude that each ¢;, i € {0, ..., p}, is either equivalent
to false or else a disjunction of finitely many arrangements ;; over V' given
by some partition Pj; where j € {0,...,k} is an index over the finitely
many arrangments which occur in ;. Assume without any loss of generality
that all ¢;, i € {0,...,p}, are equivalent to a disjunction of finitely many
arrangements over /. For each arrangement 1);;, construct ¢;; by deleting all
equations and disequations in which v, occurs. Then ¢j; is an arrangement
over the remaining variables vq,...,v,_1 given by the partition P’ where

17

P} is obtained by deleting all occurences of v, from F;;. It is easy to check
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that each ;; asserts the existence of 7;; many equivalence classes of over the
variables of type s, in V. Then it is easy to see that 3((vy,)s, ) ¢i; is equivalent
to 05;_1 A 4% (The reason is that eliminating the quantifier over v, leaves
one fewer variable of type s, and thus the number of equivalence classes over
variables of type s, goes down by at most 1. The remaining equivalence
classes are captured by the arrangement over the variables vy, ..., v,_1 i.e.
1/12‘]-). Let 9] represent the finite disjunction of all the arrangements ¢;; where
j € {0,...,k}. Let o;r represent the sigma formula which asserts the
existence of the largest number of elements of type s, among all the finitely

many sentences o,” ;. It follows that Ju,1 is equivalent to (0,7 | A g) V

V(o Ay). (leearly, the formulas o,,_1, ..., 0,1 are Ts-equivalent to
true. The resulting formula ¢5V ---V ¢ is indeed a boolean combination of
basic formulas (in fact arrangements over vy, ..., v,) and all its free variables
are among vy, ..., v,. We are done. 0

From Theorem 24 we can immediately conclude that the theory T's admits
elmination of quantifiers.

8.2 Compatibility and Stably Infinite Theories

In this subsection we show that if a theory 7" is stably-infinite over the sorts
in Y then it is Tx-compatible. The converse is true as well. To show this we
first have to show that the theory of infinite sorts T is the model completion
of the theory of pure equality 7%, using the results in the previous subsection.

Lemma 25. The theory of infinite sorts Ts is the model completion of the
theory of pure equality Ty.

Proof. Recall that a theory T™ is a model completion of a universal theory 7T’
if the following two conditions are satisfied. First, 7" must admit elimination
of quantifiers and secondly every model of T' must embed into a model of T*.
From Theorem 24 we can conclude that Ts admits elimination of quantifiers
thus satisfying the first condition. To see that every model of T embeds in
some model of Ts consider this. From Lemma 23 we have that any quantifier
free Y -formula ¢ is either false or equivalent to a disjunction of finitely many
arrangements and let us say ¢ (z1, ..., x,) denotes this disjunction equivalent
to . Let A =Ty, B = Ts and let A = 9lay,...,a,] for some ay,...,a,
in the appropriate sort-domains of A. By the pigeon-hole principle a finite
arrangement (or disjunction thereof) can only assert the existence of only
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finitely many elements of any sort in the set S. But B is infinite in all the
sorts in S and it follows that B = ¢[ay,...,a,]. Simply apply proposition 3
to conclude that there is an embedding from A into B. U

Lemma 26. Let S be a subset of the set of sorts in the signature ¥. A
Y-theory T 1is stably infnite over the sorts in S iff every model of T embeds
into an S-infinite model of T.

Proof. (=) Consider the set @ of all sentences which assert that for each
natural number n there are at least n elements in each sort-domains of the
sorts in S (i.e. asserting that each sort-domain in S has infinite cardinality).
Let M be any model of T. We show that TUQU A(M) is consistent. If not,
we have TUQ E —¢(a1,-- -, an), where p(ay,...,a,) is a finite conjunction
of formulas from A(M). This means that there is a quantifier-free ¥-formula
©(x1,...,T,), a finite set of elements ay, ..., a, from the sort-domains of M,
such that ¢(a1,...,a,) is true in M. As the constants ay,...,a, do not
belong to the signature ¥, we have that TU Q =V, - - -Va,—o(xy, ..., T,).
But ¢(z1,...,z,) is a quantifier-free formula satisfiable in a model of 7" and,
by hypothesis, there is a model of 77U @ (i.e. an S-infinite model of T')
in which ¢(z1,...,z,) is satisfiable too, contrary to the fact that T U Q |=
=3z - Tpp(T1, -, Ty)-
(<) Easily follows from definition of stably-infiniteness and embedding.
U

Lemma 27. Let T; be a >;-theory and let Ty be a ¥ -theory such that Y C
i and Ty C T;. Then T; is stably infinite over S if and only if T; is Ty-
compatible.

Proof. (=) Suppose T; is stably infinite over the sorts in S. From Lemma 26
we have that every model of T; embeds into a model of T; which is infinite
over S. We are given that Ty C T;. Also, from Lemma 25 we know that Tj
has a model completion Ts (recall that sentences in Ts simply assert that
there are n elements for each sort in S, for all n € N. It easily follows that
all models of Ts are models infinite over the sorts in S, also referred to as
S-infinite models). Tt is easy to see that T; U T is a consistent theory since
T; has models which is infinite over the sorts in S. From the assumption that
T; is stably-infinite in the sorts over S and the fact that 7; U Ts is consistent
and its models are precisely the models of T; which are infinite over the sorts
in S, it follows that every model of T; should embed in a model of 7T; U T.
We have shown that 7; satisfies all three conditions of 7j-compatibility.
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(<) If T; is Ty-compatible then we have that every model of 7; embeds
into a model of T; U Ts where Tg is the model completion of the ¥ -theory
Ty from Lemma 25 (Note: we can assume that T; U Ts is consistent without
loss of generality). Our goal is to show that every model of T; embeds into an
S-infinite model of 7;. Recall that sentences in Ts simply assert that there
are n elements for each sort in S, for all n € N. It easily follows that all
models of T are models infinite over the sorts in S, also referred to as S-
infinite models. This implies that all models of T; UTy are necessarily infinite
over the sorts in S and hence by Tj-compatibility every model of T; embeds
into an S-infinite model of T; U T's and hence into an S-infinite model of T;.
Therefore 7} is stably-infinite. O

Lemma 28. Let T be a stably-infinite X-theory over the sorts S C S, where
S is the set of sorts in X.. Let T" be a set of quantifier-free ground ¥-formulas
consistent with T. Then T UT is stably-infinite over S'.

Proof. By definition of stably-infiniteness, for any model M = T there exists
an S’-infinite model M™ = T such that M embeds in M* (by Lemma 26).
Since I is consistent with 7', there is a model A =T UT', and hence, there
is an S’-infinite model A* = T such that A embeds into A*. Since em-
bedding preserves the interpretation of quantifier-free formulas, we conclude
that A = T'. Thus, we have shown that any model of TUT" embeds into an
S'-infinite model of TUT', and by Lemma 26, T UT is also stably-infinite. [

We are now ready to state and prove the MSL Nelson-Oppen combination

result.

8.3 Many-Sorted Nelson-Oppen Theorem

Theorem 29. (Many-Sorted Nelson-Oppen combination). Given two con-
sistent theories Ty and Ty over the signatures 1 and Yo, such that

1. ¥ = X1 N3y is the empty signature Yy (i.e. the signatures are disjoint
but they may share sort symbols);

2. Ty and Ty are stably-infinite theories over the shared sorts S € ¥g;

3. The universal fragment of the theories Ty and Ty are individually decid-
able (i.e. T; = @; is decidable for any universal ¥;-sentence @;, where

i€ {1,2}).
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Then the following hold:

1. T1 UT5 s consistent;

2. Ty UTy is decidable; that is, Ty UTy |= ¢ is decidable for any universal
31 U s-sentence .

Proof. We construct a nondeterministic algorithm for deciding the problem
T1 UT, = ¢ and establish that the algorithm is sound, complete and termi-
nating. This algorithm closely follows the semi-decision procedure given in
Section 7.

First, notice that the problem 7' = ¢ for some ¥; U ¥s-theory T is
equivalent to the problem of determining T'U {—¢} = false.

1. Purify = into I'; and I'y (such that T3 UTo U {p} = false iff T} U T, U
I'y UTy = false), where I'; are the sets of ground X¢-formulas, and ¢
is a finite set of fresh uninterpreted constant symbols (not present in
Y1 UXy); It is easy to show that for quantifier-free 3; U ¥p-formulas
efficient purification algorithms exist [Bar03].

2. If there is a ¥§-arrangement A such that both 7;UT'yU{A} and T,UT',U
{A}are consistent, then we conclude that 73 UT'y UT, UT5 is consistent
(or equivalently T3 UT, U{¢} is consistent). The reasoning for this step
is as follows: First, observe that an arrangement is a saturated set of
clauses (in fact a positive residuce chain which does not contain false)
and by definition of arrangement it does not contain false. Hence, we
can apply the Generated Common Submodel Theorem (Theorem 7.2)
to conclude that there exist two models M; = T3 UT'; U {A} and
My = T, UTy U {A} such that they have a common submodel A
generated by ¢. Also, since T7 and 75 are stably-infinite, it follows that
soare Ty U U{A} and T, UT2 U{A} by Lemma 28, and hence, they
are Ty-compatible as well (Lemma 27). Now we can apply the Union
Consistency Theorem (Theorem 15) to conclude that the 73 UT; UTy U
['y U A is consistent and hence T U Ty = .

3. Otherwise (if there is no such arrangement A) the sentence ¢ is inconsis-
tent with 77 UT5. Since there are no arrangements we can only conclude
that there exist positive residue chain with false in them. Consequently
(TyUT';)U(ToUTy) is inconsistent implying that 73 UT5 = ¢, by the Fi-
nite Residue Chain Theorem (Theorem 20) or the Union Completeness
Theorem (Theorem 21).
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The termination of the algorithm follows from the fact that the number
of arrangements is finite, and the problem 7; UT; U {A} [= false is decidable
by assumption, for i € {1,2}. The soundness follows from the fact that each
step is sound (supported by the theorems). The completeness follows from
the fact that if 73 U Ty = ¢ then algorithm terminates with the conclusion
T1 UTs E ¢, by step 2; (and alternatively if 77 U T, ~ ¢ then the algorithm
concludes that T3 U T; [ ¢ in step 3).

9 Decidability Conditions

There are certain sufficient conditions under which the semi-decision proce-
dure presented in Section 7 can be turned into a decision procedure for the
universal fragment of the ¥, U ¥g-theory T} U T5, where T and T, are uni-
versally decidable ¥; and Y-theories, respectively, satisfying the conditions
of the Finite Residue Chain Theorem (Theorem 20). Assume that ¢ is a
31 UXs-sentence, and I'y and I'y are sets of ground formulas over signatures
¥¢ and X% respectively, obtained by purifying ¢, where a is a set of fresh
Skolem constants.

Let D be a semi-decision procedure for the universal fragment of theory
Ty U T, satisfying the sufficient conditions given in Section 7, and D; be a
decision procedure for the universal fragment of theory T;, for i € {1,2}.

Local Finiteness.

We adapt the definition of local finiteness from Ghilardi’s paper [Ghi03| as
follows.

Definition 30. A X-theory T is called locally finite w.r.t. a finite set of
constant symbols @ (not necessarily in X)), if ¥ is finite, and there exists a
finite set of ground X%terms 7 = {ty, ..., t,} such that for every ground
Y% term ¢ we have T = t; = ¢ for some t; € T. We call the set of terms 7T
the canonical terms of T w.r.t. a.

Theory T is effectively locally finite if the set 7 is computable for any
a, and there is an algorithm to compute the canonical term t; € T for any
Y4 term g.
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The proof of the fact that effective local finiteness of the common sub-
theory T, implies the universal decidability of the union theory 77 UT5 is a
straightforward extension of the corresponding result by Ghilardi [Ghi03].

One-way Communication between Theories

Another scenario under which the problem 7} U T, = ¢ becomes univer-
sally decidable, provided the theories 7T} and 75 are universally decidable, is
described below in an intuitive and procedural way.

First, recall the steps of the semi-decision procedure D from Section 7 for
the problem T3 UT5 = . In step 2, the set ['y is recursively enumerable, and
if false € [y, then we have already shown that D will terminate and establish
that 731 UT, = ¢. On the other hand, if 73 UT'; U Ty U T’y is consistent,
then D may not terminate. Intuitively, D enumerates I'y by exchanging
positive ground X%-clauses between D; and D, (semi-decision procedures
for the problem T; = ¢; where ¢; is a universal ¥;-sentence, for i = 1,2
respectively), and in general this exchange may go on forever. However, if
at any point in this exchange one of the decision procedures, e.g. Dy, starts
producing only those clauses which D, can deduce from T, U T’y UII;, where
II; is the set of clauses exchanged so far (i.e. D; does not produce any
new information), then the problem 77} U T, |= ¢ is equivalent to checking
T, UTy UTl; [= false, which is decidable. We refer to this scenario as one-
way communication from Dy to D,. Formally, this idea is captured by the
following definitions and the subsequent theorem.

Definition 31. For a set of ground Y¢-formulas I', let A be the set of all
Y2-clauses such that 7; UT = A, for ¢ € {1,2}. Assume that there is an
algorithm to construct a finite set of 3§-clauses 6 such that 7; UT = 6 and
the set of all ¥3-clauses entailed by T; U8 is exactly A. We say that 0 finitely
characterizes A. We denote by &;(T") the recursive functions which construct
6 for a given T

We always assume that the finite characterization functions &; are mono-
tonic, that is, &(T'1) C &(T'y) whenever I'; C T's.

Definition 32. For every finite set of ground X?-formulas A; for i € {1, 2},
let 11y, I and II3 be the sets of all ¥¢-clauses such that

TiUA =1L To UA UTL =10 Ty UA UTL, = 105.
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If II3 = Iy, we say that there is one way communication from theory T to
T,.

In other words, the saturated set I'j is reached in one step, and is equal
to HQ.

Theorem 33. Assume there is one way communication from theory T; to
Ty. Also, for every set of ground L5-formulas A, let there be a finite charac-
terization § = & (A). Under the above conditions the problem Ty UTy |= ¢ is
universally decidable for any universal ¥ U Xg-sentence .

Proof. Let 'y and 'y be the sets of ground ¥f and Y3-formulas from the
purification of ¢, which are already known to be computable for any universal
. By the one way communication condition, we know that the set II5 of all
clauses entailed by T, U Ty U & (I'y) is saturated. Hence, checking whether
false € Ty is equivalent to checking whether T, U Ty U & (I'y) |= false, which
is decidable. O

Strictly Decreasing Measure on Clauses

Assume there is a well-founded measure p over positive ground X3-clauses,
and 7T;,A;, D and the notion of finite characterization are as described above.
Consider a sequence of sets of positive ground X3-clauses ) = IT, C II; C - - -
such that T, UT; UII; = 11,44 for some 7 € {1,2} and every j > 0. Let A;
be the set of newly added X§-clauses at the j-th step: A; =1II; — II;_;, and
let p(A;) be the measure of the maximum clause in A; w.r.t. p. If p(A))
is strictly decreasing after a finite number of steps, i.e. p(A;11) < p(4;) for
every j > k for some natural number £ > 1, then there is n > k such that
I, = I, for every m > n (since p is well-founded). If every II; is recursive,
I, = T is also recursive?, and hence, the original problem T3 UT = ¢ is
decidable. We formalize this idea in the following definitions and theorem.

1. There is a well-founded complexity measure p over positive ground Xg-
clauses.

2. For finite sets of ground X¢-formulas A and positive ground X¢-clauses
6, let v = &(A) and 6 = &(A U B) be the finite characterizations of all

2The reasoning for II,, = Iy is as follows: II,, is the set of all positive ground X3-clauses
from all finite residue chains of T3 UT'; and T5 U s, by construction. This is precisely Ty,
the saturated set that we enumerate in our semi-decision procedure D.
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clauses entailed by T; U A and 7; U AU#, respectively, where i € {1,2}.
We assume that the functions &; are monotonic, that is, (A1) C &(Asg)
whenever A; C Ay. If p(6 — (YU ) < p(f), then we say that the finite
characterizations entailed by the theory T; monotonically decrease w.r.t

p.

Theorem 34. Let p denote a well-founded measure over positive ground 33 -
clauses, and assume that the finite characterizations entailed by theory T;
monotonically decrease w.r.t p, for i € {1,2}. Under the above conditions
the union theory T1 UT; 1s universally decidable.

Proof. We establish the decidability of the problem 77 UT» |= ¢ for a universal
sentence ¢ by constructing an algorithm.

1. Purify ¢ into sets I'y and I's.

2. Construct a sequence of finite characterizations:

H() = @
I = &I UIL) Ul UIL)

for j > 1. This construction is algorithmically possible due to the
existence of finite characterization (Definition 31).

By Condition 2 and the well-foundedness of the measure p, there is n > 1
such that II,,,; = II,. This I, is a finite characterization of ['y. Since each
I1; is finitely characterizable and hence recursive, I'y is also recursive. This
converts D into a decision procedure. O

10 Practical Applications

Our work on combination results for many-sorted theories with overlapping
signatures has primarily been motivated by the need to develop a theoreti-
cal foundation for our validity checking tools, Cooperating Validity Checker
(CVC [SBD02]) and its successor CVC Lite [BB04]. These tools have been
based on a presumed extension of unsorted combination methods [Bar03]
(similar to Nelson-Oppen) to sorted quantifier-free first-order theories. The
combination result in Section 7 reduces in a relatively straightforward way
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to the many-sorted version of the Nelson-Oppen method, providing a formal
basis for the correctness of such an extension.

In the case of CVC Lite, there is a demand for combining theories with
overlapping signatures. For example, consider a theory of bit-vectors: finite
strings of bits with concatenation and substring extraction operators. Bit-
vectors also represent integers (in binary encoding) which can be added, sub-
tracted, and compared for equality and inequality. Thus, the signature of the
bit-vector theory must include arithmetic operators and integer constants,
making it overlap with the theory of linear arithmetic already implemented
in CVC Lite.

The bit-vector theory and linear arithmetic happen to satisfy the Tj-com-
patibility condition for their common subtheory 7}, the universal fragment
of Presburger arithmetic. More precisely, the signature >y of 7} is

Yo = (<22, *Yuxz-2, (Zm)z,2, Cz, L),

where (7 is the set of all integer constants, Z is the sort of integer numbers,
and £, is a family of congruences modulo m for all natural numbers m > 1.

The theory of linear arithmetic extends Y, with the sort of real num-
bers R, the set of real constants Ck, and the operators +ryxr—r, <rr, and
int2realz_,g (the conversion of integers to reals). Bit-vector theory adds a sort
B,, of bit-vectors of length n for every integer n > 1 (so, its signature has
infinitely many sorts), a family of concatenation @, .5, 5, ; and extraction
sub]lé:_%u_l+1 operators for every 4,j,n,u,l > 1, where 0 < [ < u < n, and
conversion operators bv2intg, _,z from bit-vectors to integers.

The model completion of T} in this case is Presburger arithmetic (since
Presburger arithmetic admits elimination of quantifiers). It is easy to see
that both bit-vector and linear arithmetic theories are 7Tj-compatible. We
have already established the first two conditions of Ty-compatibility (i.e. T
is a subtheory of both, and T; has a model completion 7). The third
condition also holds simply because Presburger arithmetic is a subtheory of
both bit-vectors (71) and linear arithmetic (73); that is, T; U T§ = T;, since
T; C T,

Finally, every ground bit-vector formula can be equivalently translated
into a ground Yy-formula, and therefore, the combination of bit-vectors and
linear arithmetic satisfies the one-way communication decidability condition
stated in Section 9. This makes the combination of the two theories decidable.
Similar arguments can be made for a theory of lists with the length operator,
which also shares symbols with the theory of linear arithmetic.
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11 Conclusions

We have presented a new combination result for many-sorted first-order
theories with overlapping signature, a non-trivial extension of Ghilardi’s
work [Ghi03|. Besides the completeness results, we have also given new prac-
tical decidability conditions and illustrated their use by examples of theories
relevant to CVC Lite [BB04]. As a bonus, the many-sorted version of the
Nelson-Oppen combination directly follows from our results.

The combination conditions imposed on the individual theories (in par-
ticular, Tp-compatibility) are still too strong for many practical theories, and
also quite involved for most tool developers. There is a lot of work to be
done to make these conditions more practical and easier to check. We intend
to use these results to combine theories with overlapping signatures in CVC
Lite. Extensions to order-sorted logics (many-sorted logics with subsorts)
combining the results presented here and in [TZ04] is another interesting
direction of research.
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12 Appendix A

We establish the equivalence between standard definition of model-completion
|[CK98| and the one used in this paper for universal theories.

Definition 35. Let 7" be a Y-theory and let 7* O T be a X-theory as well;
we say that 7* is a model-completion of T" iff (i) every model of T can be
embedded into a model of 7* and (ii) for every 3-model M of T, we have
that T* U A(M) is a complete (X)s-theory.

First, we prove the following lemma.

Lemma 36. Let T be a X-theory and let T* O T be a ¥-theory as well; we
have that T* is a model completion of T in case (a) every model of T can be
embedded into a model of T* and (b) T* admits elimination of quantifiers.

Proof. Suppose T™* satisifies the conditions above. We show that for every
Y-model M of T, we have that 7" U A(M) is a complete theory. Consider
two models N7, N5 of T* U A(M), a Y-formula ¢(z1,...,z,) and a tuple of
elements (a1, ..., a,) from the appropriate sort-domains of M.We show that
the (X)-sentence p(ay, - .., ay,) is true in N iff it is true in A5. This shows
that the theory T* UA(M) is complete since the models of a complete theory
are elementarily equivalent.

By the Robinson’s Diagram Lemma M is a common substructure of A}
and N5; moreover ¢ is T*-equivalent to a quatifier-free formula ¢'(x1, . .., x,),
hence if N7 = ¢(ay,...,a,) then N7 E ¢'(a4,...,a,). Consequently M =
¢'(a1,...,a,) and Ny E ¢'(ay, .. .,a,) thus establishing that ¢(ay, ..., a,) is
true in N.

If T is universal then the converse is easy to show. O
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