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ABSTRACT
This paper presents EXE, an e�ectiv e bug-�nding tool that
automatically generatesinputs that crash real code. Instead
of running code on manually or randomly constructed input,
EXE runs it on symbolic input initially allowed to be \an y-
thing." As checked code runs, EXE tracks the constraints
on each symbolic (i.e., input-deriv ed) memory location. If a
statement usesa symbolic value, EXE does not run it, but
instead adds it as an input-constrain t; all other statements
run as usual. If code conditionally checks a symbolic ex-
pression, EXE forks execution, constraining the expression
to be true on the true branch and false on the other. Be-
cause EXE reasons about all possible values on a path, it
has much more power than a traditional runtime tool: (1)
it can force execution down any feasible program path and
(2) at dangerous operations (e.g., a pointer dereference), it
detects if the current path constraints allow any value that
causesa bug. When a path terminates or hits a bug, EXE
automatically generates a test case by solving the current
path constraints to �nd concrete values using its own co-
designedconstraint solver, STP. BecauseEXE's constraints
have no approximations, feeding this concrete input to an
uninstrumen ted version of the checked code will causeit to
follow the samepath and hit the samebug (assuming deter-
ministic code).

EXE works well on real code, �nding bugs along with
inputs that trigger them in: the BSD and Linux packet �lter
implementations, the udhcpdDHCP server, the pcre regular
expression library , and three Linux �le systems.

Categoriesand Subject Descriptors
D.2.5 [Soft ware Engineering ]: Testing and Debugging|
Testing tools, Symbolic execution
GeneralTerms
Reliabilit y, Languages
Keywords
Bug �nding, test case generation, constraint solving, sym-
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1. INTRODUCTION
Attacker-exposedcode is often a tangled messof deeply-

nested conditionals, labyrin thine call chains, huge amounts
of code, and frequent, abusive use of casting and pointer
operations. For safety, this code must exhaustively vet in-
put received directly from potential attackers (such as sys-
tem call parameters, network packets, even data from USB
sticks). However, attempting to guard against all possible
attacks adds signi�can t code complexity and requires aware-
nessof subtle issuessuch as arithmetic and bu�er overo w
conditions, which the historical record unequivocally shows
programmers reason about poorly.

Currently , programmers check for such errors using a com-
bination of code review, manual and random testing, dy-
namic tools, and static analysis. While helpful, these tech-
niques have signi�can t weaknesses. The code features de-
scribed above make manual inspection even more challeng-
ing than usual. The number of possibilities makes man-
ual testing far from exhaustive, and even lessso when com-
pounded by programmer's limited abilit y to reasonabout all
these possibilities. While random \fuzz" testing [35] often
�nds interesting corner case errors, even a single equality
conditional can derail it: satisfying a 32-bit equality in a
branch condition requires correctly guessing one value out
of four billion possibilities. Correctly getting a sequenceof
such conditions is hopeless.Dynamic tools require test cases
to driv e them, and thus have the same coverage problems
as both random and manual testing. Finally , while static
analysis bene�ts from full path coverage, the fact that it
inspects rather than executes code means that it reasons
poorly about bugs that depend on accurate value informa-
tion (the exact value of an index or sizeof an object), point-
ers, and heap layout, among many others.

This paper describes EXE (\EXecution generated Exe-
cutions"), an unusual but e�ectiv e bug-�nding tool built to
deeply check real code. The main insight behind EXE is that
code can automatically generate its own (potentially highly
complex) test cases. Instead of running code on manually
or randomly constructed input, EXE runs it on symbolic in-
put that is initially allowed to be \an ything." As checked
code runs, if it tries to operate on symbolic (i.e., input-
derived) expressions, EXE replaces the operation with its
corresponding input-constrain t; it runs all other operations
as usual. When code conditionally checks a symbolic ex-
pression, EXE forks execution, constraining the expression
to be true on the true branch and false on the other. When a
path terminates or hits a bug, EXE automatically generates
a test casethat will run this path by solving the path's con-



straints for concrete values using its co-designedconstraint
solver, STP.

EXE ampli�es the e�ect of running a single code path
since the use of STP lets it reason about all possible values
that the path could be run with, rather than a single set of
concrete values from an individual test case. For instance,
a dynamic memory checker such as Purify [30] only catches
an out-of-b ounds array accessif the index (or pointer) has
a speci�c concrete value that is out-of-b ounds. In contrast,
EXE identi�es this bug if there is any possible input value
on the given path that can causean out-of-b ounds accessto
the array. Similarly , for an arithmetic expression that uses
symbolic data, EXE can solve the associated constraints for
values that causean overo w or a division/mo dulo by zero.
Moreover, for an assert statement, EXE can reason about
all possible input values on the given path that may cause
the assert to fail. If the assert doesnot fail, then either (1)
no input on this path can causeit to fail, (2) EXE doesnot
have the full set of constraints, or (3) there is a bug in EXE.

The abilit y to automatically generate input to execute
paths has several nice features. First, EXE can test any
code path it wishes (and given enough time, exhaust all
of them), thereby getting coverage out of practical reach
from random or manual testing. Second, EXE generates
actual attacks. This abilit y lets it show that external forces
can exploit a bug, improving on static analysis, which often
cannot distinguish minor errors from showstoppers. Third,
the EXE user seesno false positives: re-running input on
an uninstrumen ted copy of the checked code either veri�es
that it hits a bug or automatically discards it if not.

Careful co-designof EXE and STP has resulted in a sys-
tem with several novel features. First, STP primitiv es let
EXE build constraints for all C expressionswith perfect ac-
curacy, down to a single bit. (The one exception is oating-
point, which STP does not handle.) EXE handles pointers,
unions, bit-�elds, casts, and aggressive bit-op erations such
as shifting, masking, and byte swapping. BecauseEXE is
dynamic (it runs the checked code) it has accessto all the in-
formation that a dynamic analysis has, and a static analysis
typically does not. All non-symbolic (i.e., concrete) opera-
tions happen exactly as they would in uninstrumen ted code,
and produce exactly the samevalues: when thesevaluesap-
pear in constraints they are correct, not approximations. In
our context, what this accuracy means is that if (1) EXE
has the full set of constraints for a given path, (2) STP can
produce a concrete solution from those constraints, and (3)
the path is deterministic, then rerunning the checked system
on these concrete valueswill force the program to follow the
same exact path to the error or termination that generated
this set of constraints.

In addition, STP provides the speed neededto make per-
fect accuracy useful. Aggressive customization makes STP
often 100times faster than more traditional constraint solvers
while handling a broader class of examples. Crucially , STP
e�cien tly reasonsabout constraints that refer to memory us-
ing symbolic pointer expressions,which presents more chal-
lenges than one may expect. For example, given a con-
crete pointer a and a symbolic variable i with the constraint
0 � i � n, then the conditional expression if(a[i] == 10)
is essentially equivalent to a big disjunction: if(a[0] ==
10 || : : : || a[n] == 10) . Similarly , an assignment a[i]
= 42 represents a potential assignment to any element in the
array between 0 and n.

The result of these features is that EXE �nds bugs in real
code, and automatically generatesconcrete inputs to trigger
them. It generatesevil packet �lters that exploit bu�er over-
runs in the very mature and audited Berkeley Packet Filter
(BPF) code as well as its Linux equivalent (x 5.1). It gen-
erates packets that cause invalid memory reads and writes
in the udhcpd DHCP server (x 5.2), and bad regular expres-
sions that compromise the pcre library (x 5.3), previously
audited for security holes. In prior work, it generated raw
disk images that, when mounted by a Linux kernel, would
crash it or causea bu�er overo w [46].

Both EXE and STP are contributions of this paper, which
is organizedasfollows. We�rst givean overview of the entire
system (x 2), then describe STP and its key optimizations
(x 3), and do the same for EXE (x 4). Finally , we present
results (x 5), discussrelated work (x 6), and conclude (x 7).

2. EXE OVERVIEW
This section givesan overview of EXE. Weillustrate EXE's

main features by walking the reader through the simple code
example in Figure 1. When EXE checks this code, it ex-
plores each of its three possible paths, and �nds two errors:
an illegal memory write (line 12) and a division by zero (line
16). Figure 2 gives a partial transcript of a checking run.

To check their code with EXE, programmers only need
to mark which memory locations should be treated as hold-
ing symbolic data whose values are initially entirely uncon-
strained. These memory locations are typically the input to
the program. In the example, the call makesymbolic(&i)
(line 4) marks the four bytes associated with the 32-bit vari-
able i as symbolic. They then compile their code using the
EXE compiler, exe-cc , which instruments it using the CIL
source-to-sourcetranslator [36]. This instrumented code is
then compiled with a normal compiler (e.g., gcc), link ed
with the EXE runtime system to produce an executable (in
Figure 2, ./a.out ), and run.

As the program runs, EXE executes each feasible path,
tracking all constraints. When a program path terminates,
EXE calls STP to solve the path's constraints for concrete
values. A path terminates when (1) it calls exit() , (2) it
crashes,(3) an assertion fails, or (4) EXE detects an error.
Constraint solutions are literally the concrete bit values for
an input that will cause the given path to execute. When
generated in response to an error, they provide a concrete
attack that can be launched against the tested system.

The EXE compiler has three main jobs. First, it inserts
checks around every assignment, expression, and branch in
the tested program to determine if its operands are con-
crete or symbolic. An operand is de�ned to be concrete
if and only if all its constituent bits are concrete. If all
operands are concrete, the operation is executed just as in
the uninstrumen ted program. If any operand is symbolic,
the operation is not performed, but instead passed to the
EXE runtime system, which adds it as a constraint for the
current path. For the example's expression p = (char *)a
+ i * 4 (line 8), EXE checks if the operands a and i on
the right hand side of the assignment are concrete. If so,
it executes the expression, assigning the result to p. How-
ever, since i is symbolic, EXE instead adds the constraint
that p equals (char � )a + i � 4. Note that becausei can be
one of four values (0 � i � 3), p simultaneously refers to
four di�eren t locations a[0], a[1], a[2] and a[3]. In addition,
EXE treats memory as untyped bytes (x 3.2) and thus does



1 : #include < assert.h>
2 : in t main(void ) f
3 : unsigned i, t , a[4] = f 1, 3, 5, 2 g;
4 : make symbolic(& i);
5 : if (i > = 4)
6 : exit (0);
7 : // cast + symbolic o�set + symbolic mutation
8 : char *p = (char *) a + i * 4;
9 : *p = *p � 1; // Just modi�es one byte!
10:
11: // ERROR: EXE catches potential overow i=2
12: t = a[* p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert �r es.
20: if (t == 2)
21: assert(i == 1);
22: else
23: assert(i == 3);
24: g

Figure 1: A contriv ed, but complete C program (simple.c) that
generates �v e test caseswhen run under EXE, two of which
trigger errors (a memory overo w at line 12 and a division by
zero at line 16). This example is used heavily throughout the
paper. We assumeit runs on a 32-bit little-endian machine.

% exe� cc simple.c
% ./ a.out
% ls exe� last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr .err test3.out test5.forks
test2.forks test3.div .err test4.forks test5.out

% cat exe� last/ test3.div .err
ERROR: simple.c:16 Division / modulo by zero!

% cat exe� last/ test3.out
# concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe� last/ test3.forks
# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overo w check on line 9)
1 # true (implicit: div � by� 0 check on line 16)

% cat exe� last/ test2.out
# concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Figure 2: Transcript of compiling and running the C program
shown in Figure 1.

not get confusedby this (dubious) cast, nor the subsequent
type-violating modi�cation of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution
when it reaches a symbolic branch point, so that it can ex-
plore each possibilit y. Consider the if-statement at line 5,
if(i >= 4) . Sincei is symbolic, so is this expression. Thus,
EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i � 4 is true, and on the
false path that it is not. Each time it adds a branch con-
straint, EXE queries STP to check that there exists at least
one solution for the current path's constraints. If not, the
path is impossible and EXE stops executing it. In our ex-
ample, both branches are possible, so EXE explores both
(though the true path exits immediately at line 6).

Third, exe-cc inserts code that calls to check if a symbolic
expressioncould have any possiblevalue that could causeei-
ther (1) a null or out-of-b ounds memory reference or (2) a
division or modulo by zero. If so, EXE forks execution and
(1) on the true path asserts that the condition does occur,
emits a test case,and terminates; (2) on the false path as-
serts that the condition doesnot occur and contin uesexecu-
tion (to �nd more bugs). Extending EXE to support other
checks is easy. If EXE has the entire set of constraints on
such expressionsand STP can solve them, then EXE detects
if any input exists on that path that causesthe error. Sim-
ilarly , if the check passes,then no input exists that causes
the error on that path | i.e., the path has been veri�e d as
safe under all possible input values.

These checks �nd two errors in our example. First, the
symbolic index *p in the expressiona[*p] (line 12) can cause
an out-of-b ounds error because*p can equal 4: the pointer

p was computed using i with the constraint 0 � i < 4 (line
8). Thus, i = 2 is legal, which meansp can point to the low-
order byte of a[2] (recall that each element of a has four
bytes). The value of this byte is 4 after the subtraction at
line 9. Since a[4] referencesan illegal location one past the
end of a, EXE forks execution and on one path asserts that
i = 2 and emits an error (test2.ptr.err ) and a test case
(test2.out ), and on the other that i 6= 2 and contin ues.

Second, the symbolic expression t / a[i] (line 16) can
generate a division by zero, which EXE detects by tracking
and solving the constraints that (1) i can equal 0, 1, or 3
and (2) a[0] can equal 0 after the decrement at line 9. EXE
again forks execution, emits an error (test3.div.err ) and
a test case(test3.out ) and exits. The other path adds the
constraint that i 6= 0 and contin ues.

Note, EXE automatically turns a programmer assert(e)
on a symbolic expression e into a universal check of e sim-
ply becauseit tries to exhaust both paths of if-statements.
If EXE determines that e can be false, it will go down the
assertion's false path, hitting its error handling code. Fur-
ther, if STP cannot �nd any such value, none exists on this
path. In the example, EXE explores both branches at line
20, and proves that no input value exists that can cause
either assert (line 21 and line 23) to fail. We leave work-
ing through this logic as an exercisefor the more energetic
reader. Even a cursory attempt should show the tric kiness
of manual reasoning about all-paths and all-values for even
trivial code fragments. (We spent more time than we would
lik e to admit puzzling over our own hand-crafted example
and eventually gave up, resorting to using EXE to double-
check our oft-wrong reasoning.)
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Figure 3: Execution for the simple C program in Figure 1:
EXE generates�v e test cases,two of which are errors.

The paths followed by EXE are shown graphically in Fig-
ure 3. The branch points (both explicit and implicit) where
EXE forks a new processare represented by rhombuses,and
the test casesit generatesby sequencesof four bytes.

Mechanically, at each run of the instrumented code, EXE
createsa new directory and, for each path, creates two �les:
one to hold the concrete bytes it generates,the other to hold
the values for each decision (1 to take the true branch, 0 to
take the false). The choice points enable easy replay of a
single path for debugging. The values can either be read
back by using a trivial driv er (which EXE provides) or used
completely separately from EXE.

In our example, the three paths and two errors lead to
�v e pairs of �les that hold (1) concrete byte values for i
(these �les have the su�x .out ) and (2) the branch deci-
sions for that path (su�x .forks ). EXE creates a symbolic
link exe-last pointing to the most recent output directory .
The two errors are in .err �les. If we look at the contents
of the �le for the division bug (test3.out ), it shows that
each byte of i is zero, which when concatenated in the right
order and treated as an unsigned 32-bit quantit y equals 0,
as required. The branch decision states that we take the
false branch at line 5, followed by the (implicit) false branch
of the memory overo w check at line 9, and �nally the (im-
plicit) true branch of the division check at line 16. Similarly ,
the concrete values for the pointer error are byte 0 equals 2
and bytes 1, 2, 3 equal 0, which when concatenated yields
the 32-bit value 2 as needed.

3. KEY FEATURES OF STP
This section gives a high-level overview of STP's key fea-

tures, including the support it provides to EXE for accu-
rately modeling memory. It then describesthe optimizations
STP performs, and shows experimental numbers evaluating
their e�ciency .

EXE's constraint solver is, more precisely, a decision pro-
cedure for bitv ectors and arrays. Decision procedures are
programs which determine the satis�abilit y of logical for-
mulas that can expressconstraints relevant to software and

hardware, and have beena mainstay of program veri�cation
for several decades. In the past, these decision procedures
have beenbasedon variations of Nelson and Oppen's cooper-
ating decision procedures framework [37] for combining a col-
lection of specialized decision procedures into a more com-
prehensive decision procedure capable of handling a more
expressive logic than any of the specialized procedurescan
do individually .

The Nelson-Oppen approach has two downsides. When-
ever a specialized decision procedure can infer that two ex-
pressions are equal, it must do so explicitly and commu-
nicate the equality to the other specialized decision proce-
dures, which can be expensive. Worse, the framework tends
to lead to a web of complex dependencies,which makes its
code di�cult to understand, tune, or get right. These prob-
lems hampered CVCL [6, 7], a state-of-the-art decision pro-
cedure that we implemented previously.

Our CVCL travails motiv ated us to simplify the design of
STP by exploiting the extreme improvement in SAT solvers
over the last decade. STP forgoes Nelson-Oppen contor-
tions, and instead preprocessesthe input through the ap-
plication of mathematical and logical identities, and then
eagerly translates constraints into a purely propositional log-
ical formula that it feedsto an o�-the-shelf SAT solver (we
use MiniSA T [21]). As a result, the STP implementation
has four times less code than CVCL, yet often runs orders
of magnitude faster. STP is also more modular, because
its pieceswork in isolation. Modularit y and simplicit y help
constraint solvers as they do everything else. In a sense,
STP can be viewed as the result of applying the systems
approach to constraint solving that has worked so well in
the context of SAT: start simple, measure bottlenecks on
real workloads, and tune to exactly these cases. STP was
recently judged the co-winner of the QF UFBV32 (32-bit
bitv ector) division of the SMTLIB competition [1] held as a
satellite event of CAV 2006 [3].

Recently , several other decisionprocedureshavebeenbased
on eagertranslation to SAT, including Saturn[45], UCLID[11],
and Cogent[15]. Saturn is a static program analysis frame-
work that translates C operations to SAT. It does not di-
rectly deal with arrays, so it avoids many interesting prob-
lemsand optimizations. UCLID implements features such as
arrays and arbitrary precision integer arithmetic, but does
not focus on bitv ector operations. Cogent is perhaps the
most similar in architecture and purp ose to STP. Judging
from the published descriptions of these systems, STP's fo-
cus on optimizations for arrays is unique (and uniquely im-
portant for use with EXE). STP also has simpli�cations on
word-level operations that are not discussedin the descrip-
tion of Cogent. (A t this time, it is di�cult to do side-by-side
performance comparisonsbecauseof lack of common bench-
marks and input syntax; Saturn, UCLID and Cogent also
didn't participate in the SMTLIB competition.)

3.1 STP primiti ves
System code often treats memory as untyped bytes, and

observes a single memory location in multiple ways. For
example, by casting signed variables to unsigned, or (in the
code we checked) treating an array of bytes as a network
packet, inode, packet �lter, etc. through pointer casting.

As a result, STP also views memory as untyped bytes.
It provides only three data types: booleans, bitv ectors, and
arrays of bitv ectors. A bitv ector is a �xed-length sequence



of bits. For example, 0010 is a constant, 4-bit bitv ector
representing the constant 2. With the exception of oating-
point, which STP does not support, all C operators have
a corresponding STP operator that can be used to impose
constraints on bitv ectors. STP implements all arithmetic
operations (even non-linear operations such as multiplica-
tion, division and modulo), bit wise boolean operations, re-
lational operations (less than, less than or equal, etc.), and
multiplexers, which provide an \if-then-else" construct that
is converted into a logical formula (similar to C's ternary op-
erator). In addition, STP supports bit concatenation and bit
extraction, features EXE makesextensive use of in order to
translate untyped memory into properly-t yped constraints.

STP implements its bitv ector operations by translating
them to operations on individual bits. There are two ex-
pression types: terms, which have bitv ector values, and for-
mulas, which have boolean values. If x and y are 32-bit
bitv ector values, x + y is a term returning a 32-bit result,
and x + y < z is a formula. In the implementation, terms
are converted into vectors of boolean formulas consisting
entirely of single bit operations (AND, XOR, etc.). Each
operation is converted in a fairly obvious way: for exam-
ple, a 32-bit add is implemented as a ripple-carry adder.
Formulas are converted into DAGs of single bit operations,
where expressionswith identical structure are represented
uniquely (expression nodes are looked up in a hash table
whenever they are created to seewhether an identical node
already exists). Simple boolean optimizations are applied as
the nodes are created; for example, a call to create a node
for AND(x, FALSE) will just return the FALSEnode. The
resulting boolean DAG is then converted to CNF by the
standard method of naming intermediate nodes with new
propositional variables.

3.2 Mapping C codeto STP constraints
EXE represents each symbolic data block as an array of

8-bit bitv ectors. The main advantage of using bitv ectors is
that they, lik e the C memory blocks that they represent, are
essentially untyped. This property allows us to easily ex-
pressconstraints that refer to the samememory in di�eren t
ways; each read of memory generates constraints based on
the static type of the read (e.g., int , unsigned , etc.) but
these typesdo not persist.

EXE uses STP to solve constraints on input as follows.
First, it tracks what memory locations in the checked code
hold symbolic values. Second, it translates expressions to
bitv ector based constraints. We discusseach step below.

Initially , there are no symbolic bytes in the checked code.
When the usermarks a byte-range, b, assymbolic, EXE calls
into STP to create a corresponding, identically-sized array
bsy m , and records in a table that b corresponds to bsy m .
In Figure 1 (line 4), the call to make the 32-bit variable i
symbolic causesEXE to allocate a bitv ector array i sy m with
four 8-bit elements and record that the concrete address of
i (&i ) corresponds to it.

As the program executes,the table mapping concretebytes
to STP bitv ectors grows in exactly two cases:

1. v = e: where e is a symbolic expression (i.e., has at
least one symbolic operand). EXE builds the sym-
bolic expressionesy m representing e, and records that
&v maps to it. Note that EXE does not allocate a
new STP variable in this casebut instead will substi-
tute esy m for v in subsequent constraints. EXE re-

moves this mapping when v is overwritten with a con-
crete value or deallocated. In Figure 1 (line 8), EXE
records the fact that p maps to the symbolic expres-
sion (char � )a+ i sy m � 4 and substitutes any subsequent
use of p's value with this expression. (Note that a is
replaced by the actual base address of array a in the
program.)

2. b[e] : where e is a symbolic expressionand b is a con-
crete array. Since STP must reason about the set of
values that b[e] could reference, EXE imports b into
STP by allocating an identically-sized STP array bsy m ,
and initializing it to have the same(constant) contents
as b. It then records that b maps to bsy m and removes
this mapping only when the array is deallocated.

In Figure 1 (line 12), the array expressiona[*p] causes
EXE to allocate asy m , a 16-element array of 8-bit bitv ec-
tors, and assert that:

asy m = f 1; 0; 0; 0; 3; 0; 0; 0; 5; 0; 0; 0; 2; 0; 0; 0g

Each expression e used in a symbolic operation is con-
structed in the following way. For each read of size n of a
storage location l in e, EXE checks if l is concrete. If so, the
read of l is replaced by its concrete value (i.e., a constant).
Otherwise, EXE breaks down l into its corresponding bytes
b0 , . . . , bn � 1 . It then builds a symbolic expressionwith the
same size as l by concatenating each byte's (possibly sym-
bolic) value. For each byte bi it queries its data structures
to check if bi is symbolic. If not, it usesits current concrete
value (an 8-bit constant), otherwise it looks up and usesits
symbolic expression(bi )sy m .

For example, in Figure 1 (line 8), EXE builds the sym-
bolic expression corresponding to (char*)a + i*4 as fol-
lows. EXE determines that the �rst read of a is concrete
and so replaces a with its concrete address (denoted a)
represented as a 32-bit bitv ector constant. It then deter-
mines that i is symbolic, and thus breaks it down into
its four bytes, which are mapped to their corresponding
STP bitv ector array elements i sy m [0], i sy m [1], i sy m [2], and
i sy m [3]. Then, the four bitv ectors are concatenated to ob-
tain the expression i sy m [3] @ i sy m [2] @ i sy m [1] @ i sy m [0]
(where \@" denotes bitv ector concatenation), which corre-
sponds to the four-byte read of i . Finally , the constant 4
is replaced by the corresponding 32-bit bitv ector constant
0:::00000100. The resulting expression is

a + (i sy m [3]@i sy m [2]@i sy m [1]@i sy m [0]) � 0:::00000100

A limitation of STP is that it does not support point-
ers directly . EXE emulates symbolic pointer expressionsby
mapping them as an array referenceat someo�set. For each
pointer p in the checked code, EXE tracks the data object
to which p points by instrumenting all allocation and deal-
location sites as well as all pointer arithmetic expressions
(standard techniques developed by bounds-checking compil-
ers [41]). For example, in Figure 1 (line 4), EXE records that
p points to the data block a of size16. Then, when EXE en-
counters a pointer dereference*p: (1) it looks up the block
b to which pointer p refers; (2) looks up the corresponding
STP array bsy m associated with b; and (3) computes the
(possibly symbolic) o�set of p from the baseof the object it
points to (i.e., o = p - b). EXE can then use the symbolic
expressionbsy m [i sy m + osy m ] in symbolic constraints.



However, STP's lack of pointer support means that when
EXE encounters a double-dereference**p of a symbolic pointer
p it concretizes the �rst dereference(*p), �xing it to one of
the possibly many storage locations it could refer to. (How-
ever, the result of **p can still be a symbolic expression.)
This situation has rarely shown up in practice (see x 4.3),
but we are working on removing it.

3.3 The key to speed:fast array constraints
The main bottleneck in STP when used in EXE is almost

always reasoning about arrays. This subsection discusses
STP's key array optimizations.

STP is an implementation of logic, so it is a purely func-
tional language. The logic has one-dimensional arrays that
are indexed by bitv ectors and contain bitv ectors. The oper-
ations on arrays are read(A; i ), which returns the value at
location A[i ] where A is an array and i is an index expres-
sion of the correct type, and write (A; i; v), which returns a
new array with the same value as A at all indexes except i ,
where it has the value v. Arra y reads and writes can appear
as subexpressionsof an if-then-else construct, denoted by
ite (c;a; b), where c is the condition, a the then expression,
and b the else expression.

STP eliminates array expressionsby translating them to
bitv ector primitiv es (which it then translates to SAT). This
is accomplished through two main transformations. The
�rst, read-o ver-write , eliminates all write (A; i; v) expres-
sions: 1

read(write (A; i; v); j ) ) ite (i = j; v; read(A; j ))

The second eliminates all read expressions via a trans-
formation mentioned in [11] that enforces the axiom that
if two indexes i s and i t are the same, then read(A; i s ) and
read(A; i t ) should return the samevalue. Mechanically, STP
�rst replaces each occurrence of a read read(A; i j ) with a
new variable vj , and then for each two terms i s ; i t ever used
to index into the same array A, it adds the array axiom:

i s = i t ) vs = vt

For example, consider the formula:

(read(A; i 1) = e1) ^ (read(A; i 2) = e2) ^ (read(A; i 3) = e3)

The transformed result would be:

(v1 = e1) ^ (v2 = e2) ^ (v3 = e3) ^ (i 1 = i 2 ) v1 = v2)^

(i 1 = i 3 ) v1 = v3) ^ (i 2 = i 3 ) v2 = v3)

Read elimination expands each formula by n(n � 1)=2
nodes, where n is the number of syntactically distinct in-
dex expressions. Unfortunately , this blowup is lethal for
arrays of a few thousand elements, which occur frequently
in EXE. Fortunately , while �nessing this problem appears
hard in general, two optimizations we developed work well
on the constraints generated by EXE.

The array substitution optimization reduces the number
of array variables by substituting out all constraints of the
form read(A; c) = e, where c is a constant and e does not
contain another array read. Programs often index into ar-
rays using constant indexes, so this is a casethat occurs of-
ten in practice (seex 4.3). The optimization has two passes.
1Note that a write makes senseonly inside a read node. A
write node by itself has no e�ect, and can be ignored.

The �rst passbuilds a substitution table with the left-hand-
side of each such equation (read(A; c)) as the key and the
right-hand-side (e) as the value, and then deletes the equa-
tion from the EXE query. The secondpassover the expres-
sion replaces each occurrence of a key by the correspond-
ing table entry . Note that for soundness,if we encounter a
second equation whose left-hand-side is already in the ta-
ble, the secondequation is not deleted and the table is not
changed. For our example, if we saw a subsequent equation
read(A; i 1) = e4 we would leave it; the second pass of the
algorithm would rewrite it as e1 = e4 .

The second optimization, array-based re�nement , delays
the translation of array reads with non-constant indexes,
in e�ect intro ducing some laziness into STP's handling of
arrays, in the hope of avoiding the O(n2 ) blowup from the
read elimination transformation. Its main tric k is to solve a
less-expensiveapproximation of the formula, check the result
in the original formula, and try again with a more accurate
approximation if the result is incorrect.

Initially , all array read expressionsare replaced by vari-
ables to yield an approximation of the original formula. The
resulting logical formula is under-constrained, since it ig-
nores the array axioms that require that array reads return
the samevalues when indexes are the same. If the resulting
under-constrained formula is not satis�able, there is no solu-
tion for the original formula and STP returns unsatis�able.

If, however, the SAT solver �nds a solution to the under-
constrained formula, then that solution is not guaranteed to
be correct becauseit could violate one of the array axioms.
For example, supposeSTP is given the formula (read(A; 0) =
0)^ (read(A; i ) = 1). STP would �rst apply the substitution
optimization by deleting the constraint read(A; 0) = 0 from
the formula, and inserting the pair (read(A; 0); 0)) in the
substitution table. Then, it would replace read(A; i ) by a
new variable vi , thus generating the under-constrained for-
mula vi = 1. Suppose STP �nds the solution i = 1 and
vi = 1. STP then translates the solution to the variables of
the original formula to get (read(A; 0) = 0) ^ (read(A; 1) =
1). This solution is satis�able in the original formula as
well, so STP terminates since it has found a true satisfying
assignment.

However, suppose that STP �nds the solution i = 0 and
vi = 1. Under this solution, the original formula evaluates
to (read(A; 0) = 0) ^ (read(A; 0) = 1), which gives 0 = 1.
Hence, the solution to the under-constrained formula is not
a solution to the original formula. When this happens, it
must be becausesomearray axiom was violated. STP adds
array axioms to the formula and solves again until it gets a
correct result. There are many policies for adding axioms,
any of which is correct and will terminate so long as all of
the axioms are added in the worst case. The current policy,
which seemsto work well, is to �nd an array index term
for which at least one axiom is violated, then add all of the
axioms involving that term. In our example, it will add
the axiom i = 0 ) read(A; i ) = read(A; 0). Then, the pro-
cessof �nding a satisfying assignment is repeated, by calling
the SAT solver on the new under-constrained formula. The
result must satisfy the newly added axioms, which the pre-
vious assignment violated, so the algorithm will not repeat
assignments and will not violate previously added axioms.
This process must terminate since there are only �nitely
many array axioms.

In the worst case, the algorithm will add all n(n � 1)=2



Solv er Total Time Timeouts
CVCL 60,366s 546
STP (no optimizations) 3,378s 36
STP (substitution) 1,216s 1
STP (re�nemen t) 624s 1
STP (simpli�cations) 336s 0
STP (subst+re�nemen t) 513s 1
STP (simplif+subst) 233s 0
STP (simplif+re�nemen t) 220s 0
STP (all optimizations) 110s 0

Table 1: STP vs.CVCL. Queries time out (are aborted) after
60 seconds,which underestimates performance di�erences,
sincethey could run for much longer. Using this conservativ e
estimate, fully optimized STP is roughly 30X faster than the
unoptimized version and 550X faster than CVCL and has no
timeouts.

array axioms, at which time it is guaranteed to return a cor-
rect result becausethere are no more axioms it can violate.
However, in practice, this loop will often terminate quickly
becausethe formula can be proved unsatis�able without all
the array axioms, or becauseit luckily �nds a true satisfying
assignment without adding all the axioms.

Besides the above mentioned optimizations, STP imple-
ments several boolean and mathematical identities. These
identities, or simpli�c ations, also dramatically reduce the
size of the input, before it is fed to the SAT solver. Some
example identities include associativit y and commutativit y
laws for addition and multiplication, distribution of mul-
tiplication by constants over addition, and combining lik e
terms (e.g., x + (� x) is simpli�ed to 0).

All theseoptimizations have made it possibleto deal with
fairly large constant arrays when there are relativ ely few
non-constant index expressions,which is su�cien t to permit
considerable progress in using EXE on real examples.

3.4 Measured performance
Table 1 gives experimental measurements for these op-

timizations. The experiment consists of running di�eren t
versions of STP and our old solver, CVCL, over the perfor-
mance regression suite we have built up of 8495 test cases
taken from our test programs. The experiments for all solvers
were run on a Pentium 4 machine at 3.2 GHz, with 2 GB
of RAM and 512 KB of cache. The table gives the times
taken by CVCL, baseline STP with no optimizations, STP
with a subset of all optimizations enabled, and STP with
full optimizations, i.e. substitution, array-based re�nement,
and simpli�cations. The third column shows the number of
examples on which each solver timed out. The timeout was
set at 60 seconds,and is added as penalty to the time taken
by the solver (but in fact causesus to grossly underestimate
the time taken by CVCL and earlier versions of STP since
they could run for many minutes or even hours on some of
the examples).

The baseline STP is nearly 20 times faster than CVCL,
and more interestingly times out in far fewer cases.The fully
optimized version of STP is about 30 times faster than the
unoptimized version, almost 550 times faster than CVCL,
and there are no timeouts.

4. EXE OPTIMIZA TIONS
This section presents optimizations EXE uses and mea-

surestheir e�ectiv enesson �v ebenchmarks. We �rst present
two optimizations: caching constraints to avoid calling STP
(x 4:1), and removing irrelevant constraints from the queries
EXE sendsto STP (x 4:2). We then measurethe cumulativ e
improvement of these optimizations, and provide an empiri-
cal feel for what symbolic execution looks lik e, including the
time spent in various parts of EXE, and a description of the
symbolic slice through the code (x 4.3). Finally , we discuss
and measureEXE's search heuristics (x 4.4).

4.1 Constraint caching
EXE caches the result of satis�abilit y queries and con-

straint solutions in order to avoid calling STP when possible.
This cache is managed by a server processso that multiple
EXE processes(created by forking at each conditional) can
coordinate. Before invoking STP on a query q, an EXE pro-
cessprin ts q as a string, computes an MD4 cryptographic
hash of this string, and sends this hash to the server. The
server checks its persistent cache (a �le) and if it gets a hit,
returns the result. If not, the EXE processdoesa local STP
query and then sends the (hash; r esult) pair back to the
server. Constraint solutions are cached in a similar way.

4.2 Constraint independenceoptimization
This section describesone of EXE's most important opti-

mizations, constraint independence, which exploits the fact
that we can often divide the set of constraints EXE tracks
into multiple independent subsetsof constraints. Two con-
straints are considered to be independent if they have dis-
joint sets of operands (i.e. disjoint sets of array reads).

For example, assumeEXE tracks the following set of three
constraints:

(A[1] = A[2] + A[3]) ^ (A[2] > A[4]) ^ (A[7] = A[8])
We can divide this set into two subsetsof independent con-
straints

(A[1] = A[2] + A[3]) ^ (A[2] > A[4])

and
A[7] = A[8]

and solve them separately.
Breaking a constraint into multiple independent subsets

has two bene�ts. First, EXE can discard irrelevant con-
straints when it asksSTP if a constraint c is satis�able, with
a corresponding decreasein cost. Instead of sending all the
constraints collected so far to STP, EXE only sendsthe sub-
set of constraints sc to which c belongs, ignoring all other
constraints. The worst case,when no irrelevant constraints
are found, costs no more than the original query (omitting
the small cost of computing the independent subsets).

Second,this optimization yields additional cache hits, since
a given a subset of independent constraints may have ap-
peared individually in previous runs. Conversely, including
all constraints vastly increasesthe chance that at least one
is di�eren t and so gets no cache hit. To illustrate, assume
we have the following code fragment, which operates on two
unconstrained symbolic arrays A and B :

if (A[i] > A[i+1]) {
...

}
if (B[j] + B[j-1] == B[j+1]) {

...
}



There are four paths through this code; EXE will thus cre-
ate four processes.After forking and following each branch,
EXE checks if the path is satis�able. Without the constraint
independenceoptimization, each of these four satis�abilit y
queries will di�er and miss in the cache. However, if the
optimization is applied, some queries repeat. For example,
when the secondbranch is reached, two of the four queries
will be

(A[i ] > A[i + 1]) ^ (B [j ] + B [j � 1] = B [j + 1])

and

(A[i ] � A[i + 1]) ^ (B [j ] + B [j � 1] = B [j + 1])

which both devolve to

B [j ] + B [j � 1] = B [j + 1]

since, in each query, the �rst constraint is unrelated to the
last one, and its satis�abilit y was already determined when
EXE reached the �rst branch.

Real programs often have many independent branches,
which intro duce many irrelevant constraints. These add up
quickly. For example, assuming n consecutive independent
branches (the example above is such an instance for n =
2), EXE will issue 2(2n � 1) queries to STP (for each if
statement, we issue two queries to check if both branches
are possible). The optimization exponentially reduces this
query count to 2n (t wo queries the �rst time we see each
branch), since the rest of the time we �nd the result in the
cache.

We compute the constraint independencesubsetsby con-
structing a graph G, whose nodes are the set of all array
reads used in the given set of constraints. For the �rst ex-
ample in the section, the set of nodes is f A[1], A[2], A[3],
A[4], A[7], A[8]g. We add an edgebetween nodes n i and n j

of G if and only if there exists a constraint c that contains
both as operands. Once the graph G is constructed, we ap-
ply a standard algorithm to determine G's connected com-
ponents. Finally , for each connectedcomponent, we create a
corresponding independent subset of constraints by adding
all the constraints that contain at least one of the nodes in
that connectedcomponent. At the implementation level, we
don't construct the graph G explicitly . Instead, we keepthe
nodes of G in a union-�nd structure [17], which we update
each time we add a new constraint.

There are two additional issues that our algorithm has
to take into account. First, an array read may contain a
symbolic index. In this case,we are conservativ e, and merge
all the elements of that array into a single subset.

The second issue relates to array writes. Since EXE and
STP arrays are functional, each array read explicitly con-
tains an ordered list of all array writes performed so far.
Each array write is remembered as a pair consisting of the
location that wasupdated, and the expressionthat waswrit-
ten to that location. When processing this list of array
writes, we are again conservativ e, and merge all the expres-
sionswritten into the array (the right hand sideof each array
write) into the subsetof the original read. In addition, if any
array write is performed at a symbolic index, we merge all
the elements of the array into a single subset.

4.3 Experiments
We evaluate our optimizations on �v e benchmarks. These

benchmarks consist of the three applications discussed in

bpf expat pcre tcpdump udhcpd
Test cases 7333 360 866 2140 328
None 30.6 28.4 31.3 28.2 30.4
Caching 32.6 30.8 34.4 27.0 36.4
Independence 17.8 25.2 10.0 24.9 30.5
All 10.3 26.3 7.5 23.6 32.1
STP cost 6.9 24.6 2.8 22.4 23.1

Table 2: Optimization measurements, times in minutes.
STP cost gives time spent in STP when all optimizations
are enabled.Tables 3, 4, and 5 explore the fully optimized
run (All) in more detail.

Section 5, bpf , pcre , and udhcpd, to which we added two
more: expat , an XML parser library , and tcpdump, a tool for
prin ting out the headers of packets on a network interface
that match a boolean expression.

We run each benchmark under four versions of EXE: no
optimization, caching only, independence only, and �nally
with both optimizations turned on. As a baseline, we run
each benchmark for roughly 30 minutes using the unopti-
mized version of EXE, and record the number of test cases
n that this run generates. We then run the other versions
until they generate n test cases. All experiments are per-
formed on a dual-core 3.2 GHz Intel Pentium D machine
with 2 GB of RAM, and 2048 KB of cache.

Table 2 gives the number of test casesgenerated, as well
as the runtime for each optimization combination. Full op-
timization (\All") signi�can tly sped up two of �v e bench-
marks: bpf by roughly a factor of three, and pcre by more
than a factor of four. Both tcpdumpand expat had marginal
improvements (20% and 7% faster respectively), but udhcpd
slows down by 5.6%. As the last row shows, with the ex-
ception of pcre , the time spent in STP represents by far the
dominant cost of EXE checking.

Table 3 breaks down the full optimization run. As its �rst
three rows show, caching without independenceis not a win
| its overhead (seeTable 2) actually increasesruntime for
most applications, varying between 6.5% for bpf and 19.7%
for pcre . With independence,the hit rate jumps sharply for
both bpf and pcre (and, to a lesser extent, tcpdump), due
to its removal of irrelevant constraints. The other two appli-
cations show no bene�t from these optimizations | udhcpd
has no independent constraints and expat has no cache hits.
The average number of independent subsets (row 3) shows
how interdependent our constraints are, varying from over
2,800 subsets for expat to only 1 (i.e., no independent con-
straints) for udhcpd.

The next three rows (4{6) measurethe overhead spent in
various parts of EXE. Reassuringly, the cost of independence
is near zero. On the other hand, cache lookup overhead(row
5) is signi�can t, due almost entirely to our naive implemen-
tation. On each cache lookup (x 4.1), EXE prin ts the query
asa string and then hashesit. As the table shows (row 6) the
cost of prin ting the string dominates all other cache lookup
overheads. Obviously, we plan to eliminate this ine�ciency
in the next version of the system.

Table 4 breaks down the queries sent to STP. The �rst
three rows give the total number of: queries, constraints,
and nodes. These last two numbers give a feel for query
complexity: bpf is the easiestcase(a small number of con-
straints, with roughly �v e nodes per constraint), whereas
udhcpd is the worst with 688 nodes per constraint.

The next two rows give the number of non-linear con-



bpf expat pcre tcpdump udhcpd
1 Cache hit rate 92.8% 0% 83% 35% 9.1%
2 Hit rate w/o independence 0.1% 0% 17.5% 12.6% 9.1%
3 Avg. # of independent subsets 19 2,824 122 13 1
4 Independenceoverhead 0m 0m .1m 0m 0m
5 Cache lookup cost 1.1m 1.2m 1.9m 0.4m 2.1m
6 % of lookup spent prin ting 72% 96% 84% 90% 95%

Table 3: Optimization breakdown

bpf expat pcre tcpdump udhcpd
1 # of queries (cache misses) 162,959 5,427 188,481 22,242 3,572
2 Total # of constraints 402,496 9,649,411 3,478,517 1,268,316 626, 795
3 Total # of nodes 2,048,704 32,711,503 17,844,792 20,673,550 431,705,056
4 # non-linear constraints 3,758 10,679 95,623 343,312 508,096
5 % constraints non-linear 0.9% 0.1% 2.8% 27.1% 81.1%
6 Reads from symbolic array 405,501 11,788,264 3,757,238 1,619,843 3,855, 965
7 % sym. array reads with sym. index 0.3% 0.3% 2.9% 7.8% 62.9%
8 Writes to symbolic array 62 2,310,903 706,214 0 0
9 % sym. array writes with sym. index 100% 0% 1.8% 0% 0%

Table 4: Dynamic counts from queries sent to STP.

straints (row 4) and their percentage (row 5) of the total
constraints (from row 2). Non-linear constraints contain one
or more non-linear operators | multiplication, division, or
modulo | whose right hand side is not a constant power of
two. In general, the more non-linear operations, the slower
constraint solving gets, as the SAT circuits that STP con-
structs for these operations are expensive. For our bench-
marks, only udhcpd has a large number of non-linear con-
straints, which translates into a large amount of time spent
in STP.

The �nal four rows (6{9) give the number of reads and
writes from and to symbolic data blocks, and the percentage
of these that use symbolic indexes. While there are many
array operations, with the exception of udhcpd, very few
use symbolic indexes, which explains why the STP array
substitution optimization (x 3.3) was such a big win.

Table 5 givesmore dynamic execution counts from the full
optimization runs. The �rst row gives the number of bytes
initially marked as symbolic; this represents the size of the
symbolic �lter and data in bpf , the size of the XML expres-
sion to be parsed in expat , the packet length in udhcpd and
tcpdump, and the regular expressionpattern length in pcre .

The next row (row 2) gives the total number of dynamic
statements executed(assignments, branches,parameter and
return value passing) across all paths executed by EXE,
while the next (row 3) gives the percentage that are sym-
bolic. For our benchmarks, this percentage varies from only
8.46% for expat to 41.70% for tcpdump. This numbers are
encouraging and validate our approach of mixing concrete
and symbolic execution, which lets us ignore a large amount
of code in the programs we check.

The next three rows (4{6) look at symbolic branches, in-
cluding the implicit branches EXE does for checking. Row
4 gives the total number of explicit symbolic branch points
and row 5 the percentage of these branch points that had
both branches feasible. (EXE pruned the other branches
becausethe path's constraints were not satis�able.) On our
benchmarks, EXE was able to prune more than 80% of the
branchesit encountered, with the exception of udhcpdwhere
it pruned (only) 47.18% of the branches. These results are

reassuring for scalabilit y { while the potential number of
paths in the search spacegrows exponentially with the num-
ber of symbolic branches, the actual growth is much smaller:
real code appears to have many dependenciesbetween pro-
gram points.

Row 6 measuresthe averagenumber of symbolic branches
(both implicit and explicit) per path. This number is large:
ranging from around 38 up to 200 branches, which means
that random guessingwould have a hard time satisfying all
the branches to get to the end of one path, much less the
hundreds or thousands that EXE can systematically explore.

Row 7 gives the total number of times EXE performed a
symbolic check. (In addition to thesechecks, EXE performs
many more similar concretechecks.) Row 8 shows how many
times EXE had to concretize a pointer becauseit encoun-
tered a symbolic dereferenceof a symbolic pointer (x 3.2).
This situation occurs in only one of our �v e benchmarks,
tcpdump. Finally , row 9 shows that no uninstrumen ted func-
tions were called with symbolic data as arguments.

4.4 Search heuristics
When EXE forks execution, it must pick which branch to

follow �rst. By default, EXE usesdepth-�rst search (DFS),
picking randomly betweenthe two branches. DFS keepsthe
current number of processessmall (linear in the depth of
the process chain), but works poorly in some cases. For
example, if EXE encounters a loop with a symbolic variable
asa bound, DFS can get \stuc k" sinceit attempts to execute
the loop as many times as possible, thus potentially taking
a very long time to exit the loop.

In order to overcomethis problem, we usesearch heuristics
to driv e the execution along \in teresting" execution paths
(e.g., that cover unexplored statements). After a fork call,
each forked EXE processcalls into a search server with a
description of its current state (e.g., its current �le, line
number, and backtrace) and blocks until the server replies.
The search server examines all blocked processesand picks
the best one in terms of some heuristic that is more global
than simply picking a random branch to follow. Our current
heuristic usesa mixture of best-�rst and depth-�rst search.
The search server picks the processblocked at the line of
code run the fewest number of times and then runs this



bpf expat pcre tcpdump udhcpd
1 Symbolic input size (bytes) 96 10 16 84 548
2 Total statements run (not unique) 298,195 41,345 423,182 40,097 15,258
3 % of statements symbolic 29.2% 8.5% 34.7% 41.7% 23.6% %
4 Explicit symbolic branch points 77,024 1,969 98,138 11,425 888
5 % with both branches feasible 11.3% 19.3% 0.9% 19.4% 52.8%
6 Avg. # symbolic branches per path 38.33 43.44 55.72 103.37 200.14
7 Symbolic checks 1,490 904 4,451 552 1,535
8 Pointer concretizations 0 0 0 73 0
9 Symbolic args. to uninstr. calls 0 0 0 0 0

Table 5: Dynamic counts from EXE execution runs.

Figure 4: Best-�rst search vs. depth-�rst search.

process(and its children) in a DFS manner for a while. It
then picks another best-�rst candidate and iterates. This
is just one of many possible heuristics, and the server is
structured so that new heuristics are easy to plug in.

We experimentally evaluate our best-�rst search (BFS)
heuristic in the context of oneof our benchmarks, the Berke-
ley Packet Filter (BPF) (described in more detail in x 5.1).
We start two separate executions of EXE, one using DFS
and the other using BFS. We let both EXE executions run
until they achieved full basic block coverage. Figure 4 com-
pares BFS to DFS in terms of basic block coverage. (For
visual clarit y the graph only shows block coverage for the
�rst 1500 test cases,as only a few blocks are missing from
the coverage by these test cases.) BFS converges to full
coverage more than twice as fast as DFS: 7,956 test cases
versus 18,667. More precisely, EXE gets 91.74% block cov-
erage, since there are several basic blocks in BPF that EXE
cannot reach, such as dead code (e.g. the failure branch
of asserts), or branches that do not depend on the input
marked as symbolic.

Figure 5 then comparesEXE against random testing also
in terms of basic block coverage. We generate one million
random test casesof the same size as those generated by
EXE, and run these random test casesthrough a lightly-
instrumented version of BPF that records basic block cov-
erage. These test casesonly cover 56.96% of the blocks in
BPF; EXE achievesthe samecoveragein only 75 tests when
using BFS. Even more strikingly , these million random test
casesyield only 131 unique paths through the code, while
each of EXE's test casesrepresents a unique path.

Figure 5: EXE with best-�rst search vs. random testing.

5. USING EXE TO FIND BUGS
This section presents three casestudies that use EXE to

�nd bugs in: (1) two packet �lter implementations, (2) the
udhcpd DHCP server, and (3) the pcre Perl compatible reg-
ular expressionslibrary . Wealsosummarize a previous e�ort
of applying EXE to �le system code.

5.1 Packet �lters
Many operating systemsallow programs to specify packet

�lters which describe the network packets they want to re-
ceive. Most packet �lter implementations are variants of
the Berkeley Packet Filter (BPF) system. BPF �lters are
written in a pseudo-assembly language,downloaded into the
kernel, validated by the BPF system, and then applied to
incoming packets. We used EXE to check the packet �l-
ter in both FreeBSD and Linux. FreeBSD usesBPF, while
Linux usesa heavily modi�ed version of it. EXE found two
bu�er overo ws in the former and four errors in the latter.
BPF is one particularly hard test of EXE | small, heavily-
inspected and mature code, written by programmers known
for their skill.

A �lter is an array of instructions specifying an opcode
(code), a possible memory o�set to read or write (k), and
several other �elds. The BPF interpreter iterates over this
�lter, executing each opcode's corresponding action. This
loop is the main sourceof vulnerabilities but is hard to test
exhaustively (e.g., hitting all opcodes even once using ran-
dom testing takes a long time).

We used a two-part checking process. First, we marked a
�xed-sized array of �lter instructions assymbolic and passed



s[0].code = BPF STX ; // also: (BPF LDXjBPF MEM)
s[0].k = 0x���f0UL;
s[1].code = BPF RET ;

Figure 6: A BPF �lter of death

// Code extracted from bpf validate. Rejects
// �lter if opcode's memory o�set is more than
// BPF MEMWORDS.
// Forgets to check opcodes LDX and STX!
if ((BPF CLASS(p� > code) == BPF ST

j j (BPF CLASS(p� > code) == BPF LD &&
(p� > code & 0xe0) == BPF MEM ))

&& p� > k > = BPF MEMW ORDS )
return 0;

. . .
// Code extracted from bpf �lter: pc points to current
// instruction. Both cases can overow mem[pc-> k].

case BPF LDXjBPF MEM:
X = mem[pc� > k]; con tin ue;

. . .
case BPF STX:

mem[pc� > k] = X; con tin ue;

Figure 7: The BPF code Figure 6's �lter exploits.

it to the packet �lter validation routine bpf validate , which
returns 1 if it considers a �lter legal. For each valid �lter,
we then mark a �xed-size byte array (representing a packet)
as symbolic and run the �lter interpreter bpf filter on the
symbolic �lter with the symbolic packet, thus checking the
�lter against all possible data packets of that length.

This checking illustrates oneof EXE's interesting features:
it turns interpreters into generatorsof the programs they can
interpret. In our example, running the BPF interpreter on
a symbolic �lter causesit to generate all possible �lters of
that length, since each branch of the interpreter will fork
execution, adding a constraint corresponding to the opcode
it checked.

Figure 6 shows oneof the two �lters EXE found that cause
bu�er overo ws in FreeBSD's BPF. The bug can occur when
the opcode of a BPF instruction is either BPFSTXor BPFLDX
| BPFMEM. As shown in Figure 7, bpf validate forgets to
bounds check the memory o�set given by these instructions,
as it does for instructions with opcodes BPFSTor BPFLD |
BPFMEM. This missing check means these instructions can
write or read arbitrary o�sets o� the �xed-sized bu�er mem,
thus crashing the kernel or allowing a trivial exploit.

Linux had a tric kier example. EXE found three �lters
that can crash the kernel because of an arithmetic over-
o w in a bounds check, shown in Figure 8. As with BPF,

// other �lters that cause this error:
// code = (BPF LD jBPF BjBPF IND)
// code = (BPF LD jBPF HjBPF IND)
s[0].code = BPF LD jBPF BjBPF ABS;
s[0].k = 0x7���fUL;
s[1].code = BPF RET ;
s[1].k = 0x���f0UL;

Figure 8: A Linux �lter of death

static inline void *
skb header pointer(struct sk bu� *skb,

in t o�set , in t len, void *bu�er ) f

in t hlen = skb headlen(skb);

// Memory overow. o�set=s[0].k; a �lter
// can make this value very large, causing
// o�set + len to overow, trivial ly passing
// the bounds check.
if (o�set + len < = hlen)

return skb� > data + o�set ;

Figure 9: The Linux code Figure 8's �lter exploits.

the o�set �eld (k) causesthe problem. Here, the code to
interpret BPFLD instructions eventually calls the function
skb header pointer , which computes an o�set into a given
packet's data and returns it. This routine is passeds[0].k
as the offset parameter, and values 4 or 2 as the len pa-
rameter. It extracts the size of the current messageheader
into hlen and checks that offset + len � hlen . How-
ever, the �lter can cause offset to be very large, which
means the signed addition offset + len will overo w to a
small value, passing the check, but then causing that very
large offset value to be added to the messagedata pointer.
This allows attackers to easily crash the machine. This error
would be hard to �nd with random testing. Its occurrence
in highly-visible, widely-used code, demonstrates that such
tric ky casescan empirically withstand repeated manual in-
spection.

5.2 A completeserver: udhcpd
We also checked udhcpd-0.9.8 , a clean, well-tested user-

level DHCP server. We marked its input packet as symbolic,
and then modi�ed its network read call to return a packet
of at most 548 bytes. After running udhcpd long enough to
generate 596 test cases,EXE detected �v e di�eren t mem-
ory errors: four-byte read overo ws at lines 213 and 214 in
dhcpd.c and three similar errors at lines 79, 94, and 99 in
options.c . These errors were not found when we tested the
code using random testing. EXE generated packets to trig-
ger all of these errors, one of which is shown in Figure 10.
We con�rmed these errors by rerunning the concrete error
packets on an uninstrumen ted version of udhcpd while mon-
itoring it with valgrind , a tool that dynamically checks for
some typesof memory corruption and storage leaks [38].

5.3 Perl Compatible Regular Expressions
The pcre library [39] is used by several popular open-

source projects, including Apache, PHP, and Post�x. For
speed, pcre provides a routine pcre compile , which com-
piles a pattern string into a regular expressionfor later use.
This routine has beenthe target of security advisories in the
past [40].

Wechecked this routine by marking a null-terminated pat-
tern string as symbolic and then passingit to pcre compile .
EXE quickly found a class of issueswith this routine in a
recent version of pcre (6.6). The function iterates over the
provided pattern twice, �rst to do basic error checking and
to estimate how much memory to allocate for the compiled
pattern, and second to do actual compilation. The bugs



O�set Hex value
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010 0000 0000 0000 0000 0000 0000 5A00 0000
.... ....
00F0 2100 00F9 0000 0000 0000 0000 0000 0000
.... ....
01E0 0000 0000 0000 0000 0000 0000 2734 0000
01F0 0000 0000 0000 0000 0000 0000 0000 0000
0200 0000 0000 0000 0000 0000 0000 0000 3500
0210 030F 0000 0000 0000 0000 0000 0000 0000
0220 0032 0036

Figure 10: An EXE generated packet that causesan out-of-
bounds read in udhcpd.

[^[n0^n0]n* � ?]fn 0 [n�n `[n0^n0]n`]fn 0
[n* �n `[n0^n0]n �̀ ?]fn 0 [n* �n `[n0^n0]n �̀ ?]n0
[n* �n `[n0^n0]n �̀ ?]n0 [n�n `[n0^n0]n �̀ ]n0
(?#)n?[[[n0n0]n� ]fn 0 (?#)n?[[[n0n0]n� ]n0
(?#)n?[[[n0n0]n[ ]n0 (?#)n?[:[[n0n0]n� ]n0
(?#)n?[[[n0n0]n� ]n0 (?#)n?[[[n0n0]n]n0
(?#)n?[[[n0n0][n0^n0]]n0 (?#)n?[[[n0n0][n0^n0]� ]n0
(?#)n?[[[n0n0][n0^n0]n]n0 (?#)n?[=[[ n0n0][n0^n0]n?]n0

Figure 11: EXE-generated regular expression patterns that
causeout-of-b ounds writes (leading to aborts in glibc on free)
when passedas the �rst argument to pcre compile .

found included overo wing reads in the check posix syntax
helper function (pcre compile.c:1361-1363),called during the
�rst pass, as well as more dangerous overo wing reads and
writes in the compile regex and compile branch helpers
(illegal writes on pcre compile.c lines 3400-3401and 3515-
3616), which are called during the compilation pass. While
the �rst problem may appear to be an innocent read past
the end of the bu�er, it allows illegal expressions to enter
the secondpass, causing more serious issues. The substring
\ [\0^\0] " is especially dangerousbecausestrings which end
with this sequencewill cause pcre to skip over both null
characters and contin ue parsing unallocated or uninitialized
memory. Figure 11 show a representativ e sample of EXE-
generated patterns that trigger overo ws in pcre , which in
turn cause glibc aborts. The author of the library �xed
the bug soon after being noti�ed, and so the latest version
of pcre asof this writing (6.7) doesnot exhibit this problem.

5.4 Generating disks of death
We previously usedEXE to generatedisk imagesfor three

�le systems(ext2 , ext3 , and JFS) that when mounted would
crash or compromise the Linux kernel [46]. At a high level,
the checking worked as follows. We wrote a special device
driv er that returned symbolic blocks to its callers. We then
compiled Linux using EXE and ran it as a user-level process
(so fork would work) and invoked the mount system call,
which causedthe �le systemto read symbolic blocks, thereby
driving checking.

We found bugs in all three �le systems, demonstrating
that EXE can handle complex systemscode. Further, these
errors would almost certainly be beyond the reach of random
testing. For example, the Linux ext2 \read super block"
routine has over fort y if-statements to check the data asso-
ciated with the super block. Any randomly-generated super
block must satisfy these tests before it can reach even the
next level of error checking, much less triggering the execu-
tion of \real code" that performs actual �le system opera-
tions.

6. RELATED WORK
We described an initial, primitiv e version of EXE (then

called EGT) in an invited workshop paper [13]. EGT did not
support readsor writes of symbolic pointer expressions,sym-
bolic arrays, bit-�elds, casting, sign-extension, arithmetic
overo w, and our symbolic checks. We also gave an overview
of EXE in the �le system checking paper [46] discussedin
Section 5.4. That paper took EXE as a given and used it
to �nd bugs. In contrast, both STP and EXE are contribu-

tions of this paper, which we describe in more detail as well
as focus on a broader set of applications.

Simultaneously with our initial work [13], DART [27] also
generated test casesfrom symbolic inputs. DART runs the
tested unit code on random input and symbolically gathers
constraints at decision points that use input values. Then,
DART negatesone of thesesymbolic constraints to generate
the next test case. DART only handles integer constraints
and devolvesto random testing when pointer constraints are
used, with the usual problems of missed paths.

The CUTE project [42] extends DART by tracking sym-
bolic pointer constraints of the form: p = NULL, p 6= NULL, p
= q, or p 6= q. In addition, CUTE tracks constraints formed
by reading or writing symbolic memory at constant o�sets
(such as a �eld dereferencep! field ), but unlik e EXE it
cannot handle symbolic o�sets. For example, the paper
on CUTE shows that on the code snippet a[i] = 0; a[j]
= 1; if (a[i] == 0) ERROR, CUTE fails to �nd the case
when i equals j , which would have driv en the code down
both paths. In contrast to both DART and CUTE, EXE
has completely accurate constraints on memory, and thus
can (potentially) check code much more thoroughly .

CBMC is a boundedmodel checker for ANSI-C programs [14]
designed to cross-check an ANSI C re-implementation of
a circuit against its Verilog implementation. Unlik e EXE,
which uses a mixture of concrete and symbolic execution,
CBMC runs code entirely symbolically. It takes (and re-
quires) an entire, strictly-conforming ANSI C program, which
it translates into constraints that are passedto a SAT solver.
CBMC provides full support for C arithmetic and control
operations, as well as reads and writes of symbolic mem-
ory. However, it has several serious limitations. First, it has
a strongly-t yped view of memory, which prevents it from
checking code that accessesmemory through pointers of dif-
ferent types. Second, becauseCBMC must translate the
entire program to SAT, it can only check stand-alone pro-
grams that do not interact with the environment (e.g., by
using system calls or even calling code for which there is no
source). Both of these limits seemto prevent CBMC from
checking the applications in this paper. Finally , CBMC un-
rolls all loops and recursive calls, which means that it may
miss bugs that EXE can �nd and also that it may execute
somesymbolic loops more times than the current set of con-
straints allows.

Larson and Todd [34] present a system that dynamically
tracks primitiv e constraints associated with \tain ted" data
(e.g., data that comes from untrusted sourcessuch as net-
work packets) and warns when the data could be used in



a potentially dangerous way. They associate tain ted inte-
gers with an upper and lower bound and tain ted strings
with their maximum length and whether the string is null-
terminated. At potentially dangerous uses of inputs, such
as array referencesor calls to the string library , they check
whether the integer could be out of bounds, or if the string
could violate the library function's contract. Thus, as EXE,
this system can detect an error even if it did not actually oc-
cur during the program's concrete execution. However, their
system lacks almost all of the symbolic power that EXE pro-
vides. Further, they cannot generate inputs to causepaths
to be executed; users must provide test casesand they can
only check paths covered by these test cases.

Static checking and static input generation. There
has been much recent work on static bug �nding, including
better type systems [20, 25, 23], static analysis tools [25, 5,
18, 19, 24, 12, 43], and statically solving constraints to gen-
erate inputs that would causeexecution to reach a speci�c
program point or path [8, 28, 2, 4, 10]. The insides of these
tools look dramatically di�eren t from EXE. An exception is
Saturn [44], which expressesprogram properties as boolean
constraints and models pointers and heap data down to the
bit level. Dynamic analysis requires running code, static
analysis doesnot. Thus, static tools often take lesswork to
apply (just compile the sourceand skip what cannot be han-
dled), can check all paths (rather than only executed ones),
and can �nd bugs in code it cannot run (such as operating
systems code). However, becauseEXE runs code, it can
check much deeper properties, such as complex expressions
in assertions,or properties that depend on accurate value in-
formation (the exact value of an index or size of an object),
pointers, and heap layout, among many others. Further,
unlik e static analysis, EXE has no false positives. However,
we view the two approaches as complementary: there is no
reasonnot to use lightweight static techniques and then use
EXE.

Soft ware Mo del Chec king. Model checkers have been
usedto �nd bugs in both the designand the implementation
of software [31, 32, 9, 16, 5, 26, 47]. These approaches
often require a lot of manual e�ort to build test harnesses.
However, to somedegree,the approachesare complementary
to EXE: the tests EXE generates could be used to driv e
the model checked code, similar to the approach embraced
by the Java PathFinder (JPF) project [33]. JPF combines
model checking and symbolic execution to check applications
that manipulate complex data structures written in Java.
JPF di�ers from EXE in that it does not have support for
untyped memory (not needed because Java is a strongly
typed language) and does not support symbolic pointers.

Dynamic tec hniques for test and input generation.
Past dynamic input generation work seemto focus on gen-
erating an input to follow a speci�c path, motiv ated by the
problem of answering programmer queries as to whether
control can reach a speci�c statement or not [22, 29]. EXE
instead focuseson bug �nding, in particular the problems of
exhausting all input-con trolled paths and universal check-
ing, neither addressedby prior work.

7. CONCLUSION
We have presented EXE, which usesrobust, bit-lev el ac-

curate symbolic execution to �nd deep errors in code and
automatically generate inputs that will hit these errors. A
key aspect of EXE is its modeling of memory and its co-

designed, fast constraint solver STP. We have applied EXE
to a variety of real, tested programs where it was powerful
enough to uncover subtle and surprising bugs.
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