ECE750T-28:
Computer-aided Reasoning for Software Engineering

Lecture 9: Overview of First-Order Theories

Vijay Ganesh
(Original notes from Isil Dillig)
Motivation

▶ Last few lectures: Full first-order logic
Motivation

▶ Last few lectures: Full first-order logic

▶ First-order logic is very powerful and very general.
Motivation

- Last few lectures: Full first-order logic

- First-order logic is very powerful and very general.

- But in many settings, we have a particular application in mind and do not need the full power of first order logic.
Motivation

- Last few lectures: Full first-order logic

- First-order logic is very powerful and very general.

- But in many settings, we have a particular application in mind and do not need the full power of first order logic.

- For instance, instead of general predicates/functions, we might only need an equality predicate or arithmetic operations.
Motivation

- Last few lectures: Full first-order logic

- First-order logic is very powerful and very general.

- But in many settings, we have a particular application in mind and do not need the full power of first order logic.

- For instance, instead of general predicates/functions, we might only need an equality predicate or arithmetic operations.

- Also, might want to disallow some interpretations that are allowed in first-order logic.
First-Order Theories

- **First-order theories**: Useful for formalizing and reasoning about particular application domains
 - e.g., involving integers, real numbers, lists, arrays, ...
First-Order Theories

- **First-order theories**: Useful for formalizing and reasoning about particular application domains
 - e.g., involving integers, real numbers, lists, arrays, ...

- **Advantage**: By focusing on particular application domain, can give much more efficient, specialized decision procedures
First-Order Theories

- **First-order theories**: Useful for formalizing and reasoning about particular application domains
 - e.g., involving integers, real numbers, lists, arrays, …

- **Advantage**: By focusing on particular application domain, can give much more efficient, specialized decision procedures

- **Today**: Talk about what first-order theories are and look at some examples.
First-Order Theories

- **First-order theories**: Useful for formalizing and reasoning about particular application domains
 - e.g., involving integers, real numbers, lists, arrays, ...

- **Advantage**: By focusing on particular application domain, can give much more efficient, specialized decision procedures

- **Today**: Talk about what first-order theories are and look at some examples.

- **Future lectures**: Explore individual first-order theories in more detail and learn about specialized decision procedures
Signature and Axioms of First-Order Theory

- A first-order theory T consists of:

 1. Signature Σ_T: set of constant, function, and predicate symbols
 2. Axioms A_T: A set of FOL sentences over Σ_T

Σ_T formula: Formula constructed from symbols of Σ_T and variables, logical connectives, and quantifiers.

Example: We could have a theory of heights T_H with signature Σ_H:

$\{$ taller $\}$

and axiom:

$\forall x, y. \text{taller}(x, y) \rightarrow \neg \text{taller}(y, x)$

Is $\exists x. \forall z. \text{taller}(x, z) \land \text{taller}(y, w)$ legal Σ_H formula? Yes

What about $\exists x. \forall z. \text{taller}(x, z) \land \text{taller}(joe, tom)$? No
A first-order theory T consists of:

1. **Signature Σ_T**: set of constant, function, and predicate symbols
A first-order theory T consists of:

1. **Signature Σ_T:** set of constant, function, and predicate symbols

2. **Axioms A_T:** A set of FOL sentences over Σ_T
Signature and Axioms of First-Order Theory

- A first-order theory T consists of:
 1. **Signature** Σ_T: set of constant, function, and predicate symbols
 2. **Axioms** A_T: A set of FOL sentences over Σ_T

- Σ_T formula: Formula constructed from symbols of Σ_T and variables, logical connectives, and quantifiers.
Signature and Axioms of First-Order Theory

- A first-order theory T consists of:
 1. **Signature Σ_T**: set of constant, function, and predicate symbols
 2. **Axioms A_T**: A set of FOL sentences over Σ_T

- Σ_T formula: Formula constructed from symbols of Σ_T and variables, logical connectives, and quantifiers.

- **Example**: We could have a theory of heights T_H with signature $\Sigma_H : \{taller\}$ and axiom:
 \[
 \forall x, y. \text{taller}(x, y) \rightarrow \neg\text{taller}(y, x)
 \]
Signature and Axioms of First-Order Theory

- A first-order theory \(T \) consists of:
 1. **Signature** \(\Sigma_T \): set of constant, function, and predicate symbols
 2. **Axioms** \(A_T \): A set of FOL sentences over \(\Sigma_T \)

- \(\Sigma_T \) **formula**: Formula constructed from symbols of \(\Sigma_T \) and variables, logical connectives, and quantifiers.

- **Example**: We could have a theory of heights \(T_H \) with signature \(\Sigma_H : \{ \text{taller} \} \) and axiom:
 \[
 \forall x, y. \text{taller}(x, y) \rightarrow \neg \text{taller}(y, x)
 \]

- Is \(\exists x. \forall z. \text{taller}(x, z) \land \text{taller}(y, w) \) legal \(\Sigma_H \) formula?
Signature and Axioms of First-Order Theory

- A first-order theory \(T \) consists of:
 1. **Signature** \(\Sigma_T \): set of constant, function, and predicate symbols
 2. **Axioms** \(A_T \): A set of FOL sentences over \(\Sigma_T \)

- \(\Sigma_T \) **formula**: Formula constructed from symbols of \(\Sigma_T \) and variables, logical connectives, and quantifiers.

- **Example**: We could have a theory of heights \(T_H \) with signature \(\Sigma_H : \{ \text{taller} \} \) and axiom:
 \[
 \forall x, y. \text{taller}(x, y) \rightarrow \neg \text{taller}(y, x)
 \]

- Is \(\exists x. \forall z. \text{taller}(x, z) \land \text{taller}(y, w) \) legal \(\Sigma_H \) formula? Yes
Signature and Axioms of First-Order Theory

- A first-order theory T consists of:
 1. Signature Σ_T: set of constant, function, and predicate symbols
 2. Axioms A_T: A set of FOL sentences over Σ_T

- Σ_T formula: Formula constructed from symbols of Σ_T and variables, logical connectives, and quantifiers.

- Example: We could have a theory of heights T_H with signature $\Sigma_H : \{taller\}$ and axiom:
 $$\forall x, y. taller(x, y) \rightarrow \neg taller(y, x)$$

- Is $\exists x. \forall z. taller(x, z) \land taller(y, w)$ legal Σ_H formula? Yes

- What about $\exists x. \forall z. taller(x, z) \land taller(joe, tom)$?
A first-order theory T consists of:

1. **Signature Σ_T**: set of constant, function, and predicate symbols

2. **Axioms A_T**: A set of FOL sentences over Σ_T

Σ_T formula: Formula constructed from symbols of Σ_T and variables, logical connectives, and quantifiers.

Example: We could have a theory of heights T_H with signature $\Sigma_H : \{\text{taller}\}$ and axiom:

$$\forall x, y. \text{taller}(x, y) \rightarrow \neg \text{taller}(y, x)$$

Is $\exists x. \forall z. \text{taller}(x, z) \land \text{taller}(y, w)$ legal Σ_H formula? Yes

What about $\exists x. \forall z. \text{taller}(x, z) \land \text{taller}(joe, tom)$? No
Axioms of First-Order Theory

- The axioms A_T provide the meaning of symbols in Σ_T.

Example: In our theory of heights, axioms define meaning of predicate taller.

Specifically, axioms ensure that some interpretations legal in standard FOL are not legal in T.

Example: Consider relation constant taller, and $U = \{A, B, C\}$.

In FOL, possible interpretation:

$I(\text{taller}) : \{\langle A, B \rangle, \langle B, A \rangle\}$

In our theory of heights, this interpretation is not legal b/c does not satisfy axioms.
Axioms of First-Order Theory

- The axioms A_T provide the meaning of symbols in Σ_T.

- **Example:** In our theory of heights, axioms define meaning of predicate `taller`
Axioms of First-Order Theory

- The axioms A_T provide the meaning of symbols in Σ_T.

- **Example:** In our theory of heights, axioms define meaning of predicate `taller`

- Specifically, axioms ensure that some interpretations legal in standard FOL are not legal in T
Axioms of First-Order Theory

- The axioms A_T provide the meaning of symbols in Σ_T.

- **Example:** In our theory of heights, axioms define meaning of predicate `taller`.

- Specifically, axioms ensure that some interpretations legal in standard FOL are not legal in T.

- **Example:** Consider relation constant `taller`, and $U = \{A, B, C\}$.
Axioms of First-Order Theory

- The axioms A_T provide the meaning of symbols in Σ_T.

- **Example:** In our theory of heights, axioms define meaning of predicate *taller*

- Specifically, axioms ensure that some interpretations legal in standard FOL are not legal in T

- **Example:** Consider relation constant *taller*, and $U = \{A, B, C\}$

- In FOL, possible interpretation: $I(\text{taller}) : \{\langle A, B \rangle, \langle B, A \rangle\}$
Axioms of First-Order Theory

- The axioms A_T provide the meaning of symbols in Σ_T.

- **Example:** In our theory of heights, axioms define meaning of predicate `taller`.

- Specifically, axioms ensure that some interpretations legal in standard FOL are not legal in T.

- **Example:** Consider relation constant `taller`, and $U = \{A, B, C\}$.

- In FOL, possible interpretation: $I(taller) : \{(A,B), (B,A)\}$.

- In our theory of heights, this interpretation is not legal b/c does not satisfy axioms.
Models of T

- A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.

Example: Consider a structure consisting of universe $U = \{A, B\}$ and interpretation $I(\text{taller}) : \{\langle A, B \rangle, \langle B, A \rangle\}$. Is this a model of T? No. Now, consider the same U and interpretation $\langle A, B \rangle$. Is this a model? Yes.

Suppose our theory had another axiom: $\forall x, y, z. (\text{taller}(x, y) \land \text{taller}(y, z) \rightarrow \text{taller}(x, z))$.

Consider $I(\text{taller}) : \{\langle A, B \rangle, \langle B, C \rangle\}$. Is (U, I) a model? No.
Models of T

- A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.

- **Example:** Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(taller) : \{\langle A, B \rangle, \langle B, A \rangle\}$.

- Consider $I(taller) : \{\langle A, B \rangle, \langle B, C \rangle\}$. Is (U, I) a model?
Models of T

- A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.

- **Example:** Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(taller) : \{\langle A, B \rangle, \langle B, A \rangle\}$

- Is this a model of T?
Models of T

- A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.

- **Example:** Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(taller) : \{\langle A, B \rangle, \langle B, A \rangle\}$

- Is this a model of T? No
Models of T

- A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.

- **Example:** Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(taller) : \{\langle A, B \rangle, \langle B, A \rangle\}$

- Is this a model of T? No

- Now, consider same U and interpretation $\langle A, B \rangle$. Is this a model?
Models of \(T \)

- A structure \(M = \langle U, I \rangle \) is a model of theory \(T \), or \(T \)-model, if \(M \models A \) for every \(A \in A_T \).

- Example: Consider structure consisting of universe \(U = \{A, B\} \) and interpretation \(I(taller) : \{\langle A, B\rangle, \langle B, A\rangle\} \)

- Is this a model of \(T \)? No

- Now, consider same \(U \) and interpretation \(\langle A, B\rangle \). Is this a model? Yes
Models of T

- A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.

- **Example:** Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(taller) : \{\langle A, B \rangle, \langle B, A \rangle\}$

- Is this a model of T? No

- Now, consider same U and interpretation $\langle A, B \rangle$. Is this a model? Yes

- Suppose our theory had another axiom:

 $$\forall x, y, z. \ (taller(x, y) \land taller(y, z) \rightarrow taller(x, z))$$
Models of T

- A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in \mathcal{A}_T$.

- **Example:** Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(taller) : \{\langle A, B \rangle, \langle B, A \rangle\}$

- Is this a model of T? No

- Now, consider same U and interpretation $\langle A, B \rangle$. Is this a model? Yes

- Suppose our theory had another axiom:
 \[
 \forall x, y, z. (taller(x, y) \land taller(y, z) \rightarrow taller(x, z))
 \]

- Consider $I(taller) : \{\langle A, B \rangle, \langle B, C \rangle\}$. Is (U, I) a model?
Models of T

- A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.

- **Example:** Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(taller) : \{\langle A, B \rangle, \langle B, A \rangle\}$

- Is this a model of T? No

- Now, consider same U and interpretation $\langle A, B \rangle$. Is this a model? Yes

- Suppose our theory had another axiom:

 $$\forall x, y, z. \ (taller(x, y) \land taller(y, z) \rightarrow taller(x, z))$$

- Consider $I(taller) : \{\langle A, B \rangle, \langle B, C \rangle\}$. Is (U, I) a model? No
Satisfiability and Validity Modulo T

- Formula F is satisfiable modulo T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$
Satisfiability and Validity Modulo T

- Formula F is satisfiable modulo T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$

- Formula F is valid modulo T if for all T-models M and variable assignments σ, $M, \sigma \models F$
Satisfiability and Validity Modulo T

- Formula F is **satisfiable modulo** T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$

- Formula F is **valid modulo** T if for all T-models M and variable assignments σ, $M, \sigma \models F$

Question: How is validity modulo T different from FOL-validity?
Satisfiability and Validity Modulo T

- Formula F is **satisfiable modulo** T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$

- Formula F is **valid modulo** T if for all T-models M and variable assignments σ, $M, \sigma \models F$

Question: How is validity modulo T different from FOL-validity?

Answer: Disregards all structures that do not satisfy theory axioms.
Formula F is **satisfiable modulo** T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$

Formula F is **valid modulo** T if for all T-models M and variable assignments σ, $M, \sigma \models F$

Question: How is validity modulo T different from FOL-validity?

Answer: Disregards all structures that do not satisfy theory axioms.

If a formula F is valid modulo theory T, we will write $T \models F$.

Satisfiability and Validity Modulo T
Satisfiability and Validity Modulo T

- Formula F is satisfiable modulo T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$.

- Formula F is valid modulo T if for all T-models M and variable assignments σ, $M, \sigma \models F$.

Question: How is validity modulo T different from FOL-validity?

Answer: Disregards all structures that do not satisfy theory axioms.

- If a formula F is valid modulo theory T, we will write $T \models F$.

- Theory T consists of all sentences that are valid in T.
Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:

\[
M, \sigma \models F_1 \text{ iff } M, \sigma \models F_2
\]
Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:

\[
M, \sigma \models F_1 \iff M, \sigma \models F_2
\]

- Another way of stating equivalence of F_1 and F_2 modulo T:

\[
T \models F_1 \leftrightarrow F_2
\]
Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:

$$M, \sigma \models F_1 \text{ iff } M, \sigma \models F_2$$

Another way of stating equivalence of F_1 and F_2 modulo T:

$$T \models F_1 \leftrightarrow F_2$$

Example: Consider a theory $T_=$ with predicate symbol $=$ and suppose A_T gives the intended meaning of equality to $=$.
Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:

\[M, \sigma \models F_1 \text{ iff } M, \sigma \models F_2 \]

- Another way of stating equivalence of F_1 and F_2 modulo T:

\[T \models F_1 \leftrightarrow F_2 \]

- Example: Consider a theory $T_=$ with predicate symbol $=$ and suppose A_T gives the intended meaning of equality to $=$.

- Are $x = y$ and $y = x$ equivalent modulo $T_=$?
Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:

 \[
 M, \sigma \models F_1 \iff M, \sigma \models F_2
 \]

- Another way of stating equivalence of F_1 and F_2 modulo T:

 \[
 T \models F_1 \leftrightarrow F_2
 \]

- Example: Consider a theory $T_=$ with predicate symbol $=$ and suppose A_T gives the intended meaning of equality to $=$.

- Are $x = y$ and $y = x$ equivalent modulo $T_=$? Yes
Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:

 $$M, \sigma \models F_1 \iff M, \sigma \models F_2$$

- Another way of stating equivalence of F_1 and F_2 modulo T:

 $$T \models F_1 \leftrightarrow F_2$$

- Example: Consider a theory T_\equiv with predicate symbol $=$ and suppose A_T gives the intended meaning of equality to $=$.

 - Are $x = y$ and $y = x$ equivalent modulo T_\equiv? Yes

 - Are they equivalent according to FOL semantics?
Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:
 \[
 M, \sigma \models F_1 \text{ iff } M, \sigma \models F_2
 \]

- Another way of stating equivalence of F_1 and F_2 modulo T:
 \[
 T \models F_1 \iff F_2
 \]

- **Example:** Consider a theory $T_\text{=} = \{\text{\texttt{_}}, \text{\texttt{_}}\}$ with predicate symbol = and suppose A_T gives the intended meaning of equality to =.

- Are $x = y$ and $y = x$ equivalent modulo $T_\text{=}$? **Yes**

- Are they equivalent according to FOL semantics? **No**
Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:

$$M,\sigma \models F_1 \iff M,\sigma \models F_2$$

- Another way of stating equivalence of F_1 and F_2 modulo T:

$$T \models F_1 \leftrightarrow F_2$$

- **Example:** Consider a theory T_\approx with predicate symbol \approx and suppose A_T gives the intended meaning of equality to \approx.

- Are $x = y$ and $y = x$ equivalent modulo T_\approx? Yes

- Are they equivalent according to FOL semantics? No

- Falsifying interpretation:
Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:

$$M, \sigma \models F_1 \iff M, \sigma \models F_2$$

- Another way of stating equivalence of F_1 and F_2 modulo T:

$$T \models F_1 \leftrightarrow F_2$$

- **Example:** Consider a theory T_\approx with predicate symbol \approx and suppose A_T gives the intended meaning of equality to \approx.

- Are $x = y$ and $y = x$ equivalent modulo T_\approx? Yes

- Are they equivalent according to FOL semantics? No

- **Falsifying interpretation:** $U = \{\Box, \triangle\}, I(\approx) : \{\langle \triangle, \Box \rangle\}$
A theory T is complete if for every sentence F, if T entails F or its negation:

$$T \models F \text{ or } T \models \neg F$$

Question: In first-order logic, for every closed formula F, is either F or $\neg F$ valid?

Answer: No! Consider $p(a)$:
- Neither $p(a)$ nor $\neg p(a)$ is valid.

Consider $U = \{\circ, \star\}$
- Falsifying interpretation for $p(a)$: $I(a) = \circ, I(p) = \{\langle \star \rangle\}$
- Falsifying interpretation for $\neg p(a)$: $I(a) = \circ, I(p) = \{\langle \circ \rangle\}$
Completeness of Theory

- A theory T is **complete** if for every sentence F, if T entails F or its negation:

 $$T \models F \text{ or } T \models \neg F$$

- **Question:** In first-order logic, for every closed formula F, is either F or $\neg F$ valid?
Completeness of Theory

- A theory T is complete if for every sentence F, if T entails F or its negation:

 $$ T \models F \text{ or } T \models \neg F $$

- **Question:** In first-order logic, for every closed formula F, is either F or $\neg F$ valid?

- **Answer:** No! Consider $p(a)$: Neither $p(a)$ nor $\neg p(a)$ is valid.
Completeness of Theory

- A theory T is complete if for every sentence F, if T entails F or its negation:

 $$ T \models F \text{ or } T \models \neg F $$

- **Question:** In first-order logic, for every closed formula F, is either F or $\neg F$ valid?

- **Answer:** No! Consider $p(a)$: Neither $p(a)$ nor $\neg p(a)$ is valid.

- Consider $U = \{\circ, \star\}$
Completeness of Theory

▶ A theory T is complete if for every sentence F, if T entails F or its negation:

$$T \models F \text{ or } T \models \neg F$$

▶ Question: In first-order logic, for every closed formula F, is either F or $\neg F$ valid?

▶ Answer: No! Consider $p(a)$: Neither $p(a)$ nor $\neg p(a)$ is valid.

▶ Consider $U = \{\circ, \star\}$

▶ Falsifying interpretation for $p(a)$:
Completeness of Theory

- A theory T is complete if for every sentence F, if T entails F or its negation:

$$T \models F \text{ or } T \models \neg F$$

- **Question**: In first-order logic, for every closed formula F, is either F or $\neg F$ valid?

- **Answer**: No! Consider $p(a)$: Neither $p(a)$ nor $\neg p(a)$ is valid.

- Consider $U = \{\circ, \star\}$

- Falsifying interpretation for $p(a)$: $I(a) = \circ$, $I(p) = \{\langle \star \rangle\}$
Completeness of Theory

- A theory T is **complete** if for every sentence F, if T entails F or its negation:

$$T \models F \text{ or } T \models \neg F$$

- **Question:** In first-order logic, for every closed formula F, is either F or $\neg F$ valid?

- **Answer:** No! Consider $p(a)$: Neither $p(a)$ nor $\neg p(a)$ is valid.

- Consider $U = \{\circ, \star\}$

- Falsifying interpretation for $p(a)$: $I(a) = \circ, I(p) = \{\langle \star \rangle\}$

- Falsifying interpretation for $\neg p(a)$:
Completeness of Theory

- A theory T is **complete** if for every sentence F, if T entails F or its negation:

 $$ T \models F \text{ or } T \models \neg F $$

- **Question:** In first-order logic, for every closed formula F, is either F or $\neg F$ valid?

- **Answer:** No! Consider $p(a)$: Neither $p(a)$ nor $\neg p(a)$ is valid.

- Consider $U = \{\circ, \star\}$

- Falsifying interpretation for $p(a)$: $I(a) = \circ, I(p) = \{\langle\star\rangle\}$

- Falsifying interpretation for $\neg p(a)$: $I(a) = \circ, I(p) = \{\langle\circ\rangle\}$
Decidability of Theory

A theory T is **decidable** if there exists an algorithm, such that for every formula F:

1. always terminates and answers "yes" if F is valid modulo T and
2. terminates and answers "no" if F is not valid modulo T
Decidability of Theory

- A theory T is **decidable** if there exists an algorithm, such that for every formula F:
 1. always terminates and answers "yes" if F is valid modulo T and
 2. terminates and answers "no" if F is not valid modulo T

- Unlike full first-order logic, many of the first-order theories we will study are decidable.
Decidability of Theory

A theory \(T \) is **decidable** if there exists an algorithm, such that for every formula \(F \):

1. always terminates and answers "yes" if \(F \) is valid modulo \(T \) and
2. terminates and answers "no" if \(F \) is not valid modulo \(T \)

Unlike full first-order logic, many of the first-order theories we will study are decidable.

For those that are not decidable, we are interested in **fragments** of that theory that are decidable.
Fragments of Theories

- A **fragment** of a theory is a syntactically restricted subset of that theory.
Fragments of Theories

- A **fragment** of a theory is a syntactically restricted subset of that theory.

- **Example:** Quantifier-free fragment of a theory T is the set of quantifier-free formulas that are valid modulo T.
Fragments of Theories

- A **fragment** of a theory is a syntactically restricted subset of that theory.

- **Example:** Quantifier-free fragment of a theory T is the set of quantifier-free formulas that are valid modulo T.

- A fragment of T is **decidable** if it is decidable whether $T \models F$ for every formula F in that fragment.
Fragments of Theories

- A **fragment** of a theory is a syntactically restricted subset of that theory.

- **Example:** Quantifier-free fragment of a theory T is the set of quantifier-free formulas that are valid modulo T.

- A fragment of T is **decidable** if it is decidable whether $T \models F$ for every formula F in that fragment.

- For some of the theories we will look at, the full theory is not decidable, but their quantifier-free fragment is (often efficiently) decidable and very useful in practice.
Examples of Theories

- **Remainder of this lecture:** Introduction to commonly-used first-order theories:
Examples of Theories

- **Remainder of this lecture:** Introduction to commonly-used first-order theories:

1. Theory of equality
2. Peano Arithmetic
3. Presburger Arithmetic
4. Theory of Rationals
5. Theory of Arrays

In the following lectures, we will further explore these theories and look at decision procedures.
Examples of Theories

- **Remainder of this lecture:** Introduction to commonly-used first-order theories:

1. Theory of equality
2. Peano Arithmetic
3. Presburger Arithmetic
4. Theory of Rationals
5. Theory of Arrays

- In the following lectures, we will further explore these theories and look at decision procedures.
Overview of the Theory of Equality $T_=$

- Extends first-order logic with a "built-in" equality predicate $=$
Overview of the Theory of Equality \(T_{=} \)

- Extends first-order logic with a "built-in" equality predicate \(= \)

- **Signature:**
 \[
 \Sigma_{=} : \{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots \}
 \]

 - \(= \), a binary predicate, *interpreted* by axioms.

 - all constant, function, and predicate symbols.
Axioms of the Theory of Equality

- Axioms of $T_=$ define the meaning of equality predicate $=$
Axioms of the Theory of Equality

- Axioms of $\mathit{T}=\mathit{d}$ define the meaning of equality predicate $=$

- Equality is reflexive, symmetric, and transitive:
Axioms of the Theory of Equality

- Axioms of $T_=$ define the meaning of equality predicate $=$

- Equality is reflexive, symmetric, and transitive:

1. $\forall x. x = x$ (reflexivity)
Axioms of the Theory of Equality

- Axioms of $T_=$ define the meaning of equality predicate $=\$

- Equality is reflexive, symmetric, and transitive:

 1. $\forall x. \ x = x$ (reflexivity)

 2. $\forall x, y. \ x = y \rightarrow y = x$ (symmetry)
Axioms of the Theory of Equality

- Axioms of \(T_\approx \) define the meaning of equality predicate \(\approx \)

- Equality is reflexive, symmetric, and transitive:

 1. \(\forall x. \ x = x \) \hspace{1cm} \text{(reflexivity)}

 2. \(\forall x, y. \ x = y \rightarrow y = x \) \hspace{1cm} \text{(symmetry)}
Axioms of the Theory of Equality

- Axioms of $T_=$ define the meaning of equality predicate $=$

- Equality is reflexive, symmetric, and transitive:

1. $\forall x. x = x$ (reflexivity)
2. $\forall x, y. x = y \rightarrow y = x$ (symmetry)
3. $\forall x, y, z. x = y \land y = z \rightarrow x = z$ (transitivity)
Axioms of the Theory of Equality

- Axioms of $T_=$ define the meaning of equality predicate $=$

- Equality is reflexive, symmetric, and transitive:

1. $\forall x. x = x$ \hspace{1cm} \text{(reflexivity)}

2. $\forall x, y. x = y \rightarrow y = x$ \hspace{1cm} \text{(symmetry)}

3. $\forall x, y, z. x = y \land y = z \rightarrow x = z$ \hspace{1cm} \text{(transitivity)}
Example

Consider universe $U = \{ \circ, \bullet \}$.

Which interpretations of \equiv are allowed according to axioms?

$I(\equiv)$:

No, violates reflexivity, transitivity

$I(\equiv)$:

Yes

$I(\equiv)$:

Yes
Example

- Consider universe $U = \{\circ, \bullet\}$.

- Which interpretations of $=$ are allowed according to axioms?
Example

- Consider universe $U = \{\circ, \bullet\}$.

- Which interpretations of $=$ are allowed according to axioms?
 - $I(=) : \{\langle \circ, \bullet \rangle, \langle \bullet, \circ \rangle\}$?
Consider universe \(U = \{\circ, \bullet\} \).

Which interpretations of \(= \) are allowed according to axioms?

- \(I(=) : \{\langle \circ, \bullet \rangle, \langle \bullet, \circ \rangle \} \)? No, violates reflexivity, transitivity
Example

◆ Consider universe $U = \{\circ, \bullet\}$.

◆ Which interpretations of \equiv are allowed according to axioms?

 ◆ $I(\equiv) : \{\langle \circ, \bullet \rangle, \langle \bullet, \circ \rangle\}$? No, violates reflexivity, transitivity

 ◆ $I(\equiv) : \{\langle \circ, \circ \rangle, \langle \bullet, \bullet \rangle\}$?
Consider universe \(U = \{\circ, \bullet\} \).

Which interpretations of \(= \) are allowed according to axioms?

- \(I(=) : \{\langle \circ, \bullet \rangle, \langle \bullet, \circ \rangle \} \)? No, violates reflexivity, transitivity

- \(I(=) : \{\langle \circ, \circ \rangle, \langle \bullet, \bullet \rangle \} \)? Yes
Example

- Consider universe \(U = \{\circ, \bullet\} \).

- Which interpretations of \(= \) are allowed according to axioms?

 \(I(=) : \{\langle \circ, \bullet \rangle, \langle \bullet, \circ \rangle\} \) ? No, violates reflexivity, transitivity

 \(I(=) : \{\langle \circ, \circ \rangle, \langle \bullet, \bullet \rangle\} \) ? Yes

 \(I(=) : \{\langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle\} \) ?
Example

Consider universe $U = \{\circ, \bullet\}$.

Which interpretations of $= \mathord{\;}$ are allowed according to axioms?

- $I(=) : \{\langle \circ, \bullet \rangle, \langle \bullet, \circ \rangle\}$? No, violates reflexivity, transitivity

- $I(=) : \{\langle \circ, \circ \rangle, \langle \bullet, \bullet \rangle\}$? Yes

- $I(=) : \{\langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle\}$? Yes
Axioms of the Theory of Equality, cont.

▶ Function congruence:
For any n-ary function f, two terms $f(\overline{x})$ and $f(\overline{y})$ are equal if \overline{x} and \overline{y} are equal:

$$\forall x_1, \ldots, x_n, y_1, \ldots, y_n. \bigwedge_{i} x_i = y_i \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$$
Axioms of the Theory of Equality, cont.

- **Function congruence:**
 For any \(n \)-ary function \(f \), two terms \(f(\vec{x}) \) and \(f(\vec{y}) \) are equal if \(\vec{x} \) and \(\vec{y} \) are equal:
 \[
 \forall x_1, \ldots, x_n, y_1, \ldots, y_n. \bigwedge_i x_i = y_i \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)
 \]

- **Predicate congruence:**
 For any \(n \)-ary predicate \(p \), two formulas \(p(\vec{x}) \) and \(p(\vec{y}) \) are equivalent if \(\vec{x} \) and \(\vec{y} \) are equal:
 \[
 \forall x_1, \ldots, x_n, y_1, \ldots, y_n. \bigwedge_i x_i = y_i \rightarrow (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))
 \]
Function/predicate congruence "axioms" stand for a set of axioms, instantiated for each function and predicate symbol.
Congruence and Axiom Schemata

- Function/predicate congruence "axioms" stand for a set of axioms, instantiated for each function and predicate symbol.

- Thus, these are not really axioms, but axiom schemata.
Congruence and Axiom Schemata

- Function/predicate congruence "axioms" stand for a set of axioms, instantiated for each function and predicate symbol.

- Thus, these are not really axioms, but axiom schemata.

- Example: For unary functions \(g \) and \(h \), function congruence axiom scheme stands for two axioms:

\[
\begin{align*}
\forall x, y . (x = y \rightarrow g(x) = g(y)) \\
\forall x, y . (x = y \rightarrow h(x) = h(y))
\end{align*}
\]
Function/predicate congruence "axioms" stand for a set of axioms, instantiated for each function and predicate symbol.

Thus, these are not really axioms, but axiom schemata.

Example: For unary functions g and h, function congruence axiom scheme stands for two axioms:

1. $\forall x, y. (x = y \rightarrow g(x) = g(y))$
Congruence and Axiom Schemata

- Function/predicate congruence "axioms" stand for a set of axioms, instantiated for each function and predicate symbol.

- Thus, these are not really axioms, but axiom schemata.

- Example: For unary functions g and h, function congruence axiom scheme stands for two axioms:

1. $\forall x, y. (x = y \rightarrow g(x) = g(y))$

2. $\forall x, y. (x = y \rightarrow h(x) = h(y))$
Consider universe \(\{\circ, \bullet, \star\} \), and

\[I(=) : \{\langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle, \langle \star, \star \rangle\} \]
Example

- Consider universe \{\circ, \bullet, \star\}, and

 \[I(\equiv) : \{\langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle, \langle \star, \star \rangle\}\]

- Are the following valid interpretations?
Example

Consider universe \{\circ, \bullet, \star\}, and

\[I(=) : \{\langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle, \langle \star, \star \rangle\} \]

Are the following valid interpretations?

- \(I(f) = \{\bullet \mapsto \circ, \circ \mapsto \star, \star \mapsto \star\} \)

No

- \(I(f) = \{\bullet \mapsto \bullet, \circ \mapsto \star, \star \mapsto \star\} \)

Yes

- \(I(f) = \{\bullet \mapsto \circ, \circ \mapsto \star, \star \mapsto \star\} \)

Yes
Example

- Consider universe \(\{\circ, \bullet, \star\} \), and

\[
I(\equiv) : \{\langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle, \langle \star, \star \rangle\}
\]

- Are the following valid interpretations?

 - \(I(f) = \{\bullet \mapsto \circ, \circ \mapsto \star, \star \mapsto \star\} \) No
Example

- Consider universe \{\circ, \bullet, \star\}, and

\[I(\equiv) : \{\langle\circ, \circ\rangle, \langle\circ, \bullet\rangle, \langle\bullet, \bullet\rangle, \langle\bullet, \circ\rangle, \langle\star, \star\rangle\} \]

- Are the following valid interpretations?

 - \(I(f) = \{\bullet \mapsto \circ, \circ \mapsto \star, \star \mapsto \star\} \) No

 - \(I(f) = \{\bullet \mapsto \bullet, \circ \mapsto \bullet, \star \mapsto \bullet\} \)
Example

Consider universe \(\{\circ, \bullet, \star\} \), and

\[
I(\equiv): \{\langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle, \langle \star, \star \rangle\}
\]

Are the following valid interpretations?

- \(I(f) = \{\bullet \mapsto \circ, \circ \mapsto \star, \star \mapsto \star\} \) No
- \(I(f) = \{\bullet \mapsto \bullet, \circ \mapsto \bullet, \star \mapsto \bullet\} \) Yes
Example

Consider universe \(\{\circ, \bullet, \star\}\), and

\[I(\equiv) : \{(\circ, \circ), (\circ, \bullet), (\bullet, \bullet), (\bullet, \circ), (\star, \star)\}\]

Are the following valid interpretations?

- \(I(f) = \{\bullet \mapsto \circ, \circ \mapsto \star, \star \mapsto \star\}\) No

- \(I(f) = \{\bullet \mapsto \bullet, \circ \mapsto \bullet, \star \mapsto \bullet\}\) Yes

- \(I(f) = \{\bullet \mapsto \circ, \circ \mapsto \bullet, \star \mapsto \star\}\)
Example

Consider universe \(\{\circ, \bullet, \star\} \), and

\[
I(\equiv) : \{ \langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle, \langle \star, \star \rangle \}
\]

Are the following valid interpretations?

- \(I(f) = \{ \bullet \mapsto \circ, \circ \mapsto \star, \star \mapsto \star \} \) No
- \(I(f) = \{ \bullet \mapsto \bullet, \circ \mapsto \bullet, \star \mapsto \bullet \} \) Yes
- \(I(f) = \{ \bullet \mapsto \circ, \circ \mapsto \bullet, \star \mapsto \star \} \) Yes
Proving Validity in T_{\equiv} using Semantic Arguments

- Semantic argument method can be used to prove T_{\equiv} validity.
Proving Validity in T_\equiv using Semantic Arguments

- Semantic argument method can be used to prove T_\equiv validity.

- As before, assume formula is T_\equiv invalid, i.e., there exists a T_\equiv model M and variable assignment σ such that $M, \sigma \not\models F$.
Proving Validity in $T \models$ using Semantic Arguments

- Semantic argument method can be used to prove $T \models$ validity.

- As before, assume formula is $T \models$ invalid, i.e., there exists a $T \models$ model M and variable assignment σ such that $M, \sigma \not\models F$.

- In addition to proof rules for FOL, our proof can also use axioms of $T \models$.

Proving Validity in T_\equiv using Semantic Arguments

- Semantic argument method can be used to prove T_\equiv validity.

- As before, assume formula is T_\equiv invalid, i.e., there exists a T_\equiv model M and variable assignment σ such that $M, \sigma \not\models F$.

- In addition to proof rules for FOL, our proof can also use axioms of T_\equiv.

- If we derive contradiction in every branch, formula is valid modulo T_\equiv.
Example

Prove

\[F : a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E\text{-valid}. \]
Example

Prove

\[F : a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E \text{-valid.} \]

1. \(M, \sigma \not\models F \) assumption
Example

Prove

\[F : \ a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E \text{-valid.} \]

1. \(M, \sigma \not\models F \) \hspace{1cm} \text{assumption}
2. \(M, \sigma \models a = b \land b = c \) \hspace{1cm} 1, \rightarrow
3. \(M, \sigma \not\models g(f(a), b) = g(f(c), a) \) \hspace{1cm} 1, \rightarrow
Example

Prove

\[F: \ a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E \text{-valid.} \]

1. \[M, \sigma \not\models F \] assumption
2. \[M, \sigma \models a = b \land b = c \] 1, \(\rightarrow \)
3. \[M, \sigma \not\models g(f(a), b) = g(f(c), a) \] 1, \(\rightarrow \)
4. \[M, \sigma \models a = b \] 2, \(\land \)
5. \[M, \sigma \models b = c \] 2, \(\land \)
Example

Prove

\[F : \ a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E\text{-valid.} \]

1. \(M, \sigma \not\models F \) \quad assumption
2. \(M, \sigma \models a = b \land b = c \) \quad 1, \rightarrow
3. \(M, \sigma \not\models g(f(a), b) = g(f(c), a) \) \quad 1, \rightarrow
4. \(M, \sigma \models a = b \) \quad 2, \land
5. \(M, \sigma \models b = c \) \quad 2, \land
6. \(M, \sigma \models a = c \) \quad 4, 5, (transitivity)
Example

Prove

\[F : \ a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E \text{-valid.} \]

1. \(M, \sigma \not\models F \) \hspace{2cm} \text{assumption}
2. \(M, \sigma \models a = b \land b = c \) \hspace{2cm} 1, \ (\rightarrow)
3. \(M, \sigma \not\models g(f(a), b) = g(f(c), a) \) \hspace{2cm} 1, \ (\rightarrow)
4. \(M, \sigma \models a = b \) \hspace{2cm} 2, \ (\land)
5. \(M, \sigma \models b = c \) \hspace{2cm} 2, \ (\land)
6. \(M, \sigma \models a = c \) \hspace{2cm} 4, 5, \ (\text{transitivity})
7. \(M, \sigma \models f(a) = f(c) \) \hspace{2cm} 6, \ (\text{congruence})
Example

Prove

\[F : a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E\text{-valid.} \]

1. \(M, \sigma \not\models F \) assumption
2. \(M, \sigma \models a = b \land b = c \) 1, \(\rightarrow \)
3. \(M, \sigma \not\models g(f(a), b) = g(f(c), a) \) 1, \(\rightarrow \)
4. \(M, \sigma \models a = b \) 2, \(\land \)
5. \(M, \sigma \models b = c \) 2, \(\land \)
6. \(M, \sigma \models a = c \) 4, 5, (transitivity)
7. \(M, \sigma \models f(a) = f(c) \) 6, (congruence)
8. \(M, \sigma \models b = a \) 6, (symmetry)
Example

Prove

\[F : \ a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E\text{-valid.} \]

1. \(M, \sigma \models \not F \) \hspace{1cm} assumption
2. \(M, \sigma \models a = b \land b = c \) \hspace{1cm} 1, \(\rightarrow \)
3. \(M, \sigma \models g(f(a), b) = g(f(c), a) \) \hspace{1cm} 1, \(\rightarrow \)
4. \(M, \sigma \models a = b \) \hspace{1cm} 2, \(\land \)
5. \(M, \sigma \models b = c \) \hspace{1cm} 2, \(\land \)
6. \(M, \sigma \models a = c \) \hspace{1cm} 4, 5, (transitivity)
7. \(M, \sigma \models f(a) = f(c) \) \hspace{1cm} 6, (congruence)
8. \(M, \sigma \models b = a \) \hspace{1cm} 6, (symmetry)
9. \(M, \sigma \models g(f(a), b) = g(f(c), a) \) \hspace{1cm} 7, 8, (congruence)
Example

Prove

\[F : a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a) \quad T_E\text{-valid.} \]

1. \(M, \sigma \not\models F \) assumption
2. \(M, \sigma \models a = b \land b = c \) 1, \(\rightarrow \)
3. \(M, \sigma \not\models g(f(a), b) = g(f(c), a) \) 1, \(\rightarrow \)
4. \(M, \sigma \models a = b \) 2, \(\land \)
5. \(M, \sigma \models b = c \) 2, \(\land \)
6. \(M, \sigma \models a = c \) 4, 5, (transitivity)
7. \(M, \sigma \models f(a) = f(c) \) 6, (congruence)
8. \(M, \sigma \models b = a \) 6, (symmetry)
9. \(M, \sigma \models g(f(a), b) = g(f(c), a) \) 7, 8, (congruence)
10. \(M, \sigma \models \bot \) 3,9
Decidability and Completeness Results for T_e

- Is the full theory of equality **decidable**?

No, because it is an extension of FOL

However, quantifier-free fragment of T_e is decidable

No! $T_e \not\models f(a) = b$ and $T_e \not\models f(a) \neq b$
Decidability and Completeness Results for $T_=$

- Is the full theory of equality **decidable**?
- No, because it is an extension of FOL
Decidability and Completeness Results for $T_= $

- Is the full theory of equality decidable?

 No, because it is an extension of FOL

- However, quantifier-free fragment of $T_= $ is decidable
Decidability and Completeness Results for T_e

- Is the full theory of equality **decidable**?
- No, because it is an extension of FOL
- However, quantifier-free fragment of T_e is decidable
- Is T_e **complete**? (i.e., for any F, $T_e \models F$ or $T_e \models \neg F$?)
Decidability and Completeness Results for $T=\!
\equiv$

- Is the full theory of equality **decidable**?

- No, because it is an extension of FOL

- However, quantifier-free fragment of $T=\!
\equiv$ is decidable

- Is $T=\!
\equiv$ **complete**? (i.e., for any F, $T=\!
\equiv\! F$ or $T=\!
\equiv\! \neg F$?)

- No! $T=\!
\not\equiv\! f(a) = b$ and $T=\!
\not\equiv\! f(a) \neq b$
There are three major logical first-order theories involving natural numbers and arithmetic.

- Peano arithmetic: Allows multiplication and addition over natural numbers
- Presburger arithmetic: Allows only addition over natural numbers
- Theory of integers: Equivalent in expressiveness to Presburger arithmetic, but more convenient notation
Theories Involving Natural Numbers and Integers

- There are three major logical first-order theories involving natural numbers and arithmetic.

- **Peano arithmetic**: Allows multiplication and addition over natural numbers
There are three major logical first-order theories involving natural numbers and arithmetic.

- **Peano arithmetic**: Allows multiplication and addition over natural numbers
- **Presburger arithmetic**: Allows only addition over natural numbers
There are three major logical first-order theories involving natural numbers and arithmetic.

- **Peano arithmetic:** Allows multiplication and addition over natural numbers
- **Presburger arithmetic:** Allows only addition over natural numbers
- **Theory of integers:** Equivalent in expressiveness to Presburger arithmetic, but more convenient notation
Peano Arithmetic Signature

- The theory of Peano arithmetic T_{PA} has signature:
 \[\Sigma_{PA} : \{0, 1, +, \cdot, =\} \]

- 0, 1 are constants
- +, · binary functions
- = is a binary predicate
Peano Arithmetic Examples

▶ Question: Is the following a well-formed formula in T_{PA}?

$$x + y = 1 \vee f(x) = 1 + 1$$
Question: Is the following a well-formed formula in T_{PA}?

$$x + y = 1 \lor f(x) = 1 + 1$$

No because contains function symbol f
Peano Arithmetic Examples

▶ **Question:** Is the following a well-formed formula in T_{PA}?

$$x + y = 1 \lor f(x) = 1 + 1$$

▶ No because contains function symbol f

▶ What about $\forall x. \exists y. \exists z. x + y = 1 \lor z \cdot x = 1 + 1$?

▶ No!

▶ But can be rewritten to equivalent T_{PA} formula: $(1 + 1) \cdot x = y$
Peano Arithmetic Examples

- **Question:** Is the following a well-formed formula in \(T_{PA} \)?

\[x + y = 1 \lor f(x) = 1 + 1 \]

- No because contains function symbol \(f \)

- What about \(\forall x. \exists y. \exists z. x + y = 1 \lor z \cdot x = 1 + 1 \)? Yes!
Question: Is the following a well-formed formula in T_{PA}?

$$x + y = 1 \lor f(x) = 1 + 1$$

No because contains function symbol f

What about $\forall x. \exists y. \exists z. x + y = 1 \lor z \cdot x = 1 + 1$? Yes!

What about $2x = y$?
Peano Arithmetic Examples

- **Question:** Is the following a well-formed formula in T_{PA}?

 \[x + y = 1 \lor f(x) = 1 + 1 \]

- No because contains function symbol f

- What about $\forall x. \exists y. \exists z. x + y = 1 \lor z \cdot x = 1 + 1$? Yes!

- What about $2x = y$? No!
Question: Is the following a well-formed formula in T_{PA}?

$$x + y = 1 \lor f(x) = 1 + 1$$

No because contains function symbol f

What about $\forall x. \exists y. \exists z. x + y = 1 \lor z \cdot x = 1 + 1$? Yes!

What about $2x = y$? No!

But can be rewritten to equivalent T_{PA} formula:
Peano Arithmetic Examples

- **Question:** Is the following a well-formed formula in T_{PA}?

 \[x + y = 1 \lor f(x) = 1 + 1 \]

 - No because contains function symbol f

- What about $\forall x. \exists y. \exists z. x + y = 1 \lor z \cdot x = 1 + 1$? **Yes!**

- What about $2x = y$? **No!**

- But can be rewritten to equivalent T_{PA} formula:

 \[(1 + 1) \cdot x = y \]
Axioms of Peano Arithmetic

- Signature of T_{PA} is: $\Sigma_{PA} : \{0, 1, +, \cdot, =\}$; but these are just symbols with no prior meaning!
Axioms of Peano Arithmetic

- Signature of T_{PA} is: $\Sigma_{PA} : \{0, 1, +, \cdot, =\}$; but these are just symbols with no prior meaning!

- Without axioms, we can find satisfying interpretation for $1 + 1 = 1$
Axioms of Peano Arithmetic

- Signature of T_{PA} is: $\Sigma_{PA} : \{0, 1, +, \cdot, =\}$; but these are just symbols with no prior meaning!

- Without axioms, we can find satisfying interpretation for $1 + 1 = 1$

- Axioms of T_{PA} will give the intended meaning of these symbols
Axioms of Peano Arithmetic

- Signature of T_{PA} is: $\Sigma_{PA} : \{0, 1, +, \cdot, =\}$; but these are just symbols with no prior meaning!

- Without axioms, we can find satisfying interpretation for $1 + 1 = 1$

- Axioms of T_{PA} will give the intended meaning of these symbols

- Axioms introduced by 19th century Italian mathematician Giuseppe Peano
Axioms of Peano Arithmetic

- Signature of T_{PA} is: $\Sigma_{PA} : \{0, 1, +, \cdot, =\}$; but these are just symbols with no prior meaning!

- Without axioms, we can find satisfying interpretation for $1 + 1 = 1$

- Axioms of T_{PA} will give the intended meaning of these symbols

- Axioms introduced by 19th century Italian mathematician Giuseppe Peano

- Unchanged since then, used to investigate consistency and completeness of number theory
The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity
The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity
- In addition, axioms to give meaning to remaining symbols:
 1. $\forall x. \neg (x + 1 = 0)$: 0 minimal element of \mathbb{N} (zero)
 2. $\forall x. x + 0 = x$: 0 identity for addition (plus zero)
 3. $\forall x. x \cdot 0 = 0$ (times zero)
 4. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)
 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)
 6. $\forall x, y. x \cdot (y + 1) = x \cdot y + x$ (times successor)
The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity

- In addition, axioms to give meaning to remaining symbols:

 1. $\forall x. \neg(x + 1 = 0)$: 0 minimal element of \mathbb{N} (zero)
The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity

- In addition, axioms to give meaning to remaining symbols:
 1. \(\forall x. \neg (x + 1 = 0) \): 0 minimal element of \(\mathbb{N} \) (zero)
 2. \(\forall x. x + 0 = x \): 0 identity for addition (plus zero)
The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity

- In addition, axioms to give meaning to remaining symbols:
 1. \(\forall x. \neg(x + 1 = 0) \): 0 minimal element of \(\mathbb{N} \)
 2. \(\forall x. x + 0 = x \): 0 identity for addition
 3. \(\forall x. x \cdot 0 = 0 \)
 4. \(\forall x, y. x + (y + 1) = (x + y) + 1 \)
 5. \(\forall x, y. x \cdot (y + 1) = x \cdot y + x \)

(zero)

.plus zero

(times zero)
The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity

- In addition, axioms to give meaning to remaining symbols:
 1. $\forall x. \neg(x + 1 = 0)$: 0 minimal element of \mathbb{N} (zero)
 2. $\forall x. x + 0 = x$: 0 identity for addition (plus zero)
 3. $\forall x. x \cdot 0 = 0$ (times zero)
 4. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)
The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity

- In addition, axioms to give meaning to remaining symbols:

 1. \(\forall x. \neg(x + 1 = 0) \): 0 minimal element of \(\mathbb{N} \) (zero)

 2. \(\forall x. x + 0 = x \): 0 identity for addition (plus zero)

 3. \(\forall x. x \cdot 0 = 0 \) (times zero)

 4. \(\forall x, y. x + 1 = y + 1 \rightarrow x = y \) (successor)

 5. \(\forall x, y. x + (y + 1) = (x + y) + 1 \) (plus successor)
The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity

- In addition, axioms to give meaning to remaining symbols:

 1. $\forall x. \neg(x + 1 = 0)$: 0 minimal element of \mathbb{N} (zero)

 2. $\forall x. x + 0 = x$: 0 identity for addition (plus zero)

 3. $\forall x. x \cdot 0 = 0$ (times zero)

 4. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)

 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)

 6. $\forall x, y. x \cdot (y + 1) = x \cdot y + x$ (times successor)
Last Axiom

▶ One last axiom schema for induction:

$$(F[0] \land (\forall x. F[x] \rightarrow F[x + 1])) \rightarrow \forall x. F[x]$$
One last axiom schema for induction:

\[(F[0] \land (\forall x. F[x] \rightarrow F[x+1])) \rightarrow \forall x. F[x]\]

Axiom schema because \(F\) stands for any \(T_{PA}\) formula
Last Axiom

- One last axiom schema for induction:

\[(F[0] \land (\forall x. F[x] \to F[x + 1])) \to \forall x. F[x] \]

- Axiom schema because \(F \) stands for any \(T_{PA} \) formula

- States that any valid interpretation must obey induction:
Last Axiom

One last axiom schema for induction:

\[(F[0] \land (\forall x. F[x] \rightarrow F[x + 1])) \rightarrow \forall x. F[x]\]

- Axiom schema because \(F \) stands for any \(T_{PA} \) formula

- States that any valid interpretation must obey induction:

- If an interpretation satisfies \(F[0] \) and \(\forall x. F[x] \rightarrow F[x + 1] \), then must also satisfy \(\forall x. F[x] \)
The theory of Peano arithmetic doesn’t have inequality symbols $<, \leq, <, \geq$.
The theory of Peano arithmetic doesn’t have inequality symbols $<, \leq, <, \geq$

But all of these are expressible in T_{PA}
The theory of Peano arithmetic doesn’t have inequality symbols $<, \leq, <, \geq$

But all of these are expressible in T_{PA}

Example: How can we express $x \cdot y \geq z$ in T_{PA}?
Inequalities and Peano Arithmetic

- The theory of Peano arithmetic doesn’t have inequality symbols $<, \leq, <, \geq$

- But all of these are expressible in T_{PA}

- **Example:** How can we express $x \cdot y \geq z$ in T_{PA}?

 $$\exists w. \ x \cdot y = z + w$$
Inequalities and Peano Arithmetic

- The theory of Peano arithmetic doesn’t have inequality symbols $<, \leq, <, \geq$

- But all of these are expressible in T_{PA}

- **Example:** How can we express $x \cdot y \geq z$ in T_{PA}?
 $$\exists w. x \cdot y = z + w$$

- **Example:** How can we express $x \cdot y < z$ in T_{PA}?
Inequalities and Peano Arithmetic

- The theory of Peano arithmetic doesn’t have inequality symbols $<, \leq, <, \geq$

- But all of these are expressible in T_{PA}

- Example: How can we express $x \cdot y \geq z$ in T_{PA}?
 \[\exists w. \ x \cdot y = z + w \]

- Example: How can we express $x \cdot y < z$ in T_{PA}?
 \[\exists w. \ w \neq 0 \land x \cdot y + w = z \]
Decidability and Completeness Results for Peano Arithmetic

- Validity in full T_{PA} is undecidable. (Gödel)
Decidability and Completeness Results for Peano Arithmetic

- Validity in full T_{PA} is undecidable. (Gödel)

- Validity in even the quantifier-free fragment of T_{PA} is undecidable. (Matiyasevitch, 1970)
Decidability and Completeness Results for Peano Arithmetic

- Validity in full \(T_{PA} \) is undecidable. (Gödel)

- Validity in even the quantifier-free fragment of \(T_{PA} \) is undecidable. (Matiyasevitch, 1970)

- \(T_{PA} \) is also incomplete. (Gödel)
Decidability and Completeness Results for Peano Arithmetic

- Validity in full T_{PA} is undecidable. (Gödel)

- Validity in even the quantifier-free fragment of T_{PA} is undecidable. (Matiyasevitch, 1970)

- T_{PA} is also incomplete. (Gödel)

- Implication of this: There are valid propositions of number theory that are not valid according to T_{PA}
Decidability and Completeness Results for Peano Arithmetic

- Validity in full T_{PA} is undecidable. (Gödel)
- Validity in even the quantifier-free fragment of T_{PA} is undecidable. (Matiyasevitch, 1970)
- T_{PA} is also incomplete. (Gödel)
- Implication of this: There are valid propositions of number theory that are not valid according to T_{PA}
- To get decidability and completeness, we need to drop multiplication!
The theory of Presburger arithmetic T_N has signature:

$$\Sigma_N : \{0, 1, +, =\}$$
Presburger Arithmetic

- The theory of Presburger arithmetic T_N has signature:

$$\Sigma_N : \{0, 1, +, =\}$$

- Axioms define meaning of symbols:
Presburger Arithmetic

- The theory of Presburger arithmetic T_N has signature:

$$\Sigma_N : \{0, 1, +, =\}$$

- Axioms define meaning of symbols:

1. $\forall x. \neg (x + 1 = 0)$ (zero)

2. $\forall x. x + 0 = x$ (plus zero)

3. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)

4. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)

5. $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ (induction)
Decidability and Completeness Results for Presburger Arithmetic

- Validity in quantifier-free fragment of Presburger arithmetic is decidable (coNP-complete).

- Presburger arithmetic is also complete: For any sentence F, $T_N | = F$ or $T_N | = \neg F$.

- Admits quantifier elimination: For any formula F in T_N, there exists an equivalent quantifier-free formula F'.
Decidability and Completeness Results for Presburger Arithmetic

- Validity in quantifier-free fragment of Presburger arithmetic is decidable (coNP-complete).
- Validity in **full Presburger arithmetic** is also decidable (Presburger, 1929)
Decidability and Completeness Results for Presburger Arithmetic

- Validity in quantifier-free fragment of Presburger arithmetic is decidable (coNP-complete).

- Validity in full Presburger arithmetic is also decidable (Presburger, 1929)

- But super exponential complexity: $O(2^{2^n})$
Decidability and Completeness Results for Presburger Arithmetic

- Validity in quantifier-free fragment of Presburger arithmetic is decidable (coNP-complete).

- Validity in full Presburger arithmetic is also decidable (Presburger, 1929)

- But super exponential complexity: $O(2^{2^n})$

- Presburger arithmetic is also complete: For any sentence F, $T_N \models F$ or $T_N \models \neg F$
Decidability and Completeness Results for Presburger Arithmetic

- Validity in quantifier-free fragment of Presburger arithmetic is decidable (coNP-complete).

- Validity in full Presburger arithmetic is also decidable (Presburger, 1929)

- But super exponential complexity: $O(2^{2^n})$

- Presburger arithmetic is also complete: For any sentence F, $T_N \models F$ or $T_N \models \neg F$

- Admits quantifier elimination: For any formula F in T_N, there exists an equivalent quantifier-free formula F'.
Theory of Integers $T_{\mathbb{Z}}$

- Signature:

$$\Sigma_{\mathbb{Z}} : \{ \ldots, -2, -1, 0, 1, 2, \ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots, +, -, =, > \}$$
Theory of Integers $T_{\mathbb{Z}}$

- **Signature:**

$$\Sigma_{\mathbb{Z}} : \{ \ldots, -2, -1, 0, 1, 2, \ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots, +, -, =, > \}$$

- Also referred to as the theory of **linear arithmetic over integers**
Theory of Integers $T_{\mathbb{Z}}$

- **Signature:**
 \[\Sigma_{\mathbb{Z}} : \{\ldots, -2, -1, 0, 1, 2, \ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots, +, -, =, >\} \]

- Also referred to as the theory of *linear arithmetic over integers*

- Equivalent in expressiveness to Presburger arithmetic:
Theory of Integers $T_\mathbb{Z}$

- **Signature:**
 \[
 \Sigma_\mathbb{Z} : \{ \ldots, -2, -1, 0, 1, 2, \ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots, +, -, =, > \}
 \]

- Also referred to as the theory of linear arithmetic over integers

- Equivalent in expressiveness to Presburger arithmetic:
 1. For every $T_\mathbb{Z}$ formula, there exists equisatisfiable $T_\mathbb{N}$ formula
Theory of Integers $T_{\mathbb{Z}}$

- **Signature:**

\[\Sigma_{\mathbb{Z}} : \{ \ldots, -2, -1, 0, 1, 2, \ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots, +, -, =, > \} \]

- Also referred to as the theory of linear arithmetic over integers

- Equivalent in expressiveness to Presburger arithmetic:
 1. For every $T_{\mathbb{Z}}$ formula, there exists equisatisfiable $T_{\mathbb{N}}$ formula
 2. For every $T_{\mathbb{N}}$ formula, there exists equisatisfiable $T_{\mathbb{Z}}$ formula
Theory of Integers $T_{\mathbb{Z}}$

- **Signature:**
 \[\Sigma_{\mathbb{Z}} : \{ \ldots, -2, -1, 0, 1, 2, \ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots, +, -, =, > \} \]

- Also referred to as the theory of **linear arithmetic over integers**

- Equivalent in expressiveness to Presburger arithmetic:
 1. For every $T_{\mathbb{Z}}$ formula, there exists equisatisfiable $T_{\mathbb{N}}$ formula
 2. For every $T_{\mathbb{N}}$ formula, there exists equisatisfiable $T_{\mathbb{Z}}$ formula

- Since reducible to $T_{\mathbb{N}}$, we won’t axiomatize it
Theory of Integers $T\mathbb{Z}$

- Signature:
 $$\Sigma_{\mathbb{Z}} : \{ \ldots, -2, -1, 0, 1, 2, \ldots, -3, -2, 2, 3, \ldots, +, -, =, > \}$$

- Also referred to as the theory of linear arithmetic over integers

- Equivalent in expressiveness to Presburger arithmetic:
 1. For every $T\mathbb{Z}$ formula, there exists equisatisfiable $T\mathbb{N}$ formula
 2. For every $T\mathbb{N}$ formula, there exists equisatisfiable $T\mathbb{Z}$ formula

- Since reducible to $T\mathbb{N}$, we won’t axiomatize it

- Decidable, admits quantifier elimination
Theory of Integers T_Z

- **Signature:**
 \[\Sigma_Z : \{\ldots, -2, -1, 0, 1, 2, \ldots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots, +, -, =, >\} \]

- Also referred to as the theory of linear arithmetic over integers

- Equivalent in expressiveness to Presburger arithmetic:
 1. For every T_Z formula, there exists equisatisfiable T_N formula
 2. For every T_N formula, there exists equisatisfiable T_Z formula

- Since reducible to T_N, we won’t axiomatize it

- Decidable, admits quantifier elimination

- Quantifier-free fragment NP-complete, full theory: $O(2^{2^n})$
Theory of Rationals

- So far, looked at theories involving arithmetic over integers
Theory of Rationals

- So far, looked at theories involving arithmetic over integers
- Next: the theory of rationals $T_{\mathbb{Q}}$, which is much more efficiently decidable
Theory of Rationals

- So far, looked at theories involving arithmetic over integers

- Next: the theory of rationals $T_\mathbb{Q}$, which is much more efficiently decidable

- Defined by signature:

 $$
 \Sigma_\mathbb{Q} : \{0, 1, +, -, =, \geq\}
 $$
Theory of Rationals

- So far, looked at theories involving arithmetic over integers
- **Next:** the *theory of rationals* $T_\mathbb{Q}$, which is much more efficiently decidable
- Defined by signature:

$$\Sigma_\mathbb{Q} : \{0, 1, +, -, =, \geq\}$$

- Signature does not allow strict inequality, but easy to express:

$$\forall x, y.\exists z. x + y > z$$
Theory of Rationals

- So far, looked at theories involving arithmetic over integers
- **Next:** the theory of rationals $T_\mathbb{Q}$, which is much more efficiently decidable
- Defined by signature:

 $\Sigma_\mathbb{Q} : \{0, 1, +, −, =, ≥\}$

- Signature does not allow strict inequality, but easy to express:

 $\forall x, y.\exists z. x + y > z \Rightarrow \forall x, y.\exists z. \neg(x + y = z) \land x + y ≥ z$
Distinction between Theory of Rationals and Presburger Arithmetic

- T_Q has too many axioms, so we won’t discuss them
Distinction between Theory of Rationals and Presburger Arithmetic

- T_Q has too many axioms, so we won’t discuss them

- Distinction between T_Z and T_Q: Rational numbers do not satisfy T_Z axioms, but they satisfy T_Q axioms
Distinction between Theory of Rationals and Presburger Arithmetic

- T_Q has too many axioms, so we won’t discuss them

- **Distinction between T_Z and T_Q:** Rational numbers do not satisfy T_Z axioms, but they satisfy T_Q axioms

- **Example:** $\exists x. (1 + 1)x = 1 + 1 + 1$ Is this formula valid in T_Q?
Distinction between Theory of Rationals and Presburger Arithmetic

- T_Q has too many axioms, so we won’t discuss them.

- **Distinction between T_Z and T_Q:** Rational numbers do not satisfy T_Z axioms, but they satisfy T_Q axioms.

- **Example:** $\exists x. (1 + 1)x = 1 + 1 + 1$ Is this formula valid in T_Q? Yes.
Distinction between Theory of Rationals and Presburger Arithmetic

- T_Q has too many axioms, so we won’t discuss them

- **Distinction between T_Z and T_Q:** Rational numbers do not satisfy T_Z axioms, but they satisfy T_Q axioms

- **Example:** $\exists x. (1 + 1)x = 1 + 1 + 1$ Is this formula valid in T_Q? Yes

- Is it valid in T_Z?
Distinction between Theory of Rationals and Presburger Arithmetic

- T_Q has too many axioms, so we won’t discuss them

- **Distinction between T_Z and T_Q:** Rational numbers do not satisfy T_Z axioms, but they satisfy T_Q axioms

- **Example:** $\exists x. (1 + 1)x = 1 + 1 + 1$ Is this formula valid in T_Q? Yes

- Is it valid in T_Z? No
Distinction between Theory of Rationals and Presburger Arithmetic

- $T_\mathbb{Q}$ has too many axioms, so we won’t discuss them

- Distinction between $T_\mathbb{Z}$ and $T_\mathbb{Q}$: Rational numbers do not satisfy $T_\mathbb{Z}$ axioms, but they satisfy $T_\mathbb{Q}$ axioms

- Example: $\exists x. (1 + 1)x = 1 + 1 + 1$ Is this formula valid in $T_\mathbb{Q}$? Yes

- Is it valid in $T_\mathbb{Z}$? No

- In general, every formula valid in $T_\mathbb{Z}$ is valid in $T_\mathbb{Q}$, but not vice versa
Decidability and Complexity Results for $T\mathbb{Q}$

- Full theory of rationals is decidable
Decidability and Complexity Results for T_Q

- Full theory of rationals is decidable

- High-time complexity: $O(2^{2kn})$ (k: some positive integer)
Decidability and Complexity Results for $T_{\mathbb{Q}}$

- Full theory of rationals is decidable
- High-time complexity: $O(2^{2kn})$ (k: some positive integer)
- Conjunctive quantifier-free fragment efficiently decidable (polynomial time)
Decidability and Complexity Results for $T_\mathbb{Q}$

- Full theory of rationals is **decidable**

- High-time complexity: $O(2^{2^{kn}})$ (k some positive integer)

- Conjunctive quantifier-free fragment efficiently decidable (polynomial time)

- Next week, will look at technique for deciding satisfiability of qff $T_\mathbb{Q}$ formula (Simplex)
Theories about Data Structures

- So far, we only considered first-order theories involving numbers and arithmetic
Theories about Data Structures

- So far, we only considered first-order theories involving numbers and arithmetic

- There are also theories that formalize data structures used in programming: e.g., arrays, lists, pointers, bitvectors etc.
Theories about Data Structures

- So far, we only considered first-order theories involving numbers and arithmetic

- There are also theories that formalize data structures used in programming: e.g., arrays, lists, pointers, bitvectors etc.

- We’ll look at one example: theory of arrays
Theories about Data Structures

- So far, we only considered first-order theories involving numbers and arithmetic

- There are also theories that formalize data structures used in programming: e.g., arrays, lists, pointers, bitvectors etc.

- We’ll look at one example: theory of arrays

- Sometimes used in software verification
Theory of Arrays

Signature

\[\Sigma: \{ \cdot[\cdot], \cdot\langle \cdot\rangle, = \} \]

where

- \(a[i] \) binary function – read array \(a \) at index \(i \) (“read(\(a,i \))”)

- \(a\langle i \triangleleft v \rangle \) ternary function – write value \(v \) to index \(i \) of array \(a \) (“write(\(a,i,e \))”)

- \(a\langle i \triangleleft v \rangle \) represents the resulting array after writing value \(v \) at index \(i \)
Example Formulas in Theory of Arrays

▶ Example: \((a \langle 2 \triangleleft 5 \rangle)[2] = 5\)

▶ Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 5”
Example Formulas in Theory of Arrays

- **Example:** \((a\langle 2 < 5 \rangle)[2] = 5\)

 - **Says:** “The value stored at position 2 of an array to whose second position we wrote the value 5 is 5”

- **Example:** \((a\langle 2 < 5 \rangle)[2] = 3\)

 - **Says:** “The value stored at position 2 of an array to whose second position we wrote the value 5 is 3”
Example Formulas in Theory of Arrays

▶ Example: \((a\langle 2 \leftarrow 5\rangle)[2] = 5\)

▶ Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 5”

▶ Example: \((a\langle 2 \leftarrow 5\rangle)[2] = 3\)

▶ Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 3”

▶ According to the usual semantics of array read and write, is the first formula valid/satisfiable/unsat?
Example Formulas in Theory of Arrays

▶ Example: \((a(2<5))[2] = 5\)

▶ Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 5”

▶ Example: \((a(2<5))[2] = 3\)

▶ Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 3”

▶ According to the usual semantics of array read and write, is the first formula valid/satisfiable/unsat? Valid
Example Formulas in Theory of Arrays

▶ Example: \((a\langle 2 \triangleright 5 \rangle)[2] = 5\)

▶ Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 5”

▶ Example: \((a\langle 2 \triangleright 5 \rangle)[2] = 3\)

▶ Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 3”

▶ According to the usual semantics of array read and write, is the first formula valid/satisfiable/unsat? Valid

▶ What about second formula?
Example Formulas in Theory of Arrays

- **Example:** \((a \langle 2 \triangleleft 5 \rangle)[2] = 5\)

 Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 5”

- **Example:** \((a \langle 2 \triangleleft 5 \rangle)[2] = 3\)

 Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 3”

- According to the usual semantics of array read and write, is the first formula valid/satisfiable/unsat? **Valid**

- What about second formula? **Unsat**
Axioms of T_A

To define "intended semantics of array read and write", we need to provide axioms of T_A.

1. $\forall a, i, j. i = j \rightarrow a[i] = a[j]$ (array congruence)
2. $\forall a, v, i, j. i = j \rightarrow a\langle i \leftarrow v \rangle[j] = v$ (read-over-write 1)
3. $\forall a, v, i, j. i \neq j \rightarrow a\langle i \leftarrow v \rangle[j] = a[j]$ (read-over-write 2)
Axioms of T_A

- To define "intended semantics of array read and write", we need to provide axioms of T_A.

- Axioms of T_A include reflexivity, symmetry, and transitivity
Axioms of T_A

- To define "intended semantics of array read and write", we need to provide axioms of T_A.
- Axioms of T_A include reflexivity, symmetry, and transitivity.
- In addition, they include axioms unique to arrays:
Axioms of T_A

- To define "intended semantics of array read and write", we need to provide axioms of T_A.

- Axioms of T_A include reflexivity, symmetry, and transitivity.

- In addition, they include axioms unique to arrays:

 1. $\forall a, i, j. \ i = j \rightarrow a[i] = a[j]$ \hspace{1cm} (array congruence)
Axioms of T_A

- To define "intended semantics of array read and write", we need to provide axioms of T_A.

- Axioms of T_A include reflexivity, symmetry, and transitivity

- In addition, they include axioms unique to arrays:

 1. $\forall a, i, j. \ i = j \ \rightarrow \ a[i] = a[j]$ (array congruence)

 2. $\forall a, v, i, j. \ i = j \ \rightarrow \ a(i \triangleleft v)[j] = v$ (read-over-write 1)
Axioms of T_A

- To define "intended semantics of array read and write", we need to provide axioms of T_A.

- Axioms of T_A include reflexivity, symmetry, and transitivity

- In addition, they include axioms unique to arrays:
 1. $\forall a, i, j. \ i = j \rightarrow a[i] = a[j]$ (array congruence)
 2. $\forall a, v, i, j. \ i = j \rightarrow a(i \triangleleft v)[j] = v$ (read-over-write 1)
 3. $\forall a, v, i, j. \ i \neq j \rightarrow a(i \triangleleft v)[j] = a[j]$ (read-over-write 2)
Is the following T_A formula valid?

$$F : a[i] = e \rightarrow (\forall j. a(i \leftarrow e)[j] = a[j])$$
Example

- Is the following T_A formula valid?

\[F : a[i] = e \rightarrow (\forall j. \ a\langle i < e \rangle[j] = a[j]) \]

- Yes! For any $j \neq i$, $a\langle i < e \rangle[j] = a[j]$ according to read-over-write 2 axiom. For any $j = i$, old value of j was already e, so its value didn’t change.
Example

▶ Is the following T_A formula valid?

$$F : a[i] = e \rightarrow (\forall j. \ a\langle i \triangleleft e\rangle[j] = a[j])$$

▶ Yes! For any $j \neq i$, $a\langle i \triangleleft e\rangle[j] = a[j]$ according to read-over-write 2 axiom. For any $j = i$, old value of j was already e, so its value didn’t change

▶ Let’s prove its validity using the semantic argument method
Example

- Is the following T_A formula valid?

 $$F : a[i] = e \rightarrow (\forall j. \ a\langle i \triangleleft e \rangle[j] = a[j])$$

- Yes! For any $j \neq i$, $a\langle i \triangleleft e \rangle[j] = a[j]$ according to read-over-write 2 axiom.
 For any $j = i$, old value of j was already e, so its value didn’t change.

- Let’s prove its validity using the semantic argument method.

- Assume there exists a model M and variable assignment σ that does not satisfy F and derive contradiction.
Example cont.

1. \(M, \sigma \not\models a[i] = e \rightarrow (\forall j. \ a(i \triangleleft e)[j] = a[j]) \) assumption
Example cont.

1. \(M, \sigma \not\models a[i] = e \rightarrow (\forall j. a(i \cdot e)[j] = a[j]) \) \hspace{1cm} \text{assumption}

2. \(M, \sigma \models a[i] = e \)
Example cont.

1. \(M, \sigma \not\models a[i] = e \rightarrow (\forall j. a\langle i \triangleleft e\rangle[j] = a[j]) \) assumption
2. \(M, \sigma \models a[i] = e \)
3. \(M, \sigma \not\models \forall j. a\langle i \triangleleft e\rangle[j] = a[j] \)

4. \(M, \sigma \models a\langle i \triangleleft e\rangle[j] = a[j] \) 1, \(\rightarrow \)
5. \(M, \sigma \models a\langle i \triangleleft e\rangle[j] = a[j] \) 1, \(\rightarrow \)
6. \(M, \sigma \models a\langle i \triangleleft e\rangle[j] = a[j] \) 1, \(\rightarrow \)
7. \(M, \sigma \models a\langle i \triangleleft e\rangle[j] = a[j] \) 1, \(\rightarrow \)
8. \(M, \sigma \models a\langle i \triangleleft e\rangle[j] = a[j] \) 1, \(\rightarrow \)
9. \(M, \sigma \models a\langle i \triangleleft e\rangle[j] = a[j] \) 1, \(\rightarrow \)
10. \(M, \sigma \models a\langle i \triangleleft e\rangle[j] = a[j] \) 1, \(\rightarrow \)
Example cont.

1. \(M, \sigma \not\models a[i] = e \rightarrow (\forall j. a\langle i \triangleleft e \rangle[j] = a[j]) \) assumption
2. \(M, \sigma \models a[i] = e \)
3. \(M, \sigma \not\models \forall j. a\langle i \triangleleft e \rangle[j] = a[j] \)
4. \(M, \sigma[j \mapsto k] \not\models a\langle i \triangleleft e \rangle[j] = a[j] \)
Example cont.

1. \(M, \sigma \not\models a[i] = e \rightarrow (\forall j. a(i \triangleleft e)[j] = a[j]) \) \hspace{1cm} \text{assumption}
2. \(M, \sigma \models a[i] = e \) \hspace{1cm} 1, \ \rightarrow
3. \(M, \sigma \not\models \forall j. a(i \triangleleft e)[j] = a[j] \) \hspace{1cm} 1, \ \rightarrow
4. \(M, \sigma[j \mapsto k] \not\models a(i \triangleleft e)[j] = a[j] \) \hspace{1cm} 3, \ \forall
5. \(M, \sigma[j \mapsto k] \models a(i \triangleleft e)[j] \neq a[j] \) \hspace{1cm} 4, \ \neg
Example cont.

1. \(M, \sigma \not|= a[i] = e \rightarrow (\forall j. \ a(i < e)[j] = a[j]) \) \hspace{1cm} \text{assumption}

2. \(M, \sigma \models a[i] = e \) \hspace{1cm} 1, \rightarrow

3. \(M, \sigma \not|= \forall j. \ a(i < e)[j] = a[j] \) \hspace{1cm} 1, \rightarrow

4. \(M, \sigma[j \mapsto k] \not|= a(i < e)[j] = a[j] \) \hspace{1cm} 3, \ \forall

5. \(M, \sigma[j \mapsto k] \models a(i < e)[j] \neq a[j] \) \hspace{1cm} 4, \ \neg

6. \(M, \sigma[j \mapsto k] \models i = j \) \hspace{1cm} 5, \ r-o-w \ 2
Example cont.

1. \[M, \sigma \not\models a[i] = e \rightarrow (\forall j. a\langle i \triangleleft e\rangle[j] = a[j]) \]
 \text{assumption}

2. \[M, \sigma \models a[i] = e \]
 1, \rightarrow

3. \[M, \sigma \not\models \forall j. a\langle i \triangleleft e\rangle[j] = a[j] \]
 1, \rightarrow

4. \[M, \sigma[j \mapsto k] \not\models a\langle i \triangleleft e\rangle[j] = a[j] \]
 3, \forall

5. \[M, \sigma[j \mapsto k] \models a\langle i \triangleleft e\rangle[j] \neq a[j] \]
 4, \neg

6. \[M, \sigma[j \mapsto k] \models i = j \]
 5, r-o-w 2

7. \[M, \sigma[j \mapsto k] \models a[i] = a[j] \]
 6, cong
Example cont.

1. \(M, \sigma \not\models a[i] = e \rightarrow (\forall j. \ a<i \triangleleft e>[j] = a[j]) \)
 \(\text{assumption} \)

2. \(M, \sigma \models a[i] = e \)

3. \(M, \sigma \not\models \forall j. \ a<i \triangleleft e>[j] = a[j] \)

4. \(M, \sigma[j \mapsto k] \not\models a<i \triangleleft e>[j] = a[j] \)

5. \(M, \sigma[j \mapsto k] \models a<j \triangleleft e>[j] \neq a[j] \)

6. \(M, \sigma[j \mapsto k] \models i = j \)

7. \(M, \sigma[j \mapsto k] \models a[i] = a[j] \)

8. \(M, \sigma[j \mapsto k] \models a<j \triangleleft e>[j] = e \)

9. \(M, \sigma[j \mapsto k] \models a<i \triangleleft e>[j] = a[j] \)

10. \(M, \sigma[j \mapsto k] \models a<j \triangleleft e>[j] \neq a[j] \)

11. \(M, \sigma[j \mapsto k] \models \bot \quad 5, \ r-o-w \ 2

12. \(M, \sigma[j \mapsto k] \models a<j \triangleleft e>[j] = e \quad 6, \ cong

13. \(M, \sigma[j \mapsto k] \models a<j \triangleleft e>[j] \neq a[j] \quad 6, \ r-o-w \ 1 \)
1. $M, \sigma \not\models a[i] = e \rightarrow (\forall j. \ a\langle i \triangleleft e\rangle[j] = a[j])$ \hspace{1cm} \text{assumption}
2. $M, \sigma \models a[i] = e$ \hspace{1cm} 1, \rightarrow
3. $M, \sigma \not\models (\forall j. \ a\langle i \triangleleft e\rangle[j] = a[j])$ \hspace{1cm} 1, \rightarrow
4. $M, \sigma[j \mapsto k] \not\models a\langle i \triangleleft e\rangle[j] = a[j]$ \hspace{1cm} 3, \forall
5. $M, \sigma[j \mapsto k] \models a\langle i \triangleleft e\rangle[j] \neq a[j]$ \hspace{1cm} 4, \neg
6. $M, \sigma[j \mapsto k] \models i = j$ \hspace{1cm} 5, r-o-w 2
7. $M, \sigma[j \mapsto k] \models a[i] = a[j]$ \hspace{1cm} 6, cong
8. $M, \sigma[j \mapsto k] \models a\langle i \triangleleft e\rangle[j] = e$ \hspace{1cm} 6, r-o-w 1
9. $M, \sigma[j \mapsto k] \models a\langle i \triangleleft e\rangle[j] = a[i]$ \hspace{1cm} 2,8,trans
Example cont.

<table>
<thead>
<tr>
<th></th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(M, \sigma \not\models a[i] = e \rightarrow (\forall j. \ a(i \triangleleft e)[j] = a[j]))</td>
</tr>
<tr>
<td>2</td>
<td>(M, \sigma \models a[i] = e)</td>
</tr>
<tr>
<td>3</td>
<td>(M, \sigma \not\models \forall j. \ a(i \triangleleft e)[j] = a[j])</td>
</tr>
<tr>
<td>4</td>
<td>(M, \sigma[j \mapsto k] \not\models a(i \triangleleft e)[j] = a[j])</td>
</tr>
<tr>
<td>5</td>
<td>(M, \sigma[j \mapsto k] \models a[i] = a[j])</td>
</tr>
<tr>
<td>6</td>
<td>(M, \sigma[j \mapsto k] \models i = j)</td>
</tr>
<tr>
<td>7</td>
<td>(M, \sigma[j \mapsto k] \models a[i] = a[j])</td>
</tr>
<tr>
<td>8</td>
<td>(M, \sigma[j \mapsto k] \models a(i \triangleleft e)[j] = e)</td>
</tr>
<tr>
<td>9</td>
<td>(M, \sigma[j \mapsto k] \models a(i \triangleleft e)[j] = a[i])</td>
</tr>
<tr>
<td>10</td>
<td>(M, \sigma[j \mapsto k] \models a(i \triangleleft e)[j] = a[j])</td>
</tr>
</tbody>
</table>
Example cont.

1. $M, \sigma \not\models a[i] = e \rightarrow (\forall j. a\langle i < e\rangle[j] = a[j])$ assumption

2. $M, \sigma \models a[i] = e$ 1, \rightarrow

3. $M, \sigma \not\models \forall j. a\langle i < e\rangle[j] = a[j]$ 1, \rightarrow

4. $M, \sigma[j \mapsto k] \not\models a\langle i < e\rangle[j] = a[j]$ 3, \forall

5. $M, \sigma[j \mapsto k] \models a[i] = a[j]$ 4, \rightarrow

6. $M, \sigma[j \mapsto k] \models i = j$ 5, r-o-w 2

7. $M, \sigma[j \mapsto k] \models a[i] = a[j]$ 6, cong

8. $M, \sigma[j \mapsto k] \models a\langle i < e\rangle[j] = e$ 6, r-o-w 1

9. $M, \sigma[j \mapsto k] \models a\langle i < e\rangle[j] = a[i]$ 2,8,trans

10. $M, \sigma[j \mapsto k] \models a\langle i < e\rangle[j] = a[j]$ 9,7,trans

11. $M, \sigma[j \mapsto k] \models \perp$ 5,10
Decidability Results for T_A

- The full theory of arrays is not decidable.

- The quantifier-free fragment of T_A is decidable.

- Unfortunately, the quantifier-free fragment is not sufficiently expressive in many contexts.

- Thus, people have studied other richer fragments that are still decidable. Example: array property fragment (disallows nested arrays, restrictions on where quantified variables can occur).
Decidability Results for T_A

- The full theory of arrays is not decidable.
- The quantifier-free fragment of T_A is decidable.
Decidability Results for T_A

- The full theory of arrays is not decidable.
- The quantifier-free fragment of T_A is decidable.
- Unfortunately, the quantifier-free fragment is not sufficiently expressive in many contexts.
Decidability Results for T_A

- The full theory of arrays is not decidable.
- The quantifier-free fragment of T_A is decidable.
- Unfortunately, the quantifier-free fragment is not sufficiently expressive in many contexts.
- Thus, people have studied other richer fragments that are still decidable.
Decidability Results for T_A

- The full theory of arrays is not decidable.

- The quantifier-free fragment of T_A is decidable.

- Unfortunately, the quantifier-free fragment is not sufficiently expressive in many contexts.

- Thus, people have studied other richer fragments that are still decidable.

- Example: array property fragment (disallows nested arrays, restrictions on where quantified variables can occur)
Combination of Theories

So far, we only talked about individual first-order theories.
Combination of Theories

- So far, we only talked about individual first-order theories.

- Examples: \(T=, T_{PA}, T_{Z}, T_{A}, \ldots \)
Combination of Theories

- So far, we only talked about individual first-order theories.

- Examples: T_e, T_{PA}, T_Z, T_A, ...

- But in many applications, we need combined reasoning about several of these theories.
Combination of Theories

- So far, we only talked about individual first-order theories.

- Examples: T_e, T_{PA}, T_Z, T_A, ...

- But in many applications, we need combined reasoning about several of these theories

- Example: The formula $f(x) + 3 = y$ isn’t a well-formed formula in any individual theory, but belongs to combined theory $T_Z \cup T_e$
Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$.
Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$

- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$
Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$

- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$

- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$
Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$

- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$

- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$

- Is this a well-formed $T_{=} \cup T_{\mathbb{Z}}$ formula?

$$1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$
Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$

- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$

- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$

- Is this a well-formed $T_{\equiv} \cup T_{\mathbb{Z}}$ formula? Yes

$$1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$
Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$

- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$

- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$

- Is this a well-formed $T_{\equiv} \cup T_{\mathbb{Z}}$ formula? Yes

 \[1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2) \]

- Is this formula satisfiable according to axioms $A_{\mathbb{Z}} \cup A_{\equiv}$?
Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$.

- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$

- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$

- Is this a well-formed $T_=_\cup T_Z$ formula? Yes

$$1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$

- Is this formula satisfiable according to axioms $A_Z \cup A_=$? No
Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

In the early 80s, Nelson and Oppen showed this is possible. Specifically, if
1. quantifier-free fragment of T_1 is decidable
2. quantifier-free fragment of T_2 is decidable
3. and T_1 and T_2 meet certain technical requirements

then quantifier-free fragment of $T_1 \cup T_2$ is also decidable.
Decision Procedures for Combined Theories

- Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

- In the early 80s, Nelson and Oppen showed this is possible.
Decision Procedures for Combined Theories

- Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

- In the early 80s, Nelson and Oppen showed this is possible

- Specifically, if

1. quantifier-free fragment of T_1 is decidable
2. quantifier-free fragment of T_2 is decidable
3. and T_1 and T_2 meet certain technical requirements

- Also, given decision procedures for T_1 and T_2, Nelson and Oppen’s technique allows deciding satisfiability of $T_1 \cup T_2$.
Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

In the early 80s, Nelson and Oppen showed this is possible.

Specifically, if
1. quantifier-free fragment of T_1 is decidable
Decision Procedures for Combined Theories

- Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

- In the early 80s, Nelson and Oppen showed this is possible

- Specifically, if
 1. quantifier-free fragment of T_1 is decidable
 2. quantifier-free fragment of T_2 is decidable
Decision Procedures for Combined Theories

Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

In the early 80s, Nelson and Oppen showed this is possible

Specifically, if

1. quantifier-free fragment of T_1 is decidable
2. quantifier-free fragment of T_2 is decidable
3. and T_1 and T_2 meet certain technical requirements
Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

In the early 80s, Nelson and Oppen showed this is possible

Specifically, if

1. quantifier-free fragment of T_1 is decidable
2. quantifier-free fragment of T_2 is decidable
3. and T_1 and T_2 meet certain technical requirements

then quantifier-free fragment of $T_1 \cup T_2$ is also decidable
Decision Procedures for Combined Theories

- Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

- In the early 80s, Nelson and Oppen showed this is possible

- Specifically, if
 1. quantifier-free fragment of T_1 is decidable
 2. quantifier-free fragment of T_2 is decidable
 3. and T_1 and T_2 meet certain technical requirements

- then quantifier-free fragment of $T_1 \cup T_2$ is also decidable

- Also, given decision procedures for T_1 and T_2, Nelson and Oppen’s technique allows deciding satisfiability $T_1 \cup T_2$
Plan for Next Few Lectures

- We’ll talk about decision procedures for some interesting first order-theories
Plan for Next Few Lectures

- We’ll talk about decision procedures for some interesting first order-theories

- Next lecture: Quantifier-free theory of equality
Plan for Next Few Lectures

- We’ll talk about decision procedures for some interesting first order-theories
 - Next lecture: Quantifier-free theory of equality
 - Later: Theory of rationals, Presburger arithmetic
Plan for Next Few Lectures

▶ We’ll talk about decision procedures for some interesting first order-theories

▶ **Next lecture: quantifier-free theory of equality**

▶ Later: Theory of rationals, Presburger arithmetic

▶ Initially, we’ll only focus on decision procedures for formulas without disjunctions
Plan for Next Few Lectures

- We’ll talk about decision procedures for some interesting first
 order-theories

- **Next lecture:** Quantifier-free theory of equality

- Later: Theory of rationals, Presburger arithmetic

- Initially, we’ll only focus on decision procedures for formulas without
 disjunctions

- Ok because we can always convert to DNF to deal with disjunctions – just
 not very efficient!
Plan for Next Few Lectures

- We’ll talk about decision procedures for some interesting first order-theories

- **Next lecture:** Quantifier-free theory of equality

- Later: Theory of rationals, Presburger arithmetic

- Initially, we’ll only focus on decision procedures for formulas without disjunctions

- Ok because we can always convert to DNF to deal with disjunctions – just not very efficient!

- Later in the course, we’ll see about how to handle disjunctions much more efficiently