Symbolic Model Checking: The IC3 Algorithm

Shoham Ben-David
IC3/PDR

- Aaron R. Bradley: **SAT-Based Model Checking without Unrolling.** VMCAI 2011
 - A paraphrase on the BMC paper
- “**Incremental Construction of Inductive Clauses for Indubitable Correctness**” : IC3
 - Known also as **Property Directed Reachability**
- A very symbolic model checking algorithm
 - Uses SAT solving as a subroutine
From last week:

- A model M is described by
 - A set V of Boolean variables; the state space consists of $2^{|V|}$ states
 - The set I of initial states
 - The (total) transition relation T
 - Introducing a copy V' of V, the transition relation T can be represented as a Boolean expression over V and V'.

- The property P is a Boolean expression

- The reachable state space R is the set of all states that can be reached from I by taking any number of transitions through T.
We view P as a set of states
 - All the states that satisfy P.

Suppose that P holds in the model ($M \models P$).
 - It means that $R \subseteq P$.

If we had a Boolean expression representing R, we could simply check $R \Rightarrow P$
 - by checking satisfiability of $R \land \neg P$
States Satisfying P

$P = (\neg V_1 \lor \neg V_2 \lor \neg V_3)$
Reachable States

\[P = (\bar{V}_1 \lor \bar{V}_2 \lor \bar{V}_3) \]
Some Observations

- **R** has a special property: \(R \land T \Rightarrow R' \)
 - If we take a transition from any state in **R**, we shall reach a state in **R**
 - **R** is a ‘fix point’ for the transition relation
- For a set of states **S**, with \(I \subseteq S \), if **S** is a fix point, it must include **R**.
 - If \(I \subseteq S \) and \(S \land T \Rightarrow S' \) then \(R \subseteq S \)
 - **S** is an over-approximation of **R**
- If we find such a set **S**, and show in addition that \(S \subseteq P \), we are done!
An Over Approximation

Searching for an over approximation of R gives us flexibility. May be easier to find.
The IC3 Algorithm: Main Idea

- Let I be the set of initial states, P the invariant formula.
- Build a series of sets I, F_1, F_2, \ldots, F_k

Such that

- For all j, F_j is an over-approximation of the set of states reachable from I in j steps or less.
- Each F_j satisfies P.
- If there exists a j such that $F_j = F_{j+1}$ then a fix point is found, P holds in the model.
Main Idea, More Specifically

I, F_1, F_2, \ldots, F_k

- \forall i, F_i \Rightarrow F_{i+1}
- \forall i, F_i \Rightarrow P
- \forall i, F_i \land T \Rightarrow F'_{i+1}
Algorithm

- Check $I \Rightarrow P$?
- Check $I \land T \Rightarrow P'$?
- Set: $F_1 := P$
- For every clause $c \in \text{clauses}(I)$, if $c \not\in \text{clauses}(F_1)$, check:
 - $I \land T \Rightarrow c'$?
 - If it does, set $F_1 := F_1 \land c$
A step forward

• Suppose that I, F₁, F₂, … , Fₖ exist, with the conditions mentioned above.

• Check:

 Is it the case that Fₖ ∧ T ⇒ P’ ?

• If it is, then
 • set Fₖ₊₁ := P
 • for every clause c ∈ Fₖ, check
 • Fₖ ∧ T ⇒ c’ ?
 • If it is, set Fₖ₊₁ := Fₖ₊₁ ∧ c
 • If Fₖ = Fₖ₊₁: done
 • Improvement: compare clauses (syntactic check)
Example 1

- $P = (-1, -2, -3)$
- $I = (1)(2)(-3)$
- $T = (-1, 3')(1, -3')(2, -2')(1, -2, -1')(1, -3, 1', 1, -3, 1', 2)$

Step 1: $I \Rightarrow P$?
 - $I \land \neg P = (1)(2)(-3) (1)(2)(3)$ -- unsatisfiable \(\checkmark\)

Step 2: $I \land T \Rightarrow P'$?
 - $I \land T \land \neg P' = (1)(2)(-3) (-1, 3')(1, -3')(2, -2')(1, -2, -1')(1, -3, 1', 1, -3, 1', 2) (1')(2')(3')$
 -- unsatisfiable \(\checkmark\)
Example 1 – Cont.

- $P = (-1, -2, -3)$
- $I = (1)(2)(-3)$
- $T = (-1, 3^\prime)(1, -3^\prime)(2, -2^\prime)(-1, -2, -1^\prime)(-3, 1^\prime, 1)(-3, 1^\prime, 2)$

- Step 3:
 - Set $F_1 := P$
 - For every clause $c \in I$, check: $I \land T \Rightarrow c^\prime$?

 $I \land T \land \lnot c^\prime = (1)(2)(-3) (-1, 3^\prime)(1, -3^\prime)(2, -2^\prime)(-1, -2, -1^\prime)(-3, 1^\prime, 1)(-3, 1^\prime, 2) (-1^\prime)$

 -- satisfiable for all $c \in I$. Nothing can be added to F_1
Example 1 – Cont.

- \(P = (-1, -2, -3) \)
- \(I = (1)(2)(-3) \)
- \(T = (-1, 3')(1, -3')(2, -2')(1, -2, -1')(3, 1', 1)(3, 1', 2) \)

Step 4: \(F_1 \land T \Rightarrow P' ? \)

- \(F_1 \land T \land \neg P' = \)
 \((-1, -2, -3) (-1, 3')(1, -3')(2, -2')(1, -2, -1')(3, 1', 1')(3, 2, 1') (1')(2')(3') \)
 -- unsatisfiable \(\checkmark \)
- Since \(F_1 = P \) we are done!
Example 1

\[P = (-1, -2, -3) \]
A step forward – Cont.

• Suppose that I, F_1, F_2, \ldots, F_k exist, with the above conditions.

• Check:

 Is it the case that $F_k \land T \Rightarrow P'$?

• If **not** then

 • The SAT solver produces a counterexample, which includes a state $s \in F_k$ that is one step away from violating P.

 • Consider the clause $\neg s$ (why clause?)

 • Find the maximal j such that $F_j \land \neg s \land T \Rightarrow \neg s'$

 • (If none exist then P does not hold in M!)

 • Update: $F_i := F_i \land \neg s$ for $0 < i < j + 1$
IC3: Cont.

- Check:
 - Is it the case that $F_k \land T \Rightarrow P'$?
- If not then
 - Find a problematic state s and propagate $\neg s$ as far as possible
 - If $\neg s$ was added to F_k, try again:
 - $F_k \land T \Rightarrow P'$?
- Otherwise
 - find a state t that is a predecessor of s
 - recur on t
Example 2

\[P = (1,2,3) \]
Example 2.

- $P = (1,2,3)$
- $I = (1)(2)(-3)$
- $T = (-1,3')(1,-3')(2,-2')(-1,-2,-1')(-3,1',1)(-3,1',2) $

Step 4: $ F_1 \land T \Rightarrow P'$?

- $ F_1 \land T \land \neg P' = (1,2,3) (-1,3')(1,-3')(2,-2')(-1,-2,-1')(-3,1',1)(-3,2,1') (-1')(2')(-3')$

-- Satisfiable: $-1,2,-3,-1',-2',-3'$ is a satisfying assignment

- $\neg P$ can be reached from $s = (-1)(2)(-3)$
- Check: $I \land \neg s \Rightarrow \neg s'$?

(1,-2,3)(1),(2),(3) (-1,3')(1,-3')(2,-2')(-1,-2,-1')(-3,1,1')(-3,2,1') (-1'),(2'),(-3')

- Unsatisfiable!
- Set: $F_1 := F_1 \land \neg s = (1,2,3) (1,-2,3)$
Example 2: Cont.

- Recheck: \(F_1 \land T \Rightarrow P' \)?
 - \(F_1 \land T \land \neg P' = \)
 \[
 (1,2,3)(1,-2,3)(-1,3')(1,-3')(2,-2')(1,-2,-1')(1,-3,1,1')(1,3,2,1')(1',2',3',1') (1',2',3',1') \]
 -- Unsatisfiable
 - Set \(F_2 := P \)
 - Check: \(F_1 \land \neg s \Rightarrow \neg s' \)?
 \[
 (1,-2,3)(1,2,3)(-1,3')(1,-3')(2,-2')(1,-2,-1')(1,-3,1,1')(1,3,2,1')(1',2',3',1') (1',2',3',1') \]
 - Unsatisfiable
 - Set: \(F_2 := F_2 \land \neg s \)
 - But \(F_1 = F_2 ! \)
 - A fix point is found. \(P \) holds in the model.
IC3 summary

- A combination of induction, over-approximation and SAT solving
- Instead of a “Black Box” use of SAT: make SAT solving an integral part of the procedure
 - Many small SAT problems to solve (10,000 and more)
- As of today:
 - State-of-the-art symbolic model checking algorithm
 - Many (improved) implementations exist