Implementation of Lexical Analysis

Lecture 4
Tips on Building Large Systems

• KISS (Keep It Simple, Stupid!)

• Don’t optimize prematurely

• Design systems that can be tested

• It is easier to modify a working system than to get a system working
Outline

• Specifying lexical structure using regular expressions

• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 RegExp => NFA => DFA => Tables
Notation

- There is variation in regular expression notation

- Union: $A \mid B \equiv A + B$
- Option: $A + \varepsilon \equiv A?$
- Range: ‘a’+’ b’+...+’ z’ $\equiv [a-z]$
- Excluded range: complement of [a-z] $\equiv [^a-z]$
Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate $s \in L(R)$

- But a yes/no answer is not enough!
- Instead: partition the input into tokens

- We adapt regular expressions to this goal
1. Write a rexp for the lexemes of each token
 • Number = digit +
 • Keyword = ‘if’ + ‘else’ + ...
 • Identifier = letter (letter + digit)*
 • OpenPar = ‘(‘
 • ...

<Professor Alex Aiken Lecture #4
(Modified by Professor Vijay Ganesh)>
2. Construct R, matching all lexemes for all tokens

\[R = \text{Keyword} + \text{Identifier} + \text{Number} + \ldots \]
\[= R_1 + R_2 + \ldots \]
3. Let input be \(x_1 \ldots x_n \)
 For \(1 \leq i \leq n \) check
 \(x_1 \ldots x_i \in L(R) \)

4. If success, then we know that
 \(x_1 \ldots x_i \in L(R_j) \) for some \(j \)

5. Remove \(x_1 \ldots x_i \) from input and go to (3)
Ambiguities (1)

• There are ambiguities in the algorithm

• How much input is used? What if
 • $x_1...x_i \in L(R)$ and also
 • $x_1...x_K \in L(R)$

• Rule: Pick longest possible string in $L(R)$
 - The “maximal munch”
Ambiguities (2)

• Which token is used? What if
 • $x_1...x_i \in L(R_j)$ and also
 • $x_1...x_i \in L(R_k)$

• Rule: use rule listed first (j if $j < k$)
 - Treats “if” as a keyword, not an identifier
Error Handling

• What if
 No rule matches a prefix of input?

• Problem: Can’t just get stuck ...

• Solution:
 - Write a rule matching all “bad” strings
 - Put it last (lowest priority)
Summary

• Regular expressions provide a concise notation for string patterns

• Use in lexical analysis requires small extensions
 – To resolve ambiguities
 – To handle errors

• Good algorithms known
 – Require only single pass over the input
 – Few operations per character (table lookup)
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions $\text{state} \xrightarrow{\text{input}} \text{state}$
Finite Automata

• Transition

\[s_1 \rightarrow^a s_2 \]

• Is read

In state \(s_1 \) on input “a” go to state \(s_2 \)

• If end of input and in accepting state => accept

• Otherwise => reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

• A finite automaton that accepts only “1”
Another Simple Example

• A finite automaton accepting any number of 1’s followed by a single 0
• Alphabet: \{0,1\}
And Another Example

• Alphabet \{0,1\}
• What language does this recognize?
Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input
Deterministic and Nondeterministic Automata

• Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves

• Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

• An NFA can get into multiple states

Input: 1 0 0

Rule: NFA accepts if it can get to a final state
NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute
 - There are no choices to consider
NFA vs. DFA (2)

• For a given language NFA can be simpler than DFA

• DFA can be exponentially larger than NFA
Regular Expressions to Finite Automata

- High-level sketch

```
  Regular expressions
     /\                     /\                      /\
  NFA                        DFA
     \                     /\                      /\
     Lexical Specification  Table-driven Implementation of DFA
```

Professor Alex Aiken Lecture #4
(Modified by Professor Vijay Ganesh)
Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp M

- For ε

- For input a
Regular Expressions to NFA (2)

- For AB

- For $A + B$
Regular Expressions to NFA (3)

• For A^*
Example of RegExp -> NFA conversion

• Consider the regular expression

\[(1+0)^*1\]

• The NFA is

Professor Alex Aiken Lecture #4
(Modified by Professor Vijay Ganesh)
NFA to DFA: The Trick

• Simulate the NFA

• Each state of DFA
 = a non-empty subset of states of the NFA

• Start state
 = the set of NFA states reachable through \(\varepsilon \)-moves from NFA start state

• Add a transition \(S \xrightarrow{a} S' \) to DFA iff
 - \(S' \) is the set of NFA states reachable from any state in \(S \) after seeing the input \(a \), considering \(\varepsilon \)-moves as well
NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some subset of those N states

• How many subsets are there?
 \[2^N - 1 = \text{finitely many}\]
NFA -> DFA Example

Professor Alex Aiken Lecture #4
(Modified by Professor Vijay Ganesh)
Implementation

• A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbol”
 - For every transition $S_i \rightarrow a S_k$ define $T[i,a] = k$

• DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>

Professor Alex Aiken Lecture #4
(Modified by Professor Vijay Ganesh)
Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools such as flex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations