Error Handling
Syntax-Directed Translation
Recursive Descent Parsing

Lecture 6
Outline

• Recursive descent

• Extensions of CFG for parsing
 - Precedence declarations
 - Error handling
 - Semantic actions

• Constructing a parse tree
Recursive Descent Parsing

\[
E \rightarrow T \mid T + E \\
T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\]
Recursive Descent Parsing

\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} \ast T | (E) \]

\((\text{int}_5)\)
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

Mismatch: int is not (!
Backtrack ...)
Recursive Descent Parsing

\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} \times T | (E) \]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

Mismatch: int is not (!

Backtrack ...

(int\textsubscript{5})
Recursive Descent Parsing

E → T | T + E
T → int | int * T | (E)

(int5)
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

\[
\begin{array}{c}
\text{E} \\
\text{T} \\
(\text{E}) \\
\end{array}
\]

Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

\[
\begin{array}{c}
E \\
| \\
T \\
| \\
(E)
\end{array}
\]

(\text{int}_5)
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \times T \mid (E) \]

Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} \ast T | (E) \]

(int_5)

Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} | \text{int} * T | (E) \]

End of input, accept.
A Recursive Descent Parser. Preliminaries

• Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES

• Let the global next point to the next token
A (Limited) Recursive Descent Parser (2)

- Define boolean functions that check the token string for a match of
 - A given token terminal
    ```
    bool term(TOKEN tok) { return *next++ == tok; }
    ```
 - The nth production of S:
    ```
    bool $S_n()$ { ... }
    ```
 - Try all productions of S:
    ```
    bool $S()$ { ... }
    ```
A (Limited) Recursive Descent Parser (3)

• For production \(E \rightarrow T \)
 \[
 \text{bool } E_1() \{ \text{return } T(); \}
 \]

• For production \(E \rightarrow T + E \)
 \[
 \text{bool } E_2() \{ \text{return } T() \&\& \text{term(PLUS)} \&\& E(); \}
 \]

• For all productions of \(E \) (with backtracking)
 \[
 \text{bool } E() \{
 \text{TOKEN *save = next;} \\
 \text{return } (\text{next } = \text{save}, E_1()) \\
 \text{|| (next } = \text{save, } E_2()); \}
 \]
A (Limited) Recursive Descent Parser (4)

• Functions for non-terminal T

```c
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }

bool T() {
    TOKEN *save = next;
    return    (next = save, T_1())
               || (next = save, T_2())
               || (next = save, T_3()); }
```
Recursive Descent Parsing. Notes.

• To start the parser
 - Initialize `next` to point to first token
 - Invoke E()

• Notice how this simulates the example parse

• Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal
Example

\[
E \rightarrow T \mid T + E \\
T \rightarrow \text{int} \mid \text{int} * T \mid (E)
\]

\[
\text{bool } \text{term}(\text{TOKEN } \text{tok}) \{ \text{return } \ast \text{next++ } == \text{tok}; \}
\]

\[
\text{bool } E_1() \{ \text{return } T(); \}
\]

\[
\text{bool } E_2() \{ \text{return } T() \&\& \text{term(PLUS)} \&\& E(); \}
\]

\[
\text{bool } E() \{ \text{TOKEN } \ast \text{save } = \text{next}; \text{return } (\text{next } = \text{save}, E_1())
\mid (\text{next } = \text{save}, E_2()); \}
\]

\[
\text{bool } T_1() \{ \text{return } \text{term(INT)}; \}
\]

\[
\text{bool } T_2() \{ \text{return } \text{term(INT)} \&\& \text{term(TIMES)} \&\& T(); \}
\]

\[
\text{bool } T_3() \{ \text{return } \text{term(OPEN)} \&\& E() \&\& \text{term(CLOSE)}; \}
\]

\[
\text{bool } T() \{ \text{TOKEN } \ast \text{save } = \text{next}; \text{return } (\text{next } = \text{save}, T_1())
\mid (\text{next } = \text{save}, T_2())
\mid (\text{next } = \text{save}, T_3()); \}
\]
When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S \alpha$

  ```
  bool $S_1()$ { return $S()$ && term($\alpha$); }
  bool $S()$ { return $S_1()$; }
  ```

- $S()$ goes into an infinite loop

- A left-recursive grammar has a non-terminal S

 $S \rightarrow^+ S\alpha$ for some α

- Recursive descent does not work in such cases
Elimination of Left Recursion

- Consider the left-recursive grammar
 \[S \rightarrow S \alpha \mid \beta \]

- \(S \) generates all strings starting with a \(\beta \) and followed by a number of \(\alpha \)

- Can rewrite using right-recursion
 \[S \rightarrow \beta \ S' \]
 \[S' \rightarrow \alpha \ S' \mid \varepsilon \]
More Elimination of Left-Recursion

- In general
 \[S \rightarrow S \alpha_1 | \ldots | S \alpha_n | \beta_1 | \ldots | \beta_m \]
- All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)
- Rewrite as
 \[S \rightarrow \beta_1 S' | \ldots | \beta_m S' \]
 \[S' \rightarrow \alpha_1 S' | \ldots | \alpha_n S' | \varepsilon \]
General Left Recursion

• The grammar

\[S \rightarrow A \alpha | \delta \]
\[A \rightarrow S \beta \]

is also left-recursive because

\[S \rightarrow^+ S \beta \alpha \]

• This left-recursion can also be eliminated

• See Dragon Book for general algorithm
 - Section 4.3
Summary of Recursive Descent

• Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically

• Unpopular because of backtracking
 - Thought to be too inefficient

• In practice, backtracking is eliminated by restricting the grammar
Error Handling

- **Purpose of the compiler is**
 - To detect non-valid programs
 - To translate the valid ones
- **Many kinds of possible errors (e.g. in C)**

<table>
<thead>
<tr>
<th>Error kind</th>
<th>Example</th>
<th>Detected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>... $...</td>
<td>Lexer</td>
</tr>
<tr>
<td>Syntax</td>
<td>... x *% ...</td>
<td>Parser</td>
</tr>
<tr>
<td>Semantic</td>
<td>... int x; y = x(3); ...</td>
<td>Type checker</td>
</tr>
<tr>
<td>Correctness</td>
<td>your favorite program</td>
<td>Tester/User</td>
</tr>
</tbody>
</table>
Syntax Error Handling

• Error handler should
 - Report errors accurately and clearly
 - Recover from an error quickly
 - Not slow down compilation of valid code

• Good error handling is not easy to achieve
Approaches to Syntax Error Recovery

• From simple to complex
 - Panic mode
 - Error productions
 - Automatic local or global correction

• Not all are supported by all parser generators
Error Recovery: Panic Mode

- Simplest, most popular method

- When an error is detected:
 - Discard tokens until one with a clear role is found
 - Continue from there

- Such tokens are called *synchronizing* tokens
 - Typically the statement or expression terminators
Consider the erroneous expression

\[(1 + + 2) + 3\]

Panic-mode recovery:
- Skip ahead to next integer and then continue

Bison: use the special terminal `error` to describe how much input to skip

\[E \to \text{int} \mid E + E \mid (E) \mid \text{error int} \mid (\text{error})\]
Syntax Error Recovery: Error Productions

• Idea: specify in the grammar known common mistakes

• Essentially promotes common errors to alternative syntax

• Example:
 - Write $5 \times$ instead of $5 \ast x$
 - Add the production $E \rightarrow \ldots | E \, E$

• Disadvantage
 - Complicates the grammar
Error Recovery: Local and Global Correction

• Idea: find a correct “nearby” program
 - Try token insertions and deletions
 - Exhaustive search

• Disadvantages:
 - Hard to implement
 - Slows down parsing of correct programs
 - “Nearby” is not necessarily “the intended” program
 - Not all tools support it
Syntax Error Recovery: Past and Present

• Past
 - Slow recompilation cycle (even once a day)
 - Find as many errors in one cycle as possible
 - Researchers could not let go of the topic

• Present
 - Quick recompilation cycle
 - Users tend to correct one error/cycle
 - Complex error recovery is less compelling
 - Panic-mode seems enough
Abstract Syntax Trees

• So far a parser traces the derivation of a sequence of tokens

• The rest of the compiler needs a structural representation of the program

• **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Tree. (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]

- And the string
 \[5 + (2 + 3) \]

- After lexical analysis (a list of tokens)
 \[\text{int}_5 \text{‘+’ ‘(‘ int}_2 \text{‘+’ int}_3 \text{‘)} \]

- During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Does capture the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes
Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 => more compact and easier to use
- An important data structure in a compiler
Semantic Actions

• This is what we’ll use to construct ASTs

• Each grammar symbol may have attributes
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \) \{ action \}
 - That can refer to or compute symbol attributes
Semantic Actions: An Example

• Consider the grammar
 \[E \rightarrow \text{int} \mid E + E \mid (E) \]

• For each symbol \(X \) define an attribute \(X.\text{val} \)
 - For terminals, \(\text{val} \) is the associated lexeme
 - For non-terminals, \(\text{val} \) is the expression’s value (and is computed from values of subexpressions)

• We annotate the grammar with actions:
 \[
 E \rightarrow \text{int} \quad \{ E.\text{val} = \text{int.\text{val}} \}

 \mid E_1 + E_2 \quad \{ E.\text{val} = E_1.\text{val} + E_2.\text{val} \}

 \mid (E_1) \quad \{ E.\text{val} = E_1.\text{val} \}
Semantic Actions: An Example (Cont.)

- String: 5 + (2 + 3)
- Tokens: \(\text{int}_5 \) ‘+’ ‘(‘ \(\text{int}_2 \) ‘+’ \(\text{int}_3 \) ‘)’

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow E_1 + E_2)</td>
<td>(E_.val = E_1_.val + E_2_.val)</td>
</tr>
<tr>
<td>(E_1 \rightarrow \text{int}_5)</td>
<td>(E_1_.val = \text{int}5.val = 5)</td>
</tr>
<tr>
<td>(E_2 \rightarrow (E_3))</td>
<td>(E_2_.val = E_3_.val)</td>
</tr>
<tr>
<td>(E_3 \rightarrow E_4 + E_5)</td>
<td>(E_3_.val = E_4_.val + E_5_.val)</td>
</tr>
<tr>
<td>(E_4 \rightarrow \text{int}_2)</td>
<td>(E_4_.val = \text{int}2.val = 2)</td>
</tr>
<tr>
<td>(E_5 \rightarrow \text{int}_3)</td>
<td>(E_5_.val = \text{int}3.val = 3)</td>
</tr>
</tbody>
</table>
Semantic Actions: Notes

• Semantic actions specify a system of equations
 - Order of resolution is not specified

• Example:
 \[E_3.\text{val} = E_4.\text{val} + E_5.\text{val} \]
 - Must compute \(E_4.\text{val} \) and \(E_5.\text{val} \) before \(E_3.\text{val} \)
 - We say that \(E_3.\text{val} \) depends on \(E_4.\text{val} \) and \(E_5.\text{val} \)

• The parser must find the order of evaluation
Dependency Graph

- Each node labeled E has one slot for the val attribute
- Note the dependencies
Evaluating Attributes

• An attribute must be computed after all its successors in the dependency graph have been computed
 - In previous example attributes can be computed bottom-up

• Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Dependency Graph

\[E \xrightarrow{+} E_1 + E_2 \xrightarrow{+} (E_3 + E_4) + E_5 \xrightarrow{\text{int}_2} 2 + 5 = 7 \xrightarrow{\text{int}_3} 7 + 3 = 10 \]
Semantic Actions: Notes (Cont.)

- **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree
 - $E\text{.val}$ is a synthesized attribute
 - Can always be calculated in a bottom-up order

- **Grammars with only synthesized attributes are called S-attributed grammars**
 - Most common case
Inherited Attributes

• Another kind of attribute

• Calculated from attributes of parent and/or siblings in the parse tree

• Example: a line calculator
A Line Calculator

• Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
• Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]

• In second form the value of previous line is used as starting value
• A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P \ L \]
Attributes for the Line Calculator

• Each E has a synthesized attribute val
 - Calculated as before

• Each L has an attribute val

 $L \rightarrow E = \{ \text{L.val} = \text{E.val} \}$

 $| + E = \{ \text{L.val} = \text{E.val} + \text{L.prev} \}$

• We need the value of the previous line

• We use an inherited attribute L.prev
Attributes for the Line Calculator (Cont.)

- Each \(P \) has a synthesized attribute \(\text{val} \)
 - The value of its last line
 \[
 P \rightarrow \varepsilon \quad \{ \text{P.val} = 0 \}
 \]
 \[
 | P_1 L \quad \{ \text{P.val} = \text{L.val};
 \]
 \[
 \quad \text{L.prev} = P_1.\text{val} \}
 \]
- Each \(L \) has an inherited attribute \(\text{prev} \)
- \(\text{L.prev} \) is inherited from sibling \(P_1.\text{val} \)

- Example ...
Example of Inherited Attributes

- val synthesized
- prev inherited
- All can be computed in depth-first order

\[P \in L + E_3 = E_4 + \text{int}_2 + 2 + E_5 + \text{int}_3 + 3 \]
Example of Inherited Attributes

- **val** synthesized
- **prev** inherited
- All can be computed in depth-first order

```
0
P

0
L

5
P

E₄
E₅

2
int₂

2

3
int₃

E₃

5

E₄ + E₃ = E₅```

```
ε

0
P

5
L

E₄

2

E₅

3```
Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 - Also used for type checking, code generation, ...

• Process is called syntax-directed translation
 - Substantial generalization over CFGs
Constructing An AST

- We first define the AST data type
 - Supplied by us for the project
- Consider an abstract tree type with two constructors:

\[
\begin{align*}
\text{mkleaf}(n) &= n \\
\text{mkplus}(T_1, T_2) &= \text{PLUS} T_1 T_2
\end{align*}
\]
Constructing a Parse Tree

- We define a synthesized attribute \(\text{ast} \)
 - Values of \(\text{ast} \) values are ASTs
 - We assume that \(\text{int.lexval} \) is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad \text{E.ast} = \text{mkleaf(int.lexval)}
\]
\[
| \quad E_1 + E_2 \quad \text{E.ast} = \text{mkplus(E}_1\text{.ast, E}_2\text{.ast)}
\]
\[
| \quad (\ E_1 \) \quad \text{E.ast} = E_1\text{.ast}
\]
Parse Tree Example

• Consider the string \(\text{int}_5 \ ' + ' \ (' \text{int}_2 \ ' + ' \text{int}_3 \ ') \)

• A bottom-up evaluation of the \text{ast} attribute:
 \[E.\text{ast} = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3))) \]
Summary

• We can specify language syntax using CFG

• A parser will answer whether $s \in L(G)$
 - ... and will build a parse tree
 - ... which we convert to an AST
 - ... and pass on to the rest of the compiler
Intro to Top-Down Parsing: The Idea

- The parse tree is constructed
 - From the top
 - From left to right

- Terminals are seen in order of appearance in the token stream:
 \[t_2 \, t_5 \, t_6 \, t_8 \, t_9 \]
Recursive Descent Parsing

• Consider the grammar

 \[E \rightarrow T \mid T + E \]
 \[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

• Token stream is: \((\text{int}_5) \)

• Start with top-level non-terminal \(E \)
 - Try the rules for \(E \) in order