Global Optimization

Lecture 21
Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis
Local Optimization

Recall the simple basic-block optimizations

- Constant propagation
- Dead code elimination

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= X + Y
\end{align*}
\]

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= 3 + Y
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
A &:= 2 \times 3
\end{align*}
\]
Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 4 \\
A &:= 2 \times X \\
Y &:= 0
\end{align*}
\]
Correctness (Cont.)

To replace a use of x by a constant k we must know that:

\[
\text{On every path to the use of } x, \text{ the last assignment to } x \text{ is } x := k \quad (\text{Invariant \#1})
\]
Example 1 Revisited

\begin{align*}
X & := 3 \\
B & > 0 \\
Y & := Z + W \\
A & := 2 \times X \\
Y & := 0
\end{align*}
Example 2 Revisited

\[\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 4 \\
A &:= 2 \times X \\
Y &:= 0
\end{align*} \]
Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires global analysis
 - An analysis of the entire control-flow graph
Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property X at a particular point in program execution
- Proving X at any point requires knowledge of the entire program
- It is OK to be conservative. If the optimization requires X to be true, then want to know either
 - X is definitely true
 - Don’t know if X is true
- It is always safe to say “don’t know”
Global Analysis (Cont.)

• *Global dataflow analysis* is a standard technique for solving problems with these characteristics

• *Global constant propagation* is one example of an optimization that requires global dataflow analysis
Global Constant Propagation

- Global constant propagation can be performed at any point where Invariant #1 holds

- Consider the case of computing Invariant #1 for a single variable X at all program points
Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with \(X \) at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>(X = z) means that analysis hasn’t determined if control reaches that point</td>
</tr>
<tr>
<td>(c)</td>
<td>(X = \text{constant } c)</td>
</tr>
<tr>
<td>\text{top}</td>
<td>(X) is definitely not a constant</td>
</tr>
</tbody>
</table>
Using the Information

• *Given global constant information, it is easy to perform the optimization*
 - Simply inspect the $x = ?$ associated with a statement using x
 - If x is constant at that point replace that use of x by the constant

• *But how do we compute the properties $x = ?$*
The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

• The idea is to “push” or “transfer” information from one statement to the next.

• For each statement s, we compute information about the value of x immediately before and after s:

$$C(x,s,\text{in}) = \text{value of } x \text{ before } s$$

$$C(x,s,\text{out}) = \text{value of } x \text{ after } s$$
Transfer Functions

• Define a \textit{transfer} function that transfers
 information one statement to another

• In the following rules, let statement \(s \) have
 immediate predecessor statements \(p_1, \ldots, p_n \)
Rule 1

if $C(p_i, x, \text{out}) = \text{top}$ for any i, then $C(s, x, \text{in}) = \text{top}$
Rule 2

\[C(p_i, x, \text{out}) = c \ \& \ C(p_j, x, \text{out}) = d \ \& \ d \neq c \]
then
\[C(s, x, \text{in}) = \text{top} \]
Rule 3

\[
\text{if } C(p_i, x, \text{out}) = c \text{ or } z \text{ for all } i, \text{ then } C(s, x, \text{in}) = c
\]
Rule 4

if $C(p_i, x, \text{out}) = z$ for all i, then $C(s, x, \text{in}) = z$
The Other Half

• Rules 1-4 relate the *out* of one statement to the *in* of the next statement

• Now we need rules relating the *in* of a statement to the *out* of the same statement
Rule 5

\[C(s, x, \text{out}) = z \quad \text{if} \quad C(s, x, \text{in}) = z \]
Rule 6

\[C(x := c, x, \text{out}) = c \quad \text{if } c \text{ is a constant} \]
Rule 7

\[C(x := f(...), x, \text{out}) = \text{top} \]
Rule 8

\[C(y := \ldots, x, \text{out}) = C(y := \ldots, x, \text{in}) \text{ if } x \not\equiv y \]
An Algorithm

1. For every entry s to the program, set $C(s, x, \text{in}) = \text{top}$

2. Set $C(s, x, \text{in}) = C(s, x, \text{out}) = z$ everywhere else

3. Repeat until all points satisfy 1-8:
 Pick s not satisfying 1-8 and update using the appropriate rule
The Value Z

- To understand why we need z, look at a loop

```
X := 3
B > 0
Y := Z + W
Y := 0
A := 2 * X
A < B
X = 3
X = top
```
Discussion

• Consider the statement $Y := 0$

• To compute whether X is constant after this statement, we need to know whether X is constant at the two predecessors
 - $X := 3$
 - $A := 2 \times X$

• But info for $A := 2 \times X$ depends on its predecessors, including $Y := 0$!
The Value Z (Cont.)

• Because of cycles, all points must have values at all times

• Intuitively, assigning some initial value allows the analysis to break cycles

• The initial value z means “So far as we know, control never reaches this point”
Example

X := 3
B > 0

Y := Z + W

A := 2 * X
A < B

X = 3
top

X = Z
Y := 0
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
\[A < B \]
\[X = \text{top} \]
\[X = 3 \]
\[X = Z \]
Example

$X := 3$
$B > 0$

$Y := Z + W$

$A := 2 \times X$
$A < B$

$Y := 0$

$X = \text{top}$
$X = 3$

$X = Z$

$X = 3$
Example

\[
X := 3 \\
B > 0 \\
Y := Z + W \\
Y := 0 \\
A := 2 \times X \\
A < B
\]
Orderings

• We can simplify the presentation of the analysis by ordering the values

\[z < c < \text{top} \]

• Drawing a picture with “lower” values drawn lower, we get
Orderings (Cont.)

- **top** is the greatest value, **z** is the least
 - All constants are in between and incomparable

- Let lub be the least-upper bound in this ordering

- Rules 1-4 can be written using lub:
 \[C(s, x, \text{in}) = \text{lub} \{ C(p, x, \text{out}) \mid p \text{ is a predecessor of } s \} \]
How do we argue that this algo terminates?

• Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes

• The use of lub explains why the algorithm terminates
 - Values start as z and only increase
 z can change to a constant, and a constant to top
 - Thus, $C(s, x, _)$ can change at most twice
Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps =
Number of $C(....)$ value computed * 2 =
Number of program statements * 4
Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]

After constant propagation, \(X := 3 \) is dead (assuming \(X \) not used elsewhere)
New Example: Live and Dead

• The first value of x is **dead** (never used)

• The second value of x is **live** (may be used)

• Liveness is an important concept
Liveness

A variable x is live at statement s if

- There exists a statement s' that uses x such that

 - There is a path from s to s'

 - That path has no intervening assignment to x
Global Dead Code Elimination

• A statement $x := \ldots$ is dead code if x is dead after the assignment

• Dead statements can be deleted from the program

• But we need liveness information first . . .
Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation.

- Liveness is simpler than constant propagation, since it is a boolean property (true or false).
Liveness Rule 1

\[L(p, x, \text{out}) = \lor \{ L(s, x, \text{in}) \mid s \text{ a successor of } p \} \]
Liveness Rule 2

\[L(s, x, \text{in}) = \text{true} \text{ if } s \text{ refers to } x \text{ on the rhs} \]
Liveness Rule 3

$L(x := e, x, \text{in}) = \text{false}$ if e does not refer to x
Liveness Rule 4

\[L(s, x, \text{in}) = L(s, x, \text{out}) \text{ if } s \text{ does not refer to } x \]
Algorithm

1. Let all $L(...)$ = false initially

2. Repeat until all statements s satisfy rules 1-4
 Pick s where one of 1-4 does not hold and update using the appropriate rule
Termination

• A value can change from \textit{false} to \textit{true}, but not the other way around

• Each value can change only once, so termination is guaranteed

• \textit{Once the analysis is computed, it is simple to eliminate dead code}
Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a *forwards* analysis: information is pushed from inputs to outputs.

Liveness is a *backwards* analysis: information is pushed from outputs back towards inputs.
Analysis

• There are many other global flow analyses

• Most can be classified as either forward or backward

• Most also follow the methodology of local rules relating information between adjacent program points