
Towards More Realistic Sound in VRML
Sean Ellis*

Superscape VR plc†

Abstract

While many pleasing effects are possible using the current VRML
sound model [9], it falls short of producing convincing aural
environments. Sound sources are not easily affected by their
environment, and workarounds for this often increase file sizes
dramatically.

This paper presents possible methods for defining additional
sound cues in such a way as to allow rendering of ambience, time-
of-flight delays, and Doppler shifts within the limited processor
power afforded by typical VRML browser systems.

The proposed system will be easily scaleable to any number of
sound sources and environmental parameters at any time. In
addition, identification of aurally less important elements can be
made simple and automatic, allowing dynamic load balancing
with other tasks

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: 3-Dimensional Graphics and Realism - Virtual Reality

Additional Keywords: virtual worlds, virtual environments,
sound, auralization, infinite impulse response filters.

1. AURALIZATION PROPERTIES

The current sound model takes into account only properties of
each sound source itself, and the listener’s position relative to it.
This is equivalent, in visual terms, to rendering only the light
sources in a scene.

A full auralization of the scene [6] is too expensive for modest
hardware to perform in real time, so we must concentrate only on
the most important aspects of the aural environment.

1.1 Sound Sources

Sound source properties should be consistent with existing
VRML worlds, and the existing VRML property set is largely
adequate for specifying the shape of the sound field emanating
from a source and the pitch at which it is played.

1.2 Listener

The parameters for the listener are dependant on the individual
user rather than the environment, and are thus properly addressed
as a browser set-up and implementation problem rather than an
issue for the world designer. However, for the implementer’s sake
it is worth reviewing the properties of the listener.

A complete listener model should take into account a head-related
transfer function (HRTF) which applies different filter parameters
to a sound depending on its direction relative to the head of the
listener. An accurate HRTF model is surprisingly complex and is
computationally expensive without specialized hardware.

A much simplified HRTF just takes into account the position and
direction of the listener’s ears, substituting the subtle filtering
effects of the head and outer ear with a relatively cheap
calculation of different volumes for each ear. This is already
mandated by the VRML specification. More accurate direction
perception can be accomplished at little extra cost by also
modelling the time difference between the two ears.

1.3 Environment

The current VRML sound model specifies no properties for the
environment of a sound, so this is where most improvement is
required.

Noticeable effects of the environment on sounds include
attenuation with distance, time delay, Doppler shift, ambience in
interior spaces, occlusion of sound by intervening objects,
reflection, refraction and interference.

The earlier items in the list are relatively easy to model, becoming
more and more expensive until interference, which requires an
approach analogous to ray tracing.

Attenuation with distance is already modelled, and is analogous to
perspective in visual environments.

Time delay and Doppler shift are important consequences of the
low speed of sound. However, the diversity of applications for
VRML imply that the sound speed should be settable by the world
designer. For entertainment, especially, users have been
conditioned to expect sound and vision to coincide exactly, even
where large distances are involved. The sound speed must
therefore be specified as a parameter of the world.

Ambience and occlusion are more expensive effects. Both can
already be modelled to some extent by overlapping different
sound fields playing pre-filtered samples, but the applications for
this often involve looped ambient sounds. In order to reduce the
apparent repetition of these sounds, they are often large, and this
is exacerbated by having to download multiple copies.

By specifying transformations on these sounds, we can download
a single instance of the sample data and use it again and again in
different contexts.

* sellis@superscape.com
† Cromwell House, Bartley Wood, Hook, Hants RG27 9XA, England.

Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

2. PROPAGATION EFFECTS

Both time delay and Doppler shift can be explained and modelled
effectively by regarding the propagation of sound.

The delay between a stationary listener and a stationary source is
almost trivial to calculate; it is simply the distance between them
divided by the speed of sound.

For a moving listener, the listening position will be different at the
beginning and end of any particular period. Thus, over this period
the portion of sound heard can be more or less than the actual
sound emitted in the same period.

L1

L2

S

d2

d1

Figure 1. Stationary Source With Moving Listener

Figure 1 shows the situation of a moving listener L and a static
source S. The time delays from the source at the two listener
positions are proportional to the two distances d1 and d2.

So, if the source starts playing at time t0, and at time t1, the listener
is at distance d1, the sound sample heard will be s1 seconds into
the sound, where s1 is:

s t t d D1 1 0 1= − − (1)

And D is the propagation delay per metre (the inverse of the speed
of sound). A similar expression holds for the sample at time t2. It
is possible that one or both of s1 or s2 may be less than 0; if this is
the case, then the sound has not yet reached the listener position.

The pitch shift factor associated with the motion will be:

Shift
t t d d D

t t
=

− − −
−

2 1 2 1

2 1

()
(2)

For a moving source, the modelling is somewhat more
complicated, as the position of the source is required as it was
when the emitted sound reaches the ear. In general, this is difficult
to calculate, especially if the source is moving supersonically, but
can be simplified if we assume that the velocity of the source is
subsonic and constant over the time of emission of the sound. The
position of the source at a given time before the present then
becomes a linear equation in position and velocity.

3. AMBIENCE

The proposed sound environment model would specify ambience
as a set of sound transformations over the same type of ellipsoidal
volume that is used by the sound source at present.

Users are already familiar with these volumes, and it makes it very
easy to specify transformation volumes that match existing sound
volumes exactly.

In addition, we will need to specify two sound transformation
functions (in some way), Tnear and Tfar. Obviously, Tnear is to apply
when the listener is near the source, and Tfar is used when the
listener is far away. A plan view of a typical sound volume is
shown in Figure 2.

Tfar Applies

Transition Zone

Tnear Applies

Direction
Source

Figure 2. Areas Of Application For Sound Transforms

The relative weights of transforms Tnear and Tfar are defined so that
they always sum to 1 within the transition zone. In practice, a
simple linear combination will usually suffice.

An example of this type of transformation is to mimic the effect of
selective attenuation with distance. The sound of a distant engine
is muffled, as the higher frequencies do not propagate as
efficiently as lower frequencies. In this case, Tnear would be an
identity transform and Tfar a low-pass filter.

In addition to per sound source transforms, an ambient sound
transformation should also be introduced as a bindable node. This
specifies a transformation applied to all sounds on the current
listener, and is most often used in enclosed volumes such as
buildings. The binding and unbinding of this node would be
performed by scripts or proximity sensors.

4. OCCLUSION

Occlusion can be modelled along line-of-hearing from the sound
source to the listener. A spherical volume can be specified at an
arbitrary position together with a sound transformation.

The transformation specified by the occlusion volume is not
applied abruptly; the soft edges required can be approximated by
weighting the contribution of an effective absorbing volume by
the apparent displacement of the volume from the sound source,
and also by its apparent size.

Since the function is approximate and not physically based, it
need not be entirely accurate as long as it captures the required
qualities expected from sound occlusion. This can be a quite
simple function based on the vectors to the sound source and to
the occlusion volume, which are easily obtained from the scene.

Occlusion Volume

Sound Source

Listener

O
S

r

L

d

Figure 3. Model of Sound Source Occlusion

Figure 3 shows an effective absorbing volume at O, with radius r,
which occludes the sound source S as seen from the viewpoint L.
A very simple model of absorption would weight the contribution
from 1 if LS goes through O (d = 0), through to 0 if LS is tangent
to the circle (d = r).

For d ≥ r, the displacement weighting Wd is 0, otherwise it is

W
r d

r
d = −





(3)

In addition, this would be weighted by another factor based on the
apparent size, a. This is determined by the radius and distance,
and an exaggeration parameter, k:

a k
r

=
LO

(4)

The apparent size weighting Wa needs to go from 0 when a=0, to
1 when a=∞ (covering the entire screen).

W
a

a = −
+





1

1

1
(5)

The total weighting factor W is simply the product of Wd and Wa,
and this reduces nicely to:

W
k r d

kr
=

−
+

()

LO
(6)

Note that even though this model is a very crude approximation to
the actual effects involved, it will almost certainly perform well
enough for the majority of users. In fact, even cruder
approximations for |LO| and d based on Manhattan distances will
almost certainly produce believable effects.

5. SOUND TRANSFORMATIONS

The format for sound transformations must allow for various
different effects. The most common of these are low pass filters,
high pass filters, reverberations and echoes.

Perhaps surprisingly, all of these can be represented and
implemented using a single model - the Infinite Impulse Response
Filter (Figure 4.) [4]

A sampled infinite impulse response filter takes a stream of input
values (xn) and produces a stream of output values (yn) based on
the current value and some previous values of both the input and
output streams.

z-1 z-1 z-1 z-1xn

yn

a1 a2a0 ai ap

+

z-1

b1

z-1z-1z-1 z-1

b2b3bjbq

Figure 4. Infinite Impulse Response Filter

The symbol z-1 is used to represent a time delay of one sample (we
will see why later on). Samples delayed from before the start of
the signal are assumed to have a 0 value.

The values a0 to ap and b0 to bq are the parameters of the filter -
their values determine the filter’s response to the input signal.
Note that the number of input parameters p need not be the same
as the number of output parameters q, and also that there is no
parameter b0.

By treating the input and output as mathematical functions, and by
using the trick of regarding z-1 not as a time delay but as a
complex variable, some techniques become available to us that
allow design of these filters based on the required filter
characteristics.

When designing a sound transformation, we need to obtain its
impulse response. This is what the output would be for a very
powerful, short pulse of input. For echo effects, we can model the
way that echoes are distributed in time and directly specify the
impulse response. From this we can now use a z-transform to
convert it into an equation in z [2].

For a filter, we want to set its frequency response (i.e. how it cuts
and boosts various frequencies). Although it is possible to
determine the impulse response and then use a z-transform,
various effective methods exist for directly deriving the z-
transform from a given frequency response.

In general, the z-transform F(z) of a given function f(n) (with
sample interval T) is:

F z f nT z n

n

() ()= −

=

∞

∑
0

(7)

This can always be expressed as a fraction of two polynomials in
the complex variable z-1. This can in turn be rearranged into a
canonical form, with the parameters ai and bj from Figure 4
directly represented by coefficients of z-1.

This canonical form is as follows:

F z
a a z a z a z a z

b z b z b z b z
i

i
p

p

j
j

q
q()

... ...

(... ...)
=

+ + + + + +
− + + + + +

− − − −

− − − −
0 1

1
2

2

1
1

2
21

It can be arranged that the number of non-zero values of ai and bj

is the factor that determines the time taken to evaluate this
expression.

For filtering effects, the number of these significant powers of z-1

will be relatively small, and the number of non-zero values of ai
and bj will be small also. For echo chamber effects, the largest
required power of z-1 will be quite large (typically several
thousand), but the number of non-zero values for ai and bj will
still be quite small. This lends itself quite neatly to a sparse array
representation for the coefficients ai and bi. The chain of z-1

operators can be modelled using circular buffers, the speed of
which is largely independent of their size.

6. REPRESENTATION

The representation of the required sound parameters would
require the addition of several nodes to the VRML specification.

6.1 Sound Physics Node

This is a bindable node, which acts in a similar manner to fog.

SoundPhysics
{
 exposedField SFFloat delay 0.003
 eventIn SFBool set_bind
 eventOut SFBool isBound
}

The field delay is the propagation delay in seconds/meter.
Setting this to 0 gives an infinite sound speed. The default value
of 0.003 is equivalent to the actual speed of sound at sea level,
330 metres per second.

6.2 Sound Transform

This node is usually specified as part of a group with the sound
source to which it applies.

SoundTransform
{
 exposedField SFVec3F direction 0 0 1
 exposedField SFVec3F location 0 0 0
 exposedField SFFloat maxBack 1.0
 exposedField SFFloat maxFront 1.0
 exposedField SFFloat minBack 1.0
 exposedField SFFloat minFront 1.0
 field MFFloat transformNear [0 1]
 field MFFloat transformFar [0 1]
}

The fields direction, location, maxBack, minBack,
maxFront and minFront all have the same meanings as the
standard sound source definition.

The fields transformNear and transformFar contain the
values of the a and b parameters for each of the infinite impulse
response filter definitions.

These parameters are stored in a sparse array representation, with
the first of each pair of values specifying a power of z-1, and the
second specifying the actual weight applied. Positive powers are
used for the a parameters, and negative values for the b
parameters. Only non-zero weights are specified.

The default value is an identity filter.

z-1 z-1xn

yn

+
2.000

+
1.000

+
1.000

+

z-1z-1

-
0.176

-
0.162

Figure 5. Two Pole Low Pass Butterworth Filter

As an example, here is the filter definition corresponding to the
filter in Figure 5:

transformNear [0 1 1 2 2 1
 -1 -0.176 -2 -0.162]

With an 11kHz sample rate, this is a 6db/octave low-pass
Butterworth filter with a corner frequency of 3kHz.

6.3 Ambient Sound Transform

This is a bindable node, which acts in a similar manner to fog.

AmbientSoundTransform
{
 field MFFloat transform [0 1]
 eventIn SFBool set_bind
 eventOut SFBool isBound
}

The transform field is the transform to apply, specified in the
same format as in the sound transform node.

6.4 Occlusion Volume

The occlusion volume is specified as a transformation and a
radius. The volume is assumed to be centred on the origin of the
group-local co-ordinate system

SoundOcclusion
{
 exposedField SFFloat radius 1
 field MFFloat transform [0 1]
}

The exposed field radius is the radius of the volume, in metres.

Again, transform contains the specification of the filter
parameters, in the same format as the sound transform node.

7. IMPLEMENTATION

Implementation of the system involves processing all playing
sounds through their respective active sound transforms. All of the
methods above lend themselves easily to numerical methods, and
can take advantage of both common processor architectures such
as the Intel Pentium, and are also well-suited to the kinds of
Digital Signal Processing chips found on advanced sound
hardware.

A preliminary investigation suggests that on an Intel Pentium
processor, a general-purpose filter can process one element in
approximately 25 clock cycles. This can be optimised for specific
cases, however.

Assuming no optimisation, and relatively simple filters of the type
shown in Figure 5, we can estimate a base performance for this
technology. On an Intel Pentium processor, each sample uses five
filter elements at 25 clock cycles each, plus an estimated set-up
overhead of another 25 clock cycles, for a total clock cycle count
of 150. At a relatively modest clock speed of 100MHz, this is
1.5µs per sample, or a total sample throughput rate of 660kHz.

With optimisation, total sample throughput rates of 1200kHz and
more should be available on this kind of platform, scaling almost
linearly with processor speed.

8. LOAD BALANCING

A maximum throughput, as calculated above, of 660kHz, gives us
10 simultaneously active sound filters with an output sample rate
of 12kHz at under 20% processor utilization.

Obviously, if we are using higher output sample rates or more
active filters, this processor utilization figure will increase. We
need to reserve a large percentage of the processing power for
calculation of the VRML scene, so some kind of load balancing
must be used to support a trade-off between sounds and other,
more important tasks.

Several possibilities are open to the implementer when the sound
load becomes too heavy. The most brutal one is just to stop
playing low-priority sounds, as the current implementation does.
We can also check the weighting functions of the active filters and
remove those with lower weights altogether.

On systems with variable output sample rates, it would also be
possible to reduce the output sample rate, with corresponding loss
of quality. However, the parameters set for the filters assume a
particular output sample rate, and recalculating them on the fly
may be expensive.

More elegant options exist, however.

Within one filter, it is possible to combine filter parameters, so
that those with lower weights can be discarded without too much
loss in quality. This is very similar to the idea of levels-of-distance
in the scene, except that the generation of the new parameters can
be entirely automatic. Switching to these lower-resolution
versions of the sound filter will cut the processor load by reducing
the number of filter parameters considered.

In addition, in the same way as we can combine multiple spatial
transformations into a single matrix, it is also possible to combine
the parameters for several successive filters into a single more
complex filter. This is a relatively expensive operation, but would

only need to be done when the filter weights themselves change.
The combined filter can then be subject to the parameter reduction
operations already discussed.

In this manner, it should be possible to reduce the ongoing
processor load to any desired percentage of the total system load.

9. COMPARISON WITH JAVA 3D

Since the Java 3D library [5] will probably be a popular adjunct to
VRML, it is important to review the similarities and differences
between the two, with a view to data exchange.

Java 3D specifies more information about sound falloff with
distance, supplying multiple attenuation factors and the distances
at which they apply. If required, this data could be represented on
the Sound and SoundTransform nodes by replacing the
minFront and maxFront fields by a series of distance/
attenuation pairs stored as a MFVec2f. The same applies to the
minBack and maxBack fields.

Doppler shift is also accounted for by Java 3D, although the
effective velocity of the sound source relative to the listener is not
automatically generated, but must be supplied by the process that
is moving the sound source or listener. The speed of sound is not
modelled directly, but with a shift exaggeration parameter on each
individual sound source.

Java 3D’s ambience model allows for low pass filtering and
reverberation. As has been discussed, these can both easily be
modelled using infinite impulse response filters. Distance filters
are specified in a similar manner to attenuation, supplying a
corner frequency and distance for each element in an array.

The Java 3D model is sufficiently similar to the proposed VRML
sound model to make effective data interchange possible.

10. CONCLUSION

It seems feasible to specify a much more satisfying sound model
for VRML with the addition of a few well-defined nodes. All of
these build on knowledge already familiar to the VRML user.

Authoring packages will be required to generate the filter
parameters, but this process is well-defined and algorithms are
readily available [1][3][7].

ACKNOWLEDGEMENTS

I would like to acknowledge the contribution of Dr. M. J. Usher of
the University of Reading for his tutelage in information and
signal theory [8].

REFERENCES

[1] Fisher, Interactive Digital Filter Design, University of York
Web Publishing, http://dcpu1.cs.york.ac.uk:6666/~fisher/
mkfilter/ .

[2] Meldrum, J., The Z-transform, University of Strathclyde
Web Publishing, http://www.spd.eee.strath.ac.uk/~interact/
ztransform/page1.html .

[3] Parks, T. W. and Burrus, C. S., Digital Filter Design, John
Wiley and Sons, Inc., 1987.

[4] Robinson, A., “Infinite Impulse Response Filters”, Speech
Analysis, Cambridge University Web Publishing, http://svr-
www.eng.cam.ac.uk/~ajr/SpeechAnalysis/node15.html .

[5] Sun Microsystems Inc., The Java 3D API Specification, Sun
Microsystems Web Publishing, http://java.sun.com/
products/java-media/3D/forDevelopers/3Dguide/ .

[6] Takala, T. and Hahn, J. “Sound Rendering”, ACM Computer
Graphics (Proceedings of SIGGRAPH 1992), 26(2), pages
211-220.

[7] Thede, L., Analog and Digital Filter Design Using C,
Prentice Hall , 1996.

[8] Usher, M. J., Information Theory for Information
Technologists, Macmillan, 1984.

[9] VRML Consortium et al., The Virtual Reality Modeling
Language, ISO/IEC DIS 14772-1, 4 April 1997.

