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Abstract

Ownership is a powerful concept to structure the object store and to control
aliasing and modifications of objects. This paper presents an ownership type system
for a Java-like programming language with generic types. Like our earlier Universe
type system, Generic Universe Types enforce the owner-as-modifier discipline. This
discipline does not restrict aliasing, but requires modifications of an object to be
initiated by its owner. This allows owner objects to control state changes of owned
objects, for instance, to maintain invariants. Generic Universe Types require a small
annotation overhead and provide strong static guarantees. They are the first type
system that combines the owner-as-modifier discipline with type genericity.
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1 Introduction

The concept of object ownership allows programmers to structure the object store hierar-
chically and to control aliasing and access between objects. Ownership has been applied
successfully to various problems, for instance, program verification [20, 22, 23], thread
synchronization [6, 17], memory management [2, 8], and representation independence [3].

Existing ownership models share fundamental concepts: Each object has at most one
owner object. The set of all objects with the same owner is called a context. The root
context is the set of objects with no owner. The ownership relation is a tree order.

However, existing models differ in the restrictions they enforce. The original ownership
types [11] and their descendants [7, 9, 10, 26] restrict aliasing and enforce the owner-
as-dominator discipline: All reference chains from an object in the root context to an
object o in a different context go through o’s owner. This severe restriction of aliasing
is necessary for some of the applications of ownership, for instance, memory management
and representation independence.

However, for applications such as program verification, restricting aliasing is not nec-
essary. Instead, it suffices to enforce the owner-as-modifier discipline: An object o may be
referenced by any other object, but reference chains that do not pass through o’s owner
must not be used to modify o. This allows owner objects to control state changes of owned
objects, and thus maintain invariants. The owner-as-modifier discipline is enforced by the
Universe type system [13], in Spec#’s dynamic ownership model [20], and Effective Own-
ership Types [21]. The owner-as-modifier discipline imposes weaker restrictions than the
owner-as-dominator discipline, which allows it to handle common implementations where
objects are shared between objects, such as collections with iterators, shared buffers, or
the Flyweight pattern [13, 24]. Some implementations can be slightly adapted to satisfy
the owner-as-modifier discipline, for example an iterator can delegate modifications to the
corresponding collection which owns the internal representation.

Although ownership type systems have covered all features of Java-like languages (in-
cluding for example exceptions, inner classes, and static class members) there are only
three proposals of ownership type systems that support generic types. SafeJava [5] sup-
ports type parameters and ownership parameters independently, but does not integrate
both forms of parametricity. This leads to significant annotation overhead. Ownership Do-
mains [1] combine type parameters and domain parameters into a single parameter space
and thereby reduce the annotation overhead. However, their formalization does not cover
type parameters. Ownership Generic Java (OGJ) [26] allows programmers to attach own-
ership information through type parameters. For instance, a collection of Book objects can
be typed as “my collection of library books”, expressing that the collection object belongs
to the current this object, whereas the Book objects in the collection belong to an object
“library”. OGJ enforces the owner-as-dominator discipline. It piggybacks ownership infor-
mation on type parameters. In particular, each class C has a type parameter to encode the
owner of a C object. This encoding allows OGJ to use a slight adaptation of the normal
Java type rules to also check ownership, which makes the formalization very elegant.

However, OGJ cannot be easily adapted to enforce the owner-as-modifier discipline.
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For example, OGJ would forbid a reference from the iterator (object 6) in Fig. 1 to a
node (object 5) of the map (object 3), because the reference bypasses the node’s owner.
However, such references are necessary, and are legal in the owner-as-modifier discipline.
A type system can permit such references in two ways.

Figure 1: Object structure of a map from ID to Data objects. The map is represented
by Node objects. The iterator has a direct reference to a node. Objects, references, and
contexts are depicted by rectangles, arrows, and ellipses, respectively. Owner objects sit
atop the context of objects they own. Arrows are labeled with the name of the variable
that stores the reference. Dashed arrows depict references that cross context boundaries
without going through the owner. Such references must not be used to modify the state of
the referenced objects.

First, if the iterator contained a field theMap that references the associated map object,
then path-dependent types [1, 7, 25] can express that the current field of the iterator
points to a Node object that is owned by theMap. Unfortunately, path-dependent types
require the fields on the path (here, theMap) to be final, which is too restrictive for many
applications.

Second, one can loosen up the static ownership information by allowing certain refer-
ences to point to objects in any context [13]. Subtyping allows values with specific own-
ership information to be assigned to “any” variables, and downcasts with runtime checks
can be used to recover specific ownership information from such variables. In OGJ, this
subtype relation between any-types and other types would require covariant subtyping, for
instance, that Node<This> is a subtype of Node<Any>, which is not supported in Java (or
C#). Therefore, piggybacking ownership on the standard Java type system is not possible
in the presence of any.

In this paper, we present Generic Universe Types (GUT), an ownership type system for
a programming language with generic types similar to Java 5 and C# 2.0. GUT enforces the
owner-as-modifier discipline using an any ownership modifier (analogous to the readonly

modifier in non-generic Universe types [13]). Our type system supports type parameters
for classes, interfaces, and methods. The annotation overhead for programmers is as low as
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in OGJ, although the presence of any makes the type rules more involved. A particularly
interesting aspect of our work is how generics and ownership can be combined in the
presence of an any modifier, in particular, how a restricted form of ownership covariance
can be permitted without runtime checks.

Outline. Sec. 2 of this paper illustrates the main concepts of Generic Universe Types
by an example. Secs. 3 and 4 present the type rules and the runtime model of Generic
Universe Types, respectively. Sec. 5 presents the type safety and the owner-as-modifier
property theorems and proofs. Finally, Sec. 6 concludes.

2 Main Concepts

In this section, we explain the main concepts of Generic Universe Types informally by an
example. Class Map (Fig. 2) implements a generic map from keys to values. Key-value
pairs are stored in singly-linked Node objects. Class Node extends the superclass Link

(both Fig. 3), which is used by the iterator class Iter (Fig. 4). The main method of
class Client (Fig. 5) builds up the map structure shown in Fig. 1. For simplicity, we
omit access modifiers from all examples. We chose an unusual iterator design to highlight
several technical details of the type system. We will discuss this design and provide a more
flexible solution at the end of this section.

Ownership Modifiers. A reference type in GUT is either a type variable or consists of
an ownership modifier, a class name, and possibly type arguments. The ownership modifier
expresses object ownership relative to the current receiver object this1. Programs may
contain the ownership modifiers peer, rep, and any. peer expresses that an object has
the same owner as the this object, rep expresses that an object is owned by this, and
any expresses that an object may have any owner. any types are supertypes of the rep

and peer types with the same class and type arguments because they convey less specific
ownership information.

The use of ownership modifiers is illustrated by class Map (Fig. 2). A Map object owns its
Node objects since they form the internal representation of the map and should, therefore,
be protected from unwanted modifications. This ownership relation is expressed by the
rep modifier of Map’s field first, which points to the first node of the map.

The owner-as-modifier discipline is enforced by disallowing modifications of objects
through any references. That is, an expression of an any type may be used as receiver
of field reads and calls to side-effect free (pure) methods, but not of field updates or calls
to non-pure methods. To check this property, we require side-effect free methods to be
annotated with the keyword pure.

Viewpoint Adaptation. Since ownership modifiers express ownership relative to this,
they have to be adapted when this “viewpoint” changes. Consider the third parameter of
Node’s method init. The peer modifier expresses that the parameter object must have
the same owner as the receiver of the method. On the other hand, Map’s method put calls
init on a rep Node receiver, that is, an object that is owned by this. Therefore, the

1We ignore static methods in this paper, but an extension is possible [22].
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class Map<K,V> {

rep Node<K,V> first;

void put(K key, V value) {

rep Node<K,V> newfirst = new rep Node<K,V>();

newfirst.init(key, value, first);

first = newfirst;

}

V get(K key) {

peer Iter<rep Node<K,V>> i = iterator();

while (i.hasNext()) {

rep Node<K,V> mn = i.next();

if (mn.key.equals(key)) return mn.value;

}

return null;

}

peer Iter<rep Node<K,V>> iterator() {

peer Iter<rep Node<K,V>> res;

res = new peer Iter<rep Node<K,V>>();

res.init(first);

return res;

}

}

Figure 2: An implementation of a generic map. Map objects own their Node objects, as
indicated by the rep modifier in all occurrences of class Node.

third parameter of the call to init also has to be owned by this. This means that from
this particular call’s viewpoint, the third parameter needs a rep modifier, although it is
declared with a peer modifier. In the type system, this viewpoint adaptation is done by
combining the type of the receiver of a call (here, rep Node<K,V>) with the type of the
formal parameter (here, peer Node<K,V>). This combination yields the argument type
from the caller’s point of view (here, rep Node<K,V>).

Type Parameters. Ownership modifiers are also used in actual type arguments. For
instance, Map’s method get instantiates class Iter with the type argument rep Node<K,V>.
Thus, local variable i has type peer Iter<rep Node<K,V>>, which has two ownership
modifiers. The main modifier peer expresses that the Iter object has the same owner
as this, whereas the argument modifier rep expresses that the Node objects used by the
iterator are owned by this. It is important to understand that this argument modifier
again expresses ownership relative to the current this object (here, the Map object), and
not relative to the instance of the generic class that contains the argument modifier (here,
i).
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class Link<X> {

X next;

void initLink(X n) { next = n; }

}

class Node<K,V> extends Link<peer Node<K,V>> {

K key; V value;

void init(K k, V v, peer Node<K,V> n) {

initLink(n); key = k; value = v;

}

}

Figure 3: Nodes form the internal representation of maps. Class Link implements rudi-
mentary nodes for singly-linked lists. Its subclass Node instantiates Link’s type parameter
to implement a list of nodes with the same owner. It also adds attributes to store the keys
and values of the map.

Type variables have upper bounds, which default to any Object. In a class C, the
ownership modifiers of an upper bound express ownership relative to the C instance this.
However, when C’s type variables are instantiated, the modifiers of the actual type argu-
ments are relative to the receiver of the method that contains the instantiation. There-
fore, checking the conformance of a type argument to its upper bound requires a view-
point adaptation. For instance, to check the instantiation peer Iter<rep Node <K,V>>

in class Map, we adapt the upper bound of Iter’s type variable (any Link<X>) from view-
point peer Iter<rep Node <K,V>> to the viewpoint this. With the appropriate sub-
stitutions, this adaptation yields any Link<rep Node<K,V>>. The actual type argument
rep Node<K,V> is a subtype of the adapted upper bound. Therefore, the instantiation is
correct. The rep modifier in the type argument and the adapted upper bound reflects
correctly that the current node of this particular iterator is owned by this.

Type variables are not subject to the viewpoint adaptation that is performed for non-
variable types. When type variables are used, for instance, in field declarations, the own-
ership information they carry stays implicit and does, therefore, not have to be adapted.
The substitution of type variables by their actual type arguments happens in the scope in
which the type variables were initially instantiated. Therefore, the viewpoint is the same
as for the instantiation, and no viewpoint adaptation is required. For instance, the call
expression i.next() in method get (Fig. 2) has type rep Node<K,V>, because the result
type of next() is the type variable X, which gets substituted by the type argument of i’s
type, rep Node<K,V>.

Therefore, even though an Iter object does not know the owner of the nodes it refer-
ences (due to the any upper bound), clients of the iterator can recover the exact ownership
information from the type argument. This illustrates that Generic Universe Types provide
strong static guarantees similar to those of owner-parametric systems [11], even in the
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class Iter<X extends any Link<X>> {

X current;

void init(X start) { setCurrent(start); }

void setCurrent(X c) { current = c; }

pure boolean hasNext() { return current != null; }

X next() {

X result = current;

current = current.next;

return result;

}

}

Figure 4: Class Iter implements iterators over Link structures. The precise node type is
passed as type parameter. The upper bound allows method next to access a node’s next
field.

presence of any types. The corresponding implementation in non-generic Universe types
requires a downcast from the any type to a rep type with the corresponding runtime check
[13].

Limited Covariance and Viewpoint Adaptation of Type Arguments. Subtyping
with covariant type arguments is in general not type safe. For instance, if List<String>
was a subtype of List<Object>, then clients that view a string list through type List<Object>
could store Object instances in the string list, which breaks type safety. The same problem
occurs for the ownership information encoded in types. If peer Iter<rep Node<K,V>> was
a subtype of peer Iter<any Node<K,V>>, then clients that view the iterator through the
latter type could use method setCurrent (Fig. 4) to set the iterator to a Node object with
an arbitrary owner, even though the iterator requires a specific owner. The covariance
problem can be prevented by disallowing covariant type arguments (like in Java and C#),
by runtime checks, or by elaborate syntactic support [14].

However, the owner-as-modifier discipline supports a limited form of covariance without
any additional checks. Covariance is permitted if the main modifier of the supertype is any.
For example, peer Iter<rep Node<K,V>> is an admissible subtype of any Iter<any Node<K,V>>.
This is safe because the owner-as-modifier discipline prevents mutations of objects refer-
enced through any references. In particular, it is not possible to set the iterator to an
any Node object, which prevents the unsoundness illustrated above.

Besides subtyping, GUT provides another way to view objects through different types,
namely viewpoint adaptation. If the adaptation of a type argument yields an any type,
the same unsoundness as covariance could occur. Therefore, when a viewpoint adaptation
changes an ownership modifier of a type argument to any, it also changes the main modifier
to any.

This behavior is illustrated by method main of class Client in Fig. 5. As illus-
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trated by Fig. 1, the most precise type for the call expression map.iterator() would
be rep Iter<any Node<rep ID, any Data>> because the Iter object is owned by the
Client object this (hence, the main modifier rep), but the nodes referenced by the it-
erator are neither owned by this nor peers of this (hence, any Node). However, this
viewpoint adaptation would change an argument modifier of iterator’s result type from
rep to any. This would allow method main to use method setCurrent to set the itera-
tor to an any Node object and is, thus, not type safe. The correct viewpoint adaptation
yields any Iter<any Node<rep ID, any Data>>. This type is safe, because it prevents
the main method from mutating the iterator, in particular, from calling the non-pure
method setCurrent.

class ID { /* ... */ }

class Data { /* ... */ }

class Client {

void main(any Data value) {

rep Map<rep ID, any Data> map;

map = new rep Map<rep ID, any Data>();

map.put(new rep ID(), value);

any Iter<any Node<rep ID, any Data>> iter;

iter = map.iterator();

// ...

}

}

Figure 5: Main program for our example. The execution of method main creates the object
structure in Fig. 1.

Unfortunately, since method next is also non-pure, main must not call iter.next()
either, which renders Iter objects useless outside the associated Map object. However,
this is not a severe restriction since an iterator that exposes internal nodes should not be
available to clients in the first place. That is, Map’s iterator method should be private.
Alternatively, the iterator could yield pairs of keys and values rather than internal nodes.
Such an iterator is shown in Fig. 6. The adapted implementation of the iterator method
looks as follows:

peer PairIter<K,V> iterator() {

return new peer PairIter<K,V>(first);

}

Since the type arguments of iterator’s result type are type variables, they are not subject
to viewpoint adaptation. With this implementation of iterator, the type of the call ex-
pression map.iterator() (Fig. 5) is determined by adapting the main modifier and by per-
forming the appropriate substitutions, which yields rep PairIter<rep ID, any Data>.
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Since the main modifier is rep rather than any, this type allows method main to call next
on the iterator.

class Pair<X,Y> {

X x; Y y;

void init(X px, Y py) { x = px; y = py; }

}

class PairIter<K,V> {

any Node<K,V> current;

void init(any Node<K,V> start) { current = start; }

boolean hasNext() { return current != null; }

peer Pair<K,V> next() {

peer Pair<K,V> result = new peer Pair<K,V>();

result.init(current.key, current.value);

current = current.next;

return result;

}

}

Figure 6: A more sensible iterator implementation yielding key-value pairs.

3 Static Checking

In this section, we formalize the compile time aspects of Generic Universe Types. We define
the syntax of the programming language, formalize viewpoint adaptation, define subtyping
and well-formedness conditions, and present the type rules.

3.1 Programming Language

We formalize Generic Universe Types for a sequential subset of Java 5 and C# 2.0 in-
cluding classes and inheritance, instance fields, dynamically-bound methods, and the usual
operations on objects (allocation, field read, field update, casts). For simplicity, we omit
several features of Java and C# such as interfaces, exceptions, constructors, static fields
and methods, inner classes, primitive types and the corresponding expressions, and all
statements for control flow. We do not expect that any of these features is difficult to han-
dle (see for instance [5, 12, 22] for a discussion of these features in ownership type systems
for non-generic Java). The language we use is similar to Featherweight Generic Java [16].
We added field updates because the treatment of side effects is essential for ownership type
systems and especially the owner-as-modifier discipline.

Fig. 7 summarizes the syntax of our language and our naming conventions for variables.

We assume that all identifiers of a program are globally unique except for this as well
as method and parameter names of overridden methods. This can be achieved easily by
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preceding each identifier with the class or method name of its declaration (but we omit
this prefix in our examples).

We use the superscript s to distinguish the sorts for static checking from corresponding
sorts that will be used to describe the runtime behavior. Whenever it is clear from context
whether we refer to static or runtime entities, we omit the superscript s.

T denotes a sequence of Ts. In such a sequence, we denote the i-th element by Ti. We
sometime use sequences of tuples S = X T as maps and use a function-like notation to
access an element S(Xi) = Ti. A sequence T can be empty. The empty sequence is denoted
by ε.

A program (sort Program) consists of a sequence of classes, the identifier of a main class
C, and a main expression e. A program is executed by creating an instance o of C and then
evaluating e with o as this object. We assume that we always have access to the current
program P , and keep P implicit in the notations. Each class (Class) has a class identifier
(ClassId), type variables with upper bounds, a superclass with type arguments, a list of
field declarations, and a list of method declarations. FieldId is the sort of field identifiers.
Like in Java, each class directly or transitively extends the predefined class Object. The
default upper bound for type variables is any Object.

A type (sType) is either a non-variable type or a type variable identifier (TVarId).
A non-variable type (sNType) consists of an ownership modifier, a class identifier, and a
sequence of type arguments.

The sort OM of ownership modifiers contains peeru, repu, and anyu as well as the
modifier thisu, which is used solely as main modifier for the type of this. The modifier
thisu may not appear in programs, but is used internally by the type system to distinguish
accesses through this from other accesses, which simplifies the type rules. We omit the
subscript u if it is clear from context that we mean an ownership modifier.

A method (Meth) consists of a signature and an expression as body. The result of
evaluating the expression is returned by the method. The signature of a method (MethSig)
consists of the method type variables with their upper bounds, the purity annotation, the
return type, the method identifier (MethId), and the formal method parameters (ParId)
with their types. Sort ParId includes the implicit method parameter this.

To be able to enforce the owner-as-modifier discipline, we have to distinguish statically
between side-effect free (pure) methods and methods that potentially have side effects.
Pure methods are marked by the keyword pure. In our syntax, we mark all other methods
by nonpure, although we omit this keyword in our examples. To focus on the essentials of
the type system, we do not include purity checks, but they can be added easily [22].

The set of expressions (Expr) contains the null literal, method parameter access, field
read, field update, method call, object creation, and cast.

Type checking is performed in a type environment (sEnv), which maps the type vari-
ables of the enclosing class and the enclosing method to their upper bounds and method
parameters to their types. Since the domains of both mappings are disjoint, we use an
overloaded notation and simply write sΓ(X) to refer to the upper bound of type variable X
and sΓ(x) to refer to the type of method parameter x.
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P ∈ Program ::= Class ClassId Expr

Cls ∈ Class ::= class ClassId<TVarId sNType> extends ClassId<sType>
{ FieldId sType; Meth }

sT ∈ sType ::= sNType | TVarId
sN ∈ sNType ::= OM ClassId<sType>
u ∈ OM ::= peeru | repu | anyu | thisu

mt ∈ Meth ::= MethSig { return Expr }

MethSig ::= <TVarId sNType> Purity sType MethId(ParId sType)
w ∈ Purity ::= pure | nonpure
e ∈ Expr ::= null | ParId | Expr.FieldId | Expr.FieldId=Expr |

Expr.MethId<sType>(Expr) | new sType | (sType) Expr
sΓ ∈ sEnv ::= TVarId sNType;ParId sType

Figure 7: Syntax and type environments.

3.2 Viewpoint Adaptation

Since ownership modifiers express ownership relative to an object, they have to be adapted
whenever the viewpoint changes. In the type rules, we need to adapt a type T from a
viewpoint that is described by another type T′ to the viewpoint this. In the following,
we omit the phrase “to the viewpoint this”. To perform the viewpoint adaptation, we
define an overloaded operator B to: (1) Adapt an ownership modifier from a viewpoint
that is described by another ownership modifier; (2) Adapt a type from a viewpoint that
is described by an ownership modifier; (3) Adapt a type from a viewpoint that is described
by another type.

Adapting an Ownership Modifier w.r.t. an Ownership Modifier. We explain
viewpoint adaptation using a field access e1.f. Analogous adaptations occur for method
parameters and results as well as upper bounds of type arguments. Let u be the main
modifier of e1’s type, which expresses ownership relative to this. Let u′ be the main
modifier of f’s type, which expresses ownership relative to the object that contains f.
Then relative to this, the type of the field access e1.f has main modifier uBu′.

· B · :: OM× OM → OM

thisBu′ = u′ repBpeer = rep

peerBpeer = peer uBu′ = any otherwise

The field access e1.f illustrates the motivation for this definition: (1) Accesses through
this (that is, e1 is the variable this) do not require a viewpoint adaptation since the
ownership modifier of the field is already relative to this. (2) If the main modifiers of both
e1 and f are peer, then the object referenced by e1 has the same owner as this and the
object referenced by e1.f has the same owner as e1 and, thus, the same owner as this.
Consequently, the main modifier of e1.f is also peer. (3) If the main modifier of e1 is rep
and the main modifier of f is peer, then the main modifier of e1.f is rep, because the
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object referenced by e1 is owned by this and the object referenced by e1.f has the same
owner as e1, that is, this. (4) In all other cases, we cannot determine statically that the
object referenced by e1.f has the same owner as this or is owned by this. Therefore, in
these cases the main modifier of e1.f is any.

Adapting a Type w.r.t. an Ownership Modifier. As explained in Sec. 2, type vari-
ables are not subject to viewpoint adaptation. For non-variable types, we determine the
adapted main modifier using the auxiliary functionBm below and adapt the type arguments
recursively:

· B · :: OM× sType → sType

uBX = X

uBN = (uBmN) C<uBT> where N = u′ C<T>

The adapted main modifier is determined by uBu′. However, we have to avoid the unsafe
(covariance-like) viewpoint adaptations described in Sec. 2. They are prevented by setting
the main modifier of uBN to any if the adaptation promotes an ownership modifier in a
type argument of N from rep or peer to any. Such an unsafe adaptation occurs only in
the following situation: u is rep or peer, u′ is peer, and at least one of N’s type arguments
contains the modifier rep. In all other cases, uBu′ yields any anyway or no type argument
of N is promoted to any. This leads to the following definition:

· Bm · :: OM× sNType → OM

uBmu
′ C<T> =

{

any if (u = rep ∨ u = peer) ∧ u′ = peer ∧ rep ∈ T

uBu′ otherwise

The notation u ∈ T expresses that type T or its (transitive) type arguments contain own-
ership modifier u. It is convenient to define this operator on sequences of types:

· ∈ · :: OM× sType → bool
u ∈ X = false

u ∈ u′ C<T> = u = u′ ∨ u ∈ T

u ∈ T = ∃i : u ∈ Ti

Adapting a Type w.r.t. a Type. Now we are equipped to adapt a type T from a
viewpoint that is described by another type, u C<T>:

· B · :: sNType× sType → sType

u C<T>BT = (uBT)[T/X] where X = dom(C).

The adaptation operatorB adapts the ownership modifiers of T and then substitutes the
type arguments T for the type variables X of C. This substitution is denoted by [T/X]. Since
the type arguments already are relative to this, they are not subject to viewpoint adapta-
tion. Therefore, the substitution of type variables happens after the viewpoint adaptation
of T’s ownership modifiers. For a declaration class C<X > . . ., dom(C) denotes C’s type
variables X. We use the character as wildcard, here, for the upper bounds of X.
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Note that the first parameter is a non-variable type, because concrete ownership infor-
mation u is needed to adapt the viewpoint and the actual type arguments T are needed to
substitute the type variables X. In the type rules, subsumption will be used to replace type
variables by their upper bounds and thereby obtain a concrete type as first argument ofB.

Example. The call map.iterator() in method main (Fig. 5) illustrates the most in-
teresting viewpoint adaptation, which we discussed in Sec. 2. The type of this call is
determined by adapting the return type of iterator (peer Iter<rep Node<K,V>>) from
the type of the receiver expression (rep Map<rep ID,any Data>). According to the above
definition, we first apply viewpoint adaption to the main modifier of the receiver type, rep,
and the return type, and then substitute type variables.

The type arguments of the adapted type are obtained by applying viewpoint adapta-
tion recursively to the type argument: rep B rep Node<K,V>. This yields any Node<K,V>

because rep B rep = any and because the type variables K and V are not subject to view-
point adaptation. Note that here, an ownership modifier of a type argument is promoted
from rep to any. Therefore, to avoid unsafe covariance-like adaptations, the main modifier
of the adapted type must be any. This is actually the case because the main modifier is
determined by rep Bm peer Iter<rep Node<K,V>>, which yields any.

So far, the adaptation yields any Iter<any Node<K,V>>. Now we have to substitute
the type variables K and V by the instantiations given in the receiver type, rep ID and
any Data, to obtain the type of the call: any Iter<any Node<rep ID,any Data>>.

3.3 Subclassing and Subtyping

We use the term subclassing to refer to the relation on classes as declared in a program
by the extends keyword, irrespective of ownership modifiers. Subtyping takes ownership
modifiers into account.

Subclassing. The subclass relation v is defined on instantiated classes, which are de-
noted by C<T>. The subclass relation is the smallest relation satisfying the rules in Fig. 8.
Each un-instantiated class is a subclass of the class it extends (SC-1). An antecedent
of the form class C<X N> extends C′<T′> { f T; m } or a prefix thereof expresses that
the program contains such a class declaration. Subclassing is reflexive (SC-2) and transi-
tive (SC-3). Subclassing is preserved by substitution of type arguments for type variables
(SC-4). Note that such substitutions may lead to ill-formed types, for instance when the
upper bound of a substituted type variable is not respected. We prevent such types by
well-formedness rules, which are presented below.

We illustrate subclassing by the classes Link and Node in Fig. 3. By rule SC-1, we
obtain Node<K,V> v Link<peer Node<K,V>> from the extends clause of Node. Rule SC-4
allows us to instantiate the type variables, for instance, with the type arguments used in
method main: Node<rep ID,any Data> v Link<peer Node<rep ID,any Data>>.

Subtyping. The subtype relation <: is defined on types. The judgment Γ ` T <: T′

expresses that type T is a subtype of type T′ in type environment Γ. The environment
is needed since types may contain type variables. The rules for this subtyping judgment
are presented in Fig. 9. Two types with the same main modifier are subtypes if the
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SC-1
class C<X > extends C′<T′>

C<X> v C′<T′>
SC-2

C<T> v C<T>

SC-3

C<T> v C′′<T′′>
C′′<T′′> v C′<T′>

C<T> v C′<T′>
SC-4

C<T> v C′<T′>

C<T[T′′/X′′]> v C′<T′[T′′/X′′]>

Figure 8:

ST-1
C<T> v C′<T′>

Γ ` u C<T> <: uB(peer C′<T′>)
ST-2

Γ ` thisu C<T> <: peer C<T>

ST-3

Γ ` T <: T′′

Γ ` T′′ <: T′

Γ ` T <: T′
ST-4

Γ ` X <: Γ(X)
ST-5

T <:a T
′

Γ ` T <: T′

TA-1
T <:a T

TA-2
T <:a T′

u C<T> <:a any C<T′>

Figure 9: Rules for subtyping and limited covariance.

corresponding classes are subclasses (ST-1). Ownership modifiers in the extends clause
(T′) are relative to the instance of class C, whereas the modifiers in a type are relative to
this. Therefore, T′ has to be adapted from the viewpoint of the C instance to this. Since
both thisu and peer express that an object has the same owner as this, a type with main
modifier thisu is a subtype of the corresponding type with main modifier peer (ST-2).
This rule allows us to treat this as an object of a peer type. Subtyping is transitive
(ST-3). A type variable is a subtype of its upper bound in the type environment (ST-4).
Two types are subtypes, if they obey the limited covariance described in Sec. 2 (ST-5).
Covariant subtyping is expressed by the relation <:a . Covariant subtyping is reflexive
(TA-1). A supertype may have more general type arguments than the subtype if the main
modifier of the supertype is any (TA-2). Note that the sequences T and T′ in rule TA-2
can be empty, which allows one to derive, for instance, peer Object <:a any Object.
Reflexivity of <: follows from TA-1 and ST-5.

In our example, we can use TA-1 twice (for K and V) and TA-2 to obtain rep Node<K,V>

<:a any Node<K,V>. Using this result, TA-2, and ST-5, we derive peer Iter<rep Node<K,V>>

<: any Iter<any Node<K,V>>, which is an example for limited covariance. Note that our
rules do not allow us to derive peer Iter<rep Node<K,V>> <: peer Iter<any Node<K,V>>,
which would be unsafe covariant subtyping as discussed in Sec. 2.
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3.4 Lookup Functions

In this subsection, we define the functions to look up the type of a field or the signature of
a method.

Field Lookup. The function sfType(C, f) yields the type of field f as declared in class
C. The result is undefined if f is not declared in C. Since identifiers are assumed to be
globally unique, there is only one declaration for each field identifier.

SFT
class C< > extends < > { . . . T f . . . ; }

sfType(C, f) = T

The function fields(C) yields the identifiers of all fields that are declared in or inherited by
class C.

SF-1
fields(Object) = ε

SF-2
class C< > extends C′< > { T f; }

fields(C) = f ◦ fields(C′)

Method Lookup. The function mType(C, m) yields the signature of method m as declared
in class C. The result is undefined if m is not declared in C. We do not allow overloading of
methods; therefore, the method identifier is sufficient to uniquely identify a method.

SMT
class C< > extends < > { ; . . . <Xm Nb> w Tr m(x Tp) . . . }

mType(C, m) = <Xm Nb> w Tr m(x Tp)

3.5 Well-Formedness

In this subsection, we define well-formedness of types, methods, classes, programs, and
type environments. The well-formedness rules are summarized in Fig. 10 and explained in
the following.

Well-Formed Types. The judgement Γ ` T ok expresses that type T is well-formed
in type environment Γ. Type variables are well-formed, if they are contained in the type
environment (WFT-1). A non-variable type u C<T> is well-formed if its type arguments
T are well-formed and for each type variable the actual type argument is a subtype of the
upper bound, adapted from the viewpoint u C<T> (WFT-2). The viewpoint adaptation is
necessary because the type arguments describe ownership relative to the this object where
u C<T> is used, whereas the upper bounds are relative to the object of type u C<T>.

An interesting aspect of rule WFT-2 is that it permits type variables of a class C to be
used in upper bounds of C. For instance in class Iter (Fig. 4), type variable X is used in
its own upper bound, any Link<X>. To illustrate how rule WFT-2 works, we show that
the instantiation of class Iter in method main, any Iter<any Node<rep ID,any Data>>

is well-formed.
The types rep ID and any Data are trivially well-formed. To show that the type

argument any Node<rep ID,any Data> is well-formed, we have to show that the type
arguments are subtypes of the adapted upper bounds (WFT-2). The (un-adapted and
adapted) upper bounds are any Object, which is a supertype of rep ID and any Data.
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WFT-1
X ∈ dom(Γ)

Γ ` X ok
WFT-2

class C< N> . . .
Γ ` T ok Γ ` T <: ((u C<T>)BN)

Γ ` u C<T> ok

WFM-1

Γ = Xm Nb, X N; this (thisu C<X>), x Tp

Γ ` Tr, Nb, Tp ok Γ ` e : Tr

override(C, m) w = pure ⇒ Tp = anyBTp

<Xm Nb> w Tr m(x Tp) { return e } ok in C<X N>

WFM-2

(∀class C′<X′ N′> : C<X> v C′<T′> ∧ dom(C) = X⇒

mType(C′, m) is undefined ∨mType(C, m) = mType(C′, m)[T′/X′])

override(C, m)

WFC

X N; ` N, T, (thisu C′<T′>) ok
mt ok in C<X N> rep /∈ N

class C<X N> extends C′<T′> { f T; mt } ok

WFP

Cls ok
class C<> . . . ∈ Cls

ε; this (thisu C<>) ` e : N

Cls, C, e ok
SWFE

Γ = X N, X′ N′ ; this (thisu C<X>), x T

class C<X N> . . . Γ ` N, N′, T ok

Γ ok

Figure 10: Well-formedness rules.

Finally, we have to show that any Node<rep ID, any Data> is a subtype of the adapta-
tion of the upper bound any Link<X>. As illustrated in Sec. 3.2, we first perform the adap-
tation of ownership modifiers, which yields any Link<X>. Then we substitute the type vari-
able X by the actual type argument, which yields any Link<any Node<rep ID, any Data>>.
It is this substitution that makes it possible to use X in its own upper bound. It is easy to
show that any Node<rep ID, any Data> is a subtype of
any Link<peer Node<rep ID, any Data>> (ST-1, ST-5, see Sec. 3.3), which in turn is a
subtype of any Link<any Node<rep ID,any Data>> (TA-1, TA-2, ST-6). By transitivity
(ST-3), we have the desired subtype relation.

Well-Formed Methods. The judgement m ok in C<X N> expresses that method m is
well-formed in a class C with type parameters X N. According to rule WFM-1, m is well-
formed if: (1) the return type, the upper bounds of m’s type variables, and the parameter
types are well-formed in the type environment that maps m’s and C’s type variables to their
upper bounds as well as this and the explicit method parameters to their types. The
type of this is the enclosing class, C<X>, with main modifier thisu; (2) the method body,
expression e, is well-typed with m’s return type; (3) m respects the rules for overriding, see
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below; (4) if m is pure then the only ownership modifier that occurs in a parameter type
is any. We will motivate the last requirement when we explain the type rule for method
calls.

Method m respects the rules for overriding if it does not override a method or if all
overridden methods have the identical signatures after substituting type variables of the
superclasses by the instantiations given in the subclass (WFM-2). For simplicity, we require
that overrides do not change the purity of a method, although overriding non-pure methods
by pure methods would be safe.

Well-Formed Classes. The judgement Cls ok expresses that class declaration Cls is
well-formed. According to rule WFC, this is the case if: (1) the upper bounds of Cls’s type
variables, the types of Cls’s fields, and the instantiation of the superclass are well-formed
in the type environment that maps Cls’s type variables to their upper bounds; (2) Cls’s
methods are well-formed; (3) Cls’s upper bounds do not contain the rep modifier.

Note that Cls’s upper bounds express ownership relative to the current Cls instance. If
such an upper bound contains a rep modifier, clients of Cls cannot instantiate Cls because
none of the ownership modifiers peer, rep, or any for an actual type argument, which are
relative to the client’s viewpoint, expresses the required ownership relation. Therefore, we
forbid upper bounds with rep modifiers by Requirement (3).

Well-Formed Programs. The judgement P ok expresses that program P is well-formed.
According to rule WFP, this is the case if all classes in P are well-formed, the main class
C is a non-generic class in P, and the main expression e is well-typed in an environment
where this is an instance of C.

Well-Formed Type Environments. The judgement Γ ok expresses that type environ-
ment Γ is well-formed. According to rule SWFE, this is the case if all upper bounds of
type variables and the types of method parameters are well-formed. Moreover, this must
be mapped to a non-variable type with main modifier thisu and an uninstantiated class.

3.6 Type Rules

We are now ready to present the type rules (Fig. 11). The judgement Γ ` e : T expresses
that expression e is well-typed with type T in environment Γ. Our type rules implicitly
require types to be well-formed, that is, a type rule is applicable only if all types involved
in the rule are well-formed in the respective environment. We also omit checks for valid
appearances of the ownership modifier thisu. As explained earlier, thisu must not occur
in the program and is only used as main modifier of the type of this.

An expression of type T can also be typed with T’s supertypes (GT-Subs). The type of
method parameters (including this) is determined by a lookup in the type environment
(GT-Var). The null-reference can have any type (GT-Null). The rules for object creation
(GT-New) and cast (GT-Cast) are straightforward. Note that in combination with sub-
sumption, GT-Cast allows up and down casts. The rule could be strengthened to prevent
more cast errors statically, but we omit this check since it is not strictly needed.

As explained in detail in Sec. 3.2, the type of a field access is determined by adapting
the declared type of the field from the viewpoint described by the type of the receiver
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GT-Subs

Γ ` e : T
Γ ` T <: T′

Γ ` e : T′
GT-Var

x ∈ dom(Γ)

Γ ` x : Γ(x)
GT-Null

Γ ` null : T

GT-New
Γ ` new T : T

GT-Cast
Γ ` e0 : T0

Γ ` (T) e0 : T

GT-Read
Γ ` e0 : N0 N0 = C0< >

Γ ` e0.f : N0BfType(C0, f)
GT-Write

Γ ` e0 : N0 N0 = u0 C0< >
T1 = fType(C0, f)
Γ ` e2 : N0BT1

u0 6= any rp(u0, T1)

Γ ` e0.f=e2 : N0BT1

GT-Invk

Γ ` e0 : N0 N0 = u0 C0< >
mType(C0, m) = <Xm Nb> w Tr m(x Tp)

Γ ` T <: (N0BNb)[T/Xm] Γ ` e2 : (N0BTp)[T/Xm]
(u0=any⇒ w=pure) rp(u0, Tp ◦ Nb)

Γ ` e0.m<T>(e2) : (N0BTr)[T/Xm]

Figure 11: Type rules.

(GT-Read). If this type is a type variable, subsumption is used to go to its upper bound
because fType is defined on class identifiers. Subsumption is also used for inherited fields to
ensure that f is actually declared in C0. (Recall that fType(C0, f) is undefined otherwise.)

For a field update, the right-hand side expression must be typable as the viewpoint
adapted field type, which is also the type of the whole field update expression (GT-Write).
The rule is analogous to field read, but has two additional requirements. First, the main
modifier u0 of the type of the receiver expression must not be any. With the owner-
as-modifier discipline, a method must not update fields of objects in arbitrary contexts.
Second, the requirement rp(u0,

sT1) enforces that f is updated through receiver this if its
declared type contains a rep modifier. In that case, the viewpoint adaptation N0B

sT1 yields
an any type, but it is obviously unsafe to update f with an object with an arbitrary owner.
It is convenient to define rp for sequences of types. The definition uses the fact that the
ownership modifier thisu is only used for the type of this:

rp :: OM× sType → bool
rp(u, T) = u = thisu ∨ (∀i : rep /∈ Ti)

The rule for method calls (GT-Invk) is in many ways similar to field reads (for result pass-
ing) and updates (for argument passing). The method signature is determined using the
receiver type N0 and subsumption. The type of the invocation expression is determined by
viewpoint adaptation of the return type Tr from the receiver type N0. Modulo subsumption,
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the actual method parameters must have the formal parameter types, adapted from N0 and
with actual type arguments T substituted for the method’s type variables Xm. For in-
stance, in the call first.init(key, value, first) in method put (Fig. 2), the adapted
third formal parameter type is rep Node<K,V>Bpeer Node<K,V>. This adaptation yields
rep Node<K,V>, which is also the type of the third actual method argument.

To enforce the owner-as-modifier discipline, only pure methods may be called on re-
ceivers with main modifier any. This requirement prevents method main (Fig. 5) from
calling iter.next() as discussed in Sec. 2. For a call on a receiver with main modifier
any, the viewpoint-adapted formal parameter type contains only the modifier any. Con-
sequently, arguments with arbitrary owners can be passed. For this to be type safe, pure
methods must not expect arguments with specific owners. This is enforced by rule WFM-1
(Fig. 10). Finally, if the receiver is different from this, then neither the formal parameter
types nor the upper bounds of the method’s type variables must contain rep.

4 Runtime Model

In this section, we explain the runtime model of Generic Universe Types. We present the
heap model, the runtime type information, well-formedness conditions, and an operational
semantics. The runtime model is used to prove type safety in the next section.

4.1 Heap Model

Fig. 12 summarizes our heap model. To distinguish sorts of the runtime model from their
static counterparts, we use the prefix r.

h ∈ Heap = Addr→ Obj

ι ∈ Addr = Set of Addresses ∪ {nulla}
o ∈ Obj = rType, Fields

rT ∈ rType = OwnerAddr ClassId<rType>
Fs ∈ Fields = FieldId→ Addr

ι ∈ OwnerAddr = Addr ∪ {anya}
rΓ ∈ rEnv = TVarId rType; ParId Addr

Figure 12: Definitions for the heap model.

A heap (sort Heap) maps addresses to objects. The set of addresses (Addr) contains the
special null-reference nulla. An object (Obj) consist of its runtime type and a mapping
from field identifiers to the addresses stored in the fields.

The runtime type (rType) of an object o consists of the address of o’s owner object,
of o’s class, and of runtime types for the type arguments of this class. We store the
runtime type arguments including the associated ownership information explicitly in the
heap because this information is needed in the runtime checks for casts. In that respect,
our runtime model is similar to that of the .NET CLR [18]. The owner address of objects in
the root context is nulla. The special owner address anya is used when the corresponding
static type has the anyu modifier. Consider for instance an execution of method main
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(Fig. 5), where the address of this is ι. The runtime type of the object stored in map is
ι Map<ι ID, any

a
Data>.

The first component of a runtime environment (rEnv) maps method type variables to
their runtime types. The second component is the stack, which maps method parameters
to the addresses they store.

Operations on Heaps and Objects. Updating a field f of the object at address ι in
heap h with an address ι′ is denoted by h[ι.f := ι′]. owner(h, ι) yields the owner address
of the object at address ι in heap h, whereas owners(h, ι) yields the set of all transitive
owners of that object.

·[·.· := ·] :: Heap× Addr× FieldId× Addr→ Heap

h[ι.f := ι′] = h[ι 7→ (h(ι)↓1, h(ι)↓2 [f 7→ ι′])]

owner :: Heap× Addr→ OwnerAddr

owner(h, ι) = h(ι)↓1↓1

owners :: Heap× Addr→ P(OwnerAddr)
owner(h, ι) ∈ owners(h, ι)
ι′ ∈ owners(h, ι) ∧ ι′ 6∈ {anya, nulla} ⇒ owner(h, ι′) ∈ owners(h, ι)

We use projection↓i to select the i-th component of a tuple, for instance, the runtime type
and field mapping of an object.

Subtyping on Runtime Types. Judgment ι ` rT r<: rT′ expresses that the runtime
type rT is a subtype of rT′ from the viewpoint of address ι. The viewpoint, ι, is required
in order to give meaning to the ownership modifier rep.

Subtyping for runtime types is defined in Fig. 13. According to RT-1, subtyping follows
subclassing if (1) the runtime types have the same owner address, (2) in the type arguments,
the ownership modifiers thisu and peer are substituted by the owner address ι′ of the
runtime types (we use the same owner address for both modifiers since they both express
ownership by the owner of this), (3) rep is substituted by the viewpoint address ι, (4) anyu

is substituted by anya, and (5) the type variables X of the subclass C are substituted
consistently by rT. Note that in a well-formed program, thisu never occurs in a type
argument; nevertheless we include the substitution for consistency. According to RT-2,
subtyping is transitive.

Like for subtyping on static types, we have limited covariance for runtime types. Co-
variant subtyping is expressed by the relation r<:a . Two runtime types are subtypes if
they are covariant subtypes (RT-3). The rules for limited covariance, RTA-1 and RTA-2,
are analogous to the rules TA-1 and TA-2 for static types (Fig. 9). Reflexivity of r<:
follows from RTA-1 and RT-3.

The judgement h ` ι : rT′ expresses that in heap h, the address ι has type rT′. The
type of ι is determined by the type of the object at ι and the subtype relation (RT-2). The
null reference can have any type (RT-3).
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RT-1
C<X> v C′<sT> dom(C) = X

ι ` ι′ C<rT> r<: ι′ C′<sT[ι′/thisu, ι
′/peer, ι/rep, anya/anyu,

rT/X]>

RT-2

ι ` rT r<: rT′′

ι ` rT′′ r<: rT′

ι ` rT r<: rT′
RT-3

rT r<:a
rT′

ι ` rT r<: rT′

RTA-1
rT r<:a

rT
RTA-2

rT r<:a rT′

ι′ C<rT> r<:a anya C<rT′>

RT-4

h(ι) = rT,
ι ` rT r<: rT′

h ` ι : rT′
RT-5

h ` nulla : rT′

Figure 13: Rules for subtyping on runtime types.

In Sec. 3.3, we have derived Node<K,V> v Link<peer Node<K,V>>. By rule RT-1, we
get for instance: ι ` ι′ Node<rT1,

rT2>
r<: ι′ Link<ι′ Node<rT1,

rT2>>.

From Static Types to Runtime Types. Static types and runtime types are related by
the dynamization function dyn. This function maps a static type sT to the corresponding
runtime type. The viewpoint is described by an address ι and a runtime type rT (usually
the address and runtime type of the this object). In sT, dyn substitutes rep by ι, peer
and thisu by the owner in rT, ι′, and anyu by anya. It also substitutes all type variables
in sT by the instantiations given in ι′ C<rT>, a supertype of ι’s runtime type, or in the
runtime environment. The substitutions performed by dyn are analogous to the ones in
rule RT-1 (Fig. 13), which also involves mapping static types to runtime types. We do not
use dyn in RT-1 to avoid that the definitions of r<: and dyn are mutually recursive.

dyn :: sType× Addr× rType× rEnv→ rType

DYN

rT = ι′ < > ι ` rT r<: ι′ C<rT> ι ` rT r<: ι′ C<rTa>⇒ ι ` rT r<: rTa

dom(C) = X free(sT) ⊆ X ◦ X′

dyn(sT, ι, rT, (X′ rT′; )) = sT[ι′/this, ι′/peer, ι/rep, anya/anyu,
rT/X, rT′/X′]

Note that the outcome of dyn depends on finding ι′ C<rT>, an appropriate supertype of rT,
which contains substitutions for all type variables not mapped by the environment (free(sT)
yields the free type variables in sT). Thus, one may wonder whether there is more than
one such appropriate superclass. However, because type variables are globally unique, if
the free variables of sT are in the domain of a class then they are not in the domain of any
other class. In addition, we want the most concrete runtime type arguments. To ensure
this, we require that all other supertypes of rT that have the same class C have equal or
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less specific type arguments. This needs to be considered for the case that ι′ = anya when
the subtyping rule TA-2 can be used to also change type arguments. Together this ensures
that ι′ C<rT> is unique.

To illustrate how the dynamization works, consider an execution of method put (Fig. 2),
whose this object has address ι and runtime type ι′ Map<rT1,

rT2>. Now we determine
the runtime type of the object created by new rep Node<K,V>. The dynamization of the
type of the new object w.r.t. this is: dyn(rep Node<K,V>, ι, ι′ Map<rT1,

rT2>, ), which
yields ι Node<rT1,

rT2>. This runtime type correctly reflects that the new object is owned
by this (owner address ι) and has the same type arguments as the runtime type of this.

It is convenient to define the following three overloaded versions of dyn:

dyn(sT, ι, rT) = dyn(sT, ι, rT, ε)
dyn(sT, ι, h, rΓ) = dyn(sT, ι, h(ι)↓1,

rΓ)
dyn(sT, h, rΓ) = dyn(sT, rΓ(this), h, rΓ)

4.2 Lookup Functions

In this subsection, we define the functions to look up the runtime type of a field or the
body of a method.

Field Lookup. The runtime type of a field f is essentially the dynamization of its static
type. The function rfType(ι, rT, f) yields the runtime type of f in an object at address ι
with runtime type rT. In the following definition, C′ is the superclass of the class C of rT,
in which f is actually defined.

RFT
rT = C< > C< > v C′< >

rfType(ι, rT, f) = dyn(sfType(C′, f), ι, rT)

Method Lookup. The function mBody(C, m) yields a tuple consisting of m’s body ex-
pression as well as the identifiers of its formal parameters and type variables. This is trivial
if m is declared in C (RMT-1). Otherwise, m is looked up in C’s superclass C′ (RMT-2).

RMT-1
class C< > extends < > { ; . . . <X > m(x ) { return e } . . . }

mBody(C, m) = (e, x, X)

RMT-2
class C< > extends C′< > { no method m }

mBody(C, m) = mBody(C′, m)

4.3 Well-Formedness

In this subsection, we define well-formedness of runtime types, heaps, and runtime envi-
ronments.

Well-Formed Runtime Types. The judgement ι ` ι′ C<rT> ok expresses that run-
time type ι′ C<rT> is well-formed for viewpoint address ι. According to rule WFRT, a
runtime type must have a type argument for each type variables of its class. Each runtime
type argument must be a subtype of the dynamization of the type variable’s upper bound.
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Since upper bounds of well-formed classes do not contain rep (see rule WFC in Fig. 10),
we can pass an arbitrary address to dyn.

WFRT

class C<X sN> . . .
ι ` rT r<: dyn(sN, , ι′ C<rT>)

ι ` ι′ C<rT> ok

Well-Formed Heaps. A heap h is well-formed, denoted by h ok, if and only if the
runtime types of all objects are well-formed, the nulla address is not mapped to an object,
and all addresses stored in fields are well-typed.

WFH

(∀ι : ι ` h(ι)↓1 ok) nulla /∈ dom(h)
(∀ι, f : h(ι) = rT, Fs ∧ rfType(ι, rT, f) = rT′ =⇒ h ` Fs(f) : rT′)

h ok

Well-Formed Runtime Environments. The judgement h ` rΓ : sΓ expresses that
runtime environment rΓ is well-formed w.r.t. a well-formed heap h and a well-formed static
type environment sΓ. This is the case if and only if: (1) rΓ maps all method type variables
X that are contained in sΓ to well-formed runtime types rT, which are subtypes of the
dynamizations of the corresponding upper bounds sN; (2) rΓ maps this to an address ι,
which is not allowed to be nulla. The runtime type of the this object at address ι is
exactly the dynamization of the static type of this, thisu C<X′>. (3) rΓ maps the formal
parameters x that are contained in sΓ to addresses ι′. The objects at addresses ι′ are
well-typed with the dynamization of the static types of x, sT′.

WFRE

rΓ = X rT ; this ι, x ι′
sΓ = X sN, X′ ; this (thisu C<X′>), x sT′

h ok sΓ ok ι 6= nulla

ι ` rT ok ι ` rT r<: dyn(sN, h, rΓ)
h ` ι : dyn(thisu C<X′>, h, rΓ) h ` ι′ : dyn(sT′, h, rΓ)

h ` rΓ : sΓ

4.4 Operational Semantics

We describe program execution by a big-step operational semantics. The transition h, rΓ, eÃ
h′, ι expresses that the evaluation of an expression e in heap h and runtime environment rΓ

results in address ι and successor heap h′. A program with main class C is executed
by evaluating the main expression in a heap h0 that contains exactly one C instance
in the root context where all fields f = fields(C) are initialized to nulla (h0 = {ι 7→
(nulla C<>, f nulla)}) and a runtime environment rΓ0 that maps this to this C in-
stance (rΓ0 = ε;this ι). The rules for evaluating expressions are presented in Fig. 14 and
explained in the following.

Parameters, including this, are evaluated by looking up the stored address in the
stack, which is part of the runtime environment rΓ (OS-Var). The null expression always
evaluates to the nulla address (OS-Null). Object creation picks a fresh address, allocates
an object of the appropriate type, and initializes its fields to nulla (OS-New). For cast
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OS-Var
h, rΓ, xÃ h, rΓ(x)

OS-Null
h, rΓ, nullÃ h, nulla

OS-New

ι /∈ dom(h) ι 6= nulla
rT = dyn(sT, h, rΓ)

rT = C< >
Fs(fields(C)) = nulla

h′ = h[ι 7→ (rT, Fs)]

h, rΓ, new sTÃ h′, ι
OS-Cast

h, rΓ, e0 Ã h′, ι
h′ ` ι : dyn(sT, h, rΓ)

h, rΓ, (sT) e0 Ã h′, ι

OS-Read

h, rΓ, e0 Ã h′, ι0
ι0 6= nulla

ι = h′(ι0)↓2 (f)

h, rΓ, e0.fÃ h′, ι
OS-Write

h, rΓ, e0 Ã h0, ι0
ι0 6= nulla

h0,
rΓ, e2 Ã h2, ι

h′ = h2[ι0.f := ι]

h, rΓ, e0.f=e2 Ã h′, ι

OS-Invk

h, rΓ, e0 Ã h0, ι0 ι0 6= nulla h0,
rΓ, e2 Ã h2, ι2

h0(ι0)↓1= C0< > mBody(C0, m) = (e1, x, X)
rT = dyn(sT, h, rΓ) rΓ′ = X rT ; this ι0, x ι2 h2,

rΓ′, e1 Ã h′, ι

h, rΓ, e0.m<sT>(e2)Ã h′, ι

Figure 14: Operational semantics.

expressions, we evaluate the expression e0 and check that the resulting address has the
runtime type that is the dynamization of the static type given in the cast expression w.r.t.
the current this address (OS-Cast). Runtime information about type arguments and
ownership is mainly required to check casts. However, we also use this information to
evaluate new expressions, where the type is a type variable.

For field read, we evaluate the receiver expression and then look up the field in the
heap, provided that the receiver is non-null (OS-Read). For field updates, we evaluate the
receiver expression and the right-hand side expression, and update the heap (OS-Write).
Note that the limited covariance of Generic Universe Types does not require a runtime
ownership check for field updates.

Rule OS-Invk describes how to evaluate a call of a method m. We evaluate the receiver
expression and the actual method arguments in the usual order. The class of the receiver
object is used to look up the method body. Its expression is then evaluated in the runtime
environment that maps m’s type variables to actual type arguments as well as m’s formal
method parameters (including this) to the actual method arguments. The resulting heap
and address are the result of the call. Note that method invocations do not need any
runtime type checks or purity checks.
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5 Properties and Proofs

5.1 Properties

5.1.1 Adaptation from a Viewpoint

The following lemma expresses that viewpoint adaptation from a viewpoint to this is
correct. Consider the this object of a well-formed runtime environment as well as two
objects o1 and o2. If from the viewpoint this, o1 has the type that is the dynamization
of a static type sN, and from viewpoint o1, o2 has the type that is the dynamization of a
static type sT, then from the viewpoint this, o2 has the type that is the dynamization of sT

adapted from sN, sNBsT. The following lemma expresses this property using the addresses
ι1 and ι2 of the objects o1 and o2, respectively.

Lemma 5.1 (Adaptation from a Viewpoint).

h ` rΓ : sΓ h ` rΓ′ : sΓ′

h ` ι1 : dyn(sN, h, rΓ)
h ` ι2 : dyn(sT, ι1,

rT, rΓ′)
h(ι1)↓1=

rT
sN = uN CN< >
uN = thisu ⇒

rΓ(this) = ι1
free(sT) ⊆ dom(CN) ◦ Xm

rTm = dyn(sTm, h, rΓ)
rΓ′ = Xm

rTm;























































=⇒ h ` ι2 : dyn((sNBsT)[sTm/Xm], h, rΓ)

This lemma justifies the type rule GT-Read. The last antecedent ensures that, if the main
modifier is thisu then ι1 corresponds to the current object in the environment. The proof
of this lemma runs by induction on the shape of static type sT. The base case deals with
type variables and non-generic types. The induction step considers generic types, assuming
that the lemma holds for the actual type arguments. Each of the cases is done by a case
distinction on the main modifiers of sN and sT.

5.1.2 Adaptation to a Viewpoint

The following lemma in the converse of Lemma 5.1. It expresses that viewpoint adaptation
from this to an object o1 is correct. If from the viewpoint this, o1 has the type that
is the dynamization of a static type sN and o2 has the type that is the dynamization of
sNBsT, then from viewpoint o1, o2 has the type that is the dynamization of a static type
sT. The lemma requires that the adaptation of sT does not change ownership modifiers
in sT from non-any to any, because the lost ownership information cannot be recovered.
Such a change occurs if sN’s main modifier is any or if sT contains rep and is not accessed
through this (see definition of rp, Sec. 3.6).
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Lemma 5.2 (Adaptation to a Viewpoint).

h ` rΓ : sΓ h ` rΓ′ : sΓ′

h ` ι1 : dyn(sN, h, rΓ)

h ` ι2 : dyn((sNBsT)[sTm/Xm], h, rΓ)
h(ι1)↓1=

rT
sN = uN CN< >, uN 6= any, rp(uN , sT)
uN = thisu ⇒

rΓ(this) = ι1
free(sT) ⊆ dom(CN) ◦ Xm

rTm = dyn(sTm, h, rΓ)
rΓ′ = Xm

rTm;























































=⇒ h ` ι2 : dyn(sT, ι1,
rT, rΓ′)

This lemma justifies the type rule GT-Write and the requirements for the types of the
parameters in GT-Invk. The proof of this lemma is analogous to the proof for Lemma 5.1.

5.1.3 Soundness

Type safety of Generic Universe Types is expressed by the following theorem. If a well-
typed expression e is evaluated in a well-formed environment (including a well-formed
heap), then the resulting environment is well-formed and the result of e’s evaluation has
the type that is the dynamization of e’s static type. Moreover, our theorem expresses that
the main modifier thisu is used solely for the type of this.

Theorem 5.3 (Soundness).

h ` rΓ : sΓ
sΓ ` e : sT
h, rΓ, eÃ h′, ι







=⇒







h′ ` rΓ : sΓ
h′ ` ι : dyn(sT, h, rΓ)
sT = thisu < >⇒ ι ∈ {rΓ(this), nulla}

The proof of Theorem 5.3 runs by rule induction on the operational semantics. Lemma 5.1
is used to prove field read and method results, whereas Lemma 5.2 is used to prove field
updates and method parameter passing.

We omit a proof of progress since this property is not affected by adding ownership to
a Java-like language. The basic proof can easily be adapted from FGJ [16]. Extensions
to include field updates and casts have also been done before [15, 4]. Only the additional
check of the ownership information in a cast is different from these previous approaches;
its treatment is analogous to a standard Java cast.

5.1.4 Owner-as-Modifier

A property that is relevant for Generic Universe Types is the enforcement of the owner-
as-modifier discipline, which is expressed by the following theorem. The evaluation of a
well-typed expression e in a well-formed environment modifies only those objects that are
(transitively) owned by the owner of this.
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Theorem 5.4 (Owner-as-Modifier).

h ` rΓ : sΓ
sΓ ` e : sT
ιT = rΓ(this)
h, rΓ, eÃ h′,















⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h′ ↓2 (f) ∨
owner(h, ιT ) ∈ owners(h, ι)

where owner(h, ι) denotes the direct owner of the object at address ι in heap h, and
owners(h, ι) denotes the set of all (transitive) owners of this object.

The proof of Theorem 5.4 runs by rule induction on the operational semantics. The inter-
esting cases are field update and calls of non-pure methods. In both cases, the type rules
(Fig. 11) enforce that the receiver expression does not have the main modifier any. That
is, the receiver object is owned by this or the owner of this.

For the proof of Theorem 5.4 we assume that pure methods do not modify objects that
exist in the prestate of the call:

Lemma 5.5 (Pure Methods).

h ` rΓ : sΓ
sΓ ` e0.m<sT>(e2) :

sT

h, rΓ, e0.m<sT>(e2)Ã h′,
sΓ ` e0 : C0< >
mType(C0, m) = < > pure m( )























⇒

{

∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h′ ↓2 (f)

In this paper we do not describe how this is enforced in the program. A simple but
conservative approach forbids all object creations, field updates, and calls of methods that
are not pure [22]. The above definition also allows weaker forms of purity that allow object
creations [13] and also approaches that allow the modification of newly created objects
[27].

5.1.5 Adaptation from a Viewpoint Helper Lemma

The following lemma is used in the proof of the two viewpoint adaptation lemmas. This
lemma is basically the same as Lemma 5.1, but is more suitable for a proof by induction.

Lemma 5.6 (Adaptation from a Viewpoint Helper Lemma).

h ` rΓ : sΓ h ` rΓ′ : sΓ′

h ` ι1 : dyn(sN, h, rΓ)
h(ι1)↓1=

rT
sN = uN CN< >
uN = thisu ⇒

rΓ(this) = ι1
free(sT) ⊆ dom(CN) ◦ Xm

rTm = dyn(sTm, h, rΓ)
rΓ′ = Xm

rTm;
rT2 = dyn(sT, ι1,

rT, rΓ′)























































=⇒ rT2
r<:a dyn((sNBsT)[sTm/Xm], h, rΓ)

The proof runs by induction on the shape of sT.
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5.1.6 Adaptation to a Viewpoint Helper Lemma

The following lemma is used in the proof of the two viewpoint adaptation lemmas. This
lemma is basically the same as Lemma 5.2, but is more suitable for a proof by induction.

Lemma 5.7 (Adaptation to a Viewpoint Helper Lemma).

h ` rΓ : sΓ h ` rΓ′ : sΓ′

h ` ι1 : dyn(sN, h, rΓ)
rT2 = dyn((sNBsT)[sTm/Xm], h, rΓ)
h(ι1)↓1=

rT
sN = uN CN< >, uN 6= any, rp(uN , sT)
uN = thisu ⇒

rΓ(this) = ι1
free(sT) ⊆ dom(CN) ◦ Xm

rTm = dyn(sTm, h, rΓ)
rΓ′ = Xm

rTm;























































=⇒ rT2 = dyn(sT, ι1,
rT, rΓ′)

The proof runs by induction on the shape of sT.

5.1.7 Properties of Runtime Types

If we have two possible runtime supertypes of rT, both having the same owner address and
class, and know that all type arguments of one supertype are subtypes of the other type
arguments, then we know that the type arguments are also in the <:a relation, i.e., all
the classes in the two types are equal and only the owner addresses vary.

Lemma 5.8 (Covariance of Runtime Subtyping 1).

ι0 `
rT r<: ι′ C<rT>

ι0 `
rT r<: ι′ C<rT′>

ι0 ` rT r<: rT′







⇒ rT r<:a rT′

The proof runs by induction on the runtime subtyping rules.
If we have two possible runtime supertypes of rT, both having the same owner address

and class, and know that the owner of the supertypes is not anya, then we know that the
type arguments are equal.

Lemma 5.9 (Covariance of Runtime Subtyping 2).

ι0 `
rT r<: ι′ C<rT>

ι0 `
rT r<: ι′ C<rT′>

ι′ 6= anya







⇒ rT = rT′

The proof runs by induction on the runtime subtyping rules.
A static subtype relation will result in a runtime subtype relation, if they are converted

to runtime types in the same context.
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Lemma 5.10 (Subtyping preserved by dyn 1).

h ` rΓ : sΓ
sΓ ` sT <: sT′

}

⇒ ι ` dyn(sT, ι, rT, rΓ) r<: dyn(sT′, ι, rT, rΓ)

The proof runs by induction on the shape of sT and the static subtyping rules.
If an address ι can be typed with the dynamization of a subtype sT, it can also be typed

with the dynamization of a supertype sT′.

Lemma 5.11 (Subtyping preserved by dyn 2).

h ` rΓ : sΓ
sΓ ` sT <: sT′

h ` ι : dyn(sT, h, rΓ)







⇒ h ` ι : dyn(sT′, h, rΓ)

The proof runs by induction on the shape of sT and the static subtyping rules.

5.1.8 Evaluation Preserves Types

The evaluation of any expression does not change the runtime types of existing objects.

Lemma 5.12 (Evaluation Preserves Types).
If h, rΓ, eÃ h′, ι′, then

• ι ∈ dom(h) ⇒ h(ι)↓1= h′(ι)↓1.

• dyn(sT, h, rΓ) is defined ⇒ dyn(sT, h, rΓ) = dyn(sT, h′, rΓ).

The proof is a case analysis of all expressions.

5.1.9 Runtime Meaning of Ownership Modifiers

The following lemma connects the meaning of the static ownership modifiers and the run-
time owner. For thisu and peer references, the owner of the referenced object is the
owner of the current object. For rep references, the owner of the referenced object is the
current object. From anyu references, we do not gain any information about the runtime
ownership.

Lemma 5.13 (Runtime Meaning of Ownership Modifiers).
If h ` ι : dyn(sT,h, rΓ) and ι 6= nulla, then

1. sT = thisu < > ⇒ owner(h, ι) = owner(h, rΓ(this))

2. sT = peer < > ⇒ owner(h, ι) = owner(h, rΓ(this))

3. sT = rep < > ⇒ owner(h, ι) = rΓ(this)

The proof is a case analysis and the application of the definition of dyn.
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5.1.10 Generation Lemma

The following generation lemma allows us to draw conclusions on the possible derivation
of the typing. We know that some expression e has a type sT in an environment sΓ. Then
there is a unique shape of the expression by which we can determine which type rule has
been used to derive the type sT. This gives us information about all the conditions that
must hold for this expression.

Lemma 5.14 (Generation Lemma).

sΓ ` e : sT
e ≡ x : x ∈ dom(Γ) ∧ Γ ` x : Γ(x) ∧ Γ ` Γ(x) <: sT

e ≡ null : Γ ` null : sT′ ∧ Γ ` sT′ <: sT

e ≡ new sT′ : Γ ` new sT′ : sT′ ∧ Γ ` sT′ <: sT

e ≡ (sT′) e0 : Γ ` e0 : sN0 ∧ Γ ` (sT′) e0 : sT′ ∧ Γ ` sT′ <: sT

e ≡ e0.f : sΓ ` e0 : sN0 ∧
sN0 = C0< > ∧

sΓ ` e0.f : sN0BfType(C0, f) ∧
sΓ ` sN0BfType(C0, f) <: sT

e ≡ e0.f=e2 : sΓ ` e0 : sN0 ∧
sN0 = u0 C0< > ∧

sT1 = fType(C0, f) ∧
sΓ ` e2 : sN0B

sT1 ∧
u0 6= any ∧ rp(u0,

sT1) ∧
sΓ ` e0.f=e2 : sN0B

sT1 ∧
sΓ ` sN0B

sT1 <: sT

e ≡ e0.m<sT>(e2) :
sΓ ` e0 : sN0 ∧

sN0 = u0 C0< > ∧
mType(C0, m) = <Xm

sNb> w sTr m(x sTp) ∧
sΓ ` sT <: (sN0B

sNb)[sT/Xm] ∧ sΓ ` e2 : (sN0B
sTp)[sT/Xm] ∧

(u0=any⇒ w=pure) ∧ rp(u0, sTp ◦ sNb) ∧
sΓ ` e0.m<T>(e2) : (

sN0B
sTr)[sT/Xm] ∧

sΓ ` (sN0B
sTr)[sT/Xm] <: sT

The proof of Lemma 5.14 runs by rule induction on the shape of the expression e. There
are always two type rules that could apply to an expression: the rule for the particular kind
of expression and the subsumption rule. From the particular rule we get all the conditions
that are checked for this kind of expression; subsumption allows one to go to an arbitrary
supertype of this type.

5.2 Proofs

5.2.1 Proof of Theorem 5.3 — Soundness

Our soundness theorem is:

1. h ok

2. h ` rΓ : sΓ
3. sΓ ` e : sT
4. h, rΓ, eÃ h′, ι















=⇒















I. h′ ok

II. h′ ` rΓ : sΓ
III. h′ ` ι : dyn(sT, h, rΓ)
IV. sT = thisu < >⇒ ι ∈ {rΓ(this), nulla}

We prove this by induction on the shape of the derivation tree of 4.
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Case 1: e ≡ x

We have the assumptions of the theorem:

1. h ok 2. h ` rΓ : sΓ
3. sΓ ` x : sT 4. h, rΓ, xÃ h′, ι

From 3. and Lemma 5.14 we get:

x ∈ dom(sΓ) sΓ ` x : sΓ(x) sΓ ` sΓ(x) <: sT

From the operational semantics we know:

h, rΓ, xÃ h, rΓ(x)

Part I: h′ ok

We have 1. and h = h′.

Part II: h′ ` rΓ : sΓ
We have 2. and h = h′.

Part III: h′ ` ι : dyn(sT, h, rΓ)
From Part II we know that the environments conform. We know from the operational se-
mantics that the ι is from the runtime environment. Therefore we know from the definition
of well-formed runtime environment (WFRE, Page 24), that h′ ` ι : dyn(sΓ(x), h, rΓ) holds.
We also know that sΓ ` sΓ(x) <: sT and can therefore apply Lemma 5.11 to arrive at III.

Part IV: sT=thisu < >⇒ ι ∈ {rΓ(this), nulla}
The static type only has the this ownership modifier, if we read the this variable. Then we
know from the operational semantics and Part II that the variable we read is rΓ(this).

Case 2: e ≡ null

We have the assumptions of the theorem:

1. h ok 2. h ` rΓ : sΓ
3. sΓ ` null : sT 4. h, rΓ, nullÃ h′, ι

From 3. and Lemma 5.14 we get:

sΓ ` null : sT′ sΓ ` sT′ <: sT

From the operational semantics we know:

h, rΓ, nullÃ h, nulla

Part I: h′ ok

The heap does not change.
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Part II: h′ ` rΓ : sΓ
The heap does not change.

Part III: h′ ` ι : dyn(sT, h, rΓ)
We know from the operational semantics that ι = nulla. Rule RT-5 allows us to assign
any runtime type to nulla.

Part IV: sT=thisu < >⇒ ι ∈ {rΓ(this), nulla}
We know from the operational semantics that ι = nulla.

Case 3: e ≡ e0.f

We have the assumptions of the theorem:

1. h ok 2. h ` rΓ : sΓ
3. sΓ ` e0.f : sT 4. h, rΓ, e0.fÃ h′, ι

From 3. and Lemma 5.14 we get:

sΓ ` e0 : sN0
sN0 = C0< >

sΓ ` e0.f : sN0BfType(C0, f) Γ ` sN0BfType(C0, f) <: sT

From the operational semantics we know:

h, rΓ, e0 Ã h′, ι0 ι0 6= nulla

ι = h′(ι0)↓2 (f) h, rΓ, e0.fÃ h′, ι

We apply the induction hypothesis to e0:

10. h ok

20. h ` rΓ : sΓ
30.

sΓ ` e0 : sN0

40. h, rΓ, e0 Ã h′, ι0















=⇒















I0. h′ ok

II0. h′ ` rΓ : sΓ
III0. h′ ` ι0 : dyn(sN0, h,

rΓ)
IV 0.

sN0 = thisu < >⇒ ι0 ∈ {
rΓ(this), nulla}

10. and 20. correspond to 1. and 2. 30. is from the type rules and 40. is from the operational
semantics.

Part I: h′ ok

From I0.

Part II: h′ ` rΓ : sΓ
From II0.

Part III: h′ ` ι : dyn(sT, h, rΓ)
We know from III0 that h′ ` ι0 : dyn(sN0, h,

rΓ).
From the well-formed heap judgement from Part I, we can deduce that h′ ` ι :

rfType(ι0, h
′(ι0)↓1, f). The definition of rfType and the type rules give us

h′ ` ι : dyn(fType(C0, f), ι0, h
′(ι0)↓1).

Now we can apply Lemma 5.1 to arrive at h′ ` ι : dyn(sN0BfType(C0, f), h,
rΓ). Finally,

with Lemma 5.11 we arrive at the conclusion.
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Part IV: sT=thisu < >⇒ ι ∈ {rΓ(this), nulla}
The declared type of a field can never have thisu as main modifier. The type sT is a
supertype of the result of applyingB to this field type and can therefore also never have
thisu as main modifier.

Case 4: e ≡ e0.f=e2

We have the assumptions of the theorem:

1. h ok 2. h ` rΓ : sΓ
3. sΓ ` e0.f=e2 : sT 4. h, rΓ, e0.f=e2 Ã h′, ι

From 3. and Lemma 5.14 we get:

sΓ ` e0 : sN0
sN0 = u0 C0< >

sT1 = sfType(C0, f)
sΓ ` e2 : sN0B

sT1

u0 6= any rp(u0,
sT1)

sΓ ` e0.f=e2 : sN0B
sT1

sΓ ` sN0B
sT1 <: sT

From the operational semantics we know:

h, rΓ, e0 Ã h0, ι0 ι0 6= nulla

h0,
rΓ, e2 Ã h2, ι h′ = h2[ι0.f := ι]

h, rΓ, e0.f=e2 Ã h′, ι

We apply the induction hypothesis to e0:

10. h ok

20. h ` rΓ : sΓ
30.

sΓ ` e0 : sN0

40. h, rΓ, e0 Ã h0, ι0















=⇒















I0. h0 ok

II0. h0 `
rΓ : sΓ

III0. h0 ` ι0 : dyn(sN0, h,
rΓ)

IV 0.
sN0 = thisu < >⇒ ι0 ∈ {

rΓ(this), nulla}

10. and 20. correspond to 1. and 2. 30. is from the type rules and 40. is from the operational
semantics.

We apply the induction hypothesis to e2:

12. h0 ok

22. h0 `
rΓ : sΓ

32.
sΓ ` e2 : sN0B

sT1

42. h0,
rΓ, e2 Ã h2, ι















=⇒















I2. h2 ok

II2. h2 `
rΓ : sΓ

III2. h2 ` ι : dyn(sN0B
sT1, h0,

rΓ)
IV 2.

sN0B
sT1 = thisu < >⇒ ι ∈ {rΓ(this), nulla}

12. is I0. and 22. is II0. 32. is from the type rules and 42. is from the operational semantics.

Part I: h′ ok

From I2. we have h2 ok. We have h′ = h2[ι0.f := ι].
From the definition of well-formed heap, we see that it remains to show that h′ ` ι :

rfType(ι0, h
′(ι0)↓1, f). Let us give a name to the runtime type of the target and to the class
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of that object: rT0 = h′(ι0)↓1= CR< >. From the definition of rfType(ι0,
rT0, f) and from

the type rules we get:

sT1 = sfType(C0, f) type rules
CR v C0 from III0., RT-4, RT-1, dyn.
rfType(ι0,

rT0, f) = dyn(sT1, ι0,
rT0) definition rfType

It remains to show that h′ ` ι : dyn(sT1, ι0,
rT0).

We have: III0. h0 ` ι0 : dyn(sN0, h,
rΓ) and III2. h2 ` ι : dyn(sN0B

sT1, h0,
rΓ). Because

of Lemma 5.12 both of these also apply to h′ instead of h0, h, or h2. Together with 1.
and what we have from the type rules, this allows us to apply Lemma 5.2 to arrive at our
conclusion.

Part II: h′ ` rΓ : sΓ
From II2. we have h2 `

rΓ : sΓ. We have h′ = h2[ι0.f := ι].
Because only the field value is changed (and Lemma 5.12 in general) we get h′ ` rΓ : sΓ.

Part III: h′ ` ι : dyn(sT, h, rΓ)
We have sΓ ` sN0B

sT1 <: sT. We first show that h′ ` ι : dyn(sN0B
sT1, h,

rΓ) and then use
Lemma 5.11 to arrive at the conclusion.

Because of Lemma 5.12 the result from III2., which uses h2, also applies to h′. Thus,
we have: h′ ` ι : dyn(sN0B

sT1, h0,
rΓ) We already have 2., the well-formedness of the

runtime environment. We know that evaluation preserves types and know that dyn only
uses the runtime type of the current object in the environment. Therefore, the judgement
still holds if the second argument of dyn is h instead of h0. We thus arrive at h′ ` ι :
dyn(sN0B

sT1, h,
rΓ).

Part IV: sT=thisu < >⇒ ι ∈ {rΓ(this), nulla}
We have sΓ ` sN0B

sT1 <: sT; sT1 is the declared field type and can not have thisu as
main modifier. Therefore, also the result of the combination can not have the thisu main
modifier. Finally, also no supertype thereof can have the thisu main modifier.

Case 5: e ≡ e0.m<sT>(e2)

For simplicity, we assume there is only one method argument.
We have the assumptions of the theorem:

1. h ok 2. h ` rΓ : sΓ
3. sΓ ` e0.m<sT>(e2) :

sT 4. h, rΓ, e0.m<sT>(e2)Ã h′, ι

From 3. and Lemma 5.14 we get:

sΓ ` e0 : sN0
sN0 = u0 C0S< >

mType(C0S, m) = <Xm
sNbS> w sTrS m(x sTpS)

sΓ ` sT <: (sN0B
sNbS)[sT/Xm] sΓ ` e2 : (sN0B

sTpS)[sT/Xm]
u0=any⇒ w=pure rp(u0, sTpS ◦ sNbS)
sΓ ` e0.m<sT>(e2) : (

sN0B
sTrS)[sT/Xm] sΓ ` (sN0B

sTrS)[sT/Xm] <: sT
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From the operational semantics we know:

h, rΓ, e0 Ã h0, ι0 ι0 6= nulla h0,
rΓ, e2 Ã h2, ι2

h0(ι0)↓1= C0R< > mBody(C0R, m) = (e1, x, Xm)
rT = dyn(sT, h, rΓ) rΓ′ = Xm

rT ; this ι0, x ι2
h2,

rΓ′, e1 Ã h′, ι h, rΓ, e0.m<sT>(e2)Ã h′, ι

For a method call, we have to distinguish three different classes for the receiver type.
Statically, we know that the receiver has class C0S<XS sNS> and we have the signature

mType(C0S, m) = <Xm
sNbS> w sTrS m(x sTpS).

At runtime, the receiver object ι0 has class C0R<XR sNR> and we have the signature
mType(C0R, m) = <Xm

sNbR> w sTrR m(x sTpR) and the method body mBody(C0R, m) =
(e1, x, Xm).

The third class to consider is the class C0C<XC sNC> which contains the most concrete
implementation of the method. Here we have the signature
mType(C0C , m) = <Xm

sNbC> w sTrC m(x sTpC) and the method body mBody(C0C , m) =
(e1, x, Xm). This class is important, because we take the method body from this class and
execute it. Note that the method body returned for class C0R is the same as the one for
C0C .

The three classes are in the following subclass relationship, disregarding the concrete
type arguments: C0R v C0C v C0S.

We use the subscripts R, C, and S to distinguish the level we are talking about. Note
that the name of the method type variables and method parameters are the same on all
three levels.
We apply the induction hypothesis to e0:

10. h ok

20. h ` rΓ : sΓ
30.

sΓ ` e0 : sN0

40. h, rΓ, e0 Ã h0, ι0















=⇒















I0. h0 ok

II0. h0 `
rΓ : sΓ

III0. h0 ` ι0 : dyn(sN0, h,
rΓ)

IV 0.
sN0 = thisu < >⇒ ι0 ∈ {

rΓ(this), nulla}

10. and 20. correspond to 1. and 2. 30. is from the type rules and 40. is from the operational
semantics.

We apply the induction hypothesis to e2 (we call sTa = (sN0B
sTpS)[sT/Xm]):

12. h0 ok

22. h0 `
rΓ : sΓ

32.
sΓ ` e2 : sTa

42. h0,
rΓ, e2 Ã h2, ι2















=⇒















I2. h2 ok

II2. h2 `
rΓ : sΓ

III2. h2 ` ι2 : dyn(sTa, h0,
rΓ)

IV 2.
sTa = thisu < >⇒ ι2 ∈ {

rΓ(this), nulla}

12. is I0. and 22. is II0. 32. is from the type rules and 42. is from the operational semantics.
Finally, we apply the induction hypothesis to e1:

11. h2 ok

21. h2 `
rΓ′ : sΓC

31.
sΓC ` e1 : sTrC

41. h2,
rΓ′, e1 Ã h′, ι















=⇒















I1. h′ ok

II1. h′ ` rΓ′ : sΓC

III1. h′ ` ι : dyn(sTrC , h2,
rΓ′)

IV 1.
sTrC = thisu < >⇒ ι ∈ {rΓ′(this), nulla}
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We get 11. from I2. and 41. is from the operational semantics. The other two requirements
need more work and are developed next.

As static environment we use sΓC the environment that was used for checking the the
well-formedness of method m (see rule WFM-1).

Requirement 31.
sΓC ` e1 : sTrC We know that the program was type checked; es-

pecially, WFM-1 was used to check well-formedness of the method in class C0C . The
environment that was used is sΓC = Xm

sNbC , XC
sNC ; this (thisu C0C<XC>), x sTpC . This

environment was used to check that the method body can be typed with the declared
return type sΓC ` e1 : sTrC .

Requirement 21. h2 `
rΓ′ : sΓC From the semantics we have rΓ′ = Xm

rT ; this ι0, x ι2.
For WFRE we have to show:

h2 ok sΓC ok ι0 ` rT ok

ι0 ` rT r<: dyn(sNbC , h2, rΓ′) h2 ` ι0 : dyn(thisu C0C<XC>, h2,
rΓ′)

h2 ` ι2 : dyn(sTpC , h2,
rΓ′)

These follow from I2., III0., III2., the knowledge we have from the type checks and the
operational semantics, and corresponding applications of the viewpoint adaptation lemma.

Part I: h′ ok

We get this from I1.

Part II: h′ ` rΓ : sΓ
We had II2. h2 `

rΓ : sΓ. The evaluation of e1 does not change the runtime types in the
heap, see Lemma 5.12. So the environments are still well formed.

Part III: h′ ` ι : dyn(sT, h, rΓ)
We assume show that h′ ` ι : dyn((sN0B

sTrS)[sT/Xm], h, rΓ) and then apply Lemma 5.11 to
arrive at our conclusion.

Above we have shown III1. h
′ ` ι : dyn(sTrC , h2,

rΓ′) in which we can expand the usage
of dyn to h′ ` ι : dyn(sTrC , ι0, h2,

rΓ′).
We also have shown III0. h0 ` ι0 : dyn(sN0, h,

rΓ).
Now we are ready to use Lemma 5.1 to arrive at h′ ` ι : dyn((sN0B

sTrS)[sT/Xm], h, rΓ).
The assumptions of this lemma correspond exactly to the information we just derived.

Part IV: sT=this < >⇒ ι ∈ {rΓ(this), nulla}
We have sT = (sN0B

sTrS)[sT/Xm]. sTrS is the declared return type and can not have thisu

as main modifier. Therefore, also the result of the combination can not have the thisu

main modifier.

Case 6: e ≡ new sT′

We have the assumptions of the theorem:

1. h ok 2. h ` rΓ : sΓ
3. sΓ ` new sT′ : sT 4. h, rΓ, new sT′ Ã h′, ι
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From 3. and Lemma 5.14 we get:

sΓ ` new sT′ : sT′ sΓ ` sT′ <: sT

From the operational semantics we know:

ι /∈ dom(h) ι 6= nulla
rT = dyn(sT′, h, rΓ)

rT = C< > Fs(fields(C)) = nulla h′ = h[ι 7→ (rT, Fs)]
h, rΓ, new sT′ Ã h′, ι

Part I: h′ ok

We extend the heap with an additional object; we therefore have to show that the runtime
type of the new object is well-formed, that the newly added address is not nulla, and that
all field values are well-typed (see WFH, Page 24).

We have to ensure that for the newly added address ι the runtime type is well-formed:
ι ` h′(ι) ↓1 ok. From the operational semantics and the definition of dyn we know that
h′(ι)↓1=

rT = dyn(sT′, h, rΓ) = dyn(sT′, rΓ(this), rΓ(this)↓1,
rΓ). From the type rules we

know that sT′ is a well-formed type and therefore that all type arguments are subtypes of
their upper bounds. We know from 2. that the types in the static and runtime environments
are all well-formed. Together with Lemma 5.10 this allows us to show the well-formedness
of rT (see WFRT, Page 23).

From the operational semantics we know that ι 6= nulla.
From the definition of well-formed heap and RT-5 we see, that an object whose fields

are all initialized to nulla is valid in a heap.
From 1. and these observation we can conclude that I. holds.

Part II: h′ ` rΓ : sΓ
We have h′ = h[ι 7→ (rT, Fs)], where ι is a fresh address. This update can not influence the
existing environments, which are well-formed according to 2.

Part III: h′ ` ι : dyn(sT, h, rΓ)
From the operational semantics we know that h′(ι) = rT = dyn(sT′, h, rΓ). We also have
sΓ ` sT′ <: sT and can therefore use Lemma 5.11 to arrive at our conclusion.

Part IV: sT=this < >⇒ ι ∈ {rΓ(this), nulla}
The syntax of the language forbids that the main modifier of the static type in a new
expression can be thisu.

Case 7: e ≡ (sT′) e0

We have the assumptions of the theorem:

1. h ok 2. h ` rΓ : sΓ
3. sΓ ` (sT′) e0 : sT 4. h, rΓ, (sT′) e0 Ã h′, ι

From 3. and Lemma 5.14 we get:

sΓ ` e0 : sN0
sΓ ` (sT′) e0 : sT′ sΓ ` sT′ <: sT
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From the operational semantics we know:

h, rΓ, e0 Ã h′, ι h′ ` ι : dyn(sT′, h, rΓ) h, rΓ, (sT′) e0 Ã h′, ι

We apply the induction hypothesis to e0:

10. h ok

20. h ` rΓ : sΓ
30.

sΓ ` e0 : sN0

40. h, rΓ, e0 Ã h0, ι















=⇒















I0. h′ ok

II0. h′ ` rΓ : sΓ
III0. h′ ` ι : dyn(sN0, h,

rΓ)
IV 0.

sN0 = thisu < >⇒ ι0 ∈ {
rΓ(this), nulla}

10. and 20. correspond to 1. and 2. 30. is from the type rules and 40. is from the operational
semantics.

Part I: h′ ok

From I0.

Part II: h′ ` rΓ : sΓ
From II0.

Part III: h′ ` ι : dyn(sT, h, rΓ)
From the operational semantic we have: h′ ` ι : dyn(sT′, h, rΓ).

We also have h ` rΓ : sΓ and sΓ ` sT′ <: sT. These allow us to use Lemma 5.11 to arrive
at h′ ` ι : dyn(sT, h, rΓ).

Part IV: sT=this < >⇒ ι ∈ {rΓ(this), nulla}
The syntax of the language forbids that the main modifier of the static type in a cast
expression can be thisu.

5.2.2 Proof of Theorem 5.4 — Owner-as-Modifier

The Owner-as-Modifier theorem is:

1. h ` rΓ : sΓ
2. sΓ ` e : sT
3. ιT = rΓ(this)
4. h, rΓ, eÃ h′,















⇒







∀ι ∈ dom(h), f :
I. h(ι)↓2 (f) = h′ ↓2 (f) ∨
II. owner(h, ιT ) ∈ owners(h, ι)

We prove this by induction on the shape of the derivation tree of 4.

Case 1: e ≡ x

We have the assumptions of the theorem:

1. h ` rΓ : sΓ 2. sΓ ` x : sT
3. ιT = rΓ(this) 4. h, rΓ, xÃ h′,

From 2. and Lemma 5.14 we get:

x ∈ dom(sΓ) sΓ ` x : sΓ(x) sΓ ` sΓ(x) <: sT

From the operational semantics we know:

h, rΓ, xÃ h, rΓ(x)

The heap does not change, so I. holds.
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Case 2: e ≡ null

We have the assumptions of the theorem:

1. h ` rΓ : sΓ 2. sΓ ` null : sT
3. ιT = rΓ(this) 4. h, rΓ, nullÃ h′,

From 2. and Lemma 5.14 we get:

sΓ ` null : sT′ sΓ ` sT′ <: sT

From the operational semantics we know:

h, rΓ, nullÃ h, nulla

The heap does not change, so I. holds.

Case 3: e ≡ e0.f

We have the assumptions of the theorem:

1. h ` rΓ : sΓ 2. sΓ ` e0.f : sT
3. ιT = rΓ(this) 4. h, rΓ, e0.fÃ h′,

From 2. and Lemma 5.14 we get:

sΓ ` e0 : sN0
sN0 = C0< >

sΓ ` e0.f : sN0BfType(C0, f)
sΓ ` sN0BfType(C0, f) <: sT

From the operational semantics we know:

h, rΓ, e0 Ã h′, ι0 ι0 6= nulla

ι = h′(ι0)↓2 (f) h, rΓ, e0.fÃ h′, ι

We apply the induction hypothesis to e0:

10. h ` rΓ : sΓ
20.

sΓ ` e0 : sN0

30. ιT = rΓ(this)
40. h, rΓ, e0 Ã h′,















=⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h′ ↓2 (f) ∨
owner(h, ιT ) ∈ owners(h, ι)

10. and 30. correspond to 1. and 3. 20. is from the type rules and 40. is from the operational
semantics.

This is already the final heap.
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Case 4: e ≡ e0.f=e2

We have the assumptions of the theorem:

1. h ` rΓ : sΓ 2. sΓ ` e0.f=e2 : sT
3. ιT = rΓ(this) 4. h, rΓ, e0.f=e2 Ã h′,

From 2. and Lemma 5.14 we get:

sΓ ` e0 : sN0
sN0 = u0 C0< >

sT1 = sfType(C0, f)
sΓ ` e2 : sN0B

sT1

u0 6= any rp(u0,
sT1)

sΓ ` e0.f=e2 : sN0B
sT1

sΓ ` sN0B
sT1 <: sT

From the operational semantics we know:

h, rΓ, e0 Ã h0, ι0 ι0 6= nulla

h0,
rΓ, e2 Ã h2, ι h′ = h2[ι0.f := ι]

h, rΓ, e0.f=e2 Ã h′, ι

We apply the induction hypothesis to e0:

10. h ` rΓ : sΓ
20.

sΓ ` e0 : sN0

30. ιT = rΓ(this)
40. h, rΓ, e0 Ã h0,















=⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h0 ↓2 (f) ∨
owner(h, ιT ) ∈ owners(h, ι)

10. and 30. correspond to 1. and 3. 20. is from the type rules and 40. is from the operational
semantics.

We apply the induction hypothesis to e2:

10. h0 `
rΓ : sΓ

20.
sΓ ` e2 : sN0B

sT1

30. ιT = rΓ(this)
40. h0,

rΓ, e2 Ã h2,















=⇒







∀ι ∈ dom(h0), f :
h0(ι)↓2 (f) = h2 ↓2 (f) ∨
owner(h0, ιT ) ∈ owners(h0, ι)

10. and 30. correspond to 1. and 3. 20. is from the type rules and 40. is from the operational
semantics.

To receive at the final heap we have to consider h′ = h2[ι0.f := ι]. In general, this will
change the value of the field f of object ι0. Therefore, we need to show that owner(h, ιT ) ∈
owners(h2, ι0).

From the type rules we know that u0 6= any, i.e. the ownership modifier is either this,
peer, or rep. From the proof of Theorem 5.3 we know that h0 ` ι0 : dyn(sN0, h,

rΓ). From
the operational semantics we know that ι0 6= nulla. Therefore we can apply Lemma 5.13
to gain knowledge of the runtime owners:

1. sN0 = thisu < > ⇒ owner(h0, ι0) = owner(h0, ιT )
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2. sN0 = peer < > ⇒ owner(h0, ι0) = owner(h0, ιT )

3. sN0 = rep < > ⇒ owner(h0, ι0) = ιT

From the type rules we know that the main modifier is not anyu. That is, the owner of
ι0 is either ιT , or the owner of ιT . Therefore, owner(h, ιT ) ∈ owners(h2, ι0) holds.

Case 5: e ≡ e0.m<sT>(e2)

For simplicity, we assume there is only one method argument and formal parameter.
We have the assumptions of the theorem:

1. h ` rΓ : sΓ 2. sΓ ` e0.m<sT>(e2) :
sT

3. ιT = rΓ(this) 4. h, rΓ, e0.m<sT>(e2)Ã h′,

From 2. and Lemma 5.14 we get:

sΓ ` e0 : sN0
sN0 = u0 C0S< >

mType(C0S, m) = <Xm
sNbS> w sTrS m(x sTpS)

sΓ ` sT <: (sN0B
sNbS)[sT/Xm] sΓ ` e2 : (sN0B

sTpS)[sT/Xm]
u0=any⇒ w=pure rp(u0, sTpS ◦ sNbS)
sΓ ` e0.m<sT>(e2) : (

sN0B
sTrS)[sT/Xm] sΓ ` (sN0B

sTrS)[sT/Xm] <: sT

From the operational semantics we know:

h, rΓ, e0 Ã h0, ι0 ι0 6= nulla h0,
rΓ, e2 Ã h2, ι2

h0(ι0)↓1= C0R< > mBody(C0R, m) = (e1, x, Xm)
rT = dyn(sT, h, rΓ) rΓ′ = Xm

rT ; this ι0, x ι2
h2,

rΓ′, e1 Ã h′, ι h, rΓ, e0.m<sT>(e2)Ã h′, ι

We apply the induction hypothesis to e0:

10. h ` rΓ : sΓ
20.

sΓ ` e0 : sN0

30. ιT = rΓ(this)
40. h, rΓ, e0 Ã h0,















=⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h0 ↓2 (f) ∨
owner(h, ιT ) ∈ owners(h, ι)

10. and 30. correspond to 1. and 3. 20. is from the type rules and 40. is from the operational
semantics.

We apply the induction hypothesis to e2:

10. h0 `
rΓ : sΓ

20.
sΓ ` e2 :

30. ιT = rΓ(this)
40. h0,

rΓ, e2 Ã h2,















=⇒







∀ι ∈ dom(h0), f :
h0(ι)↓2 (f) = h2 ↓2 (f) ∨
owner(h0, ιT ) ∈ owners(h0, ι)

10. and 30. correspond to 1. and 3. 20. is from the type rules and 40. is from the operational
semantics.
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If the method that is called is pure, we know from Lemma 5.5 that the method does
not change existing objects in the heap and we are done.

If the method is not pure, we apply the induction hypothesis to e1:

10. h2 `
rΓ′ : sΓ′

20.
sΓ′ ` e1 :

30. ι0 = rΓ′(this)
40. h2,

rΓ′, e1 Ã h′,















=⇒







∀ι ∈ dom(h2), f :
h2(ι)↓2 (f) = h′ ↓2 (f) ∨
owner(h2, ι0) ∈ owners(h2, ι)

We use the runtime environment rΓ′ constructed in the operational semantics and the static
environment sΓ′ that was used to type-check the body of the method. 10. and 20. were
previously shown in the proof of the soundness Theorem 5.3 (see Page 35 for details). 30.
and 40. are from the operational semantics.

From the type rules we know that if the method is not pure then u0 6= any, i.e. the
ownership modifier is either this, peer, or rep. From the proof of Theorem 5.3 we know
that h0 ` ι0 : dyn(sN0, h,

rΓ). From the operational semantics we know that ι0 6= nulla.
Therefore we can apply Lemma 5.13 to gain knowledge of the runtime owners:

1. sN0 = thisu < > ⇒ owner(h0, ι0) = owner(h0, ιT )

2. sN0 = peer < > ⇒ owner(h0, ι0) = owner(h0, ιT )

3. sN0 = rep < > ⇒ owner(h0, ι0) = ιT

That is, the owner of ι0 is either ιT , or the owner of ιT . Therefore, owner(h, ιT ) ∈
owners(h2, ι0) holds.

Case 6: e ≡ new sT′

We have the assumptions of the theorem:

1. h ` rΓ : sΓ 2. sΓ ` new sT′ : sT
3. ιT = rΓ(this) 4. h, rΓ, new sT′ Ã h′,

From 2. and Lemma 5.14 we get:

sΓ ` new sT′ : sT′ sΓ ` sT′ <: sT

From the operational semantics we know:

ι /∈ dom(h) ι 6= nulla
rT = dyn(sT′, h, rΓ)

rT = C< > Fs(fields(C)) = nulla h′ = h[ι 7→ (rT, Fs)]
h, rΓ, new sT′ Ã h′, ι

We add an additional object to the heap and do not modify any existing objects. Therefore
I. holds.
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Case 7: e ≡ (sT′) e0

We have the assumptions of the theorem:

1. h ` rΓ : sΓ 2. sΓ ` (sT′) e0 : sT
3. ιT = rΓ(this) 4. h, rΓ, (sT′) e0 Ã h′,

From 2. and Lemma 5.14 we get:

sΓ ` e0 : sN0
sΓ ` (sT′) e0 : sT′ sΓ ` sT′ <: sT

From the operational semantics we know:

h, rΓ, e0 Ã h′, ι h′ ` ι : dyn(sT′, h, rΓ) h, rΓ, (sT′) e0 Ã h′, ι

We apply the induction hypothesis to e0:

10. h ` rΓ : sΓ
20.

sΓ ` e0 : sT
30. ιT = rΓ(this)
40. h, rΓ, e0 Ã h′,















=⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h′ ↓2 (f) ∨
owner(h, ιT ) ∈ owners(h, ι)

10. and 30. correspond to 1. and 3. 20. is from the type rules and 40. is from the operational
semantics.

This is already the final heap.

5.2.3 Proof of Lemma 5.7 — Adaptation to a Viewpoint Helper Lemma

We want to prove:

1. h ` rΓ : sΓ h ` rΓ′ : sΓ′

2. h ` ι1 : dyn(sN, h, rΓ)
3. h(ι1)↓1=

rT
sN = uN CN<sTN>

4. uN = thisu ⇒
rΓ(this) = ι1

5. uN 6= any

6. rp(uN , sT)
7. free(sT) ⊆ dom(CN) ◦ Xm

8. rTm = dyn(sTm, h, rΓ)
9. rΓ′ = Xm

rTm;

10. rT2 = dyn((sNBsT)[sTm/Xm], h, rΓ)







































































=⇒ rT2 = dyn(sT, ι1,
rT, rΓ′)

For the proofs of the adaptation lemmas we assume that the type variables in rΓ and rΓ′

are disjunct, that is, that the type variables that can appear in sN are different from the
type variables that can appear in sT. This could be the case in a recursive method call.
However, this is not a restriction on the expressive power, as we can apply the following
renaming:

XT 6∈ free(sN)

dyn(((sN[XT/Xm])BsT)[sTm/Xm][Xm/XT ], h,
rΓ)

We prove this lemma by induction on the shape of sT:
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Base cases:

Case 1: sT = Xj
m

(sNBXj
m)[sTm/Xm] = sTj

m

dyn((sNBXj
m)[sTm/Xm], h, rΓ) =

dyn(sTj
m, h, rΓ) = [ from 8. ]

rTj
m = [ from 9. and DYN ]

dyn(Xj
m, ι1,

rT, rΓ′) =
dyn(sT, ι1,

rT, rΓ′)

Case 2: sT = Xj ∈ dom(CN)

From 2. and 3. we get:
ι1 `

rT r<: dyn(sN, h, rΓ)
From 2. we know that dyn is defined and produces some substitution that we call [A]:

ι1 `
rT r<: sN[A]

We first simplify the combination:
(sNBXj)[sTm/Xm] = sT

j
N

Now we have 10.:
dyn(sTj

N , h, rΓ) =
We know that 2. is defined, therefore also this subtype is defined:

sT
j
N [A]

The requirements of dyn(Xj, ι1,
rT, rΓ′) are:

rT↓1= ι′

ι1 `
rT r<: ι′ CN<sTN [A]>

Xj ∈ dom(CN)
ι1 `

rT r<: ι′ CN<rT′>⇒ ι1 ` rT′ r<: sTN [A]
We know that ι′ 6= anya because uN 6= anyu and 2. Therefore we know from Lemma 5.9
that the two type arguments are the same.
Now dyn gives us:

dyn(Xj, ι1,
rT, rΓ′) = sT

j
N [A] which is as expected.

Case 3: sT = u C

Case 3a: sNBsT = thisu C or peer C

From the definition ofBwe see that each ownership modifier is either thisu or peer.
rT2 = dyn(u C, ι1,

rT,rΓ′) = rT↓1

dyn((sNBsT)[sTm/Xm], h, rΓ) = ι′′ C where ι′′ = owner(h, rΓ(this))
From 2. we have

ι1 `
rT r<: dyn(sN, h, rΓ).

We know that
dyn(sN, h, rΓ) = ι′′ CN<...>.

We know that the main modifiers are not anyu and therefore that the addresses ι′ and ι′′

are equal.
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Case 3b: sNBsT = rep C

By looking atBwe find two possibilities for this result:
uN = thisu ∧ u = rep or
uN = rep ∧ (u = thisu ∨ u = peer)

Case 3bi: uN = thisu ∧ u = rep

By 4. we have rΓ(this) = ι1
dyn(rep C, ι1,

rT, rΓ′) = ι1 C = dyn(rep C, h, rΓ)

Case 3bii: uN = rep ∧ (u = thisu ∨ u = peer)

The substitutions for thisu and peer made by dyn are the same, therefore we just look
at thisu.

dyn(sT, ι1,
rT, rΓ′) = dyn(thisu C, ι1,

rT, rΓ′) = ι′ C

dyn((sNBsT)[sTm/Xm], h, rΓ) = ι′′ C where ι′′ = rΓ(this), because in this case the result
of the combination is rep and the definition of dyn.

From 2. we have
ι1 `

rT r<: dyn(rep CN<...>, h, rΓ) = ι1 `
rT r<: ι′′ CN<...> where rΓ(this) = ι′′. We

know that rΓ(this) can not be any (from the range of rΓ) and therefore know that ι = ι′′.

Case 3c: sNBsT = anyu C

By looking atB andBm we find four possibilities for this result:
(i) (uN = rep ∨ uN = peer) ∧ u = peer ∧ rep ∈ sT

(ii) uN = anyu

(iii) (uN = peer ∧ u = rep) ∨ (uN = rep ∧ u = rep)
(iv) u = anyu

Case (i) does not hold, because 6. ensures that rep is never contained in sT.

Case (ii) is ruled out by 5.

Case (iii) is ruled out by 6.

Case (iv): dyn(anyu C, ι1,
rT, rΓ′) = anya C = dyn(anyu C, h, rΓ)

Induction Step: sT = u C<sT>

The main modifier is not affected by the presence of type arguments.

dyn(sT, ι1,
rT, rΓ′) = ι′′ C<rT′′>

dyn((sNBsT)[sTm/Xm], h, rΓ) = ι′′′ C<rT′′′>
The case analysis for the base case can still be applied and we again get that ι′′ = ι′′′.

Now we apply the induction hypothesis to the type arguments sT (we treat the type
arguments sT like a single type; this is done for each type in the sequence):
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1′. h ` rΓ : sΓ h ` rΓ′ : sΓ′

2′. h ` ι1 : dyn(sN, h, rΓ)
3′. h(ι1)↓1=

rT
sN = uN CN<sTN>

4′. uN = thisu ⇒
rΓ(this) = ι1

5′. uN 6= any

6′. rp(uN , sT)
7′. free(sT) ⊆ dom(CN) ◦ Xm

8′. rTm = dyn(sTm, h, rΓ)
9′. rΓ′ = Xm

rTm;
10′. rT′

2
= dyn(sT, ι1,

rT, rΓ′)







































































=⇒ rT′
2
= dyn((sNBsT)[sTm/Xm], h, rΓ)

7’ holds, because from 7 we know that free(sT) ⊆ dom(CN) ◦ Xm and we now only
consider a subpart of sT. The application of dyn in 10’ is still defined, also because it is
defined for the larger type. The other conditions directly carry over from 1.− 10.

We now have that the main address and all the type arguments are the same.

5.2.4 Proof of Lemma 5.6 — Adaptation from a Viewpoint Helper Lemma

The following lemma is used in the proof of the previous two viewpoint adaptation lemmas:

1. h ` rΓ : sΓ h ` rΓ′ : sΓ′

2. h ` ι1 : dyn(sN, h, rΓ)
3. h(ι1)↓1=

rT
sN = uN CN<sTN>

4. uN = thisu ⇒
rΓ(this) = ι1

5. free(sT) ⊆ dom(CN) ◦ Xm

6. rTm = dyn(sTm, h, rΓ)
7. rΓ′ = Xm

rTm;
8. rT2 = dyn(sT, ι1,

rT, rΓ′)























































=⇒ rT2
r<:a dyn((sNBsT)[sTm/Xm], h, rΓ)

We prove this by induction on the shape of sT:

Base cases:

Case 1: sT = Xj
m

(sNBXj
m)[sTm/Xm] = sTj

m

dyn((sNBXj
m)[sTm/Xm], h, rΓ) =

dyn(sTj
m, h, rΓ) = [ from 6. ]

rTj
m = [ from 7. and DYN ]

dyn(Xj
m, ι1,

rT, rΓ′) =
dyn(sT, ι1,

rT, rΓ′)

The two applications are equal; therefore, by rule RTA-1 we also have that they are
r<:a subtypes.
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Case 2: sT = Xj ∈ dom(CN)

From 2. and 3. we get:
ι1 `

rT r<: dyn(sN, h, rΓ)
From 2. we know that dyn is defined and produces some substitution that we call [A]:

ι1 `
rT r<: sN[A]

From 8. and the definition of dyn we get
ι1 `

rT r<: ι′ CN<rT> and
ι1 `

rT r<: ι′ CN<rT′>⇒ ι1 ` rT r<: rT′.
in particular this gives:

rTj
r<:a

sT
j
N [A]

(sNBXj)[sTm/Xm] = sTj

dyn(sTj
N , h, rΓ) = sT

j
N [A]

Case 3: sT = u C

From Lemma 5.7 we know that the property holds for
uN 6= anyu ∧ (uN = this ∨ u 6= rep)
We prove the remaining two cases now.

Case (a): uN = anyu

dyn(u C, ι1,
rT,rΓ′) = ι′′ C

dyn((sNBu C)[sTm/Xm], h, rΓ) = anya C

From RTA-2 we see that they are in the r<:a relation.
Case (b): uN 6= this ∧ u = rep

dyn(u C, ι1,
rT,rΓ′) = ι′′ C

dyn((sNBu C)[sTm/Xm], h, rΓ) = dyn(anyu C, h, rΓ) = anya C

From RTA-2 we see that they are in the r<:a relation.

Induction step: sT = u C<sT>
Case (a): uN 6= anyu ∧ (uN = this ∨ rep 6∈ sT)

Follows directly from Lemma 5.7.
Case (b): uN = anyu ∨ (uN 6= this ∧ rep ∈ sT)

rT2 = dyn(sT, ι1,
rT, rΓ′) = ι′′ C<dyn(sT, ι1,

rT, rΓ′)>

dyn((sNBsT)[sTm/Xm], h, rΓ) = anya C<dyn((sNBsT)[sTm/Xm], h, rΓ)>

By the induction hypothesis we have dyn(sT, ι1,
rT, rΓ′) r<:a dyn((sNBsT)[sTm/Xm], h, rΓ)
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5.2.5 Proof of Lemma 5.2 — Adaptation to a Viewpoint

We want to prove:

h ` rΓ : sΓ
h ` ι1 : dyn(sN, h, rΓ)

h ` ι2 : dyn((sNBsT)[sT/Xm], h, rΓ)
h(ι1)↓1=

rT
sN = u C< >, u 6= any, rp(u, sT)
u = thisu ⇒

rΓ(this) = ι1
free(sT) ⊆ dom(C) ◦ Xm
rΓ′ = Xm

rT;
rT = dyn(sT, h, rΓ)























































=⇒ h ` ι2 : dyn(sT, ι1,
rT, rΓ′)

We can directly apply Lemma 5.7, because we have the same assumptions. Therefore
we have

dyn((sNBsT)[sT/Xm], h, rΓ) = dyn(sT, ι1,
rT, rΓ′) = rT′

Then the conclusion is directly one of the assumptions.

5.2.6 Proof of Lemma 5.1 — Adaptation from a Viewpoint

We want to prove:

1. h ` rΓ : sΓ h ` rΓ′ : sΓ′

2. h ` ι1 : dyn(sN, h, rΓ)
3. h ` ι2 : dyn(sT, ι1,

rT, rΓ′)
4. h(ι1)↓1=

rT
sN = uN CN< >

5. uN = thisu ⇒
rΓ(this) = ι1

6. free(sT) ⊆ dom(CN) ◦ Xm

7. rTm = dyn(sTm, h, rΓ)
8. rΓ′ = Xm

rTm;























































=⇒ h ` ι2 : dyn((sNBsT)[sTm/Xm], h, rΓ)

We can apply Lemma 5.6 to arrive at dyn(sT, ι1,
rT, rΓ′) r<:a dyn((sNBsT)[sTm/Xm], h, rΓ)

By RT-3 we get ι2 ` dyn(sT, ι1,
rT, rΓ′) r<: dyn((sNBsT)[sTm/Xm], h, rΓ)

From 3. and RT-4 we know that there is a rT2 the runtime type of ι2 in the heap.

Together this allows us to arrive at the conclusion.

5.2.7 Proof of Lemma 5.12 — Evaluation preserves types

Case analysis of all expressions shows that only the fields are updated in a heap. The
second part follows directly from the first, because dyn only takes the runtime type from
the heap and does not depend on the field values.
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5.2.8 Proof of Lemma 5.13 — Runtime meaning of ownership modifiers

If h ` ι : dyn(sT,h, rΓ), then

1. sT = this < > ⇒ owner(h, ι) = owner(h, rΓ(this))
2. sT = peer < > ⇒ owner(h, ι) = owner(h, rΓ(this))
3. sT = rep < > ⇒ owner(h, ι) = rΓ(this)

dyn(sT,h, rΓ) is short for dyn(sT,rΓ(this), h(rΓ(this))↓1,
rΓ).

Case 1: sT=this < >
dyn(sT,rΓ(this), h(rΓ(this)) ↓1,

rΓ) replaces this by h(rΓ(this)) ↓1↓1, that is, the owner
of rΓ(this).

Case 2: sT=peer < >
dyn(sT,rΓ(this), h(rΓ(this)) ↓1,

rΓ) replaces peer by h(rΓ(this)) ↓1↓1, that is, the owner
of rΓ(this).

Case 3: sT=rep < >
dyn(sT,rΓ(this), h(rΓ(this))↓1,

rΓ) replaces rep by rΓ(this).

6 Conclusions

We presented Generic Universe Types, an ownership type system for Java-like languages
with generic types. Our type system permits arbitrary references through any types, but
controls modifications of objects, that is, enforces the owner-as-modifier discipline. This
allows us to handle interesting implementations beyond simple aggregate objects, for in-
stance, iterators and shared buffers [13]. We show how any types and generics can be
combined in a type safe way using limited covariance and viewpoint adaptation.

Generic Universe Types require little annotation overhead for programmers. As we
have shown for non-generic Universe Types [13], this overhead can be further reduced by
appropriate defaults. The default ownership modifier is generally peer, but the modifier of
upper bounds, exceptions, and immutable types (such as String) defaults to any. These
defaults make the conversion from Java 5 to Generic Universe Types simple.

The type checker and runtime support for non-generic Universe Types are implemented
in JML [19]. An adaptation to Generic Universe Types is ongoing.

As future work, we plan to use Generic Universe Types for program verification, ex-
tending our earlier work [22, 23]. One of the interesting challenges there is to relax the
restrictions on any types, for instance, to allow field updates and calls of non-pure meth-
ods on receivers whose type is a type variable with an any upper bound. We are working
on Path-dependent Universe Types to support more fine-grained information about object
ownership [25], and plan to extend our existing inference tools for non-generic Universe
Types to Generic Universe Types.
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