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Abstract. Object ownership is useful for many applications such as
program verification, thread synchronization, and memory management.
However, even lightweight ownership type systems impose considerable
annotation overhead, which hampers their widespread application. This
paper address this issue by presenting a tunable static type inference for
Universe types. In contrast to classical type systems, ownership types
have no single most general typing. Therefore, our inference is tunable:
users can indicate a preference for certain typings by configuring heuris-
tics through weights. A particularly effective way of tuning the static
inference is to obtain these weights automatically through runtime own-
ership inference. We present how the constraints of the Universe type
system can be encoded as a boolean satisfiability (SAT) problem, how
the runtime ownership inference produces weights from program execu-
tions, and how a weighted Max-SAT solver finds a correct Universe typing
that optimizes the weights. Our implementation provides the static and
runtime inference engines, as well as a visualization tool.

1 Introduction

Heap structures are hard to understand and reason about. Aliasing—multiple
references to the same object—makes errors all too common. For example, it
permits the mutation of an object through one reference to be observed through
other references. Aliasing makes it hard to build complex object structures cor-
rectly and to guarantee invariants about their behavior. This leads to problems
in many areas of software engineering, including modular verification, concurrent
programming, and memory management.

Object ownership [13] structures the heap hierarchically to control aliasing
and access between objects. Ownership type systems aid in the understanding of
heap structures and enforce proper encapsulation of objects. However, ownership
type systems require considerable annotation overhead, which can be a significant
burden for software engineers.

Helping software engineers to transition from un-annotated programs to code
that uses an ownership type system is crucial to facilitate the widespread appli-
cation of ownership type systems. Standard techniques for static type inference
[16] are not applicable. First, there is no need to check for the existence of a cor-
rect typing; such a typing trivially exists by having a flat ownership structure.



Second, there is no notion of a best or most general ownership typing. In realistic
implementations, there are many possible typings and corresponding ownership
structures, and the preferred one depends on the intent of the programmer.
Ownership inference needs to support the developer in finding desirable struc-
tures by suggesting possible structures and allowing the programmer to guide
the inference.

This paper presents a static inference for the Universe type system [15]. The
static inference builds a constraint system that is solved by a SAT solver. An
important virtue of our approach is that the static inference is tunable; the
SAT solver can be provided with weights that express the preference for certain
solutions. These weights can be determined by general heuristics (for instance,
to prefer deep ownership for fields and general typings for method signatures),
by partial annotations, or through interaction with the programmer.

Runtime ownership inference is a particularly effective way to determine
weights automatically. The runtime inference executes the program, for example
using the available tests, and observes the generated object structures. It then
uses a dominator algorithm to determine the deepest possible ownership struc-
ture and to find possible Universe annotations. The quality of the annotations
determined by the runtime inference depends on the code coverage, which can be
reflected in the weights for the suggested annotations. By combining the runtime
inference with the static inference, we get the best of both approaches: the static
inference ensures that the inferred typing is correct, while the runtime inference
obtains weights for the static inference that ensure a deep ownership structure,
which is more likely to reflect design intent and to be useful to programmers.

The main contributions of this paper are:

Static Inference: an encoding of the Universe type rules into a constraint sys-
tem that can be solved efficiently by a SAT solver to find possible annota-
tions.

Tunable Inference: combining the static inference with a weighted Max-SAT
solver and using the runtime inference, heuristics, and programmer interac-
tion to determine weights.

Runtime Inference: using information from actual executions to determine
the deepest possible ownership structures and suggest annotations to the
static inference.

Prototype: an implementation of our inference scheme as a set of command-line
tools and Eclipse plug-ins that allow simple interaction with and visualization
of the inferred typing.

The outline of this paper is as follows. Sec. 2 overviews the architecture of
the system. Sec. 3 presents the static inference, including support for partial
annotations and heuristics. It also motivates why the static inference alone is
not enough; Sec. 4 follows up with the runtime inference. Sec. 5 describes our
prototype implementation and our experience with it. Finally, Sec. 6 discusses
related work, and Sec. 7 concludes.



public class Person {
peer Person spouse;
rep Account savings;

int assets() {

any Account a = spouse.savings;
return savings.balance + a.balance;

Fig. 1: A simple example with Universe types.

2 Overview

This section overviews Universe types and our tunable static inference.

2.1 Universe Type System

For simplicity, this paper uses the non-generic Universe type system [18,15].
Generic Universe types lead to a more complex constraint system that can be
handled by the same inference approach.

Statically, the Universe type system (UTS) associates with each reference
type one of three ownership modifiers to describe the ownership structure. The
modifier peer expresses that the current object this is in the same context as
the referenced object, the modifier rep expresses that the current object is the
owner of the referenced object, and the modifier any does not give any static
information about the relationship of the two objects. A reference with an any
modifier conveys less information than the same references with a peer or rep
modifier; therefore, an any-modified type is a supertype of the peer and rep
versions. Fig. 1 illustrates the use of these modifiers. A Person object owns its
savings account and has the same owner as its spouse.

An important concept in the Universe type system is wviewpoint adaptation.
An ownership modifier expresses ownership relative to the current object this.
When the interpretation of the current object changes, for example when we
access a field through a reference other than this, we need to adapt the own-
ership modifier to this new viewpoint. We define viewpoint adaptation as a
function > that takes two ownership modifiers and yields the adapted modi-
fier. This paper only discusses a simplified version and considers three cases:
(1) peer > peer = peer; (2) rep > peer = rep; and (3) for all other combina-
tions the result is any. For instance, the ownership modifier of spouse.savings
in Fig. 1 is determined by viewpoint adaptation of the modifier of spouse (peer)
and the modifier of savings (rep), which yields any. We refer to previous papers
[18,15,17] for a detailed description.

The Universe type system enforces the owner-as-modifier discipline: An ob-
ject o may be referenced by any other object, but reference chains that do not
pass through o’s owner must not be used to modify o. This allows owner objects
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Fig. 2: Architecture of our tunable inference approach.

to control state changes of owned objects and thus maintain invariants. The
owner-as-modifier discipline is enforced by forbidding field updates and non-
pure (side-effecting) method calls through any references. An any reference can
still be used for field accesses and to call pure (side-effect-free) methods. For in-
stance, method assets in Fig. 1 may read the balance field via the any reference
a, but would not be allowed to update it.

The Universe type system minimizes annotation overhead by using the de-
fault modifier peer for most references. This default makes the conversion from
Java to Universe types simple, since all programs continue to compile. However,
it results in a flat ownership structure. Inference is still required, in order to find
a deep ownership structure.

2.2 Architecture

Fig. 2 illustrates the architecture of our tunable inference approach.

Our tools take, as input, the purity of methods. We re-implemented [24]
Salcianu’s algorithm [45] for this task.

We use the Java Modeling Language (JML) [28] compiler to read source code,
build an abstract syntax tree (AST), and generate the Java byte code needed
for the runtime inference. The JML compiler supports the Universe type system
and handles source code that is partially annotated with ownership modifiers.

The static inference performs syntax-directed constraint generation. For each
possible occurrence of an ownership modifier in the source code, it creates a
constraint variable. For example, there is a constraint variable for the ownership
modifier in each field declaration, and one for the ownership modifier in each
new expression. For each AST node, it creates a constraint over these variables,
which correspond one-to-one to the type rules of the Universe type system [18,
15,17).

The runtime inference is an optional step that tunes the static inference.
It traces program executions and uses the object graphs deduced from these
executions to determine ownership modifiers. The runtime inference determines
the deepest possible ownership hierarchy for a particular program run. As with



any dynamic analysis, the inference result is dependent on the coverage of the
test suite. For instance, if a class does not get instantiated during the program
run, the runtime inference cannot determine ownership modifiers for its fields.
Therefore, our system treats the results of the runtime inference as suggestions
that are encoded in weights that influence how the static inference chooses among
multiple valid options for ownership annotations.

The static inference encodes the constraints and the weights into the input
format of a SAT solver, runs the SAT solver, decodes the reply back into a
constraint variable assignment, and presents it to the programmer. The developer
has four options: (1) accept the annotations and let the tool insert them into the
source code; (2) modify the weights of the static inference to encourage or force
certain results; (3) add or modify test cases to improve the results of runtime
inference; (4) fix defects in the source code that the analysis reveals.

3 Tunable Static Inference

The static inference has two independent parts: building the constraint system
from the abstract syntax tree (Sec. 3.2) and then encoding the constraints into
the input format of the SAT solver (Sec. 3.3).

3.1 Programming Language

We use a simple, Java-like programming language to present the static inference.
Fig. 3 summarizes the syntax of the language and the naming conventions. A
sequence of A elements is denoted as A.

A program P consists of a sequence of class declarations Cls, the name of
a main class C, and a main expression e. A program execution instantiates an
instance of class C' and executes expression e with this instance as the current
object. A class declaration Cls consists of the name of the class and superclass
and of field and method declarations. Field declarations are simple pairs of types
and identifiers. Method declarations consist of the method purity, the return
type, the method name, the parameter declaration, and an expression for the
method body. An expression e can be the null literal, a method parameter
access, object creation, field read, field update, method call, or cast.

A type T is a pair consisting of an ownership modifier » and a class name
C'. The definition of the ownership modifiers is the only deviation from previous
formalizations of the UTS [15,17]. In addition to the three ownership modifiers
peer, rep, and any, we add ownership constraint variables .. These ownership
variables are used as placeholders for the concrete modifiers that we want to
infer.

3.2 Building the Constraints

The constraints are built in a syntax-directed manner, by traversing the AST
and creating the ownership variables @ and constraints over them. Our algo-
rithm creates a variables for each location where an ownership modifier may



P == Cls, C, e

Cls == class Cid extends C { fd md }
C == C(id | Object
fd == Tf;
md = pT m(mpd) { e}
p == pure | impure
mpd == T pid
e == null |z |newT()|e.f|eo.fr=e1|eom(e) | (T)e
T = uC
u = [a]]| peer | rep | any
x == pid | this
pid parameter identifier
f field identifier
m method identifier
Cid class identifier
ownership variable identifier

Fig. 3: Syntax of our programming language. We use constraint variables « (framed) as
placeholders for ownership modifiers. The definition of the ownership modifiers is the
only deviation from previous formalizations of the UTS.

occur. Then, it creates constraints that correspond to the type rules expressed
abstractly over the variables. Our inference is a type-based analysis [41] that
runs only on valid Java programs. Therefore, we do not encode all Java type
rules, but can restrict the constraints to the additional checks that are necessary
for the Universe type system.

3.2.1 The kinds of constraint. Five kinds of constraint are necessary:

Declaration (decl(«)): we generate a declaration constraint for every owner-
ship variable a. This ensures that all internal constraints for the encoding
are enforced.

Subtype (a1 <: ag): enforces that variable oy will be assigned an ownership
modifier that is a subtype of the ownership modifier assigned to as. peer and
rep are subtypes of any and are unrelated to one another. This constraint is
needed for assignments and pseudo-assignments such as parameter passing
and return statements.

Adaptation (g > az = ag): is a relation between three variables and ensures
that the viewpoint adaptation of variable cy from the viewpoint expressed
by a; results in ag.

Equality & Inequality (o; = a2, a1 # a2): in certain situations we need to
forbid or fix an ownership modifier, for example, a non-pure method call
is only allowed on peer or rep receivers, so we forbid any for the variable
representing the receiver.



Comparable (a; <:> ag): if the program contains reference comparisons or
casts, these also create a relationship between the two variables. It is not
allowed that one variable is assigned peer and the other rep, because such
variables are never comparable.

3.2.2 Rules for constraint generation. Fig. 4 defines the creation of the
constraints for a program. It defines judgments over class, field, and method
declarations and over expressions. These judgments determine a set of constraints
2’ that have to hold for the program.

An environment I" maps variables to their types. Function env defines this
mapping depending on the surrounding class and the method parameter decla-
rations.

We now discuss the rules of Fig. 4 in turn.

A program declaration determines all constraints for the class declarations
and for the main expression. The environment I" maps this to C.

The constraints for a class declaration consist of the constraints for the field
and method declarations.

For field and method parameter declarations, the rules add a declaration
constraint for the variable.

A method declaration ensures that the ownership variables appearing in the
return type and method parameter types are declared, that the constraints im-
posed by the method body are enforced, and that the type of the method body
is a subtype of the return type. Function overriding(Cid, m) ensures that, if the
current method is overriding a method in a superclass, the parameter and return
types are consistent.

Finally, there are 7 judgments for expressions.

The null literal, and accessing a method parameter or this, do not impose
constraints.

For a cast, the constraints of the expression must hold, and the two types
must be are castable. Note that the rule only infers annotations for existing casts
and does not introduce additional casts.

An object creation expression ensures that the ownership variable is declared
and that an ownership modifier different from any is used.

The field access judgment ensures the constraints from the receiver expres-
sion and the viewpoint adaptation. Below, we define the helper functions fType,
to look up the field type, and mType, for method signature after viewpoint adap-
tation.

A field update additionally ensures that the right-hand side is a subtype of
the left-hand side and that the receiver expression is not assigned any.

The rule for a method call expression ensure the constraints from the subex-
pressions and viewpoint adaptation, and that the type of the argument expres-
sion is a subtype of the parameter type. If the method is non-pure, it additionally
ensures that the receiver is not any.

We now define the helper functions.



Program declaration:

FCls: X, I'kFe: X,

FCls, Cre: _, (Xe, 5e)

Class declaration: | Cls : X

Ffd:X; Cidkmd: X,

I class Cid extends C { fd md } : (Xm, Xy)

Field and Method Parameter Declaration: ‘ T f. X

,‘}—Tpid:E‘

FuC _: decl(u)

Method Declaration: | Cid - md : X

Fmpd : X, env(Cid, mpd) = I'
I'te:T,% overriding(Cid, m) = X,
Y =2y, 2, Y, om(T) <: om(T), decl(om(T}))

Cidbp T, m(mpd) {e}: X

Expression: | ['Fe: T, %

I+ €0 : Uo 0072
X' =X, decl(u),u <:> ug

I'Fnull:T,0 I'tz:I'(x),0

Y = decl(u),u # any

I'~wC)e :uC,x

I+ e T‘o7 20
nype(T07 f) = T7 3

I'tnewuC():uC, X

'+ €Q . To, 20
I+ el : Tl, 21
fType(To, f) = T2, X
Y = om(T1) <: om(T2), om(Tp) # any

Ik e.f : T, (2(), 21)

I+ €o 7107 Eo
'k e : 7117 El
mType(To,m) =p T, m(T, pid), Xo
Y =om(Th) <: om(Tp)
= impure = X’ = X, om(Tp) # any
p=pure= %' =%

I+ eo.f::€1 : TQ7 (20,21,22,2)

Helper:

I+ 60.7’7’1(61) : Tr7 (207 217 22721)

om(u C) =u env(T pid) = pid — T

Fig. 4: Constraint generation rules.



class C {
a1 Object f = new ag Object();
}

Fig. 5: Example with two variables a; and as for which we want to determine ownership
modifiers.

Function fType(C, f) returns the declared field type of field f in class C or
a superclass of C. It only returns a type and does not introduce an additional
constraint. Function fType(u C, f) determines the type of field f adapted from
viewpoint u C to this. It results in an adapted field type and a constraint
between the viewpoint variable and the variable representing the declared type.

fType(u C, f) =u' C", (u>u" =, decl(u))
where fType(C, f) =u" C’

Function mType(C,m) returns the declared method signature of method m
in class C or a superclass of C. It, again, only returns a method signature and
does not need to add a constraint. Function mType(uv C,m) determines the
method signature of method m adapted from viewpoint v C' to this. It results
in an adapted method signature and a constraint between the viewpoint variable
and the variables representing the declared type parameter and return type,
respectively.

mType(u C,m) = p u;. C m(u, Cp pid), ¥
mType(C,m) =p u, Cr m(u, Cp pid)

here
W Y= Uy = Uy, u > up = uy, decl(u).), decl (uj,)

3.2.3 Example. The example of Fig. 5 illustrates the constraint generation
process. This class contains a field declaration and a field initializer consisting
of an object creation. This simplicity allows us to illustrate every step.

We want to infer two variables: the modifier for the field declaration «; and
the modifier for the object creation ay. The rules create the following constraints:

1. decl(ay): variable a7 is a legal modifier for an instance field declaration,
2. decl(as), g # any: variable ay is a legal modifier for an object creation, and
3. ag <: aq: variable as is a subtype of variable «;.

3.3 Encoding for a SAT Solver

Once we have the constraint system X', it needs to be solved. We decided to use
an existing weighted Max-SAT solver for three reasons. First, the Universe type
system allows only three ownership modifiers; thus, constraints can easily be
encoded as boolean formulas. Second, the weights allow us to encode heuristics
that direct the SAT solver to produce “good” solutions. Third, reusing a solver
allows us to benefit from all the optimizations that went into existing solvers.



Constraint CNF Encoding

ﬁpeer vV o= ﬁrep) A (ﬁﬂpeer v _‘Bany) A (_\ﬂrep Vv _‘/[))peer) A
ﬁﬁrep V; Bany) ( Bany vV ﬁﬁrep) A (ﬁﬁany vV ﬁﬁpeer) A
ﬂpecr ¥, Brep vV /Bany)

(=
(
(
( BPEET Vv Bpeer Bpeer) ( Brep v Bpeer v Brep)
(=
(=B
(=

decl(a)

a1 D> ay = a3

=BV B A (2B Y B A (=B V B5™)

a1 <tz =BV B) A (SBEETV BTT) A (2B V BTF)
a1 <:> Qa2 ﬁpe” \Vi /grep) (ﬁBIep V. _‘ﬁgee'r)

a=u 6

a#u -3

Fig. 6: For each kind of constraint (see Sec. 3.2.1), the CNF formula that encodes it.

This section explains how to encode the constraints X' as conjunctive nor-
mal form (CNF) formulas, which is the input format of the SAT solver. Our
implementation supports changing the solver or the encoding of the constraints,
which facilitates experimentation. In the following, we explain one possibility for
encoding the constraints in CNF.

The SAT solver either returns an assignment of booleans that satisfies the
formula or notifies the user that the formula is un-satisfiable. From the assign-
ment of booleans we can determine ownership modifiers for the variables that
satisfy all constraints.

The encoding of the constraints is defined in Fig. 6 and is explained in the
following.

3.3.1 Declaration. The CNF formula uses three booleans pP°", 5"°P, and
(%™ to represent a variable a from the constraints. Two booleans would be
sufficient to encode the three possibilities. However, the constraints are simpler,
and therefore more efficiently solvable, when using a one-hot encoding of the
options [21]. In Fig. 6, the first two lines ensure that only at most one of these
three booleans is assigned true; it is the CNF form of the following:

(ﬁpeer = (_‘ﬂrep A ﬁﬂany))
(6rep = (_‘ﬂpeer A ﬁﬂany))
(ﬁany = (_‘ﬁrep A ﬁ/@peer))

A\
A\
The third line ensures that at least one of the variables is true.

3.3.2 Viewpoint Adaptation. The first line contains the two clauses that
ensure that concrete ownership information is preserved. The three clauses in

10



the second line ensure that the result of the viewpoint adaptation is any in the
other cases. These conditions are the CNF form of the following implications:

(/6{)667‘ /\ /85667' :> Bgeer) /\

re eer re
(B NG = B57) A

an an an an re an
(B = B3™) N (B = B5™Y) N (B3 = B5™)

3.3.3 Subtype. If the subtype is any, then the supertype is any. If the super-
type is peer, then the subtype is peer. If the supertype is rep, then the subtype
is rep. This can be expressed as:

(B = B5"™) A (B35 = B™) A (B = 1)

which can be reformulated in CNF to give the formula in Fig. 6.

3.3.4 Comparable. The clauses forbid that one variable is assigned peer
when the other variable is assigned rep.

3.3.5 Equality & Inequality. These constraints are simply encoded by forc-
ing that the corresponding boolean is either true or false.

Once all constraints are encoded as CNF formula, we can pass it to a SAT
solver, which will return a legal assignment, if the constraint system is solvable.
The booleans of this assignment can then be interpreted as the assignments to
the ownership variables a.

3.4 Heuristic Choice of a Solution

In our simple example from Fig. 5, we create a constraint system consisting of
6 boolean variables and 18 clauses (7 clauses for the field type, 8 clauses for the
object creation, 3 clauses for the subtype relation). Legal assignments for this
constraint system are:

The SAT solver may return any of these, depending on its search strategy,
initialization of the boolean variables, ordering of variables and clauses, etc.

For any program, a possible solution is to assign peer to all variables. This
is not useful (unless it is the only possibility), because it corresponds to a com-
pletely flat structure.

A human programmer is influenced by a variety of design considerations when
choosing the ownership modifiers. A deeper ownership structure gives better

11



public class Set {

Node lastUsed; .
ode 1:Set
List impl; P T
} v
public class List { 2:List
Node first;
} \
public class Node { 3:Node
Node next;
} . B
(a) Code (b) Flat (c¢) Deep

Fig.7: A class Set using a List, which uses Nodes. The lastUsed field implements a
caching optimization that speeds up repeated membership queries. In parts (b) and (c),
contexts are depicted by rounded rectangles, and owner objects sit atop the context of
objects they own.

encapsulation, but limits sharing. The types in method signatures influence what
other objects can call the method. We want the SAT solver to give us a solution
that respects these design considerations.

Our approach is to use the weight feature of weighted Max-SAT solvers.
These solvers permit a user to express a preference for each boolean to be true
or false, as a weight. A maximal-weight assignment that satisfies all constraints
is not only correct, but is useful and is close to what a human developer would
want (assuming the weights are set appropriately).

Our tool combines weights from multiple heuristics, by scaling and then
adding their weights. The programmer can influence the weights and scaling
of these different heuristics.

One simple, and frequently effective, heuristic is to prefer deeper ownership
structures over flatter structures. One can try to express this by assigning a
weight of, say, 50 to the rep booleans, a weight of 10 to peer booleans, and 0
to the any booleans. Then a solution with the maximum weight is supposed to
represent the deepest structure that is possible. However, the heuristic alone does
not guarantee the deepest structure overall. The source code in Fig. 7a illustrates
this problem. It implements a set using a list, which in turn uses nodes.

Using the above weights, the SAT solver might assign rep to both fields in
class Set and peer to the fields in List and Node, giving a weight of 120 and the
structure in Fig. 7b. However, what a programmer would prefer is most likely the
structure in Fig. 7c, which assigns rep to field impl and any to field lastUsed of
class Set, rep to field first of class List, and peer to field next of class Node,
but only has a weight of 110. This illustrates that our simple heuristic does not
give the desired structure.

In the next section, we will explain how a runtime inference can be used
to determine the deepest possible ownership structure. While a static heuristic
applies equally to all elements of a certain category (for instance, all fields), the

12



runtime inference obtains weights for individual occurrences, such as a particular
field.

4 Runtime Inference

The inference of Universe types from program executions is performed in the
following five steps:

Build the representation of the object store
Build the dominator tree

Resolve conflicts with the Universe type system
Harmonize different instantiations of a class
Output Universe types

Al ol

We use the classes in Fig. 8 to illustrate how the algorithm works. This is an
artificial example to illustrate all aspects of the algorithm.

public class Demo {
public static void main(String[] args) {
new Demo() .testA(args.length > 0);

}
public void testA(boolean b) { new A(b); }
}

class A { B b;
boolean mod;

A(boolean m) { mod = m; b = new B(this); }
void off() { mod = false; }
}

class B { C c;
Object o = new Object();

B(A a) { ¢ = new C(a); }
}

class C { A a;

C(A na) { a = na; if (a.mod) { a.off(); } }

Fig. 8: Running example to illustrate the runtime inference algorithm.

The main class is Demo; the Java entry-point main creates an instance of class
Demo and calls method testA on that instance. The argument is a boolean that
depends on the number of command line arguments. Method testA creates an
A instance. Class A stores the boolean flag and creates an instance of class B.

13



Class B creates a C instance and a java.lang.0Object instance. Finally, class C
stores a reference to the A object it receives and depending on the value of the
mod field calls the off method on the A instance.

4.1 Build the Representation of the Object Store

From a program execution we get a sequence of modifications of the object
store. Instead of looking at only single snapshots of the store, we build a cu-
mulative representation of the object store. This Fxtended Object Graph (EOG)
[46] represents all objects that ever existed in the store, all references between
these objects that were ever observed, and, in particular, which objects mod-
ified which other objects. The information about modifications is particularly
important since Universe types do not restrict references in general (unlike other
ownership type systems), but the modification of objects.

For each object in the EOG, we record information about its fields as well
as the parameters and results of its methods. We use this information to infer
ownership modifiers for these variables.

We distinguish between two types of references in the EOG: write references
and naming references. Write references are used to update a field or call a
non-pure method on an object; these references mainly determine the ownership
structure of an application. In addition we store references that were only used
for reading fields and calling pure methods. These naming references are needed
to map the resulting EOG back to the source code.

For example, a call z.foo(y) introduces two edges in the EOG. A write
references from the current receiver object this to x represents that this mod-
ifies = by calling the non-pure method foo. This reference will later influence
the ownership relation between this and z. A naming reference from x to y
represents that a method of = takes y as parameter. This naming reference is
labeled with the name of the formal parameter and will later be used to infer
the ownership modifier of the parameter.

In our running example (Fig. 8), class A contains in its constructor the state-
ment b = new B(this). On the bytecode level, this corresponds to two steps,
first the creation of a new object and then the update of the field b of the current
object. For an object creation, we insert a write edge from the current receiver
object to the newly created object. This write edge ensures that the ownership
modifier for the object creation is either peer or rep, a requirement of the Uni-
verse type system. For a field update, we store a write reference from the current
object to the receiver of the field update and a naming reference from the receiver
of the field update to the object on the right-hand side. The naming reference is
labeled with the field name. All naming references for a field can later be used
to infer the ownership modifier for that field.

4.2 Build the Dominator Tree

Universe types require that all modifications of an object are initiated by its
owner. For the EOG, this means that all chains of write references from the

14



root object to an object x must go through x’s owner. Therefore, we can iden-
tify suitable candidates for the owner of x by computing the dominators of .
The concept of dominators is well-known in the compiler field [4], and efficient
algorithms have been developed [30].

Universe types do not restrict references that are merely used for reading.
Therefore, the naming references in the EOG do not carry information that helps
us to determine ownership relations between objects. Consequently, we ignore
them when we build the dominator graph.

ey
==
|

(a) Dominator Tree (b) After conflict resolution

Fig.9: Object graphs for the source code from Fig. 8.

The result of finding the dominators for the example from Fig. 8 is shown
in Fig. 9a. Domination is depicted by rounded rectangles. A direct dominator
sits atop the rounded rectangle that groups the objects it dominates. It is a
candidate for becoming the owner of this group of objects.

4.3 Resolve Conflicts with the Universe Type System

Domination is a good approximation of ownership, but it cannot be directly used
to infer Universe types. The Universe type system only allows write references
within a context and from an owner to an owned object. On the other hand, a
dominator graph can have references from an object to an object in an enclosing
context. Such write references are not permitted in the Universe type system.
If such references are found in the EOG, the involved objects are raised to a
common level until no more conflicts are present.

This situation is illustrated by the code in Fig. 8. If we observe an execution
of the constructor of class C when a.mod is false then the off method is not
called on the a reference. In this case, the reference from object 4 to object 2
is used in a read-only manner, that is, the EOG contains a naming reference
between object 4 and object 2. Under this assumption, the dominator graph
in Fig. 9a is a valid ownership structure. The reference between object 4 and
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object 2 is stored in field a of class C. This field will be annotated with an any
ownership modifier.

However, if a.mod is true, the non-pure method off is called on a. This
results in a write reference from object 4 to object 2. In this case, the dominator
graph does not represent a valid ownership structure because there is a write
reference to an object in an enclosing context. This write reference can neither
be typed with a rep nor with a peer modifier and is, therefore, not admissible
in Universe types. To solve this problem, we flatten the ownership structure to
make the write reference from object 4 to object 2 admissible. This is done by
raising the origin of the write reference (object 4) to the context that contains
the destination of the write reference (object 2). This makes the two objects
peers, and the write reference between them is admissible since it can be typed
with modifier peer.

However, raising object 4 creates a conflict for the write reference from ob-
ject 3 to object 4 since now object 4 is neither owned by nor a peer of object 3.
Therefore, we apply the same solution again; this time, object 3 is raised to be
in the same context as object 4. The resulting dominator graph is depicted in
Fig. 9b. In this graph, all write references are from a direct dominator to an
object it dominates or between objects with the same direct dominator. There-
fore, this graph represents a valid ownership structure that can be expressed in
Universe types.

Our example shows that conflict resolution has to be applied repeatedly be-
cause resolving one conflict can cause others. Nevertheless, conflict resolution
can be implemented efficiently without visiting the same write reference twice.
To achieve this, we use a list of conflicting write references and process the list
in a top-down way, that is, objects higher-up in the dominator graph are pro-
cessed first. Moreover, we resolve conflicts that cross a large number of context
boundaries before conflicts that cross fewer contexts.

4.4 Harmonize Different Instantiations of a Class

After conflict resolution, the EOG is consistent with the owner-as-modifier dis-
cipline. However, it might not be possible to statically type the EOG because
different instances of a class might be in different ownership relations. To enforce
uniformity of all instances of a class, we traverse all instances of each class and
compare the ownership properties of each variable (field or parameter). This step
has to take into account both write and naming references in the EOG.

If for any given variable the ownership relations are the same (for instance,
they all point to peer objects), the variable can be typed statically. If they differ,
we apply a resolution that is similar to the conflict resolution described in the
previous subsection. If at least one instance of a variable is the origin of a peer
reference and the other instances of this variable are rep references, we raise
the targets of the rep references to make them peers and type the variable with
modifier peer. If at least one instance of a variable is the origin of a reference
that is neither a peer nor a rep reference, the variable is typed with modifier
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any. In this case, downcasts are needed at the point where this variable is used
for field updates and calls to non-pure methods.

For example, imagine that method testA in class Demo is once called with
false and once with true as the argument. Then we have two instances of
class A, once with a deep ownership structure as in Fig. 9a and once with a flat
structure as in Fig. 9b. The annotation for field b in class A is once rep and
once peer. The algorithm then decides to use peer as annotation for field b and
raises the non-conforming instance to a higher level. Because we raise an object
together with all peers that reference it or are referenced by it, this step cannot
create new conflicts in the ownership graph.

4.5 Output Universe Types

After the first four steps of the runtime inference algorithm, we have deter-
mined possible ownership modifiers for field declarations, method parameters
and results, and allocation expressions. For the example in Fig. 7a, the runtime
inference determines the deep ownership structure depicted in Fig. 7c, provided
that the Set object 1 does not directly modify object 3.

Local variables are not inferred from the EOG because that would require
monitoring every assignment of a local variable. However, this gap is closed by
the subsequent static inference. The static inference also detects if the modifiers
determined by the runtime inference violate the type rules of Universe types. This
problem occurs in particular when the runtime inference is based on program
runs with insufficient code coverage. The static inference then uses weights to
determine which results of the runtime inference it should override. To facilitate
this step, our runtime inference not only compute suggestions for ownership
modifiers but also provides a weight for each suggested modifier that indicates
the confidence in the correctness of this particular suggestion, based on the code
coverage.

5 Discussion & Implementation

In this section, we discuss some technical details and outline aspects of our
implementation.

5.1 Discussion

Both the static and the runtime inference can operate on small program frag-
ments, for instance, a class and its unit tests. However, to infer meaningful
ownership modifiers, it is often necessary to consider larger contexts, in partic-
ular, the clients of a class. Nevertheless, the heuristics of the static inference
encourage solutions that are usable in a wider range, for example, by preferring
method parameters to have the any modifier.

As we explained above, the ownership assignment obtained from the runtime
inference might not be correct, but the combination with static inference removes
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this problem. For the static inference, we encode all type rules in SAT, so if the
solution is satisfiable, the annotated program will compile. An incorrect input
from the runtime inference might then only cause a longer exploration of the
state space.

Note, however, that Universe types support casts. Downcasts that specialize
ownership information (that is, casts from any to peer or rep) require a runtime
check. Our static inference does not guarantee these runtime checks succeed. To
mitigate the risk of a runtime error, we allow the static inference to determine
ownership modifiers for the cast expressions present in the input program, but
not to introduce additional casts. Information from the runtime inference might
allow one to further reduce the risk of runtime errors.

Both the static and the runtime inference also support arrays and static
methods. Arrays in the Universe type system use two ownership modifiers, one
for the relation between this and the array object, and one for the relation
between this and the objects stored in the array. Static method calls take an
ownership modifier that determines the relationship between the current object
and the execution of the static method.

5.2 Static Inference

The architecture of the static inference tool is separated into three components:
(1) the AST visitor, (2) the constraint builder, and (3) the constraint encoder.

The AST visitor encapsulates all interaction with the AST and calls the
constraint builder functions corresponding to the different AST elements. It uses
the JML2 compiler [28], which supports Universe type annotations in its AST.
The input source is parsed with support for ownership modifiers, but the type
rules are not checked. This allows us to parse partially-annotated programs that
might not conform to the type rules.

The constraint builder creates the constraints for the different syntax ele-
ments. It encapsulates the type rules for the Universe type system from the AST
and the solver that is used. It also collects the weighting information from the
different heuristics and the runtime inference.

The constraint encoder takes a constraint system and encodes it for a partic-
ular constraint solver. We implemented an encoder that creates CNF formulas
in the DIMACS format and the weighting information in the .cnf.pb format sup-
ported by the PBS tool [7]. The constraint encoder also decodes the replies from
the solver and maps the solutions back to ownership modifiers.

5.3 Runtime Inference

The runtime inference is split into two parts: a tracing agent that monitors
the execution of Java programs and the inference tool which determines the
ownership modifiers from (multiple) trace files.

A Java Virtual Machine Tooling Interface (JVMTI) agent written in C mon-
itors the Java Virtual Machine (JVM) execution of the program. The agent

18



receives events from the virtual machine and produces a trace file that docu-
ments the execution of the program. The trace file is in a simple XML format.
Storing the execution of a program in a trace file gives the following advantages:
(1) Multiple trace files can be generated to achieve good code coverage. (2) In-
teractive or long-running programs need to be traced only once for each desired
code path. This trace file can then be reused later without requiring human in-
teraction or recomputing results. On the other hand, storing the trace files on
disc and then parsing them again in the next phase could lead to a performance
overhead; we leave optimizations of this aspect as future work.

The main inference tool is an independent Java application that performs the
steps described in Sec. 4. It reads (multiple) trace files generated by the tracing
agent and builds one Extended Object Graph from the available information.
Then the dominators are determined, conflicts are resolved, multiple instances
are harmonized, and the output is written to an XML file or passed to the
static inference. The different steps of the algorithm are implemented as visitors
that manipulate the EOG, allowing us to simply change the inference. For more
details see our earlier work [19, 32].

5.4 Annotation Management

All tools can be used on the command line and are configured using XML con-
figuration files. The output of the inference tools is an annotation XML file that
contains the ownership modifiers for the encountered types. This separate anno-
tation file makes the comparison of results of multiple runs simple. If the source
code of the traced program is available then the annotations can be inserted into
the source code using a separate annotation tool we developed. Producing the
output in XML also allows us to support several annotation formats, for instance,
the existing JML2 Universe syntax and the JSR 308-style Java annotations [20].

5.5 Eclipse Integration

The goal of our inference approach is to allow the programmer to easily tune
the inference results. The command-line tools are good for batch-processing and
evaluations, but not suitable for developers. To ease the usage of the inference
tools we created a set of Eclipse 3.5 plug-ins for the Java development environ-
ment. Fig. 10 shows a screenshot.

The different inference properties can be easily configured from the project
settings and multiple inference settings can be stored.

The execution of the runtime inference is integrated into the normal “Run as”
approach. A graphical visualizer using the Eclipse Graphical Editing Framework
(GEF) displays the extended object graph while it is built up and modified
by the runtime inference. This gives a clear understanding of how the program
executes and how the runtime inference algorithm works. Note that the graphs
in Figs. 7 and 9 are screenshots from this tool.
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Fig. 10: A screenshot showing a runtime object graph on top and the static inference
on the bottom.

The static inference allows the simple selection of heuristics and the pro-
grammer can easily fix ownership modifiers for certain variables and re-run the
inference, even without parsing the whole source code again.

The annotation tools allow the programmer to easily review the inferred
ownership modifiers and insert them into the source code.

Finally, the JML2 compiler is also integrated into Eclipse and the Universe
type checker can be run from within Eclipse.

6 Related Work

SafeJava [8,10,9] provides intra-procedural type inference for local variables to
reduce the annotation overhead. Agarwal and Stoller [3] describe a run-time
technique that infers further annotations. AliasJava [6] uses a constraint system
to infer alias annotations. Another static analysis for ownership types resulted in
a large number of ownership parameters [27]. Kacheck/J [26] infers package-level
encapsulation properties.

Alisdair Wren’s work on inferring ownership [46] provided a theoretical ba-
sis for our work on runtime inference. It developed the idea of the Extended
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Object Graph and how to use the dominator as a first approximation of owner-
ship. It builds on ownership types [12,5, 8, 13] which uses parametric ownership
and enforces the owner-as-dominator discipline. The number of ownership pa-
rameters for parametric type systems is not fixed and is usually determined by
the programmer, as is the number of type parameters for a class. Trying to au-
tomatically infer a good number of ownership parameters makes their system
complex.

Milanova [35] presents preliminary results for the static inference of Universe
types. Her tool applies a static alias analysis to construct a static object graph
and then computes dominators to obtain candidates for owners. This approach
is similar to our earlier work on runtime inference [19].

Abi-Antoun and Aldrich [2,1] present how runtime object graphs can be
extracted from programs with ownership domain annotations to visualize the
architecture of the program. Noble [40] focuses on the treatment of aliasing in
heap visualizations.

The box model [42] separates the program into module interfaces and imple-
mentations. Ownership annotations are still required for the module interface,
but are automatically inferred for the implementations. It might be possible to
adapt our runtime inference to help with the annotation of the interfaces.

Pedigree types [31] present an intricate ownership type system similar to
Universe types with polymorphic type inference for annotations. It builds a con-
straint system that is reduced to a set of linear equations. The inference does
not help with finding good ownership structures, but only helps propagate ex-
isting annotations. We believe that our approach to type inference is easier to
understand and better supports the programmer in finding the desired ownership
structure.

Rayside et al. [44] present a dynamic analysis that infers ownership and
sharing, but they do not map the results back to an ownership type system.
Mitchell [36] analyzes the runtime structure of Java programs and characterizes
them by their ownership patterns. The tool handles heaps with 29 million objects
and creates succinct graphs. The tool Yeti [37] analyzes heap snapshots and
helps in understanding large heaps and finding memory leaks. Both tools do not
distinguish between read and write references and the results are not mapped to
an ownership type system.

Daikon [22] is a tool to detect likely program invariants from program traces.
Invariants are only enforced at the beginning and end of methods and therefore
also snapshots are only taken at these spots. From these snapshots we cannot
infer which references were used for reading and which were used for writing.
Therefore we could not directly use Daikon, but our runtime inference tool has
a similar architecture and we are looking into possible synergies.

The work on uniqueness and ownership inference [33] presents a static anal-
ysis to infer these program properties, without mapping the results to a type
system. General type qualifier inference [25] presents relevant work for qualifier
inference; however, applied to ownership, it would not help in the inference of
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the deepest or most desirable ownership structure, but infers any solution that
satisfies all constraints, possibly a flat structure.

The system most similar to ours is a type inference systems against races [23].
It builds a constraint system and uses a SAT solver to find solutions and use a
Max-SAT encoding to produce good error reports, in cases where the constraint
system is unsatisfiable. However, they are not concerned with finding an optimal
structure for their system, since any valid locking strategy is acceptable. We
use the weighting mechanism to find a desirable ownership structure also for
satisfiable solutions.

SAT solvers have seen a wide variety of uses for other optimization problems
over the last several years [34].

Ownership has been used to verify object invariants in Spec# [29] and JML
[38]. These verification systems encourage, but do not enforce the use of owner-
ship to encapsulate the state an invariant depends on. Therefore, we could use
the invariants as another source of suggestions for ownership modifiers.

7 Conclusions

We presented a novel approach to static ownership inference that uses a Max-
SAT solver to optimize the result w.r.t. preferences encoded as weights. The use
of weights allows us to take into account tentative ownership information from
various sources such as heuristics, partial annotations, and in particular runtime
inference. Our initial experiments suggest that the combination of static and
runtime inference leads to a practical approach, which produces correct typings
with deep ownership structures.

Now that we have a working inference tool, our highest priority for future
work is performing a larger case study to evaluate the quality of the inferred
typings and to investigate what ownership structures occur in real programs.

Universe types were an ideal target system for our work because its modifiers
can easily be encoded in boolean formulas. As future work, we plan to apply our
approach to other ownership systems to explore four avenues. First, we plan to
extend our approach to Generic Universe Types (GUT) [17]. The key issues are
to adapt the runtime inference to GUT, especially in the presence of an erasure
semantics, and to explore whether we can infer ownership topologies without
assuming an encapsulation discipline. Second, we plan to extend our inference
to support ownership transfer [14,39], which requires static inference to infer
uniqueness of variables and runtime inference to cope with dynamic changes
of ownership information. Third, we plan to investigate how our approach can
be adapted to ownership-parametric type systems [6,13,43]. We are confident
that by combining static and runtime inference, we can effectively determine
the minimum number of ownership parameters required to type a class. Fourth,
we plan to explore how we can infer ownership annotations for more complex
topologies such as ownership domains [5] or multiple ownership [11].
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