
Vol. 4, No. 8, 2005

Universes: Lightweight Ownership for JML

Werner Dietl and Peter Müller, ETH Zurich, Switzerland

Object-oriented programs with arbitrary object structures are difficult to understand,
to maintain, and to reason about. Ownership has been applied successfully to structure
the object store and to restrict how references can be passed and used.
We describe how ownership relations can be expressed in the Java Modeling Language,
JML. These ownership specifications can be checked by standard verification tech-
niques, runtime assertion checking, ownership type systems, or combinations of these
techniques. We show that the combination of the lightweight Universe type system
and JML specifications is flexible enough to handle interesting implementations while
keeping the annotation and checking overhead small.
The Universe type system has been implemented in the JML compiler. This integra-
tion enables the application of ownership-based verification techniques to programs
specified in JML.

1 INTRODUCTION

In object-oriented programs, an object can potentially reference any other object
in the object store and read and modify its fields through direct field accesses or
through method calls. Such programs with arbitrary object structures are difficult
to understand, to maintain, and to reason about. In particular, modular verification
of functional correctness properties typically requires control of how references are
passed around and what operations can be performed on references.

For instance, to prove that a list data structure maintains an invariant that
the list is sorted, one has to show that all methods that can modify the internal
representation of the list, say, an underlying array, preserve the invariant. This can
be achieved more easily by enforcing that only certain objects such as the list object
can modify the array directly whereas all other objects have readonly access to the
array or no direct reference to the array at all.

Ownership has been applied successfully to structure the object store and to
restrict reference passing and the operations that can be performed on references.
In particular, ownership allows one to confine an object inside a data structure and
to prevent representation exposure through leaking [NVP98].

The restrictions on references simplify reasoning about programs: they enable
modular verification [LM04, Mül02, MPHL03, MPHL04], facilitate thread synchro-
nization [BLR02], and allow programmers to exchange internal representations of
data structures [BN02]. Ownership organizes objects into contexts : Each object is

Cite this article as follows: Werner Dietl, Peter Müller: Universes: Lightweight Ownership for
JML, in Journal of Object Technology, vol. 4, no. 8, 2005, pages 5–32,
http://www.jot.fm/issues/issues 2005 10/article1

http://www.jot.fm/issues/issues_2005_10/article1
http://www.jot.fm

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

owned by at most one other object, called its owner. A context is the set of all
objects with the same owner. The set of objects without an owner is called the root
context. The contexts of a program execution form a tree, where the context of all
objects with owner X is a child of the context containing X. The context tree is
rooted in the root context.

Most ownership models enforce the owner-as-dominator property: All reference
chains from an object in the root context to an object X in a different context
go through X’s owner [CPN98, Cla01]. This restriction allows an owner object to
control how the objects it (transitively) owns are accessed. For the verification of
functional correctness properties such as object invariants, a weaker ownership model
suffices: an object X can be referenced by any other object, but reference chains
that do not pass through X’s owner must not be used to modify X [LM04, Mül02].
This model distinguishes between readwrite and readonly references, and enforces
the owner-as-dominator property only on readwrite references. Owners can control
modifications of owned objects, but not read access. We call this property owner-
as-modifier.

Both kinds of ownership models enable modular verification. In the above exam-
ple, the list object would own the underlying array, thereby preventing other objects
from modifying the array without going through the list interface. This allows the
list to maintain its invariant.

Ownership properties can be checked statically by type systems. Most exist-
ing work focuses on parametric ownership type systems that enforce the owner-as-
dominator property [CD02, CPN98, PNCB03]. Although these type systems can
express and check the ownership properties of many interesting programs, there are
several common implementation patterns that do not follow the owner-as-dominator
structure such as collections with iterators and producer/consumer with a shared
buffer. The ownership type systems by Boyapati and Clarke [Boy04, BLS03, Cla01]
weaken the owner-as-dominator property by allowing instances of inner classes to
access the representation of the instance of the outer class they are associated with.
Thereby, they can handle iterators, but not more general forms of sharing. While
parametric ownership type systems describe ownership properties accurately and
guarantee a strong type invariant, ownership parametricity increases the complexity
of the type system and the annotation overhead.

This paper proposes an alternative approach to specifying and checking owner-
ship:

1. We focus on the owner-as-modifier property. This property has been
shown to enable the modular verification of functional correctness properties
[BDF+04, LM04, Mül02] and can handle more implementations than owner-
as-dominator.

2. To check ownership statically, we use the Universe type system [Mül02,
MPH01], which requires less annotation overhead than other ownership type
systems.

6 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

2 SPECIFYING OWNERSHIP PROPERTIES IN JML

3. The Universe type system does not use ownership parametricity. To com-
pensate for the resulting weaker static guarantees, we combine ownership
type annotations with specifications in the Java Modeling Language, JML
[LBR99, LBR04]. JML can be used to specify fine-grained ownership informa-
tion that cannot be expressed by the Universe type system. Such specifications
can be checked at runtime or proved statically by standard verification tech-
niques.

The main contribution of this paper is the integration of the Universe type sys-
tem and JML. This integration serves two purposes: (1) It allows one to apply
ownership-based verification techniques to programs specified in JML. (2) It com-
bines the advantages of type checking with the flexibility of interface specifications
and runtime assertion checking or verification. We illustrate the expressiveness of
the combination of the Universe type system and JML by examples that are difficult
to handle in other ownership type systems.

To focus on these contributions, we consider only a subset of Java. Throughout
the paper, we omit the treatment of static class members, exceptions, inner classes,
generics, overloading, and reflection. Our implementation handles these features,
except for generics and reflection.

Outline. In the next section, we show how ownership properties can be expressed
in JML and checked by verification techniques or runtime assertion checking. Sec-
tion 3 presents an introduction to the Universe type system. Section 4 illustrates
the expressiveness of the combination of a lightweight owner-as-modifier type system
and interface specifications by two examples. We describe our implementation of the
Universe type system in JML in Section 5. Related work is discussed in Section 6.

2 SPECIFYING OWNERSHIP PROPERTIES IN JML

In this section, we show how ownership properties can be expressed by JML spec-
ifications. We use invariants, requires clauses, and ensures clauses to describe the
ownership relations between objects. Both static verification and runtime assertion
checking can be used to check that a program meets its ownership annotations and
that it satisfies the owner-as-modifier property. We present a type system to check
certain ownership properties syntactically in the next section.

Ownership Encoding

To encode the ownership relation, each object stores a reference to its owner or null
if the object belongs to the root context. For this purpose, we use the ghost field
owner declared in class Object:

/*@ ghost public Object owner; @*/

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 7

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

Ghost fields are specification-only fields that can be read and updated in JML spec-
ifications, but are not accessible for the Java code. (JML specifications are enclosed
in special comment delimiters /*@ ... @*/ or on lines preceded by //@.) We call the
encoding of the ownership relation by a ghost field a dynamic encoding as opposed
to the static encoding by a type system.

The owner field of an object is set when the object is created. The owner of a new
object is specified in the new expression. To simplify the syntax, which is described
in the next subsection, we require that the new object is owned by this or is in the
context that contains this. So far we found only one practical example that was
ruled out by this restriction: a collection cannot create an iterator in the context of
an arbitrary client. Instead, the iterator has to be created locally in the context that
contains the collection, which prevents clients in other contexts from modifying the
iterator. Generalizing object creation to arbitrary owners is straightforward, but
requires that the owner of the new object is passed as additional (ghost) parameter
to constructors [LM04].

By using a ghost field to encode ownership, ownership transfer can easily be
expressed by setting the owner field to a new value [LM04]. In this paper, we do
not consider ownership transfer because it is difficult to handle by ownership type
systems [CW03]. That is, the owner field of an object cannot be changed after
the object is created. This can be statically checked by disallowing JML’s set

operation for owner. As future work, we plan to combine the Universe type system
with uniqueness to support ownership transfer.

The references stored in the owner fields represent a binary relation on objects.
Its reflexive, transitive closure is the ownership relation. Our encoding guarantees
that the ownership relation is a tree order: (1) Each object has at most one owner;
(2) The ownership relation is acyclic, because the owner of an object X is allocated
before X is created and cannot be changed afterwards.

Ownership Modifiers

The owner field can be mentioned in method specifications and invariants. Class
Node in Fig. 1 implements the nodes of a doubly-linked list. Its invariants use owner
to express that each Node object is in the same context as its predecessor and its
successor.

To simplify such specifications, we use syntactic abbreviations for the most com-
mon ownership relations. The ownership modifier peer can be used to express that
a program element yields a reference to an object which has the same owner as
the this object. Similarly, rep expresses that the object is owned by this. The
peer and rep modifiers can be used in the declaration of instance fields and in the
declaration of the formal parameters and the result of instance methods, provided
that the field, parameter, or method result is of a reference type. Since we do not
discuss static methods in this paper, there is always a current receiver object this.

8 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

2 SPECIFYING OWNERSHIP PROPERTIES IN JML

class Node {

Node prev, next;

Object elem;

//@ invariant prev == null || prev.owner == this.owner;

//@ invariant next == null || next.owner == this.owner;

}

Figure 1: The class for the nodes of a doubly-linked list. The invariant expresses
that a node is in the same context as its neighbors.

An extension to static methods is straightforward [Mül02].

Ownership modifiers are also used to specify the owner of a newly created ob-
ject. The expression new /*@ peer @*/ T() creates a new T object and sets its
owner field to this.owner. Analogously, new /*@ rep @*/ T() creates a new ob-
ject owned by this.

Besides acting as syntactic shorthands, ownership modifiers are useful to check
syntactically the constraints of ownership-based verification techniques, for instance,
that the invariant of an object X refers only to fields of X and fields of objects
transitively owned by X [LM04, MPHL04]. Moreover, they are key to ownership
type checking, see Sec. 3.

Desugaring. The meaning of ownership modifiers is defined by desugaring them
into invariants, requires clauses, and ensures clauses. The modifiers in the instance
field declarations

/*@ peer @*/ T peerField;

/*@ rep @*/ T repField;

give rise to the implicit invariants

//@ invariant peerField == null || peerField.owner == this.owner;

//@ invariant repField == null || repField.owner == this;

Analogously, ownership modifiers of formal parameters are desugared into requires
clauses and modifiers of method results lead to ensures clauses. Fig. 2 shows an alter-
native implementation of class Node with an ownership modifier, which is desugared
into the invariants shown in Fig. 1.

The desugaring of ownership modifiers in new expressions is a bit more difficult.
Conceptually, the owner of a new object is passed to the constructor as additional
parameter, which is assigned to owner by Object’s default constructor. Therefore,
an implicit ensures clause can be added to each constructor expressing that the
new object has the specified owner. To avoid the extra parameter for constructors
and the corresponding changes to API classes such as Object, we took a different
approach in our implementation, which is described in Sec. 5.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 9

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

class Node {

/*@ peer @*/ Node prev, next;

Object elem;

}

Figure 2: Class Node with an ownership modifier, which is desugared into the in-
variants shown in Fig. 1.

Checking Ownership Properties

In this subsection, we show how static verification or runtime assertion checking
can be used to check whether an implementation satisfies the specified ownership
relation and whether it adheres to the owner-as-modifier property.

Ownership Relation. The ownership relation is expressed using the ghost field
owner in invariants and method specifications. This allows one to apply standard
verification techniques to prove statically that a program satisfies its ownership
specification. Alternatively, the assertions can be evaluated at runtime, but we have
not yet implemented the checks in the JML runtime assertion checker [Che03, CL02].

We illustrate the checking of ownership properties by the example in Fig. 3.
Class LinkedList implements the head of a doubly-linked list, which owns the list
nodes. Therefore, the first field is declared with the rep modifier.

To show that the constructor is correct, one has to check that it establishes the
implicit invariant given by the rep declaration. The field first is initialized with
a new Node object. After the assignment, we have first.owner == this. (For
static verification, we get this property from the implicit ensures clause of the Node

constructor.) Therefore, the invariant holds in the poststate of the constructor.

Method capture violates the implicit invariant by assigning an object in the
same context as this to first. This bug would become manifest during runtime
checking when the implicit invariant is checked before the method terminates. The
bug can also be detected by static verification: By the explicit and implicit requires
clauses, we may assume n != null and n.owner == this.owner, resp. There-
fore, after the assignment we have first.owner == this.owner and, since this

!= this.owner (the ownership relation is acyclic), we have first.owner != this.
That is, the invariant is not preserved by the method. This demonstrates how the
implicit invariant can be checked.

Owner-as-Modifier. A fundamental difference between owner-as-dominator and
owner-as-modifier is that the owner-as-dominator property restricts where references
are allowed to point to, whereas owner-as-modifier models allow references to point
to objects in arbitrary contexts, but restrict how references can be used. Therefore,

10 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

2 SPECIFYING OWNERSHIP PROPERTIES IN JML

public class LinkedList {

/*@ spec_public rep @*/ Node first;

public LinkedList(Object e) {

first = new /*@ rep @*/ Node();

first.elem = e;

}

//@ requires n != null;

public void capture(/*@ peer @*/ Node n) {

first = n; // illegal: violates implicit invariant

}

/*@ requires l != null && l != this;

@ requires first != null && l.first != null;

@*/

public void exchangeFirst(/*@ peer @*/ LinkedList l) {

Object tmp = first.elem;

first.elem = l.first.elem;

l.first.elem = tmp; // illegal: violates owner-as-modifier

}

// other methods omitted

}

Figure 3: Implementation of a doubly-linked list. The incorrect methods capture

and exchangeFirst violate the implicit ownership invariant and the owner-as-
modifier property, resp. These errors can be detected by static verification or runtime
assertion checking.

owner-as-dominator requires checks whenever a reference is potentially passed to an
object in another context (for instance, by field accesses or method calls), whereas
owner-as-modifier requires checks whenever an object is potentially modified.

The state of an object X can be modified either directly by assigning to the fields
of X or indirectly by calling a method on X that performs the modification. The
owner-as-modifier property can be guaranteed by checking that these operations are
performed only by objects in the context that contains X or by X’s owner.

In JML, checks or proof obligations within method bodies are expressed by
assert clauses. To enforce the owner-as-modifier property, we guard each field
update of the form X.f = e and each call X.m(. . .) of a non-pure method m by the
following assertion:

assert X.owner == this.owner || X.owner == this;

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 11

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

Pure methods do not change the state of allocated objects. Therefore, their use
need not be restricted.

Like for all other ownership specifications, static verification or runtime assertion
checking can be used to check the above assertions. In the LinkedList example,
the constructor and method capture can be checked easily. They update only fields
of this. Thus, the first disjunct of the assertion is met trivially.

Method exchangeFirst violates the owner-as-modifier property by directly mod-
ifying the internal representation of another list, l, without calling a method on l.
This violation is detected by checking the assertion for the update l.first.elem =

tmp. By l’s implicit invariant, we have l.first.owner == l, by the acyclicity of
the ownership relation, we have l != l.owner, and by the implicit requires clause,
we have l.owner == this.owner. This implies l.first.owner != this.owner,
that is, the first disjunct of the assertion does not hold. The second disjunct of the
assertion, l.first.owner == this, does not hold because (1) l.first.owner ==

l (by l’s implicit invariant) and (2) l != this (by the explicit requires clause).

Since ownership can be expressed by standard JML constructs, a large number
of techniques and tools for JML [BCC+03, BRL03, Che03, CK04, FLL+02, Jac04,
JP01] can be used to reason about ownership properties. In the next section, we
show how these properties can be checked syntactically by the Universe type system.

3 THE UNIVERSE TYPE SYSTEM

Ownership annotations lead to a high number of assertions that have to be proved
or checked at runtime. The Universe type system can check most of these assertions
syntactically, thereby reducing the verification or runtime checking overhead signifi-
cantly. In this section, we give an informal introduction to the Universe type system.
A formalization and a type safety proof is found in our earlier work [Mül02, MPH01].

Types and Subtyping

The Universe type system distinguishes three kinds of references: (1) references be-
tween objects in the same context (peer references), (2) references from an object
X to an object directly owned by X (rep references), and (3) references between
objects in arbitrary contexts. According to the owner-as-modifier property, refer-
ences of the third kind must not be used to modify the referenced object since the
reference is not guaranteed to come from the owner or a peer object of the modified
object. Hence, we call these references readonly references.

The Universe type system uses the ownership modifiers peer and rep plus the
additional modifier readonly to classify references into the three kinds described
above. In contrast to the dynamic encoding, where arbitrary ownership is expressed
by not adding an ownership modifier to a declaration, the Universe type system uses

12 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

3 THE UNIVERSE TYPE SYSTEM

class Node {

/*@ peer @*/ Node prev, next;

/*@ readonly @*/ Object elem;

}

Figure 4: Class Node with Universe types.

the readonly modifier to make explicit that a reference may point to any context
(kind 3). Having an explicit readonly is useful to record design decisions. It also
allows us to use peer as a default when an ownership modifier is omitted (see Sec. 5).

Types. In contrast to the dynamic ownership encoding, the Universe type system
requires that an ownership modifier is specified for each expression that evaluates to
a reference at runtime. Therefore, we associate ownership modifiers with reference
types.

The types of the Universe type system comprise Java’s primitive types, class and
interface types, and array types. Class and interface types are pairs of an ownership
modifier (peer, rep, or readonly) and a class or interface name. For instance, the
type rep T is the type of references pointing to objects of class or interface T owned
by this.

Array types have two ownership modifiers, one for the array object and one for
the elements of the array. (The second modifier is omitted for arrays of primitive
types such as integer arrays.) The type rep readonly T[] is the type of an array
owned by this, whose elements are instances of T in arbitrary contexts. All array
objects of a multi-dimensional array belong to the same context.

According to their (first) ownership modifier, we call reference types peer, rep,
and readonly types, resp.

Fig. 4 shows the Node class with Universe types. The readonly modifier ex-
presses that the elements of the list can belong to arbitrary, even different, contexts.

Subtyping. The subtype relation on Universe types follows the subtype relation
in Java: Two peer, rep, or readonly types are subtypes if the corresponding classes
or interfaces are subtypes in Java. In addition, every peer and rep type is a subtype
of the readonly type with the same class, interface, or array element type, because
it is more specific in terms of the context information it conveys.

The Universe type system has covariant array subtyping. That is, two array types
with the same ownership modifier are subtypes if their element types are subtypes.
For instance, rep peer Object[] is a subtype of rep readonly Object[] because
the element type peer Object is a subtype of the element type readonly Object.

Like Java, the Universe type system allows downcasts of reference types. In

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 13

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

particular, it is possible to cast a readonly type into a peer or rep type. As with
conventional downcasts, such casts need dynamic type checking to guarantee that
the more specific ownership information of the subtype is accurate. Alternatively,
static verification can be applied to show that the downcast is permitted. Consider
a variable roT of type readonly T. The downcast (rep T) roT requires one to
check the condition roT == null || roT.owner == this, that is, to check that
roT actually contains a rep reference.

Type Rules

The type rules of the Universe type system guarantee that the ownership modifiers
of reference types correctly reflect the owner of the referenced object. Moreover,
they enforce the owner-as-modifier property. In this subsection, we present the
most interesting type rules.

Assignment. The rule for an assignment is the standard Java rule: The type of
the right-hand side expression has to be a subtype of the type of the left-hand side
variable. This rule renders method capture of class LinkedList (Fig. 3) incorrect:
The type of n, peer Node, is not a subtype of the type of first, rep Node.

Object Creation. An object creation expression is of the form new peer T(. . .)
or new rep T(. . .), where T is a class name. An array creation expression has two
ownership modifiers. Analogous to object creation, the first ownership modifier has
to be peer or rep. The element type can have a peer or readonly modifier. We
forbid the rep modifier for element types because it is not possible to create objects
owned by arrays. Such an object could be created only by methods executed on an
array as receiver object, which is not possible in Java.

Field Access. To determine the owner of an object referenced by x.f — and,
thus, the type of the field access x.f — one has to consider the ownership modifiers
of both x and f :

1. If the types of both x and f are peer types, then we know (a) that the object
referenced by x has the same owner as this, and (b) that the object refer-
enced by x.f has the same owner as x and, thus, the same owner as this.
Consequently, the type of x.f also has the modifier peer.

2. If the type of f is a rep type, then the type of this.f has the modifier rep,
because the object referenced by this.f is owned by this.

3. If the type of x is a rep type and the type of f is a peer type, then the type
of x.f has the modifier rep, because (a) the object referenced by x is owned

14 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

3 THE UNIVERSE TYPE SYSTEM

by this, and (b) the object referenced by x.f has the same owner as x, that
is, this.

4. In all other cases, we cannot determine statically that the object referenced
by x.f has the same owner as this or is owned by this. Therefore, in these
cases the type of x.f has the modifier readonly.

To enforce the owner-as-modifier property, we perform the following check, which
corresponds to the assertion generated for field updates (see Sec. 2). If the field
access x.f occurs as left-hand side of an assignment, the type of x must not be
a readonly type. This requirement is violated by the last assignment in method
exchangeFirst (Fig. 3): The type of l.first is readonly Node. Therefore, an
assignment to l.first.elem, which parses as (l.first).elem, is not allowed.

Method Call. Analogously to field accesses, the declared parameter and result
types of a method have to be interpreted w.r.t. the type of the receiver expression
of the method call. Consider a method with signature void foo(peer T p). The
peer modifier expresses that the parameter p has the same owner as the receiver
object on which foo is executed. Therefore, if foo is called on an expression of
a rep type, the actual parameter of the call must also be of a rep type to meet
this requirement. This interpretation of parameter and result types is performed
by the mapping described for field accesses, with the type of the field replaced by
the parameter or result type of the method. In our example, the combination of a
rep type (the type of the receiver) and a peer type (the type of p) yields a rep type
(point 3 in the enumeration above).

For a call x.m(. . . ai . . .), this observation leads to the following conditions:
(1) The type of an actual parameter ai must be a subtype of the combination of the
types of x and of the formal parameter pi. (2) The type of the call expression is the
combination of the type of x and the declared result type of m. (3) If at least one
formal parameter of m has a rep type, then m may be called only on the receiver
expression this. This restriction is necessary because if the receiver expression, x,
is different from this, the combination of x’s type and a rep type yields a readonly
type. In that case, callers of m could pass arguments in arbitrary contexts, although
m expects an argument owned by its receiver, x. Rule (3) prevents this problem.

The owner-as-modifier property requires that readonly references must not be
used to modify the referenced object. To prevent indirect modification through
method calls, only side-effect free methods may be called on readonly references.
We use JML’s pure modifier for this check. This modifier indicates that a method
is side-effect free. The JML compiler is supposed to check purity statically.

The foo example above illustrates a problem with pure methods: Assume that
x is of a readonly type and that foo is pure. Since foo’s formal parameter p is of a
peer type, a call x.foo(y) requires that x and y have the same owner. However, this
condition cannot be checked syntactically since x’s type does not specify the owner

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 15

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

of x. We solve this problem by an additional requirement: All parameters of pure
methods (the only methods that can be called on expressions of readonly types)
must have readonly types. This requirement does not restrict expressiveness since
pure methods cannot modify their parameter objects anyway. Missing ownership
modifiers for formal parameters of pure methods are defaulted to readonly by our
implementation.

Universe Invariant

In the dynamic ownership encoding, peer and rep annotations are desugared into
requires clauses, ensures clauses, and invariants. That is, they express ownership
relations that hold in certain execution states, namely the pre- and poststates of
method executions. The Universe type system makes a much stronger guarantee:
The specified ownership relations hold in all execution states. For instance, method
bar in Fig. 5 satisfies all assertions of the dynamic ownership encoding, but does not
typecheck since the specified ownership relation is violated temporarily. Moreover,
the Universe type system checks ownership properties of all expressions, whereas the
dynamic encoding addresses only fields, method parameters, and method results.

public class Difference {

/*@ rep @*/ Object o;

public void bar() {

o = new /*@ peer @*/ Object(); // breaks invariant temporarily

o = new /*@ rep @*/ Object(); // reestablishes invariant

}

}

Figure 5: A class illustrating the difference between checking ownership by asser-
tions or by type checking. Method bar satisfies the assertions generated from the
ownership annotations, but does not typecheck.

In summary, the Universe type system guarantees that the following program
invariant holds in every execution state: If object X holds a direct reference to
object Y then at least one of the following cases applies: (1) X and Y are in the
same context, or (2) X is the owner of Y , or (3) the reference is readonly. W.r.t.
this program invariant, local variables and formal parameters behave like instance
variables of the this object.

4 COMBINING UNIVERSE TYPES AND JML SPECIFICATIONS

Readonly types can be used to leave the owner of an object X unspecified, which
makes the Universe type system very flexible. Still, the owner of X and objects in

16 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

4 COMBINING UNIVERSE TYPES AND JML SPECIFICATIONS

the same context as X can use downcasts to obtain a readwrite reference to X and
modify X. JML annotations can be used to specify ownership relations that cannot
be expressed in the Universe type system. In particular, these annotations can be
used to prove that a downcast does not throw an exception if the annotations are
satisfied.

In this section, we illustrate the flexibility of the combination of the Universe
type system and JML ownership specifications by two examples: producer-consumer
and doubly-linked lists with iterators. Both examples satisfy the owner-as-modifier
property, but cannot be implemented in an owner-as-dominator model.

Producer-Consumer

Fig. 6 shows a producer and a consumer that share a common buffer. The producer
puts products into the buffer, which are then retrieved by the consumer. The shared
ring buffer is implemented as an array of Product objects, which is owned by the
producer to protect it from unwanted modifications. The producer, the consumer,
and the products are in the same context. The owner-as-modifier property allows
the consumer to have a readonly reference to the buffer although it is owned by the
producer. This reference is not permitted in owner-as-dominator models.

Figure 6: Object structure of the producer-consumer example. Producer, consumer,
and product objects are in the same context. The context of objects owned by the
producer is depicted by the ellipse. It contains the buffer array. Readwrite references
are drawn with solid lines and readonly references with dashed lines.

We adopt Barnett and Naumann’s implementation that synchronizes the pro-
ducer and the consumer without requiring the consumer to modify the buffer
[BN04b]. To achieve that, the producer and the consumer each store a buffer index
and mutual peer references to each other. These references are used to relate the
indices in specifications, in particular, to express that the buffer is empty or full.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 17

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

public class Producer {

/*@ spec_public rep readonly @*/ Product[] buf;

/*@ spec_public @*/ int n;

/*@ spec_public peer @*/ Consumer con;

/*@ invariant buf != null && 0 <= n && n < buf.length &&

@ (\forall int i; 0 <= i && i < buf.length;

@ buf[i] == null || buf[i].owner == this.owner);

@*/

public Producer() {

buf = new /*@ rep readonly @*/ Product[10];

}

/*@ requires con != null && con.n != n;

@ ensures n == \old((n+1) % buf.length);

@*/

public void produce(/*@ peer @*/ Product p) {

buf[n] = p;

n = (n+1) % buf.length;

}

}

Figure 7: Implementation of the producer. The ownership information about the
products stored in the buffer is expressed by an invariant.

The buffer stores readonly references to products. The invariant of class
Producer (Fig. 7) specifies that the products in the buffer have the same owner
as the producer. This invariant is established by Producer’s constructor because all
array elements are initialized to null. The produce method maintains the invari-
ant because the peer type of the formal parameter p guarantees that the inserted
product has the same owner as the producer.

Since the buffer is owned by the producer, class Consumer (Fig. 8) has a readonly
field for the reference to the buffer. The interface specification of the class expresses
the synchronization conditions with the producer. This specification does not specify
ownership relationships.

The most interesting aspect of class Consumer is method consume, which
casts the readonly reference obtained from the buffer into a peer reference. This
downcast is guarded by the runtime check buf[n] == null || buf[n].owner ==

this.owner. This check cannot cause a runtime error, because (1) by Producer’s
invariant, we have pro.buf[n] == null || pro.buf[n].owner == pro.owner;
(2) by Consumer’s invariant, we have buf == pro.buf; (3) by the type of field
pro and Consumer’s invariant, we have pro.owner == this.owner. This example

18 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

4 COMBINING UNIVERSE TYPES AND JML SPECIFICATIONS

public class Consumer {

/*@ spec_public readonly readonly @*/ Product[] buf;

/*@ spec_public @*/ int n;

/*@ spec_public peer @*/ Producer pro;

//@ invariant buf != null && 0 <= n && n < buf.length;

//@ invariant pro != null && pro.con == this && pro.buf == buf;

//@ requires p != null && p.con == null;

public Consumer(/*@ peer @*/ Producer p) {

buf = p.buf;

pro = p;

n = buf.length-1;

p.con = this;

}

/*@ requires (n+1) % buf.length < pro.n;

@ ensures n == \old((n+1) % buf.length);

@*/

public /*@ peer @*/ Product consume() {

n = (n+1) % buf.length;

return (/*@ peer @*/ Product) buf[n];

}

}

Figure 8: Implementation of the consumer. Method consume casts a readonly ref-
erence into a peer reference. The invariant of Producer guarantees that this cast
does not lead to a runtime error.

shows how Universe type information and JML specifications can be combined to
reason about ownership properties.

Collections with Iterators

Iterators typically have direct references to the internal representation of the collec-
tion they iterate on. Such a reference can be used to read and modify the collection.
In this example, we show how to implement modifying iterators in the owner-as-
modifier model. Moreover, we illustrate that readonly references can be used to
implement methods that traverse object structures, for instance, to perform a deep
comparison or to clone the structure.

Fig. 9 shows the object structure of a doubly-linked list with one iterator. Like in
class Consumer, the iterator uses a readonly reference to directly access the objects

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 19

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

Figure 9: Object structure of the collection example. The LinkedList object owns
the nodes of the doubly-linked list. The iterator is in the same context as the list
head. It has a reference to the list head and a readonly reference to the Node object
at the iterator position.

owned by another object, in this case the Node objects owned by the list head. Since
the elements stored in the list are referenced readonly, they can be owned by any
object.

The implementations of the head (class LinkedList), the nodes (class Node),
and the iterators (class Iter) of the doubly-linked list are shown in Figs. 10, 4,
and 11, resp.

Modifying Iterators. The owner-as-modifier model allows iterators to have read-
only references to the nodes of the list. Modifications of the list have to be initiated
by methods of the list head. Iterators can modify the list structure indirectly by
delegating method calls to the head.

Class LinkedList offers a non-public method set that can be called by iterators
to store an object in a given node. set takes a node of the list as parameter. This
parameter has to be provided by the calling iterator. Since iterators can only have
readonly references to list nodes, the type of the parameter, np, is readonly Node.
Before updating np.elem, method set performs a downcast to obtain a writable
reference to the Node object. This downcast requires np to be owned by the list
head, which is expressed by the requires clause of set.

Method set illustrates how Universe and JML annotations complement each
other: Although parameter np has to be owned by this, it cannot be declared with
a rep type because methods with rep parameters may be called only on the receiver

20 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

4 COMBINING UNIVERSE TYPES AND JML SPECIFICATIONS

public class LinkedList {

/*@ spec_public rep @*/ Node first;

//@ requires np != null && np.owner == this;

void set(/*@ readonly @*/ Node np, /*@ readonly @*/ Object e) {

/*@ rep @*/ Node n = (/*@ rep @*/ Node) np;

n.elem = e;

}

public /*@ pure @*/ boolean equals(/*@ readonly @*/ Object l) {

if (!(l instanceof /*@ readonly @*/ LinkedList))

return false;

/*@ readonly @*/ Node f1 = first;

/*@ readonly @*/ Node f2 = ((/*@ readonly @*/ LinkedList)l).first;

while (f1 != null && f2 != null && f1.elem == f2.elem) {

f1 = f1.next;

f2 = f2.next;

}

return f1 == null && f2 == null;

}

// constructors and other methods omitted

}

Figure 10: Implementation of the list head. The method set allows iterators to
modify the value stored in a Node object.

this (see rule (3) for methods calls, Sec. 3). In particular, iterators would not be
allowed to call method set. To solve this problem, we use a readonly type for np

and express the necessary stronger ownership information by a requires clause.

Each iterator is associated with a list. Objects of class Iter store a reference to
the list they belong to. Field pos contains a readonly reference to the node at the
current iterator position. The invariant expresses that the referenced node is owned
by the list, a property, that cannot be expressed by ownership type systems. Since
first is of a rep type, this invariant is established by Iter’s constructor.

Although an iterator does not own the Node object it points to, it can mod-
ify its state by Iter’s setValue method. This method delegates the call to
LinkedList.set. The invariant of class Iter guarantees that the requires clause of
set is satisfied.

According to Noble’s classification [Nob00], this iterator design is a blend be-
tween a structure-sharing external iterator and an external iterator: Read opera-
tions are performed directly on the list’s representation, whereas write operations
access the representation via the list interface.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 21

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

public class Iter {

/*@ spec_public peer @*/ LinkedList list;

/*@ spec_public readonly @*/ Node pos;

//@ invariant pos != null && pos.owner == list;

public Iter(/*@ peer @*/ LinkedList l) {

list = l;

pos = l.first;

}

public void setValue(/*@ readonly @*/ Object e) {

list.set(pos, e);

}

// other methods omitted

}

Figure 11: Implementation of the list iterator. The peer reference to the list head
is used to modify the list.

Traversing Object Structures. LinkedList’s equals performs a deep compar-
ison of two lists. This method traverses the nodes owned by this and the parameter
l. In the owner-as-modifier model, the nodes of l can be accessed through readonly
references.

The instanceof and cast expressions in method equals are necessary to make
sure the parameter l is a LinkedList. Since peer and rep types are subtypes of the
corresponding readonly types, instanceof and cast expressions for readonly types
check the standard Java type, but no ownership information. Peer and rep types
can be used in instanceof and cast expressions to check in addition that an object
has the same owner as this or is owned by this, resp.

5 IMPLEMENTATION

We integrated the Universe type system into the MultiJava compiler [CMLC04] on
which the JML compiler is built. In this section, we describe the JML implementa-
tion without distinguishing whether a feature is actually implemented in MultiJava
or JML.

Our implementation covers the type system described in Sec. 3. The type checker
is applied to both Java implementations and JML specifications. Typechecking
specifications, for instance, requires that the owner field is declared with a readonly

modifier:

22 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

5 IMPLEMENTATION

/*@ ghost public readonly Object owner; @*/

Alternatively, one could implicitly treat all references in specifications as readonly
since the evaluation of a specification must not modify existing objects anyway. We
use the Universe type checking for specifications to simplify the implementation.

Defaulting and Backwards Compatibility

Our implementation reduces the annotation overhead significantly by a simple de-
faulting scheme. The default ownership modifier for reference types is peer. De-
faulting reference types to peer types allows most Java programs without ownership
annotations to be typechecked by the Universe type system: all objects are in the
root context and can reference and modify each other.

We depart from the peer default in two cases. (1) Since parameter types of pure
methods must be readonly (see Sec. 3), we use readonly as default for these types.
(2) The exception types in throws and catch clauses are defaulted to readonly,
which allows exceptions to be propagated to handlers in arbitrary contexts (see our
earlier work [DM04] for details).

Standard Java programs are not accepted by the Universe type checker if they
expect a reference that is by default readonly to be readwrite, for instance, if they
modify the state of a caught exception object. These uncommon cases can be fixed
easily, for instance by inserting a downcast to a peer type or by creating and re-
throwing a new exception object. With the concrete syntax of ownership modifiers
used so far, some standard Java programs cannot be typechecked with the Universe
type system because they use the keywords peer, rep, or readonly as identifiers.

To be able to use the JML compiler for all Java programs, the Universe type
checking can be controlled in a fine-grained way by command line switches. Users can
choose between four modes of operation: (1) the Universe type system is switched off
completely; (2) the ownership annotations are parsed, but typechecking is switched
off; (3) Universe type checking is switched on; (4) Universe type checking is switched
on and the necessary runtime checks are generated.

To avoid syntactic conflicts with the keywords peer, rep, and readonly, pro-
grammers can use an alternative syntax for ownership modifiers, where the keywords
are preceded by a backslash, for example /*@ \peer @*/. Such modifiers are ig-
nored by the compiler if the Universe type system is switched off (modes 1 and 2).
This version of the modifiers can be used for Java API classes that should be usable
either with or without enabled Universe type system. Finally, it is possible to use
peer, rep, readonly, and pure without enclosing comments. However, programs
with this concise syntax cannot be compiled by standard Java compilers.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 23

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

Runtime Support

In this subsection, we describe how the runtime checks of the Universe type sys-
tem are implemented. Based on this implementation, the checks for the dynamic
ownership encoding (Sec. 2) can be added easily.

Like standard Java, the Universe type system requires runtime checks for down-
casts and array updates. Besides the plain Java types, these checks have to compare
the ownership information. Ownership information at runtime is also necessary to
evaluate instanceof expressions.

Representation of Ownership Information. The necessary runtime checks
can be expressed as assertions in terms of the ghost field owner. The JML runtime
assertion checker handles ghost fields by adding a normal field to the declaring
class and appropriate get and set methods. However, this approach works only for
ghost fields of classes that are compiled by the JML compiler, which is not the case
for Object. Neither modifying Object’s source code nor patching its class file is an
option since the distribution of a modified version of Object violates the Sun license
terms.

We solve this problem by storing ownership information externally in a global
hashtable. This table maps objects to their owner object. For array objects, we also
store the ownership modifier of the element type in the hashtable. This information
is used in the runtime checks of array updates. We use Java’s weak references to
ensure that storing a reference in the hashtable does not affect garbage collection
(see [Sch04] for details).

As described in Sec. 2, conceptually the owner field is set by Object’s default
constructor. Since we cannot modify the implementation of Object, we add a new
object to the ownership hashtable at two places: (1) before the first statement of
the constructor, which ensures that the ownership information of the new object is
available during the execution of the constructor; (2) after the new expression, which
ensures that the new object is added even if the constructor was not compiled by
the JML compiler. With this solution, it is still possible to create objects that are
not added to the ownership hashtable if the new expression occurs in a class that
is not compiled by the JML compiler. A Java system property is used to control
whether runtime checks for such objects always pass or always fail.

Runtime Checks. We implemented the runtime checks for downcasts, array up-
dates, and instanceof expressions as additional bytecode instructions generated by
the compiler. As future work, we plan to adapt JML’s runtime assertion checker to
map accesses to the owner ghost field to accesses to the ownership hashtable.

For downcasts and array updates, the result of a failed check can be controlled
by Java system properties. The options range from throwing an exception to only
reporting the error on the console.

24 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

6 RELATED WORK

The checks for downcasts and instanceof are comparisons of the corresponding
entries in the ownership hashtable. Like Java, the Universe type system has covari-
ant array subtyping (see Sec. 3). For instance, rep peer Object[] is a subtype
of rep readonly Object[]. Therefore, an array variable with a static readonly
element type could, at runtime, contain an array with peer element type. Conse-
quently, updating such an array requires a runtime check that the reference assigned
to the array element actually is a peer reference. The ownership hashtable stores the
element ownership modifier of each array. This modifier is used to check whether
the owner of the object on the right-hand side of the update conforms to the element
type of the array.

6 RELATED WORK

Clarke et al. [CPN98, Cla01] developed the first of a number of ownership type sys-
tems that enforce the owner-as-dominator property. In addition to the readwrite
references permitted by the Universe type system, Clarke et al.’s work allows an
object, X, to reference objects in ancestor contexts of the context that contains X.
Such references violate neither the owner-as-dominator nor the owner-as-modifier
property. Still, we require references to ancestor contexts to be readonly to prevent
methods from modifying objects in ancestor contexts because such modifications
are difficult to handle by state-of-the-art specification techniques for frame prop-
erties [MPHL03]. Clarke et al. use context parameters to express role separation.
Readonly types can replace context parameters in many situations, impose less an-
notation overhead, and lead to programs that are easier to read and reason about.
Furthermore, readonly references allow multiple objects to reference one represen-
tation, which is not supported by the owner-as-dominator model used in ownership
types. However, such non-owning references to a representation are used in common
implementations such as iterators or shared data structures.

Clarke and Drossopoulou [CD02] extended the original ownership type system
to support inheritance. Their type system is ownership parametric and enforces
the owner-as-dominator property. Therefore, it suffers from the same problems
as the original ownership type system. Based on their type system, Clarke and
Drossopoulou present an effects system and use it to reason about aliasing and
non-interference.

In recent work, Noble et al. [PNCB03, PNCR04] combined ownership and type
parameterization by introducing generic ownership. This proposal reduces the an-
notation overhead for generic classes, but does not address the other shortcomings
of ownership types.

SafeJava [Boy04, BLS03] is very similar to ownership types, but supports a model
that is slightly less restrictive than owner-as-dominator: An object and all associated
instances of inner classes can access a common representation. For instance, iterators
can be implemented as inner class of the collection and, therefore, directly reference

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 25

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

the collection’s representation. However, more general forms of sharing are not
supported. SafeJava is more flexible than ownership types, but the Universe type
system is both syntactically simpler and more expressive. SafeJava has been applied
to prevent data races and deadlocks.

Boyapati et al. [BLR03] present a space-efficient implementation of downcasts
in SafeJava. Their implementation inspects each class, C, to determine whether
downcasts for C objects potentially require dynamic ownership information. If not,
ownership information is not stored for C objects. This optimization does not work
for the Universe type system, where readonly references to objects of any class can
be cast to peer or rep references and, therefore, objects of every class potentially
need runtime ownership information.

Ownership domains [AC04] support a model that is less restrictive than owner-
as-dominator. Contexts can be structured into several domains. Domains can be
declared public, which permits reference chains to objects in the public domain
that do not pass through their owner. Programmers can control whether objects
in different domains can reference each other. For instance, iterators in a public
domain of a collection are accessible for clients of the collection. They can be
allowed to reference the representation of the collection stored in another domain.
The concept of ownership domains is powerful and allows many forms of sharing.
However, its suitability to support verification of functional correctness properties
is unclear. For instance, placing the buffer of the producer-consumer example in the
producer’s public domain allows the consumer as well as all other objects in the same
context to modify the buffer. This makes it difficult, if not impossible, to maintain
invariants on the buffer. Supporting verification has been the main motivation
behind the Universe type system. Another drawback of ownership domains is the
annotation overhead they impose. Like ownership types, ownership domains impose
the annotation overhead of context parameters.

Confined types [BV99] guarantee that objects of a confined type cannot be ref-
erenced in code declared outside the confining package. Confined types have been
designed for the development of secure systems. They do not support representation
encapsulation on the object level.

Several attempts at inferring ownership types [AKC02, AS04, Wre03] showed
that the complexity of parametric ownership type systems makes inference difficult.
We are working on an inference system for Universe types and expect that the
simplicity of our type system eases inference. The experiences so far are promising.

The Boogie methodology [LM04] for reasoning about invariants is based on a
dynamic ownership encoding similar to the one described in this paper. In this
methodology, any reference can be used to modify an object, provided that all
transitive owners of this object are made mutable by applying a special unpack
operation. In practice, this requirement is typically met by following the owner-as-
modifier policy: the owner unpacks itself before initiating the modification of an
owned object. The Boogie methodology supports ownership transfer.

26 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

7 CONCLUSION

Banerjee and Naumann use ownership to prove a representation independence
result for object-oriented programs [BN04a]. Their ownership model requires that
for a given pair of classes C, D, all instances of D are owned by some instance of
C. This is clearly too restrictive for many implementations. For instance, lists are
typically used as internal representation by many classes. Similarly, it is unclear
how arrays can be supported by such a model. Banerjee and Naumann present a
static analysis to check whether a program satisfies the ownership model for a pair
of classes C, D.

Unique references and linear types [Boy01, BNR01, FD02, Wad90] can be used
for a very restrictive form of alias control. For ownership type systems, a weaker
form of uniqueness [CW03] is sufficient to enable ownership transfer.

Skoglund [Sko02] as well as Birka and Ernst [BE04] present type systems for
readonly types that are similar to ours. Birka and Ernst’s type system is more
flexible than ours as it allows one to exclude certain fields or objects from the
immutable state. Neither Skoglund nor Birka and Ernst combined readonly types
with ownership.

Our readonly types leave the owner of an object unspecified. Whenever precise
information about the owner is needed, a downcast with a dynamic type check is
used. This approach is similar to soft typing [CF91], where a compiler does not
reject programs that contain potential type errors, but rather introduces runtime
checks around suspect statements. In soft typing, these runtime checks are added
automatically by the compiler whereas we require programmers to introduce casts
manually.

7 CONCLUSION

We have shown that the combination of a lightweight ownership type system and
JML ownership specifications can handle interesting implementations while keep-
ing the annotation and checking effort small. Our implementation of the Universe
type system in the JML compiler allows one to apply ownership-based verification
techniques to programs specified in JML.

We are currently using our implementation in an industrial case study, which
investigates the practicality of the approach described in this paper. The intermedi-
ate results are promising: Most classes can be handled by the Universe type system,
sometimes by making minor modifications to the code.

As future work, we plan to extend the Java subset supported by the Universe type
system. In particular, we want to handle static fields, generics, and reflection. Other
threads of future work are the development of an inference tool for the Universe type
system and the integration of the type system in the verification tools ESC/Java2
and Jive.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 27

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

ACKNOWLEDGMENTS

We are grateful to Gary Leavens for many helpful discussions about the integration
of the Universe type system in to JML. The reviewers made valuable suggestions
that improved the paper. We also thank Daniel Schregenberger for his help with
the implementation of the runtime checks.

REFERENCES

[AC04] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing
policy from mechanism. In M. Odersky, editor, European Conference on
Object-Oriented Programming (ECOOP), volume 3086 of Lecture Notes
in Computer Science, pages 1–25. Springer-Verlag, 2004.

[AKC02] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for pro-
gram understanding. In Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), 2002.

[AS04] R. Agarwal and S. D. Stoller. Type inference for parameterized race-free
Java. In B. Steffen and G. Levi, editors, Verification, Model Checking,
and Abstract Interpretation (VMCAI), volume 2937 of Lecture Notes in
Computer Science. Springer-Verlag, 2004.

[BCC+03] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. In T. Arts
and W. Fokkink, editors, Formal Methods for Industrial Critical Systems
(FMICS), volume 80 of Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), pages 73–89. Elsevier, 2003.

[BDF+04] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte.
Verification of object-oriented programs with invariants. Journal of Ob-
ject Technology (JOT), 3(6), 2004. www.jot.fm.

[BE04] A. Birka and M. Ernst. A practical type system and language for ref-
erence immutability. In Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), 2004.

[BLR02] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages
211–230. ACM Press, 2002.

[BLR03] C. Boyapati, R. Lee, and M. Rinard. Safe runtime downcasts with own-
ership types. In ECOOP International Workshop on Aliasing, Confine-
ment and Ownership in Object-Oriented Programming (IWACO), 2003.

28 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

www.jot.fm

7 CONCLUSION

[BLS03] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object en-
capsulation. In Principles of Programming Languages (POPL), pages
213–223. ACM Press, 2003.

[BN02] A. Banerjee and D. A. Naumann. Representation independence, con-
finement, and access control. In Principles of Programming Languages
(POPL), pages 166–177. ACM Press, 2002.

[BN04a] A. Banerjee and D. A. Naumann. Ownership confinement ensures repre-
sentation independence for object-oriented programs. Technical Report
2004-14, Stevens Institute of Technology, 2004.

[BN04b] M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining
invariants over shared state. In Mathematics of Program Construction
(MPC), Lecture Notes in Computer Science. Springer-Verlag, 2004.

[BNR01] J. Boyland, J. Noble, and W. Retert. Capabilities for aliasing: A gener-
alisation of uniqueness and read-only. In J. Lindskov Knudsen, editor,
Object-Oriented Programming (ECOOP), number 2072 in Lecture Notes
in Computer Science, pages 2–27. Springer-Verlag, 2001.

[Boy01] J. Boyland. Alias burying: Unique variables without destructive reads.
Software—Practice and Experience, 31(6):533–553, 2001.

[Boy04] C. Boyapati. SafeJava: A Unified Type System for Safe Programming.
PhD thesis, MIT, 2004.

[BRL03] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A
developer-oriented approach. In K. Araki, S. Gnesi, and D. Mandri-
oli, editors, Formal Methods (FME), volume 2805 of Lecture Notes in
Computer Science, pages 422–439. Springer-Verlag, 2003.

[BV99] B. Bokowski and J. Vitek. Confined types. In Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), ACM SIG-
PLAN Notices, 1999.

[CD02] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the dis-
jointness of type and effect. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 292–310. ACM Press,
2002.

[CF91] R. Cartwright and M. Fagan. Soft typing. SIGPLAN, 26(6):278–292,
1991. Programming Language Design and Implementation (PLDI).

[Che03] Y. Cheon. A Runtime Assertion Checker for the Java Modeling Lan-
guage. PhD thesis, Iowa State University, 2003.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 29

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

[CK04] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress
and issues in building and using ESC/Java2 and a report on a case study
involving the use of ESC/Java2 to verify portions of an Internet voting
tally system. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and
T. Muntean, editors, Construction and Analysis of Safe, Secure and
Interoperable Smart devices (CASSIS), volume 3362 of Lecture Notes in
Computer Science. Springer-Verlag, 2004.

[CL02] Y. Cheon and G. T. Leavens. A runtime assertion checker for the Java
Modeling Language (JML). In H. R. Arabnia and Y. Mun, editors,
Software Engineering Research and Practice (SERP), pages 322–328.
CSREA Press, 2002.

[Cla01] D. Clarke. Object Ownership and Containment. PhD thesis, University
of New South Wales, 2001.

[CMLC04] C. Clifton, T. Millstein, G. T. Leavens, and Chambers C. MultiJava:
Design rationale, compiler implementation, and applications. Technical
Report 04-01b, Iowa State University, Dept. of Computer Science, 2004.
Accepted for publication, pending revision.

[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible
alias protection. In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), volume 33(10) of ACM SIGPLAN Notices,
1998.

[CW03] D. G. Clarke and T. Wrigstad. External uniqueness is unique enough. In
L. Cardelli, editor, European Conference for Object-Oriented Program-
ming (ECOOP), volume 2743 of Lecture Notes in Computer Science,
pages 176–200. Springer-Verlag, 2003.

[DM04] W. Dietl and P. Müller. Exceptions in ownership type systems. In
E. Poll, editor, Formal Techniques for Java-like Programs, pages 49–54,
2004.

[FD02] M. Fähndrich and R. DeLine. Adoption and focus: practical linear
types for imperative programming. In Programming Language Design
and Implementation (PLDI), pages 13–24. ACM Press, 2002.

[FLL+02] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Programming Language
Design and Implementation (PLDI), pages 234–245. ACM Press, 2002.

[Jac04] B. Jacobs. Weakest precondition reasoning for Java programs with JML
annotations. Journal of Logic and Algebraic Programming, 58:61–88,
2004.

30 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

7 CONCLUSION

[JP01] B. Jacobs and E. Poll. A logic for the Java modeling language JML. In
Fundamental Approaches to Software Engineering (FASE), volume 2029
of Lecture Notes in Computer Science, pages 284–299. Springer-Verlag,
2001.

[LBR99] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed
design. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral
Specifications of Businesses and Systems, pages 175–188. Kluwer Aca-
demic Publishers, 1999.

[LBR04] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. Technical Report
98-06-rev27, Iowa State University, Department of Computer Science,
2004. See www.jmlspecs.org.

[LM04] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In
M. Odersky, editor, European Conference on Object-Oriented Program-
ming (ECOOP), volume 3086 of Lecture Notes in Computer Science,
pages 491–516. Springer-Verlag, 2004.

[MPH01] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias
and dependency control. Technical Report 279, Fernuniversität Hagen,
2001.

[MPHL03] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification
of frame properties in JML. Concurrency and Computation: Practice
and Experience, 15:117–154, 2003.

[MPHL04] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants
for layered object structures. Technical Report 424, Department of Com-
puter Science, ETH Zurich, 2004.

[Mül02] P. Müller. Modular Specification and Verification of Object-Oriented
Programs, volume 2262 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

[Nob00] J. Noble. Iterators and encapsulation. In TOOLS ’00: Proceedings of
the Technology of Object-Oriented Languages and Systems (TOOLS 33),
page 431. IEEE Computer Society, 2000.

[NVP98] J. Noble, J. Vitek, and J. M. Potter. Flexible alias protection. In
E. Jul, editor, ECOOP ’98: Object-Oriented Programming, volume 1445
of LNCS. Springer-Verlag, 1998.

[PNCB03] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership.
Technical Report CS-TR-03-16, Victoria University of Wellington, 2003.

VOL 4, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 31

www.jmlspecs.org

UNIVERSES: LIGHTWEIGHT OWNERSHIP FOR JML

[PNCR04] A. Potanin, J. Noble, D. Clarke, and Biddle R. Featherweight generic
confinement. In Foundations of Object-Oriented Languages (FOOL),
2004.

[Sch04] D. Schregenberger. Runtime checks for the Universe type system.
Semester project, available from http://sct.inf.ethz.ch/projects/

student_docs/Daniel_Schregenberger/Daniel_Schregenberger_

SA_paper.pdf, 2004.

[Sko02] M. Skoglund. Sharing objects by read-only references. In H. Kirchner and
C. Ringeissen, editors, Algebraic Methodology and Software Technology
(AMAST), volume 2422 of Lecture Notes in Computer Science, pages
457–472. Springer-Verlag, 2002.

[Wad90] P. Wadler. Linear types can change the world! In M. Broy and C. B.
Jones, editors, Programming Concepts and Methods (PROCOMET),
1990.

[Wre03] A. Wren. Inferring ownership. Master’s thesis, Department of Comput-
ing, Imperial College, June 2003.

ABOUT THE AUTHORS

Werner Dietl is a PhD student and research assistant at ETH
Zurich. He works on the combination of ownership type systems
and software verification. Email: werner.dietl@inf.ethz.ch.

Peter Müller is assistant professor and head of the Software Com-
ponent Technology Group at ETH Zurich. His research focuses on
specification and verification of object-oriented software. Email: pe-
ter.mueller@inf.ethz.ch.

32 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 8

http://sct.inf.ethz.ch/projects/student_docs/Daniel_Schregenberger/Daniel_Schregenberger_SA_paper.pdf
http://sct.inf.ethz.ch/projects/student_docs/Daniel_Schregenberger/Daniel_Schregenberger_SA_paper.pdf
http://sct.inf.ethz.ch/projects/student_docs/Daniel_Schregenberger/Daniel_Schregenberger_SA_paper.pdf
mailto:werner.dietl@inf.ethz.ch
mailto:peter.mueller@inf.ethz.ch
mailto:peter.mueller@inf.ethz.ch

