EnerJ: Approximate Data Types for Safe and General Low-Power
Computation — Full Proofs

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman
University of Washington, Department of Computer Science and Engineering

June 5, 2011

1 Type System

This report formalizes EnerJ, a programming language for supporting approximate computation [2]. The paper describing
EnerJ gives an overview of the FEnerJ formalism, but here we describe the language in detail and prove a series of
properties over the language.

This section introduces the core type system, which is made up of type qualifiers that extend Featherweight Java [1].
Section [2] describes the big-step operational semantics that define the language’s runtime system. Section [3] proves a
number of properties about the language, the most important of which is non-interference (intuitively, that the precise
part of the program is unaffected by the approximate part). The appendices contain complete listings, generated by the
Ott tool, of the language’s grammar and deﬁnitionsﬂ

1.1 Ordering

We introduce a strict ordering on the language’s type qualifiers:

ordering of precision qualifiers

q#top
——— QQ-LOST
q <:q lost
E—— _TOP
q <:q top aQ
QQ_REFL
q<iqq

Subclassing is standard:
subclassing

class Clid extends C' { __} € Pry

Cid C O SC_DEF
class C'... € Prg
cCC O SC_REFL
CC G G Cc’
cC O SC_TRANS

Subtyping combines these two and add a special case for primitives:

LOtt: [http://www.cl.cam.ac.uk/~pes20/ott/

1/

http://www.cl.cam.ac.uk/~pes20/ott/

2 /9 June 5, 2011 — EnerJ Team

q<qdq ccc

(< 70 ST_REFT
< q
% ST_PRIMT'1
q ©q
ST_PRIMT'2

precise P <: approx P

We use the method ordering to express that we can replace a call of the sub-method by a call to the super-method,
i.e. for our static method binding:

invocations of method ms can safely be replaced by calls to ms’

_ —
< T T,"< T

% T MST_DEF
T m (T}, pid ") precise <: T' m (T} pid) approx

1.2 Adaptation

The context qualifier depends on the context and we need to adapt it, when the receiver changes, i.e. for field accesses
and method calls.

We need to be careful and decide whether we can represent the new qualifier. If not, we use lost.

g> ¢ = ¢”| combining two precision qualifiers

¢'=context A (q€ {approx,precise,context})
¢>q = q

QCQ_CONTEXT

¢'=context A (g€ {top,lost})

CQ_LOST
qg> q¢ = lost acq
q'#context
——— QCQ_FIXED
> q = ¢
To combine whole types, we just need to adapt the qualifiers:
gr>T = T'| precision qualifier - type combination
a>q = 0 QCT_REFT
¢>q C =4q"'C)
4> 4 = CT_PRIMT
(>q¢P=qgP
Same for methods:
g > ms = ms'| precision qualifier - method signature combination

—k —k
¢g>T =T ¢ T, =T

- - QCMS_DEF
q> T m(Ty pid) ¢ = T m(T] pid) ¢

June 5, 2011 — EnerJ Team 3 /m

1.3 Look-up Functions

The declared type of a field can be looked-up in the class declaration:
’FType(C,f) = T‘ look up field f in class C

class Clid extends _{ T f;__} € Prg

SFTC_DEF
FType(Cid,f) =T
For a qualified class type, we also need to adapt the type:
’FType(qC,f) = T‘ look up field f in reference type ¢qC
FType(C,f) =T g Ty, =T
SFTT_DEF

FType(q C.f) =T

Note that subsumption in the type rule will be used to get to the correct class that declares the field.
Same for methods.
’MSig(C7 m,q) = ms ‘ look up signature of method m in class C

class (lid extends _{ __ms {e} _} €Prg
MName(ms) =m A MQual(ms)=¢q
MSig(Cid, m,q) = ms

SMSC_DEF

’MSig(qC’, m) = ms ‘ look up signature of method m in reference type qC

MSig(C,m, q) = ms qg>ms = ms

SMST_DEF
MSig(q C,m) = ms’
1.4 Well-formedness
A well-formed expression:
expression typing
SI'Fe: Ty < T
TR_SUBSUM
sS'Fe:T
qgC OK
—————— TR.NULL
[F null : ¢C
TR_LITERAL
s['+ L : precise P
*I'(z)=T
—_—— R_VAR
sSFx: T 5
g C OK
q € {precise, approx, context}
TR_NEW
S'Fnewq CO : T
I'te:qC FType(q C,f) =T R
TR_READ
sS'Fey.f: T
'te:qC FType(q C,f) =T
lost¢T T'ke: T
TR_WRITE

SI'Fey.f == e : T

4 /P9 June 5, 2011 — EnerJ Team

'ke:qC q € {precise, context, top}
MSig(precise C,m) =T m(T; pid ") precise
lostéﬁz sSP et T,

— TR_CALL1
s e.m(e") T

°I' - ep : approx C _
MSig(approx C,m) =T m(T; pid ") approx
lost ¢ T, S het: T,

. TR_CALL2
S epg.m@et) : T

'+ ey : approx C
MSig(approx C,m) = None _
MSig(precise C,m) =T m (T; pid") precise
1ost§§ii ST gt Tzl
STk eg.m(g") : T
'ke:_ g C OK
s (g C)e:T

TR_CALL3

TR_CAST

I'te:qP *I'Fe:qP
sS'Fe®e :qP

TR_PRIMOP

°I' - ey : precise P S'Fe - T I'Fe: T

_CO
s if(eg) {e1} else {ex} : T TR-COND

Note how lost is used to forbid invalid field updates and method calls.
Well-formed types:

well-formed type

class C'... € Prg

. C OK WFT_REFT

m WFT_PRIMT

Well-formed classes just propagate the checks and ensure the superclass is valid:

Cls OK well-formed class declaration

°*I'={this — context Cid}
'+ fd OK I, Cid md OK
class C'... € Prg

—— WFC_DEF
class Cid extends C { fd md } OK

WFC_OBJECT

class Object {} OK

Fields just check their types:
STET f; OK‘ well-formed field declaration

—T OK WFFD_DEF
sI'=T f; OK N
Methods check their type, the body expression, overriding, and the method qualifier:

'y CF md OK| well-formed method declaration

June 5, 2011 — EnerJ Team 5 /9

*['={this — context C}

s = {this s context C, pid — T l}
T,T," OK I"Fe:T CFm OK
q € {precise, approx}

7 WFMD_DEF
S, CHT m(T; pid) g { e} OK
Overriding checks for all supertypes C’ that a helper judgment holds:
C + m OK| method overriding OK
CC = C,0'Fm OK
OVR_DEF

CFm OK

This helper judgment ensures that if both methods are of the same precision, the signatures are equal. For a precise
method we allow an approximate version that has relaxed types:

’ C,C'"Fm OK ‘ method overriding OK auxiliary

MSig(C, m,precise) = msy A MSig(C’, m,precise) = msj A (ms{=None V msy=ms()

MSig(C, m,approx) = ms; A MSig(C’, m,approx) = ms] A (ms;=None V ms=ms])

MSig(C, m,precise) = msy A MSig(C’, m,approx) = ms) A (msj=None V msy <: msj) OVRA_DEF
C,C"+m OK

An environment simply checks all types:

well-formed static environment

= {this —q C, pid — Tiz}
q C, ﬁi OK
s OK

SWFE_DEF

Finally, a program checks the contained classes, the main expression and type, and ensures that the subtyping hierarchy
is a~cyclic:

F Pr¢g OK| well-formed program

Prg:CTsii, C, e
Cls; OKi context C OK
{this — context C} Fe: _
VC/’ C//. ((C/ E C// /\ C// E C/) _— C/:C//)
F Prg OK

WFP_DEF

2 Runtime System

2.1 Helper Functions

’ h+o = (W) ‘ add object o to heap h resulting in heap h’ and fresh address ¢

v ¢ dom(h) h=h& (L o)
h+o = (W)

HNEW_DEF

6 /m June 5, 2011 — EnerJ Team

v=null, V (v=/ A ¢ €dom(h))
W)= (T,fo) fedom(fo) F'=flf =]
W=h & (L — (T,fT/))
Wi o= o = HUP_REFT

W= () Folf) =, 2")
=Rl = (¢,7L)] W=ha (L o (T,fv
T = (D] =

HUP_PRIMT

2.2 Runtime Typing

In the runtime system we only have precise and approx. The context qualifier is substituted by the correct concrete
qualifiers. The top and lost qualifiers are not needed at runtime.

This function replaces context qualifier by the correct qualifier from the environment:

’STYT(h, t,T) =T'| convert type T to its runtime equivalent 7"

g=context = ¢'=TQual(h(:)}1)
g#context = ¢'=¢q

sTrT(h,e,q C) = ¢’ C

STRT_REFT

g=context = ¢'=TQual(h(¢)}1)
g#context = ¢'=¢

sTtT(h,t,q P) = ¢ P

STRT_PRIMT

We can assign a type to a value, relative to a current object ¢. For a reference type, we look up the concrete type in
the heap, determine the runtime representation of the static type, and ensure that the latter is a subtype of the former.

The null value can be assigned an arbitrary type. And for primitive values we ensure that the runtime version of the static
type is a supertype of the concrete type.

type T assignable to value v

sTrT(h, 0, q C) = ¢ C
h(L)J/l =T T <: q' C

NE c RTT_ADDR
y Lo LI q
RTT_NULL
h,to Fnull, : ¢ C
sTrT(h,t0,¢ P) = ¢’ P
"LEP qgP<: ¢"P
RTT_PRIMT

h7L0 F (q,rﬁ) : q/ P

2.3 Look-up Functions

Look-up a field of an object at a given address. Note that subtyping allows us to go to the class that declares the field:
’FType(h, Lf) = T‘ look up type of field in heap

hytkFev: qC FType(q C,f) =T
FType(h,t,f) =T
Look-up the method signature of a method at a given address. Subtyping again allows us to go to any one of the
possible multiple definitions of the methods. In a well-formed class, all these methods are equal:
’MSig(h, L,m) = ms ‘ look up method signature of method m at ¢

RFT_DEF

June 5, 2011 — EnerJ Team 7 /m

hyobuv: qC MSig(g C,m) = ms

RMS_DEF
MSig(h,t,m) = ms

For the method body, we need the most concrete implementation. This first function looks for a method with the
given name and qualifier in the given class and in sequence in all super classes:

’MBody(C7 m,q) =e ‘ look up most-concrete body of m, ¢ in class C or a superclass

class (lid extends - { __ms {e}_} €Prg
MName(ms)=m A MQual(ms)=¢q

SMBC_FOUND
MBody(Cid, m,q) = e

class Cid extends C; { - ms, { e, } " } €Prg
MName(ms,,) #m " MBody(Cy, m,q) = e
MBody(Cid, m, q) = e

SMBC_INH

To look up the most concrete implementation for a method at a given address, we have three cases to consider. If it’s
a precise method, look it up. If it’s an approximate method, try to find an approximate method. If you are looking for
an approximate method, but couldn’t find one, try to look for a precise methods:

’MBody(h, L,m) =e ‘ look up most-concrete body of method m at ¢

h(t)J1 =precise C MBody(C, m,precise) = e

_CALL1
MBody(h,t,m) = e FMB-CALL
h(t)}1 =approx C MBody(C, m, approx) = e
_CALL2
MBody(h,t,m) = e FMB-CALL
h(t){1 =approx C MBody(C, m, approx) = None
MBody(C, m,precise) = e
RMB_CALL3

MBody(h,t,m) = e

Get the field values corresponding to a given reference type. For fields of reference type, just use the null value. For
fields of a primitive type, we need to look up the declared type of the field in order to determine the correct qualifier for
the value.

FVsnit(¢qC) = fv| initialize the fields for reference type ¢C

g € {precise, approx}

Vf € refFields(C) . fu(f) =null,

Vf € primFields(C). (FType(q C,f) = ¢ P A fu(f)=(¢,0))
FVshnit(q C) = fo

FVSI_DEF

2.4 Semantics

The standard semantics of our programming language:

'+ h,e ~ h',v| big-step operational semantics

OS_NULL
"+ h,null ~» h,null,
OS_LITERAL
'k h,L ~ h,(precise,”[)
T (z)=v
OS_VAR

'+ h,z ~ h,v

8 /P9

June 5, 2011 — EnerJ Team

sTrT(h, " T'(this),q C) = ¢ C

FVshiit(q’ C) = fv

ht (¢ C.Jv) (M,) OS_NEW
I'F h,new ¢ C(O) ~ h'jL -

T+ h,e() ~ hI,LO h/(bo.f): 0S_READ
'k hyeg.f ~ hlv -

7apl—h,eo ~ h(),LQ ’Tl—ho,el ~ hl,’l)
hileo.f == v] =W

OS_WRITE
"k hyey.f := e ~ h',v
Tk hyey ~ hosto T hoy&' - b, T
MBody (ho, 1, m) = e MSig(hg,10,m) = - m(pid") g
"I'={precise;this + 1o, pid — v; Z}
T+ hy,e ~ B v
- OS_CALL
T hyeg.m(Ce;*) ~» h'\v

Tk hye ~ R,v
R',"T'(this) Fov: ¢ C 05 CAS
_ T
Tk h,(qgC)e ~ h,v
r-rl_hve() ~ hOv(qar‘CO)

"T'F ho,er ~ A, (q,"Ly) OS_PRIMOP
T h,eg® e ~ h,(q,"Lo®Ly) 7

r["—h, € ~ ho,(q7T£) TE#O
’Tl—ho,el ~ h/,’l)

OS_COND_T
'k h,if(eg) {e1} else {ex} ~ R/ v

r[‘}_haeo ~ h0><QaO)

’Tl—ho,eg ~ h/,’U

OS_COND_F
'k h,if(ep) {e1} else {ea} ~~ h',v
Tk hye ~ Rh,v =R vED
= OS_APPROX
Tk hye ~ W,

A program is executed by instantiating the main class and then evaluating the main expression in a suitable heap and
environment:

F Prg ~ h,v| big-step operational semantics of a program

FVsInit(precise C) = fv
0 + (precise C,fv) = (ho,to)
"T'o={precise;this — (g} "T'o = ho,e ~ h,v
" OSP_DEF
FCls, C, e ~ h,v

We provide a checked version of the semantics that ensures that we do not have an interference between approximate
and precise parts:

Tk h,e ~, h,v ‘ checked big-step operational semantics

"'+ h,null ~» h,null,
COS_NULL
"+ h,null ~-. h,null,

T'F h,L ~ h,(precise,’L) oS N
_LITE L
'+ h,L ~». h,(precise,’[) A

June 5, 2011 — EnerJ Team

9/p9

'+ h,z ~ h,v
' h,x ~. h,v

COS_VAR

T hnewq CQO ~ h',L

COS_NEW
"' hynew q C'() ~». h';¢
r["_h,(?o e hI,LO
T+ hyeg.f ~ hLv
COS_READ

"T'F h,eg.f ~~¢ B v

T+ h, €y e ho, Lo h(Lo)\l,l =q C
Tl =q (¢=¢" V q¢'=precise)
T+ ho, €1 e hl,’U

Tk hyeg.f := eg ~ h,v

"C'F hyeg.f (= e ~¢ h,v

COS_WRITE

"I'F h,ey ~>¢ ho,to T F hy, &~ h1,1}7_i
MBody (hg, to,m) = e MSig(ho, to,m) = - mC pid') q
T — {precise;this — L, mz}
r['/ - h1,e ~g h/av
T hyeg.m(e') ~ hv
"I+ h, eo.m(EG ")~ B, v COS_CALL
T hye ~, h/,’U
r["—h,(q C) e ~ hI,U
TFh,(qC)e ~. h',v COS_CAST

TFl—h, €y e ho,(q,rﬁo)
"I hoy,er ~e B (q,"L1)
T’ hyeg @ e ~ h/,(q,rﬁo@rﬁl)
TT'"E h,eg @ er ~¢ h/,(q,Tﬁo@rﬁl)

Tk hv € e hOv(an'C) T‘C#O
"T'="T(q) T"F ho,er ~e BLv
Tk h,if(ep) {e1} else {ea} ~ h'jw
COS_COND_T
T'F h,if(ep) {e1} else {ex} ~. R v

T |— h, €y e ho,(q,rﬁ) T,CZO
T'="I (q) T & ho,ex ~se B
'+ h,if 1 ~ R
1E(eo) {1} else {eo} Y C0S_COND_F
Tt h,if(ep) {e1} else {ea} ~~. A/ v

COS_PRIMOP

2.5 Well-formedness

A heap is well formed if all field values are correctly typed and all types are valid:

well-formed heap

Ve e dom(h),f € h(t)a . (FType(h,t,f) =T A h,oth(e.f) : T)
Ve € dom(h). (h(t)l1 OK A TQual(h(c)l1) € {precise,approx}) WEH DEF
h OK N

This final judgment ensures that the heap and runtime environment correspond to a static environment. It makes sure
that all pieces match up:

h,"I" : " OK| runtime and static environments correspond

10 /m June 5, 2011 — EnerJ Team

"I'={ precise;this — ¢, pid — viz}

S['=4 this — context C, pid — T; Z}

h OK s OK
h,tt+t: context C
hoob ot Tzz
h7 T -5 OK WFRSE_DEF

3 Proofs

The principal goal of formalizing EnerJ is to prove a non-interference property (Theorem[3.3)). The other properties listed
in this section support that proof.

3.1 Type Safety
Theorem 3.1 (Type Safety)

1. FPrg OK

2. T : I OK I. W,T T OK

3. The:T { II. ,T(this) Fv: T
4. "T'F h,e ~ h',v

We prove this by rule induction on the operational semantics.

Case 1: e=null

The heap is not modified so I. trivially holds.

The null literal statically gets assigned an arbitrary reference type. The null value can be assigned an arbitrary
reference type.

Case 2: e=L

The heap is not modified so I. trivially holds.

A primitive literal statically gets assigned type precise or a supertype. The evaluation of a literal gives a precise value
which can be assigned any primitive type.

Case 3: e=zx

The heap is not modified so I. trivially holds.

We know that 2. that the environments correspond and therefore that the static type of the variable can be assigned
to the value of the variable.

Case 4: e=new qC QO

For I. we only have to show that the newly created object is valid. The initialization with the null or zero values
ensures that all fields are correctly typed.

The type of the new object is the result of sTrT on the static type.

Case 5: e=¢y.f

The heap is not modified so I. trivially holds.

We know from 2. that the heap is well formed. In particular, we know that the values stored for fields are subtypes of
the field types.

We perform induction on ey and then use Lemma [3.4] to adapt the declared field, which is checked by the well-formed
heap, to the adapted field type T

Case 6: e=¢y.f = e

June 5, 2011 — EnerJ Team 11 /9]

We perform induction on ey and e;. We know from 3. that the static type of e; is a subtype of the adapted field type.
We use Lemma to adapt the type to the declaring class to re-establish that the heap is well formed.

Case 7: e=¢ey.m(e)
A combination of cases 6 and 7.

Case 8: e=(¢qC) ¢
By induction we know that the heap is still well formed.
4. performs a runtime check to ensure that the value has the correct type.

Case 9: e=¢y D e
By induction we know that the heap is still well formed.
The type matches trivially.

Case 10: e=if(ey) {e1} else {ex}
By induction we know that the heap is still well formed.
The type matches by induction. [

3.2 Equivalence of Checked Semantics

We prove that an execution under the unchecked operational semantics has an equivalent execution under the checked
semantics.

Theorem 3.2 (Equivalence of Checked Semantics)

1. - Prg OK
?," hpfe _FTOK — 1. TFhe we '
4. "T'F hye ~ h',v

We prove this by rule induction on the operational semantics.
The checked operational semantics is only different from the unchecked semantics for the field write, method call, and
conditional cases. The other cases trivially hold.

Case 1: e=if(ey) {e1} else {ex}
We know from 3. that the static type of the condition is always precise. Therefore, "I is well formed and we can apply
the induction hypothesis on e; and es.

Case 2: e=ey.m(e)
From the proof of type safety we know that the values in "I"" are well formed. We are using precise as the approximate
environment. Therefore, "I is well formed and we can apply the induction hypothesis on e.

Case 3: e=¢y.f = e
We know from 2. that ¢’=precise. Therefore, the additional check passes. [J

3.3 Non-Interference

o~

The express a non-interference property, we first define a relation = on values, heaps, and environments. Intuitively, =
denotes an equality that disregards approximate values. The relation only holds for values, heaps, and environments with
identical types.

Where v and v are primitive values, v = v iff the values have the same type ¢P and either ¢ = approx or v = v. For
objects, ¢« 2 7 iff « = 7. For heaps, h & h iff the two heaps contain the same set of addresses ¢ and, for each such ¢ and each
respective field f, h(c.f) = h)(c.f). Similarly, for environments, "I" = 7T" iff "I"(this) = "I"(this) and, for every parameter
identifier pid, "T'(pid) = 7T(jmd).

We can now state our desired non-interference property.

12 /9] June 5, 2011 — EnerJ Team

Theorem 3.3 (Non-Interference)

1. FPrg 0K A Fh,T:°T

2. T'te:T I. Ttrhe— N,
3. T+ hye~h v — ¢ 1. Rn =P

4. h=h A T =T III. v>%

5. Fh,T:°T

The non-interference property follows from the definition of the checked semantics, which are shown to hold in Theo-
rem given premises 1, 2, and 3. That is, via Theorem we know that "I" = h,e ~». h’,v. The proof proceeds by
rule induction on the checked semantics.

Case 1: e=null o ~ R
The heap is unmodified, so h = b’ and b/ = h. Because h = h, trivially b’ = h’ (satisfying I1.).
Both v = null and © = null, so III. also holds.

Case 2: e=L
As above, the heap is unmodified and v = ¥ because literals are assigned precise types.

Case 3: e=x
Again, the heap is unmodified. If x has precise type, then v = © and III. holds. Otherwise, both v and ¥ have
approximate type so v 2 ¢ vacuously. (That is, v 2 ¢ holds for any such pair of values when their type is approximate.)

Case 4: e=new ¢CQ
In this case, a new object o is created with address v and b’ = h @ (v + 0). Because v has a reference type and v has
the same type, v = ¥. Furthermore, ' = h & (0 +— 0), so h = h.

Case 5: e=¢.f
The heap is unmodified in field lookup, so I1. holds by induction. Also by induction, ey resolves to the same address
¢ under h as under h due to premise 4. If h(c.f) has approximate type, then IT1. holds vacuously; otherwise v = .

Case 6: e=¢y.f =
Apply induction to both subexpressions (eg and e;). Under either heap h or h, the first expression e resolves to the
same object o. By type safety, e; resolves to a value with a dynamic type compatible with the static type of o’s field f.
If the value is approximate, then the field must have approximate type and the conclusions hold vacuously. If the value
is precise, then induction implies that the value produced by e; must be v = 9, satisfying I1I. Similarly, the heap update
to h is identical to the one to il, soh N,

Case 7: e=ey.m(€) R
As in Case 5, let g map to o in both h and h. The same method body is therefore looked up by MBody and, by
induction on the evaluation of the method body, the conclusions all hold.

Case 8: e=(qC) ¢
Induction applies directly; the expression changes neither the output heap nor the value produced.

Case 9: e=¢y D e

The expression does not change the heap. If the type of ey @ e; is approximate, then I1I. hold vacuously. If it is
precise, then both e0 and el also have precise type, and, via induction, each expression produces the same literal under h
and "T" as under h and "I". Therefore, v = 0, satisfying I11.

Case 10: e=if(ey) {e1} else {ex}

By type safety, eg resolves to a value with precise type. Therefore, by induction, the expression produces the same
value under heap h and environment "I" as under the equivalent structures h and "T'. The rule applied for "I" = h,e ~ h',v
(either COS_COND_T or COS_COND_F) also applies for T h,e — h’,v because the value in the condition is the same in
either case. That is, either e; is evaluated in bot settings or else es is; induction applies in either case. [

June 5, 2011 — EnerJ Team 13 /m

3.4 Adaptation from a Viewpoint
Lemma 3.4 (Adaptation from a Viewpoint)

1. hypke: qC :>3T'.qI>T:T’/\
2. hotbov: T hywbwo: T

This lemma justifies the type rule TR_READ and the method result in TR_CALL.
Case analysis of T":

Case 1: T=¢' C' or T=q' P where ¢ € {precise,approx,top}
In this case we have that 7"=T and the viewpoint is irrelevant.

Case 2: T=context C’ or T=context P

Case 2a: g€ {precise,approx}

We have that T'=q C’ or T'=gq P, respectively.

2. uses the precision of ¢ to substitute context. 1. gives us the type for ¢. Together, they give us the type of v relative
to ¢g.

Case 2b: g€ {lost,top}
We have that T"=1ost C’ or T'=1ost P, respectively.
Such a T” is a valid type for any value. 0O

3.5 Adaptation to a Viewpoint
Lemma 3.5 (Adaptation to a Viewpoint)

1. hywhke: qgC
2. >T =T
5 gost¢T, = hubov: T
4. hygtov: T

This lemma justifies the type rule TR_WRITE and the requirements for the types of the parameters in TR_CALL.
Case analysis of T"

Case 1: T=¢' C’ or T=q' P where ¢’ € {precise, approx,top}
In this case we have that 7’=T and the viewpoint is irrelevant.

Case 2: T=context C’ or T=context P
We have that T"=q C" or T'=q P, respectively. 3. forbids lost from occurring.
1. gives us the precision for ¢ and 4. for v, both relative to ¢g. From 2. and 3. we get the conclusion. [J

References

[1] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java and GJ. TOPLAS,
23(3), 2001.

[2] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. EnerJ:
Approximate data types for safe and general low-power computation. In PLDI, 2011.

14 /9] June 5, 2011 — EnerJ Team

4 Complete Grammar

We use the tool Ott to formalize EnerJ and used the generated ITEX code throughout this document.
We define the following Ott meta-variables:

i, j, k, n index variables as arbitrary elements

f field identifier

mid method identifier

pid parameter identifier
Cid derived class identifier
RAId raw address identifier
PrimV primitive value

The grammar of EnerlJ is as follows:

terminals n=
class keyword: class declaration
extends keyword: super type declaration
new keyword: object creation
if keyword: if
else keyword: else
this keyword: current object
null keyword: null value
&) syntax: primitive operation
{ syntax: start block
} syntax: end block
(syntax: start parameters
) syntax: end parameters

|

|

|

|

|

|

|

|

|

|

|

|

|

| syntax: separator
| . syntax: selector
| = syntax: assignment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Object name of root class

int name of primitive type

L primitive literal

<iq ordering of precision qualifiers
<: subtyping

€ containment judgement

¢ non-containment judgement
F single element judgement

F multiple element judgement
: separator

—> maps-to

OK well-formedness judgement
= alias

= option alias

#* not alias

multiple alias

June 5, 2011 — EnerJ Team

15 / 29

formula

AND

null,

otherwise
judgement
formulay
(formula)
formula

formula Vv formula’
formula A formula’

formula

formula = formula’

sfml
fml

Vf € f. formula

vC, C'. formula

Vi € T. formula

Vi€ T, f € fu. formula

hhn

v

Cid
Object

int
float

precise
approx
top
context
lost
TQual(T)
MQual(ms)
Tl

M

=L

logical or

logical and
top-level logical and
logical implication
special null address
primitive values
zero value

formulas

none of the previous rules applied
judgement

sequence

bracketed

negation

logical or

logical and

top-level logical and

implies

static formulas

runtime formulas

for all f in f holds formula

for all C and C’ holds formula

for all ¢ in 7 holds formula

for all ¢ in 7 and fields f in fv holds formula
two heaps are equal in their precise part
two values are equal in their precise parts

class name

derived class identifier
name of base class
some class name

primitive type name

integers
floating-point numbers

precision qualifier

precise

approximate

top

context

lost

extract precision qualifier from type
extract method qualifier from signature
extract environment qualifier

16 /m June 5, 2011 — EnerJ Team

q = precision qualfiers
| 1y -5 Qn precision qualifier list
| {q} M notation
qC = qualified class name
| ¢C definition
qP = qualified primitive type
| qg P definition
T = type
| qC reference type
| qP primitive type
| - M some type
| *T'(z) M look up parameter type
| A M look up type in heap
T = types
| T, ... T, type list
| T, To two type lists
| 0 no types
| _ M some types
Prg = program
| Cls, C, e
Cls n= o class declaration
| class Cid extends C { fd md } class declaration
| class Object {} declaration of base class
Cls = class declarations
| Clsy..Clsy, class declaration list
fd = field declarations
| Tf; type T and field name f
| fd,..fd, field declaration list
| - M some field declarations
f = list of field identifiers
[field identifier list
| refFields(C) M recursive reference type fields look-up
| primFields(C) M recursive primitive type fields look-up
e = expression

| null null expression

June 5, 2011 — EnerJ Team

17 / 9

ol

mpd

°r

86p

L

x

new qC' ()
e.f

e-f = e
eg.m(€)
(qC) e

e D e

if(ep) {e1} else {ex}

None

€1, .., €

ms { e}

mdy .. md,,

T m(mpd) q
None

mid
MName(ms)

T pid

mpdq, .., mpd

pid
this

{0}

pid — T

n

primitive literal
variable read

object construction
field read

field write

method call

cast

primitive operation
conditional

no expression defined

expressions
list of expressions
empty list

method declaration
method signature and method body

method declarations
method declaration
method declaration list
some method declarations

method signature
method signature definition
no method signature defined

method name
method identifier
extract method name from signature

method parameter declarations
type and parameter name
list
some method parameter declarations

parameter name
parameter identifier
name of current object

static environment
composition

static variable parameter environment
variable pid has type T’

18 / 9

June 5, 2011 — EnerJ Team

5§,

56

sfml

C

Pq

this— T

Prg=Prqg’
c=Cc’
T=T'
T=T'
q=q
a#q
9€q
q¢T
m=m’
m#m’
ms=ms’
s =51
e=e¢

Cls € Prg
class C'.

RAId

"I'(this)

PrimV

Lo ® Ly

(¢,"C)

L1y «-ylp

dom(h)

.56

Py

.. € Prg

static variable environment for this
variable this has type T

static variable environment
mapping for this
mapping for this and some others
mappings list

static formulas
program alias
class alias
type alias
option type alias
qualifier alias
qualifier not alias
qualifier in set of qualifiers
qualifier in set of types
method name alias
method name not alias
method signature alias
static environment alias
expression alias
class definition in program
partial class definition in program

address identifier
raw address identifier
currently active object look-up
some address identifier

primitive value
zero value
primitive value
binary operation

qualified primitive value
qualified primitive value

address identifiers
address identifier list
empty list
some address identifier list
domain of heap

value
address identifier

June 5, 2011 — EnerJ Team

19 / 9

| null,

E

B

| he.f)

| T(z)

| flf)
v =

| U1, y Un

| 0
.fi/l) =

| fov

| fv17 7fvn

| _

| hf@)iz

| folf =]
0 n= o

| (T, fv)

| Ay
he =

| (L 0)
h =

| 0

| hhe

| h
r =

| {a7d}

| "T(¢
"8, _

| pid—w
T(St =

| thisr
) n=

[

| "0, _

| "0¢,"0pqs s Oy,

=< L

=L

null value

qualified primitive value
some value

similarity

field value look-up
argument value look-up
field value look-up

values
value list
empty list

field values
field f has value v
field value list
some field values

look up field values in heap
update existing field f to v

object
type T and field values fv
look up object in heap

heap entry

address « maps to object o

heap
empty heap

add he to h, overwriting existing mappings

similarity

runtime environment
composition

update the precision in environment "I

runtime variable environment parameter entry

variable pid has value v

runtime variable environment entry for this
variable this has address ¢

runtime variable environment

mapping for this

mapping for this and some others

mappings list

20 /9]

June 5, 2011 — EnerJ Team

fml = runtime formulas
| h=H heap alias
| =" primitive value alias
| LEL primitive value not alias
| "LeP primitive value has primitive type
| v=0 value alias
v value not alias
| v#
v=0’ value alias
|
o=o' object alias
J
| LET address in addresses
| A addresses not aliased
- address not in addresses
| f € dom(fv) field identifier f contained in domain of fv
| ze'l parameter in runtime environment
| r="r" runtime environment alias
| fT}sz}l fields alias
stsubxing =
| q<iqq ordering of precision qualifiers
| ccCccc subclassing
| T<: T subtyping
| T<: T subtypings
| ms <: ms’ invocations of method ms can safely be replaced by calls to ms’
gcombdef =
| qgr>q = ¢’ combining two precision qualifiers
| q > Z = Zj precision qualifier - type combination
| g>T =T precision qualifier - types combination
| qg>ms = ms precision qualifier - method signature combination
st_helpers =
| FType(C,f) =T look up field f in class C
| FType(¢C,f) =T look up field f in reference type ¢qC
| MSig(C,m,q) = ms look up signature of method m in class C
| MSig(¢C,m) = ms look up signature of method m in reference type qC
typerules =
| 'te:T expression typing
| '+e:T expression typings
wfstatic =
| T OK well-formed type
| T OK well-formed types
| Cls OK well-formed class declaration
| *r'ETf; OK well-formed field declaration
|

I fd OK well-formed field declarations

June 5, 2011 — EnerJ Team 21 /9

| °I',CF md OK well-formed method declaration

| I, CF md OK well-formed method declarations

| Ckm OK method overriding OK

| C,C'"+m OK method overriding OK auxiliary

| I OK well-formed static environment

| F Prg OK well-formed program
rt_helpers =

| h+o = (W) add object o to heap h resulting in heap h’ and fresh address ¢

| hfe.f = 0] =W field update in heap

| sTvT(h,t,T) =T’ convert type T to its runtime equivalent 7"

| hootv: T type T assignable to value v

| hootFw: T types T assignable to values T

| FType(h,t,f) =T look up type of field in heap

| MSig(h,t,m) = ms look up method signature of method m at ¢

| MBody(C,m,q) = e look up most-concrete body of m, ¢ in class C' or a superclass

| MBody(h,t,m) = e look up most-concrete body of method m at ¢

| FVshnit(¢C) = fv initialize the fields for reference type qC
semantics L=

| T+ hye ~ h,v big-step operational semantics

| T+ he ~ KU sequential big-step operational semantics

| F Prg ~ h,v big-step operational semantics of a program

| Tk h,e ~, h,v checked big-step operational semantics

| Tk h,e ~. h',v checked sequential big-step operational semantics
wfruntime =

| h OK well-formed heap

| h,"I" - °I' OK runtime and static environments correspond

5 Complete Definitions
ordering of precision qualifiers
q7#top
— L QQ._LOST
q <:q lost
q <:q top QQ-Tor
4 <q d QQ-REFL

subclassing

class Cid extends C' { __} € Pry

Cid C O SC_DEF

class C'... € Prg

SC_REFL
ccc

22 / 29 June 5, 2011 — EnerJ Team

C C C SC_TRANS
<iq ¢ cCcc
€~qd — ST_REFT
qg C<: ¢ C
<iq q
_2=a® op privT1
qgP < ¢qP
ST_PRIMT'2
precise P <: approx P
T <: T'| subtypings
T, < T
T < Tz/

invocations of method ms can safely be replaced by calls to ms’

—k =k
T <. T T, <: T
- MST_DEF

—k
T m (T pidk) precise <: T" m (T} pid) approx

qgr>q¢ = ¢q combining two precision qualifiers
'=context A € 1approx,precise, context
q (g€ { Pprox,p O —
qg>q = q
'=context A € {top, lost
0 (g€ (vop lost)) o
qg> q¢ = lost
q'#context
—— QCQ_FIXED
e>q =7
gr>T = T'| precision qualifier - type combination
a>q = QCT_REFT
¢>q C =4q'C)
v =4 CT_PRIMT
(>q¢P =q P
g>T = T precision qualifier - types combination
_— &
q> T, = T];
— p— QCTS_DEF
qg> T, = Tlg
g > ms = ms'| precision qualifier - method signature combination

—k —k

g > T m(Ty pidk) ¢ = T m(} pidk) q

QCMS_DEF

’FType(af) = T‘ look up field f in class C

June 5, 2011 — EnerJ Team

23 /9

class CZd eXteIldS *{ f’ } Prg SFTC_DEEF
E y)e(CZd,J) - 1

’FType(qC’,f) = T‘ look up field f in reference type qC

FType(C,f) =Ty g> Ty = T
SFTT_DEF
FType(q C,f) =T

’ MSig(C,m, q) = ms ‘ look up signature of method m in class C

class (lid extends _{ __ms {e}_} €Prg
MName(ms) =m A MQual(ms)=¢q SO DEF
MSig(Cid, m, q) = ms -

’MSig(qC’, m) = ms ‘ look up signature of method m in reference type qC

MSig(C,m, q) = ms q>ms = ms
- SMST_DEF
MSig(q C,m) = ms’

expression typing

S e: Ty T <: T
TEe T TR_SUBSUM

qC OK

—— X X — TR_NULL
' F null : ¢qC

TR_LITERAL
sI' - L : precise P

' (z) =T
s'Fx:T
g C OK

qc {precise, approx, context}
TR_NEW
sS'Fnewq CO: T

TR_VAR

I'te:qC FType(q C,f) =T R READ
sSl'Fey.f: T -

'te:qC FType(q C,f) =T
lost¢T ke : T
TR_WRITE
SI'Fey.f == e : T

S'+ey:q C qge {precise,conf-:ext,top}
MSig(precise C,m) =T m((T; pidz) precise
lost¢ T, ST het T,
— TR_CALL1
S eg.mCe?) - T

°I' - ey : approx C _
MSig(approx C,m) =T m(T; pid ") approx
1ost§§iz sSC et T,
. TR_CALL2
s e.mCet) : T

24 / 9 June 5, 2011 — EnerJ Team

' - ey : approx C
MSig(approx C,m) = None ‘
MSig(precise C,m) =T m(T; pid) precise

lost§§iz sSPhet T
— TR_CALL3
s e.mCe*) : T
e _ g C OK CAS
TR_CAST
sS'F(gC)e:T
I'te:qP I'te :qP o
TR_PRIMOP
sS'Fe®e :qP
°I' + ey : precise P SI'Fe - T SI'E e : T oo
TR_COND
s if(eg) {e1} else {ex} : T
expression typings
—_——— &
s ey - Ty,
—— 5 TRM.DEF
sl epk Ty,
T OK| well-formed type
class C'... € Prg WETREFT
T_
g C OK
——— WFT_PRIMT
qg P OK
T OK| well-formed types
T, OK"
—3——— WFTS.DEF
T, OK
Cls OK| well-formed class declaration
°*I'={this — context Cid}
'+ fd OK ', Cid - md OK
class C'... € Prg
WFC_DEF

class Cid extends C { fd md } OK

WFC_OBJECT
class Object {} OK

SI'ET f; OK ‘ well-formed field declaration

T OK
_ FFD_DEF
THTf; OK
SI'+ fd OK| well-formed field declarations
STFT, f;; OK'
- WFFDS_DEF

sSC T fi;° OK

*I'yCF md OK| well-formed method declaration

June 5, 2011 — EnerJ Team 25 /m

*['={this — context C'}

s = {this — context C, pid — T; l}
T,T, OK *I"Fe:T Ckm OK
q € {precise,approx}

— WFMD_DEF
S, CET m(T; pid) g {e} OK

sI',C - md OK ‘ well-formed method declarations

T, CF md;y OK"

- WFMDS_DEF

s, C F mdp OK

CFm OK| method overriding OK
CC O = C,0'Fm OK
OVR_DEF

Ctm OK
’ C,C'"+m OK ‘ method overriding OK auxiliary

MSig(C, m,precise) = msy A MSig(C’, m,precise) = msj A (msi{=None V msy=ms()
MSig(C, m,approx) = ms; A MSig(C’, m,approx) = ms; A (ms;j=None V msj=ms])
MSig(C, m,precise) = msy A MSig(C’, m,approx) = ms) A (msj=None V msy <: msj)

C,C"Fm OK
well-formed static environment
'= {this —q C, pid — Tl-l}
¢ C,T;' OK

s[" OK
F Prg OK| well-formed program

Prgzﬁsii, C, e
Cls; OKi context C OK
{this > context C} Fe:_
vc/’ O//' ((C/ E O// /\ O// E Cl) _— C/:O//)
F Prg OK

OVRA_DEF

SWFE_DEF

WFP_DEF

’ h+o = (K1) ‘ add object o to heap h resulting in heap h’ and fresh address ¢

v ¢ dom(h) K=ha& (L o)
h+o = (W)

HNEW_DEF

(hlf = o] =W

field update in heap

v=null, V (v=¢{ A ¢ €dom(h))
W)= (T.fo) fedom(f) fo'=folf =]
W=h® (L — (T, fT/))

hlo.f = v] =} HUP_REFT
o= (1) Filf)=(¢',"2)
fo=plf = (¢',’L)] W=h@ (L N (T,fT;
HUP_PRIMT

hle.f = (¢,"L)] = I

26 /m June 5, 2011 — EnerJ Team

’sTrT(h, t,T) =T"| convert type T to its runtime equivalent 7"

g=context = ¢’'=TQual(h(t)}1)
g#context = ¢'=¢q

STRT _REFT
sTrT(h,t,qg C) = ¢’ C

g=context = ¢'=TQual(h(¢)}1)
g#context = ¢'=¢
sTvT(h,t,q P) = ¢ P

type T assignable to value v

sTrT(h, 0, q C) = ¢ C
h(L)J/l =T T <: q' C

STRT_PRIMT

3 - C RTT_ADDR
ylom Ll g
RTT_NULL
h,to Fnull, : ¢ C
sTrT(h, 10, ¢ P) = ¢" P
LeP qgP<: ¢"P T
RTT_PRIM
howt (¢.7L) = ¢' P
types T assignable to values ¥
h, L v; - T,L'i
——— RTTS_DEF
h, L 1}77;1 : Ti

’FType(h, tf) = T‘ look up type of field in heap

hootuv: g C FType(q C,f) =T

FType(h,¢,f) =T DR
’MSig(h7 t,m) = ms‘ look up method signature of method m at ¢
hyobuv: g C MSig(qg C,m) = ms
RMS_DEF

MSig(h, ¢, m) = ms

’MBody(C, m,q) =e ‘ look up most-concrete body of m, ¢ in class C' or a superclass

class Cid extends - { - _ms { e} _} €Prg
MName(ms) =m A MQual(ms)=¢
MBody(Cid, m,q) = e

SMBC_FOUND

class Cid extends C; { - ms, { e, } " } €Pry
MName(ms,,) #m " MBody(Cyi, m,q) = e

SMBC_
MBody(Cid, m, q) = e MBCARH
’MBody(h7 L,m) = e‘ look up most-concrete body of method m at ¢
h(t)}1 =precise C MBody(C, m,precise) = e
_CALL1
MBody(h,t,m) = e FMB-CALL
h = C MBody(C, m, =

(¢)}1 =approx ody(C, m,approx) = e AMECALLD

MBody(h,t,m) = e

June 5, 2011 — EnerJ Team

27 /9

h(t)l1 =approx C MBody(C, m, approx) = None
MBody(C, m,precise) = e

RMB_CALL3
MBody(h,t,m) = e

FVshnit(¢C) = fv

initialize the fields for reference type ¢qC
q € {precise, approx}
Vf € refFields(C) . fv(f) =null, o
Vf € primFields(C). (FType(q C,f) = ¢' P A fo(f)=(q',0))
— FVSI_DEF
FVsInit(q C) = fv

T hye ~ h’,v‘ big-step operational semantics

OS_NULL
"I" = h,null ~» h,null,

OS_LITERAL
'+ h,L ~ h,(precise,”()

rF(x) —Y OS_VAR
"k h,x ~ h,v -
sTrT(h, " T'(this),q C) = ¢ C
FVshnit(¢’' C) = fv
ht (¢ C.Jv) () OS_NEW
I'F h,new q C() ~ h'jL -

Tk h,eg ~ K, W (wp.f)=v
TF heo-f — W,v OS-READ
"' h,eg ~ hg,tg
fulto f i= o] = I OS_WRITE
"k hyeg.f := e ~ h',v N

’Tl—ho,el ~ hhv

"' h,eq ~ ho,to T+ ho, & ~ hy, v
MBody (ho, 1o, m) = e MSig(ho,10,m) = - mC pid ") g
'['={ precise; this — 1o, pid — v;

T & hi,e ~ B w
; OS_CALL

T hyeg.m(e;') ~» h'jv

Tk he ~ h,v

R,"T'(this) Fov: ¢ C 05 CAS

_CAST

' h,(qgC)e ~ hv
70[‘|_h760 ~ hOa(qar‘CO)
TEho e~ 1 (g "L) OS_PRIMOP

TFFh,@O@el ~ h/a(qar‘COEBTLl) -

T'F hyeg ~ hy,(q,"L) "LH#0
T.F'_h(),el ~ h/7’U

OS_COND_T
Tk h,if(ep) {e1} else {ea} ~ A v
TF}_ ha €y ~ thv(QaO) r[’l_hanQ ~r hlv’U 0S_COND_F
'k h,if(ep) {e1} else {ea} ~~ R/ v - -

Tk hoe ~ Ko h2R

vED
S OS_APPROX
'+ h,e ~~ h',0

28 /9]

June 5, 2011 — EnerJ Team

T+ h,e ~ h',©

sequential big-step operational semantics

"T'F hye ~ hg,v
A= ho,eﬁ'i ~s h/ﬂTii

T he €~ B, Tt

OSS_DEF

T E h,@ - h,@ OSS_EMPTY

F Prg ~» h,v| big-step operational semantics of a program

FVSInit(preciseE) =fo
0+ (precise C,fv) = (ho, o)
"T'o={precise;this > g} "ot hy,e ~ h,v
I OSP_DEF
F Cls, C, e ~ h,v

"'+ h,e ~. h',v| checked big-step operational semantics

"+ h,null ~~ h,null,
COS_NULL
"'+ h,null ~~. h,null,

T'F h,L ~ h,(precise,”L) o
OS_ A
'+ h,L ~». h,(precise,”[) LITERAL

T'"E h,z ~ h,v
COS_VAR
T'F h,x ~. h,v

T hnewq CO ~ h',L
TF honewq CO wy h,p COSNEW

T+ h7€0 e hl,bo

T+ hyeg.f ~ hLv COS_REA
_READ

T hyeg.f ~e B0

T h,eg ~c¢ ho,to h(to)l1 =q C
T =¢ (¢=¢' V ¢'=precise)
T ho,er ~c h,v

Tk hyeg.f := eg ~ h,v
COS_WRITE
Tk hyey.f := € ~¢ W,v

' hyeg ~¢ ho,to T F hy, &' e hi, Tt
MBody(hg, to, m) = € MSig(hg, Lo, m) = - m(,pmi) q
"T'=Jprecise;this — i, ml}

T hi,e ~ W, v
T'F h,eg.m(e") ~ h'v

: COS_CALL
" hyeg.mCe ') ~. h',v

Tk h,e ~, h,v

TFh(qgC)e ~ h v o
S_CAS

TFh(qC) e w v 5

TFI—}L, €) e ho,(q,rﬁo)

"I ho,er ~e B (q,"L1)

T+ h, ep D e ~ h/,(q,rﬁo@rﬁl)

T+ h,eg® e ~e B, (q7r£0 @ T‘Cl) COS_PRIMOP

June 5, 2011 — EnerJ Team

29 /9]

TFl_hv € ~c hOv(an‘C) T’C#O

"= () T gy ey~ B

Tk h,if(ep) {e1} else {e2} ~ h'jw
T'F h,if(ep) {e1} else {ex} ~. R v
TFl—h, € e ho,(q,rﬁ) L=0

T'="T(q) T & ho,ex ~e v

T'F h,if(ep) {e1} else {ex} ~ R v
Tt h,if(ep) {e1} else {ea} ~~. A/ v

COS_COND_T

COS_COND_F

T+ h,e ~. h',v| checked sequential big-step operational semantics

T hye ~e ho,v
T F ho, &t e BT

I he € e v, it

COSS_DEF

T T = 70 COSS_EMPTY

h OK| well-formed heap

Ve e dom(h),f € h(¢e)a . (FType(h,t,f) =T A h,o b h(e.f) : T)
Ve € dom(h). (h(t)l1 OK A TQual(h(c)l1) € {precise,approx})

h OK
h,"I" : *I' OK| runtime and static environments correspond

"['= Jprecise;this — ¢, ml}
S'=4{this + context C, ml}
h OK sI' OK

h,t 1 : context C
hoobFo50 le
h," - sI' OK

WFRSE_DEF

WFH_DEF

	Type System
	Ordering
	Adaptation
	Look-up Functions
	Well-formedness

	Runtime System
	Helper Functions
	Runtime Typing
	Look-up Functions
	Semantics
	Well-formedness

	Proofs
	Type Safety
	Equivalence of Checked Semantics
	Non-Interference
	Adaptation from a Viewpoint
	Adaptation to a Viewpoint

	Complete Grammar
	Complete Definitions

