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Abstract

The Universe type system partitions the object store into contexts to control aliasing and depen-
dencies. It exists already an Universe type system which was developed for Java. This report
describes how the existing Universe type system can be adapted for Eiffel. Mainly we devel-
oped possible treatments for the special Eiffel constructs expanded types and agents that have no
counterpart in Java.
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Chapter 1

Introduction

1.1 Introduction

In object-oriented programs an object can reference any other object and modify its fields through
field access or through method call. Programs with arbitrary object structures are difficult to
understand, to maintain and to reason about.

Ownership organizes objects into contexts. Each object is owned by at most one other object,
called its owner. A context is the set of all objects with the same owner.

One ownership model that enables modular verification is based on the so called owner-as-
modifier property. As described in [3], this model distinguishes between read-write and read-only
references. It says that only reference chains that pass through the owner of an object X can
modify X. On the other hand owners can control modifications of owned objects, but not read
access. Ownership properties can be checked statically by type systems.

Subsequently in this chapter we will describe shortly the already existing Universe type system
for Java. In chapter 2 we discover the Eiffel language constructs and explain which constructs
differ between Eiffel and Java. In the third chapter we describe how a Universe type system for
Eiffel can look like. For the constructs of expanded types and agents we do a longer analysis of
their treatment. In the last chapter you can read the future work to do with the Universe type
system for Eiffel.

1.2 Existing Universe Type System for Java

1.2.1 Overview

Werner Dietl and Peter Miiller present in [3] a lightweight ownership model for the Java Modeling
Language (JML) called "Universes”. It follows the owner-as-modifier property. To check ownership
statically, they use the Universe type system. To compensate for the resulting weaker static
guarantees, they combine ownership type annotations with specifications in JML [3].

The following short introduction into the Universe type system is based on the two papers
"Universes: Lightweight Ownership for JML” [3] and "Universe Type System - Quick-Reference”

[4]-

1.2.2 Ownership Modifiers

The classification of references is done by using an extended type system. There are three keywords,
called the ownership modifiers, to modify the types of declaration or definition:

e peer denotes a reference to an object in the same context. This is the default modifier.

e rep denotes a reference from an object into the context it owns.

7



8 1 Introduction

e readonly denotes a reference that is read-only and might point to objects in any context.

These modifiers can be used in front of the standard Java type.

1.2.3 Type Combinator

To determine the owner of an object referenced by x.f - and, thus, the type of the field access x.f
- one has to consider the ownership modifiers of both x and f. The rules can be expressed as a
type combinator that takes two ownership modifiers and returns the resulting ownership modifier.
This type combinator is used to determine the type of field accesses, method call parameters and
results. It is defined by the table 1.1:

* peer rep | readonly

peer peer | readonly | readonly

rep rep | readonly | readonly
readonly | readonly | readonly | readonly

Table 1.1: Table of the type combinator (first argument: left-most cell of the rows, second argu-
ment: top-most cell of the columns)

1.2.4 Subtyping

Two peer, rep or readonly types are subtypes if the corresponding classes or interfaces are
subtypes in Java. In addition every peer and rep type is a subtype of the readonly type with
the same class, interface or array element type.

A downcast can be used to change a read-only type into a read-write type. To be sure that a
cast will not fail at runtime instanceof can be used to check the type.

1.2.5 Overriding and Overloading

Overloading of methods is forbidden if the signatures only differ in their ownership modifiers. For
overriding methods, it is allowed that a non-pure method becomes pure.

1.2.6 Arrays

Arrays of reference types need two ownership modifiers: one for the array object and one for the
type of the reference they store. Arrays of primitive types need only one modifier: the one for the
array object.

1.2.7 Instance and Static Methods

Methods are executed in the context that contains the receiver object. In the same way the
arguments and the return type are relative to the context of the receiver. If any argument type
has a rep ownership modifier, the method can only be called on this as receiver.

Static methods cannot use rep types in their signature, because there is no receiver object.

1.2.8 Pure Methods

Methods can be marked with the keyword pure if they do not modify existing objects. The only
methods that can be called on readonly references are pure methods. All parameter types of pure
methods have a readonly ownership modifier. They can only be overridden by pure methods.
Within pure methods, new objects can be created only by pure constructors; all field updates are
forbidden; only pure methods can be called.
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1.2.9 Static Fields

Since types are interpreted relatively to whoever uses the static field and with static fields there
is no receiver object, all static fields should be readonly.

1.2.10 Object Creation and Constructors

Only peer and rep types are allowed for new expressions, because objects need to have an owner
when created and readonly does not determine an owner. Constructors cannot use rep types
in their signature, because the new object does not own objects that could be passed to the
constructor.

1.2.11 Generics

In the draft of "Generic Universe Types” [2] describe Dietl, Drossopoulou, and Miiller a solution
for the new generics mechanism of Java 5. In front of type variables (unqualified identifiers) no
universe modifier can appear. It is only allowed to use universe modifiers in front of concrete

types.
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Chapter 2

Eiffel Languages Constructs

2.1 Overview

2.1.1 Overview

Eiffel and Java are both object-oriented programming languages, but there are some language con-
structs that differ between these two languages. Expanded types and agents are Eiffel constructs
that are unknown in Java. Expanded types are values which are not references to objects but the
objects themselves. Agents are objects that represent routines ready to be called.

In this chapter we will describe shortly the Eiffel language constructs and identify the con-
structs which differ between Eiffel and Java. The parts that are the same in both languages
are only specified shortly, because there is probably no need for new ideas for the Universe type
system. It should be possible to adapt the already developed solutions from Java to Eiffel. The
interesting parts with differences between Eiffel and Java are described in more details. For two
of these constructs we developed possible solutions for the Universe type system. In the "Design
by Contract”-part, we also do a comparison between Eiffel and the "Java Language Specification”
JLS from Sun and JML from jmlspecs.org.

We will first describe each Eiffel construct and then show how this is solved in Java and where
the differences are. In the Eiffel part, we use the Eiffel language conventions like features or
routines. In the Java part, we use Java conventions like methods and attributes.

The Eiffel part of this section is based on Bertrand Meyers "ECMA standard: Eiffel Analysis,
Design and Programming Language” [5] and his book "Object-Oriented Software Construction”
[12]. For the Java part, where version 5.0 is used, a textbook written by Manuel Oriol [15] and
the Java API [17] are used.

2.1.2 Eiffel

Eiffel was originally designed, as a method of software construction and a notation to support that
method, in 1985 [5]. As described in [6] the aim of Eiffel is to improve the quality of software
systems and the productivity of the development process. It particularly promotes the production
of software that has the following qualities: reliability (absence of bugs), extendibility (ease of
change), reusability (reliance of libraries of packaged components), and portability (adaptability on
many platforms with full source compatibility). Eiffel also makes it possible to produce compilers
which generate extremely efficient code.

As written in [5], today, Eiffel is particularly suited for mission-critical developments in which
programmer productivity and product quality are essential. In addition Eiffel is a popular medium
for teaching programming and software engineering in universities.

11



12 2 Eiffel Languages Constructs

2.1.3 Java

As written in [9] the goal of Java technology is to enable the development of secure, high perfor-
mance, and highly robust applications on multiple platforms in heterogeneous, distributed net-
works. Primary characteristic is the simple, and object oriented language which is designed for
creating highly reliable software. It provides extensive compile-time checking, followed by a sec-
ond level of run-time checking. For being able to operate on multiple platforms in heterogeneous
networks the Java programming language must be architecture neutral, portable, and dynamically
adaptable. To accommodate the diversity of operating environments, the Java Compiler” prod-
uct generates bytecodes, an architecture neutral intermediate format. These bytecodes will run
on any platform and are executed by the so called Java virtual machine.

2.2 Classes and Types

2.2.1 Classes

A class in Eiffel is an implementation of an abstract data type and describes a set of run-time
objects. In contrast to Java there are no special classes like inner classes or nested classes. In Eiffel
it is possible to specify classes as deferred (see section 2.2.5 deferred routines), expanded (see
section 2.2.3 expanded types) and frozen. Because the Universe type system focuses on types,
there was no need to analyze classes any further.

2.2.2 Types

FEiffel is strongly typed for readability and reliability. Every entity is declared of a certain type,
which may be either a reference type or an expanded type [5, p. 10]. Reference type means that
the values of a certain type are references to objects, not the objects themselves. Expanded types
are described in detail in section 2.2.3.

In Java, primitive types and reference types exist. Reference types are the same in both
languages. But instead of primitive types like in Java, Eiffel handles the basic types INTEGER
etc. with expanded types.

2.2.3 Expanded Types

For expanded types the values are not references to objects but the objects themselves. Ex-
panded types are used for improving efficiency, providing better modeling and supporting basic
types [12, p. 256]. Basic types are a closed set of types like INTEGER, REAL, DOUBLE,
CHARACTER, and BOOLEAN which are defined in the standard libraries.

As mentioned in figure 2.1, there are two ways to declare a variable of an expanded type. It is
possible to set a whole class E expanded by putting the keyword expanded before the declaration
of class E. Then all variables declared of type E are automatically of type expanded E. On the
other hand you can declare a variable of a non-expanded type expanded by using the keyword
expanded in front of the type at the variable declaration.

The difference between reference types and expanded types affects the semantics of using an
instance as source of an attachment: assignment or argument passing. This difference is called
distinction between reference semantics and copy semantics. An assignment between two expanded
types means copying the value of one object to the other object, while assignment between two
reference types means copying the reference so that both references point at the same object. If
the source type of an assignment is a reference type and the target type is an expanded type, the
fields of the source object are copied to the target object. This assignment is only possible if the
source object is not Void. In the other case, where the source type is an expanded type and the
target type is a reference type, the target will be attached to a clone of the source object.
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Variant 1:
Class declaration:

expanded class E

end
Variable declaration:
e: B

Variant 2:
Class declaration:

class C

end
Variable declaration:

c: expanded C

Figure 2.1: The two variants to declare a variable of an expanded type

The same difference is for comparison operations like a=b. In the case of reference types, it is
a comparison of the references. If at least one of the two objects is of an expanded type, it is a
comparison of the object contents.

The instances of a type expanded C are exactly the same as the instances of C. The only
difference affects declarations using these types: an entity of type C denotes a reference which
may become attached to an instance of C; an entity of type expanded C directly denotes an
instance of C [12, p. 254]. An object O is said to be composite if one or more of its fields are
themselves objects - called subobjects of O [12, p. 254]. The little example in figure 2.2 illustrates
the difference between expanded types and reference types. The declaration of "ref” means that
every instance of COMPOSITE "knows about” an instance of C (unless ref is Void). Otherwise
the declaration of "sub” means that every instance of COMPOSITE "contains” an instance of C.
An important difference between these two is that the “contains” relation as provided by expanded
types does not allow sharing of contained elements, whereas the "knows about” relation allows two
or more references to be attached to the same object [12, p. 256].

Another property of expanded entities is that they can never be Void. Expanded types cannot
contain cycles (for example it is not permitted for a class C to have an attribute of type expanded
D if class D has an attribute of type expanded C).

Java knows no expanded types, but there is a fixed set of primitive types (byte, short, int,
long, float, double, char, boolean). For the user it is not possible to declare more primitive
types, while in Eiffel the user can write own expanded types.

2.2.4 Root Types ANY and NONE

On top of the inheritance tree in Eiffel is the class ANY. There is also a class at the bottom
of the inheritance structure called NONE. This class is only theoretical existent, but serves two
practical purposes. First Void, which denotes the void reference, is by convention of type NONE
and can be assigned to an entity of any reference type. The second use of NONE is exporting a
feature to NONE which means that the feature is secret and unavailable to any other class and
also other instances of the same class.

In Java the class "Object” is on top of the inheritance tree which is comparable with ANY.
But in contrast to Eiffel there is no common bottom type. The two described advantages of
NONE are solved otherwise in Java. For denoting references, that aren’t attached to an object,
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class COMPOSITE feature
ref: C
sub: expanded C

end
ref ——¢
sub 1,
-
(@
(@)
(COMPOSITE)
Figure 2.2: Difference between references and expanded types [12, p. 255]

the keyword null of the special null type is used. The null reference can always be cast to any
reference type [8]. For making a member unavailable in Java, you can use the keyword private.
But in contrast to Eiffel, private members are available for instances of the same class.

2.2.5 Deferred Classes

Deferred classes are abstract classes that are not fully implemented. A class is deferred if it has
at least one deferred routine. If a routine is declared as deferred in a class C, it means that
there is no implementation of this routine in this class. The routine should be implemented by the
subclasses. You cannot instantiate objects of a deferred class, but you can assign an instance of a
non-deferred descendant to a variable of a deferred type. The advantages of deferred classes are
that you can put pre- and postconditions for a deferred routine and invariants for deferred classes,
which must be followed by the subclasses.

In Java, the concept of abstract classes and abstract methods are equal to the deferred classes
and routines in Fiffel.

2.3 Genericity, Arrays, and Tuples

2.3.1 Genericity

Genericity is a mechanism for defining parameterized module patterns, whose parameters rep-
resent types [12, p. 96]. With genericity you are able to define a single module pattern of the
form LIST[G] where G is called formal generic parameter and represents an arbitrary type.
By using a type as actual generic parameter instead of the formal generic parameter G, as in
LISTINTEGER], you achieve a generically derived type.

Eiffel allows generic classes in two different forms as you can see in figure 2.3. In the uncon-
strained form you can use any arbitrary type as actual generic parameter. The constrained form
of genericity allows giving a constraint for the actual generic parameter. It has to be a descendant
of the type declared with the formal generic parameter.

Eiffel allows the use of multiple formal generic parameter in one generic class, for example
HASH_TABLE[G, KEY]. It is also possible to use a generic class as actual generic parameter like
VECTOR[VECTOR|G]]. In Eiffel, LIST[B] is a descendant of LIST[A] if B is a descendant of A
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Unconstrained form:

class LIST[G] ...

my_int_list : LISTINTEGER]
my_account_list: LIST[ACCOUNT]

Constrained form:

class VECTOR[G—>ADDABLE] ...

my-_int_vector: VECTOR[INTEGER]
my_real_vector: VECTOR[REAL]

Figure 2.3: The two different forms of generic classes

[5, p-84]. On the other hand LINKED_LIST[A] is a descendant of LIST[A], if LINKED_LIST[G]
is a descendant of LIST[G] where G denotes the formal generic parameter.

In Java generics exists since version 5.0. As written in [1], it is possible to constrain the formal
generic parameter by a supertype like in Eiffel. You can also use a generic class as actual generic
parameter. In contrast to Eiffel, it is not the case that List<B> is a subtype of List<A>, if B is
a subtype (subclass or subinterface) of A.

2.3.2 Arrays

In Eiffel arrays are handled with genericity. An array is just a container object, an instance of a
generic class which is called ARRAY.

In Java you can create a new array type by adding ”[]” after a type. Array types are covariant.
This means that if the class Sub is a subclass of another class Super then "Subl]” is a subclass
of ”Super|]” too. On top of this array inheritance tree is "Object[]” which inherits finally from
”Object”. Because of this covariance the Java Virtual Machine has to do runtime checks when
storing objects in arrays to guarantee type safety. Arrays in Eiffel are covariant too as explained
in section 2.3.1.

2.3.3 Tuples

A tuple is a simple extension to the notation of classes. Instances of tuples have sequences of
elements of which each has a type. Tuples provide a simpler alternative to classes when you don’t
need specific features, just a sequence of values of given types.

Java 5 supports generics which is not as powerful as tuples. A generic class has a fixed number
of generic parameters while you can use the tuples in Eiffel like a generic class with a variable
number of parameters [7]. This means that Java has no construct similar to tuples.

2.4 Inheritance

2.4.1 Multiple Inheritance

Eiffel allows multiple inheritance. It is possible to distinguish between two cases of inheri-
tance. Conforming inheritance means subclassing, which is both code reuse and subtyping. Non-
conforming inheritance means only code reuse. Thus it is not possible to assign values of the new
type to variables of the parent type. Due to name conflicts by multiple inheritance, it is possible
to rename features (see example in figure 2.4).

Java knows only single inheritance but you can implement multiple interfaces. The concept of
interfaces is not known by Eiffel. Renaming of methods or fields is not possible in Java.
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class
C
inherit
A
rename
foo as fooa
end
B
rename
foo as foob
end
feature

Figure 2.4: Multiple inheritance in Eiffel with renaming

2.4.2 Overloading and Overriding

In Eiffel "overloading” (multiple methods with the same name as long as the signatures differ) is
not possible. But overriding (redefining the implementation of an inherited method) is possible
with the keyword redefine. Java supports both overloading and overriding,.

2.4.3 Polymorphism and Dynamic Binding

Polymorphism means the ability to take several forms. In object-oriented development what may
take several forms is a variable entity or data structure element, which will have the ability, at run
time, to become attached to objects of different types, all controlled by the static declaration [12,
p. 467].

The rule known as dynamic binding implies that the dynamic form of the object determines
which version of the operation to apply [12, p. 480]. Polymorphism and dynamic binding are
integrated in both languages.

2.5 Assertions

2.5.1 Design-by-Contract

In Eiffel you have the possibility to use assertions. These are routine preconditions, routine
postconditions, and class invariants. Preconditions are requirements that clients must satisfy
whenever they call a routine. Postconditions express conditions that the routine guarantees on
return, if the precondition was satisfied on entry. The invariant must be satisfied by every instance
of the class whenever the instance is externally accessible. In figure 2.5 you can see an example of
the Eiffel Design-by-Contract.

Since J2SE 1.4 Java supports assertions too. You can everywhere in your code put an assert-
statement which tests the current state. With these assertions you can simulate preconditions,
postconditions and invariants [11]. Otherwise Design-by-Contract is integrated in JML. Like in
Eiffel there are method preconditions and postconditions as well as type invariants [10].

2.5.2 Inheritance and Assertions

Assertions in Eiffel are inherited and must be held by the subclasses. When redefining a routine
the precondition of the redefined routine can only be equal or weaker. The postcondition can only
be equal or stronger. Invariants can only be equal or stronger.
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class STACK]1 [G] feature —— Access
count: INTEGER
capacity: INTEGER

item: G is
require
stack_not_empty: not empty
do ... end
feature —— Status report
empty: BOOLEAN is
do ... end
full : BOOLEAN is
do ... end
feature —— FElement change
put (x: G) is
require
stack_not_full : not full
do
ensure
stack_not_empty: not empty
x_inserted_at_top: item = x
count_incremented: count = old count + 1
end
remove is
require
stack_not_empty: not empty
do
ensure
stack_not_full : not full
count_decremented: count = old count — 1
end
invariant

count_non_negative: 0 <= count
count_bounded: count <= capacity
end

Figure 2.5: Code example Design-by-Contract in Eiffel
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The assertions in Java are not inherited. But in JML, a subclass inherits specifications such
as preconditions, postconditions, and invariants from its superclasses and interfaces that it imple-
ments [10].

2.6 Agents

2.6.1 Agents

The section about agents is based on [13]. An agent is a way to define an object that represents
a certain routine, ready to be called. You can pass the agent object around to other software
elements, which can use this object to execute the operation whenever they want. The concept
of agent separates the place of an operation’s definition from the place of its execution. The
construction time of an agent object is the time of evaluation of the agent expression defining it.
Its call time is when a call to its associated operation is executed. For a normal routine call the
two moments are the same. For an agent we will have zero or one construction time and zero or
more call times. The definition of an agent can be incomplete, since you can provide any missing
details at the time of any particular execution.
If you have a procedure like this:

f(a, b, ¢)

The corresponding agent can easily be built by putting the keyword agent before the function
call:

s := agent f(a, b, ¢)

As mentioned above the arguments of an agent can be set at definition time (called closed operands)
or provided at the time of each actual call (called open operands). Here is an example of a definition
of an agent with one open operand (symbolized with ”?”) and the two closed operands b and c:

t := agent (7, b, c)

This agent calls the procedure ”f” of the current object. Instead of calling a routine on Current,
it is also possible to specify the target object:

u := agent obj.f(a, 7, 7)

The target object can also be a so called open target. For this you can put the target type in
braces instead of the target:

v := agent {T}.f(a, ?, 7)

This means that for a call of this agent the target object must be passed as an argument and it
must be of type T.

The type of agent objects is ROUTINE, PROCEDURE, or FUNCTION. The class
diagram of these generic classes is illustrated in figure 2.6. The formal generic parameters are
needed for making the agent mechanism statically type-safe.

If the declaration of the procedure f in the examples above is as follows:

class T
feature
f(a: A;b: Byc: C)is
do
end
end

The types of the agent objects are as follows:
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ROUTINE
[BASE,OPEN -> TUPLE]

PROCEDURE
[BASE,OPEN -> TUPLE]

FUNCTION
[BASE,OPEN -> TUPLE,
RES]

Figure 2.6: Class diagram of the three agent classes with their formal generic parameters. BASE
means the type of the target object. OPEN is the tuple of the types of the open operands and
RES is the result type.

PROCEDURE|T, TUPLE]
PROCEDURE|T, TUPLE[A]]
PROCEDURE|T, TUPLE[B, C]]
PROCEDURE|[T, TUPLE[T,B,C]|

The class ROUTINE has a feature ”call” that allows to call agents. The call to the agent is
written as follows:

< g T ®m

my_agent.call ([open_arguments))

As mentioned above the arguments must contain the target object if it is not specified at con-
struction time. The call of the examples above looks as follows:

objl: T; vall: A; val2: B; val3: C

s. call ([])
- f(CL, b; C)
t. call ([vall])
—— f(vall, b, ¢)

u. call ([val2, val3])

—— objl.f(a, val2, val3)
v.call ([objl, val2, val3])

—— objl.f(a, val2, val3)

There are some iterators available for all traversable structures as for example "for_all”. This
boolean-valued function determines whether a certain property, passed in form of a call expression
with one open argument, holds for every element of a sequential structure. Two examples with
“for_all” are given in figure 2.7.

The construct of agents has no counterpart in Java.

2.7 Special Features

2.7.1 Once Routines

The first time a once routine is called during a system’s execution, it executes its body. Every
subsequent call executes no instruction at all, but terminates immediately returning the result
computed the first time around. Once routines can be redefined by any descendant into once or
non-once routines. Once routines are like constants that at the first invocation are executed and
afterwards cannot be changed any more.

In Java there is no direct construct like once routines, but it is possible to simulate once routines
with static methods and static fields as you can see in the example in figure 2.8. Simple examples
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class C
feature
is_positive (x: INTEGER): BOOLEAN is
do
Result := (x > 0)
end

my_integer_list : LIST[INTEGER]

all_positive := my_integer_list . for_all (agent is_positive)
—— same as: all_positive := my_integer_list . for_all (agent is_positive (%))

end

class EMPLOYEE
feature
is_married: BOOLEAN is

my_employee_list: LIST[EMPLOYEE]
all_married := my_employee_list. for_all (agent {EMPLOYEE}.is_married)

Figure 2.7: Two examples for using agents with the iterator for_all

can be solved with a static final field. If the once routine is more complex, it can be simulated with
a private static field that stores the return value and a public method that at the first invocation
executes the once routines body, stores the result in the private field and afterwards returns the
value of this field. This is similar to a singleton pattern.

In these two examples we use static methods to simulate once routines. A difference is that
once routines are bound dynamically, but static methods are bound statically. It is possible to
solve this problem by using a dynamically bound method that returns the value of a static field
as you can see in the example in figure 2.9 (Eiffel part) and 2.10 (Java part).

2.7.2 Create Procedures

In Eiffel you can define multiple creation procedures which can have names like all other procedures.
To decide which constructor is taken for a create-statement, the language rely on the name of the
procedure. In Java all constructor methods must have the name of its class and different signatures.

2.7.3 Constant Attributes

Constant attributes in Eiffel are defined in a class, have a fixed value and are the same for all
instances of this class. It is only possible to declare constant attributes of basic types. These are the
types like INTEGER or REAL which are defined in the standard libraries. For constants of other
types, including all self defined expanded types, you must use once methods (see section 2.7.1). A
constant attribute is declared as follows:

Var: INTEGER is 1

Static variables in Java are class variables. They are the same for all instances of this class.
Final variables must be assigned a value at declaration. In the case of primitive types the value
cannot be changed later. This means that static final variables for primitive types are class
constants and comparable with the constant attributes in Eiffel.
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Example 1: Eiffel:

i: COMPLEX is
once
I Result.make(0,1)
end

Java:

public class Complex {
public Complex (int r, int i) {
y =1
X =1
}
private int y, x;
public static final Complex i = new Complex(0,1);

}
Example 2: Eiffel:

once_res: COMPLEX is
once
// body of the once routine
end

Java:

private static Complex once_res;
// current class have to ensure that once_res is modified only by the method once
public static Complex once() {
if (once_res == null) {
// body of the FEiffel once routine
// save result in once_res

}

return once_res;

Figure 2.8: These two examples (a simple and a more complex one) show how once routines can
be simulated in Java.
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class A
create

make_a
feature

foo: STRING is

once

end

make_b is do ...

end

class B inherit

A

Result :="A”

end

redefine foo end

create
make_b
feature

foo: STRING is

once

end

make_b is do ...

end

class ROOT_CLASS

create
make
feature
a: A
b: B
make is
do
end
end

Result := "B”

end

create a.make_a()

io. put_string (a.foo())
create b.make_b()

io. put_string (b.foo())
a:=b

io. put_string (a.foo())
// output "B”

Figure 2.9: Eiffel part of the example that shows how the dynamic binding of once routines can
be simulated with Java methods. The Java part is in figure 2.10.
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Java:

public class A {
public A() {}
private static String once_result;
public String foo() {
if (once_result == null) {
once_result = "A”;
}

return once_result;

}

public class B extends A{
public B() {}
private static String once_result;
public String foo() {
if (once_result == null) {
once_result = "B”;
}

return once_result;

}

public class Main {
public static void main(String[] args) {

A a;
B b;
a = new A();
b = new B();
System.out.println(a.foo ());
System.out.println(b.foo ());
a =b;
System.out.println(a.foo ());
// output "B”

Figure 2.10: Java part of the example that shows how the dynamic binding of once routines can
be simulated with Java methods. The Eiffel part is in figure 2.9.
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2.8 Exceptions

2.8.1 Exceptions

A routine fails because of some specific event (arithmetic overflow, assertion violation...) called
exception that interrupts its execution. If the cause of the exception is an assertion violation, it
is called a failure. A routine in Eiffel can have a rescue clause that attempts to bring the current
object to a stable state after the appearance of an exception. The rescue clause can include the
retry instruction to retry to execute the method body.

In Java, the throw statement allows to interrupt execution and follow the call stack until a
corresponding catch block is found. If a finally clause exists, it is always executed. After that, the
program continues execution.

2.9 Concurrent Programming

2.9.1 Concurrent Programming

With the Simple Concurrent Object-Oriented Programming (SCOOP) Model Eiffel has a high-
level concurrency mechanism. With the keyword separate you can declare that two objects are
handled by different processors. Analogous to preconditions you can define waiting conditions for
routines on separated objects.

The concurrent model of Java with threads, synchronization, and monitoring is quite different.

2.10 Conclusion

FEiffel and Java are in many parts similar. Other parts like the once routine can be mapped from
FEiffel to Java. The two important constructs, that exist only in Eiffel and are interesting for the
Universe type system, are expanded types and agents. For both we will show possible solutions in
the next chapter.



Chapter 3

Universe Type System for Eiffel

3.1 General Solution

3.1.1 Overview

In this chapter we describe our developed Universe type system for Eiffel. In the first section
we show a possible syntax extension for Eiffel. Subsequently we explain which part of the exist-
ing Universe type system for Java can be taken. Afterwards we show possible solutions for the
treatment of expanded types and agents.

3.1.2 Syntax

The Eiffel syntax style is described in [5, p. 8] as focusing on readability, not overwhelming the
reader with symbols, and using simple keywords, each based on a single English word. Due to this
syntax style, it makes sense to take the syntax presented by the Universe type system for Java.
peer, rep, and readonly as type modifier keywords as well as pure as keyword for side-effect
free routines seems to be a good choice. Like in the Universe type system for Java we set the
ownership modifier before the type of an object:

a: peer COMPLEX
is_in_bound (1: rep COMPLEX; u: rep COMPLEX; c¢: readonly COMPLEX)

The proposed syntax is also similar to the syntax of detachable types (types which permit void
values) in Eiffel (more in [14]), where the declaration is as follows:

a: 7 COMPLEX

To let the code be syntactically correct Eiffel code, that can be complied by the standard Eiffel
compiler, you have to put the ownership code into comments. Since a special compiler should
differ between normal comments and ownership comments, there is a need to mark the ownership
comments with a special character, for example "@”. In the same way it is done in the Java version
where they use the JML specification syntax:

/*Q peer @x/ Node prev;

Because in Eiffel only line comments and no block comments exist it is necessary to use a new
line for each comment. This would look as follows:

a:
——@ peer
COMPLEX

is_in_bound (1:
——@ rep

25
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COMPLEX; u:
——@ rep
COMPLEX; c:

——@ readonly
COMPLEX)

This is very bad readable and eventually for future work on a Universe type system for Eiffel,
there is a need for block comments.

In the following examples we will write the ownership modifiers for readability reasons without
comments.

3.1.3 Rules

The main concepts between Java and Eiffel are the same as shown in the last chapter. Therefore,
the rules from the Java Universe type system as presented shortly in section 1.2 can be taken. The
plain rules can be read in [3] and [4]. In addition we will present solutions for expanded types and
agents which have no counterpart in Java in section 3.2 and 3.3.

3.1.4 Command-Query Separation

Eiffel differs between command and query features. A command serves to modify objects and is
implemented as a procedure. A query returns information about objects and may be implemented
either as an attribute or as a function. The command-query separation principle says that functions
should not produce abstract side effects. Informally this means that asking a question should not
change the answer.

The Universe type system differs between pure and non-pure methods. Pure methods don’t
modify the existing objects. According to the command-query separation principle, queries in
Eiffel should be side-effect free which means that they should be pure routines.

3.1.5 Once Routines

As written in section 2.7.1, Eiffel once routines can be simulated in Java with a dynamically
bound method and a static field. Since in the Java Universes static fields must be readonly, once
routines can only have readonly as return type.

3.2 Expanded Types

3.2.1 Overview

We first shortly present three possible solutions for the treatment of expanded types. For every
solution we also list the advantages and disadvantages. Subsequently follows an evaluation of all
solutions. Afterwards we analyze some special aspects of the best solution like how the assignment
could work.

For expanded type solutions we have to include the concept of expanded types that the entities
denote not references to instances but instances themselves. In addition we have to consider that
expanded types cannot be referred by a reference from outside. Therefore, the aliasing problem,
which to solve is the task of the ownership model, doesn’t exist with expanded entities.

3.2.2 Solution 1: Like Reference Types

This is the most general solution. It treats expanded types like reference types.
You can supplement each entity of an expanded type with one of the three ownership modifiers
rep, readonly and peer as you can see in the example in figure 3.1. Like for reference types
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peer is taken as default value. With this solution there is no difference between expanded types
and reference types.
Advantages:

e Allows a uniform handling of expanded types and reference types.

e By allowing all modifiers, this solution is very flexible and leaves the programmer all possi-
bilities open.

Disadvantages:

e The concept of expanded types, that they aren’t references to objects but the objects them-
selves, is broken by this solution.

We can split this solution into three different cases: one when the expanded entity is of type
peer, one when it is of type rep and one when it is of type readonly.

In the case where it is of type rep the expanded entity is owned by the composite object.
Therefore, a good encapsulation of the object can be achieved, which means that it is well protected
against modifications from outside. A modification of the expanded entity can only be done by
the composite object and the rep attributes of the composite object. Since a rep reference of the
composite object and a rep reference of the expanded object don’t point into the same context,
the possibilities of assignments are quite limited.

When the expanded entity is of type peer, which is the default value, the composite object
and the expanded entity are in the same context. The expanded entity is bad encapsulated as it
is modifiable by the same objects as the composite object. The semantics of expanded types, that
they are part of the composite object, is broken by declaring an expanded object as peer.

A special case is when the expanded entity is of type readonly. Because there is no reference
from outside to the expanded entity and the composite object has only a readonly connection to
this entity, the subobject is not modifiable.

An extension of this solution could be that we insert a forth possible modifier called "this”
which means that the expanded entity is in the same context as the composite object and both are
owner of the same context. The expanded entity is like a part of the object and their attributes
are handled like attributes of the composite object. The difference to a peer expanded object
is, that with the modifier "this” the composite object and the expanded object are owner of the
same context, while with peer both are owner of an own context. With the modifier "this” we
consider, like with the modifier rep, that the expanded object belongs to the composite object.
The difference is the better encapsulation of an rep expanded object compared to a "this” expanded
object. This can be illustrated with a little example. Assume that we have an object x that is
peer to the composite object and the expanded entity has a peer attribute a. In the solution with
“this” as modifier, x can modify a because they are in the same context. This is not possible in
the solution with the modifier rep. Because a is rep of the composite object and this is peer to
x, X has no read-write reference to a.

3.2.3 Solution 2: As Part of the Object

The second solution is to handle every expanded entity as part of the object like with the above
introduced modifier "this”. Since there is no choice for a modifier there is no need to introduce
the modifier "this” and write it.

This solution considers that there is no aliasing problem with expanded types and therefore no
need for a complex solution. The attributes of the expanded entity will be handled like they would
be directly attributes of the composite object. In the example of figure 3.2 d1 of the subobject
is handled like al, both as peer of the object. More interesting is that the context owned by
the composite object is the same as the context owned by the subobject. This means that the
references a2 and d2 show into the same context.

Advantages:
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class COMPOSITE

feature
al: peer A
a2: rep B
a3: readonly C
sub_peer: expanded peer D
sub_rep: expanded rep D
sub_readonly: expanded readonly D

end
class D
feature
dl: peer E
d2: rep F
d3: readonly G
A
al| peerA _—
a2 rep B
C —
~ \33\ readonly C
SUb_rep peer E \ B
F [l repF
— 1 E
- readonly G
— -—
G B
E
sub_peer peerE |
G
S~~~ rep F F
=~ —~—
~d
readonly G
sub_readonly peer E
rep F
readonly G
(COMPOSITE)

Figure 3.1: Solution 1 for expanded types: Like reference types
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e The solution considers the main idea behind expanded types being objects not references to
objects.

Disadvantages:

e Since there is no choice of modifiers for expanded types, this solution offers not much flexi-
bility.

A possible extension could be that, like in the solution 1, all modifiers are allowed, but that
”is part of the object” is the default value.

3.2.4 Solution 3: Always rep

With this solution all entities of an expanded type are of ownership type rep.

Every value of an expanded type is of ownership type rep and its owner is the composite
object. It is not allowed to specify ownership types before an expanded type. An example using
this solution is illustrated in figure 3.3.

Advantages:

e The expanded object is well protected against modifications from outside.
Disadvantages:

e Since there is no choice of modifiers for expanded types, this solution offers not much flexi-
bility.

e There are limited possibilities for an assignment to the expanded object.

As in the second solution, a possibility is to extend it, so all modifiers are allowed and rep is
the default value.

3.2.5 Evaluation

Solution 1 is more flexible than solution 2, but it is also very complicated. Since there is no aliasing
problem with expanded objects, this solution gives no real advantages in comparison to the second
solution. Therefore, it is better to use the less complex solution 2.

Solution 3 is similar to solution 2. In solution 3 the expanded entity is better encapsulated
because it is rep to the composite object. But the protection of solution 2 is enough. In solution
3 the expanded entity can only be modified by the composite object and the rep objects of the
composite object. In solution 2 a modification of the expanded object is also possible by the owner
of the composite object and all objects that are in the same context as the composite object. Since
the expanded entity can protect its attributes by using the modifier rep, it is no problem to use
the less restrict solution 2.

The comparison with the other possibilities shows, that solution 2 is the best. But there are
also semantic reasons for this solution. The semantics of expanded types, to be an object instead
of a reference, is important. Because a subobject cannot be referenced from outside the problem
of aliasing doesn’t exist with expanded types. Furthermore, as explained in the next section, the
assignment for this solution is easy.

3.2.6 Detailed Analysis of Solution 2

In this section we will consider some part of solution 2 in more detail. First we show how assign-
ments of expanded entities can be solved.

Remember that assignment with expanded types is always done by copying the values of one
object to the other object. When you assign new values to an object the ownership types must
be correct. This means that for an assignment with expanded types that, in case of rep or peer
attributes, the owner of the source and the target attribute must be the same. What this means
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class COMPOSITE
feature

al: peer A

a2: rep B

a3: readonly C

sub: expanded D
end

class D
feature
dl: peer E
d2: rep F
d3: readonly G

7

at peer A

a2 rep B

a3 | readonly C

B
G ‘\ - sub peerE |
~ ~ ~ repF | — £
readonly G
(COMPOSITE)

Figure 3.2: Solution 2 for expanded types: As part of the object
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class COMPOSITE
feature
al: peer A
a2: rep B
a3: readonly C
sub: expanded D

end
class D
feature

dl: peer E

d2: rep F

d3: readonly G

A
at| peerA /
C - a2 rep B
—
== ——
=~/ 33| readonly C
—
sub |} peerE
rep F F
E P
— =T
_- -_— readonly G
—

G (COMPOSITE)

Figure 3.3: Solution 3 for expanded types: always rep
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will be shown with an example. We handle three different cases with each of the three ownership
modifiers. If you have an expanded entity with attributes of different ownership types (this means
a composition of the following three examples), the assignment must be correct for each of this.

The starting position of the example is shown in figure 3.4. The class WORKSTATION has
three expanded entities. These three entities each have an attribute of one of the three ownership
types. In the following part we describe how the assignment of the expanded entities can be solved.

At first we study the assignment of the expanded entity with a readonly attribute. This
assignment is easy. Due to the fact that the target of the assignment has only a readonly attribute,
the source reference can have any arbitrary ownership type (because readonly is a supertype of
the two other ownership types as long as the corresponding classes are also in a subtype relation).
It also doesn’t matter which object is the owner of the source attribute. The following source code
shows the assignment:

wl: peer WORKSTATION
w2: peer WORKSTATION
wl.cpu := w2.cpu

The values of the marked entity in object w2 are copied to the target entity of object wl (see in
figure 3.5).

The assignment of expanded entities with peer attributes needs the attention that both peer
attributes must be in the same context. Otherwise the assignment is not allowed. The code of the
example is the following:

wl: peer WORKSTATION
w2: peer WORKSTATION
wl.networkcard := w2.networkcard

In figure 3.6 you see, that the reference of the marked source object w2 was in the same context
as the reference of the target object wl. This allows the assignment. After the assignment the
peer reference of the target object points at an object in the same context which is correct.

More problematic is the assignment of expanded types if they have rep attributes. The problem
is that the values of the source object should be in the same context as the values of the target
object. Therefore, the following assignment is invalid:

wl: peer WORKSTATION
w2: peer WORKSTATION
wl.keyboard := w2.keyboard

The correct assignment requires that the rep attributes of the source and the target object
are in the context which is owned by the target object. On the other hand the rep attribute of
the source object is in the context owned by the source object (see figure 3.7). The only legal
possibility is, that the source and the target object are the same. An example for this configuration
is shown in figure 3.8.

The solution 2 could also be achieved by saying that the keyword expanded is mandatory
at the declaration also for attributes of expanded classes and expanded would be like a forth
ownership modifier. Then the type expanded is handles like the Current reference. The extended
type combinator table is shown in table 3.1:

* | expanded peer rep | readonly

Current / expanded Current peer rep | readonly
peer peer peer | readonly | readonly

rep rep rep | readonly | readonly

readonly | readonly | readonly | readonly | readonly

Table 3.1: Table of the extended type combinator (first argument: left-most cell of the rows,
second argument: top-most cell of the columns)
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Class declarations:

class WORKSTATION

feature
cpu: expanded CPU
networkcard: expanded NETWORKCARD
keyboard: expanded KEYBOARD

end

class CPU
feature

producer: readonly PRODUCER
end

class NETWORKCARD
feature

connected_to: peer WORKSTATION
end

class KEYBOARD

feature
keys: rep KEY_LIST

PRODUCER
PRODUCER \\\
~ w2
D ~N

end

~
\ N
\ WORKSTATION cpull readonly PRODUCER
\ (CPU)
\ w1 networkcard||  heer WORKSTATION
(NETWORKCARD)
cpull readonly PRODUCER
= keyboard rep KEY_LIST
| P ‘ (KEYBOARD)
networkcard|| peer WORKSTATION ]
(WORKSTATION)
(NETWORKCARD)
keyboard rep KEY_LIST KEY LIST

\ (KEYBOARD)
(WORKSTATION)

KEY_LIST

Figure 3.4: Starting position of assignment example with solution 2 for expanded types
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PRODUCER
PRODUCER SN

w2
readonly PRODUCER
(CPU)
;.  wi networkeard|| - peer WORKSTATION
/[ (NETWORKCARD)
cpul | readonly PRODUCER
= keyboard rep KEY_LIST
| (KEYBOARD)
networkcard|| peer WORKSTATION
(WORKSTATION)
(NETWORKCARD)
keyboard rep KEY_LIST KEY_LIST
(KEYBOARD)
(WORKSTATION)
KEY _LIST

Figure 3.5: Example assignment of expanded entities with readonly attributes: After the assign-
ment the values of the marked object on the right have been copied to the other one.
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PRODUCER
PRODUCER >N -
\\ w2
\\

\ B
\ CPUll readonly PRODUCER
\ (CPU)
\‘ wi networkoard|\~poer WORKSTATION
(NETWORKCARD)
cpull readonly PRODUCER
= keyboard rep KEY_LIST
‘ (KEYBOARD)
networkcard| | pesr WORKSTATION r
(WORKSTATION)
(NETWORKCARD)
keyboard rep KEY_LIST KEY_LIST
(KEYBOARD)
(WORKSTATION)

A

KEY LIST

Figure 3.6: Example assignment of expanded entities with peer attributes: After the assignment
the values of one marked object have been copied to the other one.

target object source object
repkey LsT [ KEY LIST | | KEY LIST |&———— ieprevusr
(KEYBOARD) (KEYBOARD)

Figure 3.7: Problem with the assignment of expanded entities with rep attributes: the attribute
of the source object should be in two different contexts which is not allowed.
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class WORKSTATION?2
feature
keyboard2: expanded KEYBOARD
keyboardl: expanded KEYBOARD
end

class KEYBOARD
feature

keys: rep KEY_LIST
end

wl: peer WORKSTATION2
wl.keyboardl := wl.keyboard2

rep KEY_LIST ~\ KEY LIST
(KEYBOARD) =

keyboard?2

keyboard1

rep KEY_LIST T KEY LIST
(KEYBOARD) =

(WORKSTATIONZ2)

rep KEY_LIST

|

keyboard2 KE Y=L/ ST

(KEYBOARD)

keyboard1

<
(KEYBOARD)

(WORKSTATIONZ2)

Figure 3.8: Possibility for assignment with expanded entities with rep references: The upper
image shows the situation before the assignment, the lower image shows the situation after the
assignment.
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3.3 Agents

3.3.1 Overview

Agents is the method to save the arguments of a feature call to call them later. This is done by
packing all needed informations into an object called the agent object. It is important for the
treatment of agents to consider that an agent is an object. This means that they are like all other
objects in a context and have at most one owner.

The keyword agent creates a new agent. Therefore, it is quite similar to the keyword create.
Both creates a new object. This gives some inputs about the handling of agents in the Universe
type system. In addition the ownership solution should be similar to the one of procedure calls.

3.3.2 Agent Types
As mentioned in section 2.6, agents are of one of these three types:

ROUTINE[BASE, OPEN —> TUPLE]
PROCEDURE[BASE, OPEN —> TUPLE]
FUNCTION[BASE, OPEN —> TUPLE, RES]

PROCEDURE and FUNCTION inherit from ROUTINE. The class ROUTINE contains the
fundamental features for the agent mechanism. The most important are the following:

deferred class
ROUTINE [BASE, OPEN —> TUPLE]

feature
operands: OPEN is ...
—— Open operands.
target: ANY is ...
—— Target of call.
call (args: OPEN) is ...
—— Call routine with operands ‘args’.
internal_operands: TUPLE
—— All open and closed arguments provided at creation time

A little example shows how to deal with agents as objects. First the example without ownership
types is shown.

class
BOUND
create make
feature
lower: COMPLEX
upper: COMPLEX
is_in_bound_agent: FUNCTION[BOUND,
TUPLE[COMPLEX,COMPLEX],BOOLEAN]

make (I: COMPLEX; u: COMPLEX) is

do

lower :=1

upper := u

is_in_bound_agent := agent is_in_bound(lower, 7, ?)
end

is_in_bound (1: COMPLEX; u: COMPLEX; ¢: COMPLEX):
expanded BOOLEAN is



38 3 Universe Type System for Eiffel

class
BOUND
create make
feature
lower: rep COMPLEX
is_in_bound_peer_agent: peer FUNCTION|[peer BOUND,TUPLE]|
readonly COMPLEX readonly COMPLEX],expanded BOOLEAN]
is_in_bound_rep_agent: rep FUNCTION[peer BOUND, TUPLE|
readonly COMPLEX readonly COMPLEX],expanded BOOLEAN]
make (I: readonly COMPLEX; u: readonly COMPLEX) is
do
create rep lower.make_cartesian (1L.x, 1.y)
is_in_bound_peer_agent := peer agent is_in_bound(lower, ?, ?)
is_in_bound_rep_agent := rep agent is_in_bound(lower, ?, 7)
end
is_in_bound (1: readonly COMPLEX; u: readonly COMPLEX;
c: readonly COMPLEX): expanded BOOLEAN is
do
Result := ((l.greater(c)) and (c.greater(u)))
—— greater is a pure function
end
end

Figure 3.9: Handling of agents as objects: code (without concept of pure agents)

do
Result := ((l.greater(c)) and (c.greater(u)))
end
end

Now we insert the ownership modifiers. For better illustrating the difference between a peer
and a rep agent object, two agents of both types are included. The code and the corresponding
ownership diagram is shown in figure 3.9 and 3.10. Consider that in the example the call of
”is_in_bound_rep_agent” would not be correct since there are some missing keywords pure. The
concept of pure agents is explained in section 3.3.4 where you can also find the final version of this
example.

Regarding to the the similarity between the keywords agent and create some additional rules
can be derived. First when creating a new agent, the wanted ownership modifier needs to be
specified, since it is possible to create a peer agent when you have declared a readonly agent.

is_in_bound_peer_agent := peer agent is_in_bound(lower, 7, ?7)

In the existing Universe type system it is only allowed to create peer and rep objects because
objects need to have an owner when created. By the same token it is only possible to create peer
and rep agents.

3.3.3 Target, Open and Closed Operands

The types of the arguments, of the target object and of the return value are stored in the agent
object relative to this object. But at the declaration place the formal generic parameters of the
class ROUTINE are written relative to the current object. This is a rule declared for generics in
[2]. This means that the declaration of the peer agent in example 3.9 is:
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(COMPLEX)
oo / COMPLEX)
target|  poynp /
— 1 readonly I
[ COMPLEX I
operands
| readonly I
| COMPLEX
| (FUNCTION) [ |
a9 BounD ||
—
| is_in_bound_peer_agent|_, P’ . readonly Il_l
| - - FUNCTION e con/;Pusz
is_i rep readonly
| is_in_bound_rep_agent| -,y oy —{ v ] |
| rep (FUNCTION) |
| lower| comprEx \

Figure 3.10: Handling of agents as objects: ownership diagram (without concept of pure agents)
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is_in_bound_rep_agent: rep FUNCTION[peer BOUND,
TUPLE[readonly COMPLEX, readonly COMPLEX],expanded BOOLEAN)]

In this declaration the type of the target object is peer BOUND because the target object
(Current) is relative to the current object peer. In the agent object itself the target object
is stored as readonly BOUND because relative to the agent object the target object is readonly.

What this means for the agent declaration is well illustrated in the example 3.9 in the last
section.

3.3.4 Pure Agents

The call of an agent produces two routine calls. First, the routine ”call” of the agent object is
executed. This invokes the real routine which is in the example above the routine ”is_in_bound”.
Since on readonly receivers only pure routine calls are allowed, this should also be considered with
agents.

Non-pure agents are only possible if you have a peer or rep agent whose target object is peer
relative to the agent object. This configuration is achieved with the agent ”is_in_bound_peer_agent”
in the example in figure 3.9 and 3.10.

If the target object is readonly, the corresponding routine should be pure. This works without
any difficulty. The case is more complicated, if you have an agent that is referenced by a readonly
reference. The routine ”call” should also be pure, but in the current implementation ”call” is not
pure.

A possible solution is to introduce a second call procedure "pure_call” that is pure. For this a
detailed look at the routine ”call” in the class ROUTINE is needed:

deferred class
ROUTINE [BASE, OPEN —> TUPLE]

feature
call (args: OPEN) is
—— Call routine with operands ‘args’.
require
valid_operands: valid_operands (args)
callable : callable

do
set_operands (args)
apply
if is_cleanup_needed then
remove_gc_reference
end
end
apply is
—— Call routine with ‘args’ as last set.
require

valid_operands: valid_operands (operands)
callable : callable
deferred

end

frozen is_cleanup_needed: BOOLEAN
—— If open arguments contain some references, we need
—— to clean them up after call.
end
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class
PROCEDURE [BASE, OPEN —> TUPLE]
feature
apply is
—— Call procedure with ‘args’ as last set.
do
rout_obj_call_procedure (rout_disp, $internal operands)
end
rout_obj_call_procedure (rout: POINTER; args: POINTER) is
—— Perform call to ‘rout’ with ‘args’.
external
”C inline use %”eif rout_obj.h%””
alias
”rout_obj_call_agent ($rout, $args, $$_result_type)”
end
end

” N 9.

For introducing "pure_call” also the called routines "set_operands”, "apply”, "is_cleanup_needed”,
and "remove_gc_reference” should be pure routines. The procedure "apply” performs the rou-
tine call by invoking "rout_obj_call_procedure”. For "pure_call” we need two new versions of this
two procedures that are pure, called "pure_apply” and "pure_rout_obj_call_procedure”. The only
needed condition is that "pure_rout_obj_call_procedure” is side-effect free if the as argument passed
routine "rout” is pure.

The other three from "call” invoked routines are needed because the open operands are stored
and not directly passed to apply. Since the procedure "set_operands”, which saves the open argu-
ments, is not pure, it cannot be invoked in “pure_call”. Therefore, "pure_call” could only be used
for agents with no open arguments where the procedure ”set_operands” is not needed. The same
problem is about "remove_gc_reference”.

If you don’t change the implementation of ROUTINE, this would mean that pure agents cannot
have open arguments. Since this is a big constraint, it would be better if the implementation of
"call” would be changed. Conceptual, the passing of arguments for an agent call, that call a pure
routine, should be pure because it doesn’t have to modify any objects. It should be possible that,
instead of the call to "set_operands”, the open arguments are passed directly as routine arguments
to ”apply”. Therefore, a version of "pure_call” could look like the following:

deferred class
ROUTINE [BASE, OPEN —> TUPLE]

feature
pure pure_call(args: OPEN) is
—— Call routine with operands ‘args’.

require

callable : callable
do

pure_apply(args)
end

end
With this solution, the call of a pure agent would look as follows:
my_pure_agent.pure_call([args])

Another solution instead of the new routine "pure_call” is to introduce two new classes called
PURE_FUNCTION and PURE_PROCEDURE as you can see in figure 3.11. In these two classes
the procedure ”call” is overridden by a pure procedure. This allows a uniform handling of the
agent call, because for both pure and non-pure agents “call” should be invoked.
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ROUTINE
[BASE,OPEN -> TUPLE]

PROCEDURE
[BASE,OPEN -> TUPLE]

FUNCTION
[BASE,OPEN -> TUPLE,
RES]

PURE_PROCEDURE
[BASE,OPEN -> TUPLE]

PURE_FUNCTION
[BASE,OPEN -> TUPLE,
RES]

Figure 3.11: The extended agent class diagram with the two new classes PURE_PROCEDURE
and PURE_FUNCTION

The difference of the two solutions is, that in the solution with ”pure_call” you must know at
call time if you have to call "call” or "pure_call”. In the solution with the two new classes this
decision is done at construction time which has two advantages. First the power of the decision is
by the creator of the agent. The second advantage is that the decision at construction time should
only be made once, while the decision at call time can be made several times. Another difference is
that the first solution needs some implementation changes in the existing classes, while the second
solution needs two new classes. In the second solution the difference between pure and non-pure
agents is done by different types, which guarantees more static type safety. Therefore, the solution
which introduces two new classes is the better.

Analogous to pure routines pure agents do not modify existing objects and are the only agents
that can be called on readonly agents. You can only declare an agent pure if the routine it invokes
is pure too.

The only routine that a pure agent can call is a pure routine. Since all argument types of pure
routines implicitly have the readonly modifier, the arguments of pure agents must be readonly too.
The return type can have any arbitrary modifier.

In the example above the agent "is_in_bound_rep_agent” operates on a readonly target object.
Therefore, the agent should be pure. By allowing open arguments, the corrected code looks as
follows:

class
BOUND
create make
feature
lower: rep COMPLEX
upper: rep COMPLEX
i: readonly COMPLEX
is_in_bound_rep_agent: rep FUNCTION|[readonly BOUND,TUPLE]|
readonly COMPLEX, readonly COMPLEX],expanded BOOLEAN]

make (I: readonly COMPLEX; u: readonly COMPLEX) is
do
create rep lower.make_cartesian (1.x, 1.y)
create rep upper.make_cartesian (u.x, u.y)
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is_in_bound_rep_agent := rep agent is_in_bound(lower, ?, ?)
end

pure is_in_bound (l: readonly COMPLEX; u: readonly COMPLEX;
c¢: readonly COMPLEX): expanded BOOLEAN is

do
Result := ((l.greater(c)) and (c.greater(u)))
—— greater is a pure function
end
end
class
COMPLEX
feature
x,y: expanded INTEGER
pure greater(c: readonly COMPLEX): expanded BOOLEAN is
do
Result := (x < ¢.x) and (y < c.y)
end
end

3.3.5 Passing around

One concept of agents is that they can be passed around. Thus the observer pattern can be solved
with agents as follows:

your_button. click_actions .extend(agent your_routine)

When you give an agent around, the reference to the agent object will become readonly in
the majority of cases. Therefore, only pure agents are possible to call. This assures that the
owner-as-modifier property is hold. On the other hand it avoids a lot of powerful agent examples
(like the observer pattern). This means that with the presented solutions there is a big constraint
for agents.

3.3.6 Other Solutions

In this section about possible treatments for agents we handled agent objects like normal objects.
As mentioned in the last section this conservative solution causes big constraints. To reduce these
constraints a possibility is to handle agent objects not as normal objects but with special rules.
For example a solution could be to allow transfer of ownership. Another possibility could be to
handle calls on agent objects not like normal calls, but allow to call non-pure routines on readonly
receivers. Both is not possible according to the current ownership rules, but it would allow powerful
agents like observer patterns. In this report only the solutions where agents are handled as normal
objects are considered, but for future work one should consider if the best solution is to introduce
special rules for agents.
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Chapter 4

Conclusion

4.1 Conclusion

The existing Universe type system for Java is good adaptable to Eiffel. For the special Eiffel
construct of expanded types, good solutions can be found that consider the ownership idea and
the idea of expanded types. More difficult is the treatment of agents. The strict solution ac-
cording the current ownership rules allows only a bounded group of agents. It is not possible to
allow more powerful agents with the owner-as-modifier property. In addition some changes at the
implementation of the agent classes are needed.

4.2 Future Work

To allow powerful agents, a better solution for this construct is needed. The current Universe
ownership concepts probably have to be extended. Eventually some interesting inputs can come
from the master thesis about "Universe Type System for Scala” which Daniel Schregenberger is
writing [16].
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