
Bytecode Support for the Universe Type
System

Alex Suzuki

Semester Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

WS 2004/2005

Supervised by:
Prof. Dr. Peter Müller
Dipl.-Ing. Werner M. Dietl

Software Component Technology Group

http://sct.inf.ethz.ch/

2

Abstract

The goal of this semester project is to extend the MultiJava compiler to emit extensions used in
the Universe type system into the generated Java class file. This involves finding a suitable binary
representation for the extensions, and a means of storage which does not conflict with the Java
class file format. This document presents a binary encoding of the Universe modifiers, and two
possible approaches to their storage in the class file. Chapter 1 serves as an introduction to the
problem of aliasing in object-oriented programming and gives a short introduction to the Universe
type system. Chapter 2 gives an overview of the Java class file format and a quick introduction to
the new J2SE 5.0 annotation facility. Chapter 3 provides a detailed look at our two implementation
approaches, while chapter 4 provides an example. Chapter 5 describes the changes and extensions
made to the MultiJava compiler. Chapter 6 then presents conclusions and possibilities for future
work.

3

4

Contents

1 Introduction 7
1.1 Aliasing in object-oriented programming . 7
1.2 The Universe type system . 7
1.3 Classification of references . 8
1.4 Bytecode support . 8

2 The class file format 11
2.1 Structure of a class file . 11

2.1.1 Classes . 11
2.1.2 Fields . 12
2.1.3 Methods . 12

2.2 Attributes . 12
2.2.1 Structure of an attribute . 13
2.2.2 Defining custom attributes . 13

2.3 Annotations . 13
2.3.1 Introduction . 13
2.3.2 Annotation types . 13
2.3.3 Annotating program elements . 14
2.3.4 How annotations are stored in the class file 14

3 Implementation 17
3.1 Encoding of universe modifiers . 17
3.2 Implementation with simple attributes . 18

3.2.1 Classes . 18
3.2.2 Fields . 18
3.2.3 Methods . 18

3.3 Implementation with annotations . 19
3.3.1 Annotation types . 19
3.3.2 Classes . 20
3.3.3 Fields . 20
3.3.4 Methods . 20

3.4 Class loading . 21
3.4.1 Classes . 21
3.4.2 Fields . 21
3.4.3 Methods . 21

3.5 Comparison of the two approaches . 21
3.5.1 Reflection . 21
3.5.2 Space usage . 22
3.5.3 Backward compatiblity . 22
3.5.4 Remarks . 22

5

6 CONTENTS

4 Example 23
4.1 Example program . 23
4.2 Disassembling the example program . 24

4.2.1 Attributes . 24
4.2.2 Annotations . 25

5 MultiJava compiler and JML extensions 29
5.1 Attributes . 29

5.1.1 New attribute classes . 29
5.1.2 Attribute parsing . 29

5.2 Annotations . 30
5.3 Disassembler . 30
5.4 Modifications to compiler . 31

5.4.1 Modifications to class file utility classes . 31
5.5 Testcases . 32
5.6 JML . 32

5.6.1 jmlspec . 32

6 Conclusion and future work 35
6.1 Conclusion . 35
6.2 Bytecode verification . 35
6.3 Reflection . 35
6.4 Optimization of Runtime Support . 36

Chapter 1

Introduction

1.1 Aliasing in object-oriented programming

In object-oriented programming, sharing mutable objects is natural and often unavoidable. Much
of the efficiency of object-oriented programming stems from aliasing, object cloning being an ex-
pensive alternative. An object is said to be aliased if it is being referenced by multiple other
objects. Unfortunately, uncontrolled aliasing can be dangerous. Outside objects may hold refer-
ences to objects representing some fragile composite structure (like a syntax tree), and may thus
bypass the structure’s well-defined interface, in the worst case destroying the structure. This is
known as representation exposure.

One example of representation exposure is a security breach1 in JDK 1.1.1 ([1] describe this
in greater detail) that allowed digitally signed code to be manipulated so that it appeared to be
signed by another signer in the list of valid signers known to the Java runtime. Through the
method Class.getSigners() it was possible to obtain a reference to the array of signers of a
class. Since arrays are mutable objects and the list of trusted signers was available, a trusted
signer could simply be inserted into the array of signers.

1.2 The Universe type system

The Universe type system, as described in [11], is a type system designed to control aliasing and
dependencies. It does so by hierarchically partitioning the object store into so-called universes
and enforcing an ownership model on the objects. The basic idea is to distinguish between an
object X and its representation, the objects owned by X. The objects owned by X are known to
be in X’s universe. These objects implement the behavior of X. Every object has a unique owner,
except for the root objects which have no owner and belong to the root universe.

The key idea is that the Universe type system does not allow read-write references to cross
universe boundaries. X is allowed to hold a read-write reference to Y only if X and Y are
in the same universe (i.e. they share the same owner) or if Y is owned by X. However, certain
implementation patterns are made impossible by these restrictions. For instance, think of a linked-
list with a List object owning the list nodes (the nodes form the list’s representation), and an
iterator which cycles through the linked nodes. In this scenario, the iterator is not allowed to hold
references to the list’s nodes, since they are neither in the same universe nor does the iterator own
the nodes. The situation is depicted in figure 1.1.

To add flexibility, the Universe type system adds read-only references, which may refer to
objects in arbitrary universes, but which disallow modification of object state or calls to non-pure
methods, meaning that they cannot be used to perform field updates or invoke methods with
side-effects.

1This bug was fixed in the next version, JDK 1.1.2

7

8 1 Introduction

Figure 1.1: Linked list with nodes and iterator. The iterator is not allowed to hold a read-write
reference to the nodes.

Figure 1.2: Type hierarchy for simple references.

1.3 Classification of references

The classification of references is done by adding a modifier to the reference. Normal references
(i.e. references to objects that have the same owner as this) are of type peer, references from an
object X to objects in the universe of X (i.e. objects owned by X) are of type rep, and read-only
references, which may point anywhere, are of type readonly. A type hierarchy can be imposed on
the references, following from the intuition that a peer or a rep reference may be assigned to a
readonly reference, and that peer and rep references are not assignable to each other. Assigning
a rep reference to a peer variable would mean that the peer reference crosses universe boundaries,
which is forbidden. Vice versa the rep reference would point to an object not owned by this.
The type hierarchy for simple reference types is shown in figure 1.2. Note that readonly, peer
and rep are attributes of the reference, not of the object. The same object can be referenced as
peer from objects in the same universe, as rep from its owner and as readonly from anywhere.

Arrays of primitive types behave exactly the same way, but arrays of reference types are slightly
more complicated, because not only the array object may have a modifier, but also the elements.
The type hierarchy for array types is shown in figure 1.3. Arrays with rep element annotation are
forbidden, since the array does not have its own universe.

1.4 Bytecode support

Prior to this project, the existing compiler correctly processed Java source files with universe
keywords. However, the class file it generated as a result of the compilation did not include
universe modifiers and method purity. That information was simply lost. As a consequence,
source code for all classes was necessary to properly typecheck a program composed of multiple
classes. This assumption is unrealistic, in many cases source code is not available, the standard
library being a prominent example. References in compiled classes were simply interpreted as
being implicitly peer, and methods as being non-pure.

1.4 Bytecode support 9

Figure 1.3: Type hierarchy for arrays of reference types.

For instance in the previously mentioned list and iterator example, depicted in figure 1.1, the
iterator has a field of type readonly Node holding a reference to the current node. The field has
the readonly modifier so that clients cannot change the list’s representation through the iterator.
If the source file containing the code for the iterator class would then be compiled to a class file,
the readonly modifier of the field would be lost. If the source file is then made unavailable to us,
we have no way of figuring out that the type of the field is readonly Node and not just Node, we
would have to treat it like any other Java reference. Modifying the state of the referenced Node
object would then be possible (assuming it is visible), and would not generate a type error.

The goal of this semester project was to emit the universe modifiers into the class file in a
way that conforms to the Java class file format, so any standards-conforming Java virtual machine
implementation would still be able to understand the class file. With the universe information
stored in the class file, source code for all classes is no longer needed, as long as the classes were
compiled using our proposed extensions.

10 1 Introduction

Chapter 2

The class file format

Most of the information presented in this chapter is taken from the Java Virtual Machine specifi-
cation [10], some of it is at current date only available in the maintenance releases1.

2.1 Structure of a class file

A class file consists of a stream of 8-bit bytes. All 16-bit, 32-bit and 64-bit quantities are
constructed from reading in two, four, and eight consecutive 8-bit bytes, respectively. Multibyte
data items are always stored in big-endian order, where the high bytes come first. We use a C-like
structure notation, identical to the one used in [10], to describe the class file format. The types
u1, u2, and u4 represent an unsigned one-, two-, or four-byte quantity, respectively. A class file
consists of a single ClassFile structure:

ClassFile {

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

2.1.1 Classes

Every class file contains the definition of a single class or interface. Its visibility is stored as a
bitmask in the access_flags item. Its name and the name of its super class are given by the
this_class and super_class items, which are indexes into the constant pool. The constant pool
entries at those indexes are strings holding the actual names. The implemented interfaces are
stored in the interfaces array, which again contains indexes into the constant pool. For every

1See http://java.sun.com/docs/books/vmspec/2nd-edition/jvms-maintenance.html

11

http://java.sun.com/docs/books/vmspec/2nd-edition/jvms-maintenance.html

12 2 The class file format

field and every method there exists a field_info and a method_info structure, respectively,
which we will describe in the next two sections.

In addition, a class may have a variable number of attributes (in this case class attributes)
associated with it. One example of a class attribute is the SourceFile attribute, which stores
the name of the source file from which this class was compiled2. Attributes are crucial for our
implementation, and are discussed later on in greater detail.

2.1.2 Fields

Every field is described by a field_info structure. The format of this structure is:

field_info {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count];

}

access_flags is a mask of flags used to denote access permission (e.g. private, public, etc.)
and properties of the field (e.g. static, final). The name of the field is described by name_index
which is an index into the constant pool, and the type of the field is given by descriptor_index
which also points to an entry in the constant pool.

Every field can be annotated by a variable number of attributes. One example of a field
attribute is the ConstantValue attribute, which represents the value of a constant field.

2.1.3 Methods

Every method, including constructors and the class or interface initialization method, is described
by a method_info structure. The structure has the following format:

method_info {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count];

}

access_flags and name_index serve the same purpose as in the field_info structure. For
methods, descriptor_index yields the methods signature (i.e. its return and parameter types)
in a textual form. A method returning no value and accepting two parameters, one int and one
Object, will have the following signature: (ILjava/lang/Object;)V (I = Integer, L = reference
type, V = void)

Like fields, methods can be annotated by a variable number of attributes. An example of a
method attribute is the Exceptions attribute which describes the exceptions a method may throw.

2.2 Attributes

Attributes are a way of adding additional information to fields, methods, classes and even attributes
themselves. They serve as a way to extend the metadata of a class. The same concept can be
found in other languages and platforms, the .NET platform being a prominent example. There
are several pre-defined attributes, like for instance the SourceFile attribute (which gives the source
filename of the compiled class) or the ConstantValue attribute, which associates a constant value
to a static field.

2The filename does not have to be the same as the name of the class

2.3 Annotations 13

2.2.1 Structure of an attribute

All attributes have the following general format:

attribute_info {

u2 attribute_name_index;

u4 attribute_length;

u1 info[attribute_length];

}

attribute_name_index points to a constant pool entry which holds a string representing the
name of the attribute, e.g. ”SourceFile”. The attribute_length item specifies the length of the
subsequent information in bytes. The info item may contain arbitrary information, its length is
limited by attribute_length.

2.2.2 Defining custom attributes

Compilers may emit class files containing new attributes. Java virtual machine implementations
are permitted to recognize and use these new attributes, and are required to silently ignore at-
tributes they do not recognize. An example use of custom attributes would be to include vendor-
specific debugging information. Attribute names follow the same convention as package names in
Java, e.g. org.multijava.universe_field would be a valid attribute name.

2.3 Annotations

As of J2SE 5.0, Java includes annotations, a new metadata facility to annotate programs. An-
notations are described in detail in [7], only a short overview is provided here. Good tutorial
introductions are given in [4] and [5].

2.3.1 Introduction

Annotations are a new way of adding metadata to program elements such as fields, methods,
parameters and so on. So conceptually they are not much different from attributes, which we
described in the earlier sections. However, unlike attributes, annotations are not a low-level
concept, they are fully embedded into the core Java language. Annotations are typed (i.e. it is
necessary to define an annotation type) and can be used directly in Java source code.

Development tools can read these annotations and use them to perform various tasks or to
justify assumptions. For instance, a stub generator could generate remote procedure calls for
methods that have an annotation which marks them as being designed for remote use. Another
advantage of choosing annotations over attributes is that they are exposed through the Java
Reflection API (java.lang.reflect), while attributes are not.

2.3.2 Annotation types

In order to annotate a program element, one needs to first define an annotation type. Annotation
types are reminisicent of Java interfaces, and are declared in much the same way. An annotation
type for an annotation that marks an element as being unsafe could be defined like this:

public @interface Unsafe {
String reason(); // the reason why it is unsafe
int bugsFiled(); // how many bugs have been filed against this element

}

Methods in annotation types are only allowed to return primitive types, Class, String, enum
types, annotation types and arrays of the preceding types. It is also possible to assign default
values to methods.

14 2 The class file format

2.3.3 Annotating program elements

Program elements can be annotated by specifying the name of the annotation type, and initializing
its members, before the program element to be annotated. In the example a field is annotated
with the Unsafe annotation.

public class C {
@Unsafe(reason=”This method behaves dangerously”, bugsFiled=42)
public void m() {

// bad things happen here
}

}

2.3.4 How annotations are stored in the class file

Annotation types are stored in the same way as regular Java interfaces, in a class file that has the
same name as the annotation type. The annotations themselves are stored in attributes, which
we will describe in the following sections. Much of the information is taken from the revised Java
Virtual Machine specification [10].

The RuntimeVisibleAnnotations attribute

The RuntimeVisibleAnnotations is a variable-length attribute that can occur in the field_info,
method_info and ClassFile structures. It contains the run-time visible annotations of the as-
sociated field, method or class. There is also an attribute RuntimeInvisibleAnnotations which
stores the annotations which are not exposed to reflective APIs, however it is not of interest to us,
because one of the reasons we would like to use annotations is exactly because they can be queried
at run-time using the Reflection API. Its format is identical to the RuntimeVisibleAnnotations
attribute, which has the following form:

RuntimeVisibleAnnotations_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 num_annotations;

annotation annotations[num_annotations];

}

attribute_name_index refers to a constant pool entry holding the string ”RuntimeVisibleAnnotations”.
attribute_length is given by 2+num annotations∗sizeof(annotation), where num_annotations
is the number of (run-time visible) annotations assocated with the attributed element. The actual
annotations are stored in the annotations array, every entry being of the following form:

annotation {

u2 type_index;

u2 num_element_value_pairs;

{ u2 element_name_index;

element_value value;

} element_value_pairs[num_element_value_pairs];

}

An annotation consists of the name of the annotation type, which is stored in the constant
pool entry with index type_index, and a number of (name, value) pairs. The name of each pair
corresponds directly to the name of the method in the annotation type. The value of the pair is a
discriminated union. The possible data members of the union are directly related to the possible
return types of the corresponding method in the annotation type. Every value has the following
format:

2.3 Annotations 15

element_value {

u1 tag; // discriminator
union {

u2 const_value_index;

{

u2 type_name_index;

u2 const_name_index;

} enum_const_value;

u2 class_info_index;

annotation annotation_value;

{

u2 num_values;

element_value values[num_values];

} array_value;

} value;

}

The union is discriminated by the tag item. Its possible values and their interpretation are given
in table 2.1. For primitive and String types, the const_value_index item is used, the constant
pool entry at that index giving the value. For enums, (nested) annotations, arrays and Class types,
constant pool entries are used as well.

Tag value Element type Tag value Element type
B byte C char
D double F float
I int J long
S short Z boolean
s String e enum constant
@ annotation type [array
c Class

Table 2.1: Tag values and their corresponding types

The RuntimeVisibleParameterAnnotations attribute

For methods, a special attribute RuntimeVisibleParameterAnnotations exists that allows individ-
ual parameters to be annotated. The format is almost the same as the RuntimeVisibleAnnotations
attribute, except that not just one list of annotations is stored, but one list for every parameter:

RuntimeVisibleParameterAnnotations_attribute {

u2 attribute_name_index;

u4 attribute_length;

u1 num_parameters;

{

u2 num_annotations;

annotation annotations[num_annotations];

} parameter_annotations[num_parameters];

}

The num_parameters byte stores the number of parameters3. Again, there exists a related at-
tribute RuntimeInvisibleParameterAnnotations with the obvious meaning.

3This actually duplicates information already available in the method descriptor, see 2.1.3

16 2 The class file format

Chapter 3

Implementation

3.1 Encoding of universe modifiers

First we specifiy a binary encoding for universe modifiers. For simple reference types, we have
four possibilities: a reference may be either peer, rep, readonly or may have no annotation. The
latter case only occurs when a method has a parameter of primitive type, the byte is then used as
a placeholder. We use a straight-forward 2-bit scheme, shown in table 3.1 to encode the universe
modifier of a simple reference type.

modifier binary encoding
(none) 00
peer 01
rep 10
readonly 11

Table 3.1: Binary encoding for simple reference types

Arrays of reference type have universee modifiers for both the elements and the array itself.
For instance, it is possible to define an array like this: rep peer Object[] ar; In this case the array
is owned by this, and its elements may refer to objects in the same context as the array. Some
combinations are not possible, becuase array elements are not allowed to have the rep modifier. So
to encode the modifiers of an array type, 4 bits are sufficient. We just reuse the encoding scheme
for simple reference types, and use the low 2 bits to encode the modifier of the array object, and
the subsequent 2 bits to encode the modifier of the array elements, as shown in table 3.2.

array modifier binary encoding
peer peer 0101
peer readonly 1101
rep peer 0110
rep readonly 1110
readonly peer 0111
readonly readonly 1111

Table 3.2: Binary encoding for array types

So one byte is sufficient to encode the universe modifiers of a simple reference or array type.
In the actual implementations we use the highest bit to indicate if the reference is an array. So
rep peer Object[] ar; becomes 10000110 = 0x86.

Method purity is encoded trivially with a single bit, as shown in table 3.3.

17

18 3 Implementation

method purity binary encoding
pure 1
(non-pure) 0

Table 3.3: Binary encoding for method purity

3.2 Implementation with simple attributes

This approach uses class, field and method attributes, as discussed in 2.2, to store universe modi-
fiers and method purity.

3.2.1 Classes

To enable future extensions and changes to this first encoding, we record the version of the encoding
used. We also include a flag to indicate if the class has been compiled with run-time support
enabled. We store the version string (e.g. ”1.0”) and the boolean flag in a class attribute. The
attribute has the following form:

universe_class {

u2 attribute_name_index;

u4 attribute_length;

u2 universe_version_index; // version of the encoding
u1 runtime_support; // indicates if run−time checks are enabled

}

attribute_name_index points to a constant pool entry holding the string ”org.multijava.universe -
class”. The class version is stored as a string in the constant pool, and universe_version_index
points to it. The boolean flag that indicates if the class has run-time support enabled is stored in
the runtime_support byte. The length of the attribute is always equal to 3.

Run-time support in the context of the Universe type system comprises checking casts of
reference types, and assignment of array elements. The mechanisms are illustrated in [12].

3.2.2 Fields

For a field of a reference type, we need to store the universe modifier of the field’s type. We use
a field attribute of the following form to store an encoded universe modifier using the scheme
described in 3.1.

universe_field {

u2 attribute_name_index;

u4 attribute_length;

u1 universe_modifier; // encoded universe modifier
}

The attribute’s length (stored in attribute_length) is always one, since one byte is sufficient to
store the universe modifier for any type. attribute_name_index points to a constant pool entry
holding the string ”org.multijava.universe field”. The universe_modifier byte stores the encoded
universe type modifier.

3.2.3 Methods

For every method, we need to store if the method is pure, the universe modifiers of the method’s
parameters, and the modifier of the return type. We use a method attribute of the following form
to store this information:

3.3 Implementation with annotations 19

universe_method {

u2 attribute_name_index;

u4 attribute_length;

u1 purity; // the method’s purity
u1 return_modifier; // return type modifier
u1 param_modifiers[attribute_length - 2]; // parameter modifiers

}

The attribute’s length depends on the number of parameters, and is given by 2 + num params.
attribute_name_index points to a constant pool entry holding the string ”org.multijava.universe -
method”. The purity byte indicates if the method is pure, return_modifier holds the universe
modifier of the return type, and param_modifiers are the universe modifiers for each parameter.

To simplify parsing, methods that do not return a value (i.e. have void return type) have a
dummy (i.e. zero) return_modifier, the same applies to parameters of primitive type. Their
respective bytes just serve as placeholders.

3.3 Implementation with annotations

The second approach uses the new Java annotation facility. Our compiler automatically inserts
annotations for fields, methods and classes. It is important to realize that we do not use annota-
tions at the source code level, we only deal with them at the storage level, in the class file. That is,
we insert them directly into the RuntimeVisibleAnnotations and RuntimeVisibleParameter-
Annotations attributes, and not into the actual source code. The latter would duplicate informa-
tion already available in the form of peer, rep, readonly and pure keywords. We will however
use the textual form of annotations in examples to illustrate how classes, fields and methods are
annotated, since showing the actual bytes would be rather cumbersome.

3.3.1 Annotation types

We use three different annotation types to store universe modifiers. All of them are annotated
with the Retention annotation, with a value of RetentionPolicy.RUNTIME, meaning that they
are accessible at run-time through reflective APIs.

UniverseClass

This annotation type serves the same purpose as the previously discussed universe_class at-
tribute, namely it stores the version of the universe encoding used, and a boolean flag that indicates
if the class has been compiled with run-time checks enabled.

@Retention(RetentionPolicy.RUNTIME)
public @interface UniverseClass {

/∗∗ the version of the Universe type system used to compile the class ∗/
public String version();
/∗∗ indicates if the class has run−time checks enabled or not ∗/
public boolean hasRuntimeSupport();

}

UniverseType

This annotation type is used to annotate fields, parameters and return types.

@Retention(RetentionPolicy.RUNTIME)
public @interface UniverseType {

/∗∗ return the universe of the annotated type, encoded in a byte ∗/

20 3 Implementation

public byte value();
}

Its only member, value(), is of type byte and contains the encoded universe modifier for the
annotated field, parameter or return type, as described in 3.1. We will use this annotation to store
the encoded universe type modifier for fields and method parameter and return types.

UniversePure

This annotation type has no members, these special annotations are called marker annotations. It
indicates if the annotated method is pure. If the annotation is not present, the method is deemed
non-pure.

@Retention(RetentionPolicy.RUNTIME)
public @interface UniversePure {

/∗∗ empty marker annotation ∗/
}

3.3.2 Classes

Classes are annotated with the UniverseClass annotation. A class that uses version 1.0 of the
encoding, and which has run-time checks enabled, would be annotated as follows:

@UniverseClass(version=”1.0”, hasRuntimeSupport=true)
public class C {

// ...
}

Both version and hasRuntimeSupport are given by the compiler, the latter is true if the compiler
was invoked with the dynchecks universe option.

3.3.3 Fields

For fields of a reference type, an annotation of type UniverseType is generated. Its value is the
encoded universe modifier. For example, the field public rep Object x; will become annotated
with the UniverseType annotation as follows:

@universes.UniverseType(2) // => 10 binary == rep
public Object x;

3.3.4 Methods

For methods, we store purity with the universes.UniversePure annotation. If the method has a
return value of reference type, we also add a universes.UniverseType annotation to the method,
which holds the encoded universe modifier of the return type. If the method has parameters of
reference type, we add a universes.UniverseType annotation to every such parameter. So a
method with signature
public pure readonly Object m(readonly Object x) will become annotated as follows:

@UniversePure()
@UniverseType(3) // => 11 binary == readonly
public Object m(@UniverseType(3) Object x)

3.4 Class loading 21

3.4 Class loading

When the compiler loads a class from a class file (as opposed to a source file), it does not know if
universe information is present, and if it is, in which form (i.e. attributes or annotations).

3.4.1 Classes

For classes, there are three possible scenarios. Either a universe_class attribute is present, or
a UniverseClass annotation, or neither. At present date the compiler first checks if the attribute
is present, if it is, the compiler uses the information from the attribute. If the attribute is not
present, it looks for the annotation. If that fails too, the compiler gives up, and assumes that
the class has no universe information associated with it (i.e. no version string and no runtime-
checks flag). Note that this means that if both an attribute and an annotation are present, the
information in the attribute is used.

In the present implementation, absence of both the attribute and the annotation does not
affect fields and methods. The compiler will try to find attributes or annotations on both fields
and methods even if the class-wide information (e.g. the version of the encoding) is not present.
This simplification was chosen because the classes representing class, field and method structures
are modular, and introducing the dependency would have lead to much extra code. For instance if
the compiler would look for universe information in a field structure, it would have to follow a link
to the enclosing class structure, and first check if the class has a universe attribute or annotation.

3.4.2 Fields

For fields, the same three possibilities exist. Either a universe_field attribute is present, or
a UniverseField annotation, or neither. Again the compiler first checks for the existence of the
attribute and then looks for the annotation. If neither is present, the field (assuming it is of a
reference type) is treated as being implicitly peer.

3.4.3 Methods

For methods, either the universe_method attribute is present, or a combination of annotations,
or neither. The compiler first checks for existence of the universe_method attribute, and if it
is present, gathers all the information from the attribute. If the universe_method attribute is
not present, the compiler starts looking for annotations. If a UniversePure annotation is present,
the method is considered pure, and non-pure otherwise. If a UniverseType annotation is present,
the type modifier for the return type is read from it, otherwise the return type (again assuming
it is a reference type) is treated as being implicitly peer. If the RuntimeVisibleParameter-
Annotations attribute is present, the compiler then checks for every parameter if it is annotated
with a UniverseType annotation, and sets the parameter type accordingly. If neither a uni-
verse_method attribute nor annotations are present, the method is treated as being non-pure,
with both parameter and return types being implicitly peer.

3.5 Comparison of the two approaches

3.5.1 Reflection

While the annotation-based approach seems to be more complex than the simple attribute-based
approach, it has one considerable advantage: Reflection is supported through the java.lang.-
reflect API. However, reflection will only work when using the most recent Java environment,
J2SE 5.0. Earlier versions of the JVM are required to silently ignore the RuntimeVisible-
Annotations and its companion attributes. Also, the annotation types shown in 3.3.1 have to
be distributed along with the program. Reflection can be made to work with the attribute-based

22 3 Implementation

approach as well, by using a third-party bytecode processing libary like BCEL [3]. However, the
resulting solution would be considerably less elegant.

3.5.2 Space usage

In terms of space, the attribute-based approach is more efficient. Every annotation takes 4 bytes of
space for naming the annotation type, and giving the number of name/value pairs. Then for every
name/value pair, 2 bytes are needed for identifying the name of the member, and an additional
tag byte to identify the type of the value. Values are not stored ”inline”, but rather as items in
the constant pool (e.g. integer constants), requiring an additional 2 bytes for the indirection.

3.5.3 Backward compatiblity

Another issue arises when generating class files with annotations. For reflection to work, the class
file has to have its major and minor version set to 49.0 or higher1. Older Java virtual machines
(e.g. the still widely used J2SE 1.4 VM) will then be unable to use this class. However, with rising
acceptance of J2SE 5.0, we hope that this problem will eventually become insignificant.

3.5.4 Remarks

It is actually possible to use both implementations, but one does not gain much, since for an-
notations to be useful (i.e. making reflection possible) the class file version always has to be
incremented. Also, this would definitely not be very space-efficient. Table 3.4 summarizes the
advantages and disadvantages of the proposed implementations.

Attributes Annotations
Reflection - +

Space usage + -
Compatibility + -

Table 3.4: Comparison of the two approaches

1This is the value that the current version of javac included in J2SE 5.0 produces.

Chapter 4

Example

Let us now look at an example Java program with universe modifiers, and how these modifiers
appear in the generated class file.

4.1 Example program

Listing 4.1 shows a simple stack program. The stack has the usual push/pop operations, along
with a method to determine its current size. The stack is implemented internally as a linked list
of nodes. The nodes form the representation of the stack, and therefore have the rep modifier.
The stack stores references to arbitrary objects, which may be in any context, so they must be
readonly. The size () method does not alter the state of the Stack object, so it has the pure
modifier. The Node class is not shown here to save space.

public class Stack {
public Stack() { top = null; }

public void push(readonly Object data) {
rep Node n = new rep Node(top, data);
top = n;

}

public readonly Object pop() {
readonly Object result = top.data;
top = top.next;
return result;

}

public pure int size() {
int result = 0;
readonly Node n = top;
while (n != null) {

n = n.next; result++;
}
return result;

}

private rep Node top;
}

Listing 4.1: A simple stack

23

24 4 Example

4.2 Disassembling the example program

The Java disassembler javap allows us to disassemble the generated class file. Using the parameter
-verbose it will also output the generated universe attributes. Since it does not know how to
interpret them, it will just show the raw bytes. The bytecode of the methods is left out, for saving
space, and because it contains no information related to this project.

4.2.1 Attributes

We now compile the Stack class by invoking the MultiJava compiler with the following command:
java org.multijava.mjc.Main --universes Stack.java
The --universes attribute enables parsing, typechecking and bytecode support using attributes.
The universe attributes are underlined, and comments have been added to their data to help
decipher it. The ”polished” output of javap is shown below.

Compiled from "Stack.java"

public class Stack extends java.lang.Object

org.multijava.universe_class: length = 0x3

00 25 01 // encoding version is at constant pool [37], run−time support enabled
SourceFile: "Stack.java"

Signature: length = 0x2

00 17

minor version: 3

major version: 45

Constant pool:

const #1 = Asciz Stack;

const #2 = class #1;

const #3 = Asciz java/lang/Object;

const #4 = class #3;

const #5 = Asciz top;

const #6 = Asciz LNode;;

const #7 = Asciz Signature;

const #8 = Asciz org.multijava.universe_field; // name of the universe field attribute
const #9 = Asciz <init>;

const #10 = Asciz ()V;

const #11 = Asciz Code;

const #12 = NameAndType #9:#10;

const #13 = Method #4.#12;

const #14 = NameAndType #5:#6;

const #15 = Field #2.#14;

const #16 = Asciz LineNumberTable;

const #17 = Asciz org.multijava.universe_method; // name of the universe method attribute
const #18 = Asciz pop;

const #19 = Asciz ()Ljava/lang/Object;;

const #20 = Asciz Node;

const #21 = class #20;

const #22 = Asciz data;

const #23 = Asciz Ljava/lang/Object;;

const #24 = NameAndType #22:#23;

const #25 = Field #21.#24;

const #26 = Asciz next;

const #27 = NameAndType #26:#6;

const #28 = Field #21.#27;

const #29 = Asciz push;

const #30 = Asciz (Ljava/lang/Object;)V;

const #31 = Asciz (LNode;Ljava/lang/Object;)V;

const #32 = NameAndType #9:#31;

const #33 = Method #21.#32;

4.2 Disassembling the example program 25

const #34 = Asciz size;

const #35 = Asciz ()I;

const #36 = Asciz org.multijava.universe_class; // name of the universe class attribute
const #37 = Asciz 1.0; // version of the universe encoding used
const #38 = Asciz InnerClasses;

const #39 = Asciz SourceFile;

const #40 = Asciz Stack.java;

{

private Node top;

Signature: length = 0x2

00 06

org.multijava.universe_field: length = 0x1

02 // field ”top” has rep modfier

public Stack();

Signature: length = 0x2

00 0A

org.multijava.universe_method: length = 0x2

00 00 // constructor is non−pure, and has no return type (special case)

public java.lang.Object pop();

Signature: length = 0x2

00 13

org.multijava.universe_method: length = 0x2

00 03 // pop() is non−pure, and its return type is readonly

public void push(java.lang.Object);

Signature: length = 0x2

00 1E

org.multijava.universe_method: length = 0x3

00 00 03 // push() is non−pure, its return type has no annotation , and its parameter is readonly

public int size();

Signature: length = 0x2

00 23

org.multijava.universe_method: length = 0x2

01 00 // size () is pure, and its return type has no annotation (primitive type)

}

Listing 4.2: javap output for attribute-based approach

Using the space-efficient attribute-based approach, the generated class file’s size is 847 bytes.

4.2.2 Annotations

Now we use the annotation-based approach. We compile the class using the command:
java org.multijava.mjc.Main --universesx=parse,check,annotations,dynchecks Stack.java
Here we specify that we would like to use annotations instead of attributes. The --universesx
option allows fine-grained control over the compiler’s universe settings. Here we enable parsing,
type checking, rum-time checks and output of annotations.

Compiled from "Stack.java"

public class Stack extends java.lang.Object

RuntimeVisibleAnnotations: length = 0x10

00 01 00 29 00 02 00 2A 73 00 2B 00 2C 5A 00 2D

// This class has one annotation , its type is at pool [41] (UniverseClass)
// The annotation has 2 members, the first member’s name is at pool [42]

26 4 Example

// (version), and stores a string (tag = 0x73 = s), which lies at pool [43]
// (”1.0”). The second member’s name is at pool [44] (hasRuntimeSupport),
// is of type boolean (tag = 0x5A = ’Z’) and is represented by the
// integer constant at pool [45] (1 = true)
SourceFile: "Stack.java"

Signature: length = 0x2

00 19

minor version: 0

major version: 49

Constant pool:

const #1 = Asciz Stack;

const #2 = class #1;

const #3 = Asciz java/lang/Object;

const #4 = class #3;

const #5 = Asciz top;

const #6 = Asciz LNode;;

const #7 = Asciz Signature;

const #8 = Asciz RuntimeVisibleAnnotations;

const #9 = Asciz Lorg/multijava/universes/UniverseType;; // annotation type
const #10 = Asciz value; // member of UniverseType annotation
const #11 = int 2;

const #12 = Asciz <init>;

const #13 = Asciz ()V;

const #14 = Asciz Code;

const #15 = NameAndType #12:#13;

const #16 = Method #4.#15;

const #17 = NameAndType #5:#6;

const #18 = Field #2.#17;

const #19 = Asciz LineNumberTable;

const #20 = Asciz pop;

const #21 = Asciz ()Ljava/lang/Object;;

const #22 = Asciz Node;

const #23 = class #22;

const #24 = Asciz data;

const #25 = Asciz Ljava/lang/Object;;

const #26 = NameAndType #24:#25;

const #27 = Field #23.#26;

const #28 = Asciz next;

const #29 = NameAndType #28:#6;

const #30 = Field #23.#29;

const #31 = int 3;

const #32 = Asciz push;

const #33 = Asciz (Ljava/lang/Object;)V;

const #34 = Asciz (LNode;Ljava/lang/Object;)V;

const #35 = NameAndType #12:#34;

const #36 = Method #23.#35;

const #37 = Asciz RuntimeVisibleParameterAnnotations;

const #38 = Asciz size;

const #39 = Asciz ()I;

const #40 = Asciz Lorg/multijava/universes/UniversePure;; // annotation type
const #41 = Asciz Lorg/multijava/universes/UniverseClass;; // annotation type
const #42 = Asciz version; // member of UniverseClass annotation
const #43 = Asciz 1.0; // version of encoding
const #44 = Asciz hasRuntimeSupport; // member of UniverseClass annotation
const #45 = int 1;

const #46 = Asciz InnerClasses;

const #47 = Asciz SourceFile;

const #48 = Asciz Stack.java;

4.2 Disassembling the example program 27

{

private Node top;

Signature: length = 0x2

00 06

RuntimeVisibleAnnotations: length = 0xB

00 01 00 09 00 01 00 0A 42 00 0B

// The field top has one annotation , its type is at pool [9] (UniverseType).
// The annotation has one member, its name is at pool [10] (value), and
// its value is a byte (tag = 0x42 = ’B’) stored in the integer constant
// at pool [11] (2 = 10 binary = rep).

public Stack();

Signature: length = 0x2

00 0D

public java.lang.Object pop();

Signature: length = 0x2

00 15

RuntimeVisibleAnnotations: length = 0xB

00 01 00 09 00 01 00 0A 42 00 1F

// The method pop() has one annotation, its type is at pool [9] (UniverseType).
// The annotation has one member, its name is at pool [10] (value), and
// its value is a byte (tag = 0x42 = ’B’) stored in the integer constant
// at pool [31] (3 = 11 binary = readonly). This means that the return type
// of the method has the readonly modifier .

public void push(java.lang.Object);

Signature: length = 0x2

00 21

RuntimeVisibleParameterAnnotations: length = 0xC

01 00 01 00 09 00 01 00 0A 42 00 1F

// The method push() has one parameter, that parameter has one annotation ,
// its type is at pool [9] (UniverseType). The annotation has one member
// named ”value” of type byte , represented by the integer constant at
// pool [31] (3 = 11 binary = readonly). This means the first parameter
// of the method has the readonly modifier .

public int size();

Signature: length = 0x2

00 27

RuntimeVisibleAnnotations: length = 0x6

00 01 00 28 00 00

// The method size() has one annotation , its type is at pool [40] (UniversePure)
// The annotation has no members (i.e . it is a marker annotation).

}

Listing 4.3: javap output for annotation-based approach

The size of the class file generated by the annotation-based approach is 988 bytes, making it a
total of 141 bytes larger than the one generated with the attribute-based approach.

28 4 Example

Chapter 5

MultiJava compiler and JML
extensions

Several extensions were made to the MultiJava [2] compiler mjc and related packages, only a
high-level overview is given here.

5.1 Attributes

5.1.1 New attribute classes

Several new classes were introduced for supporting the universe attributes defined in the previous
chapters, and the attributes used for annotations (the MultiJava compiler does not yet support
annotations).

Package org.multijava.util.classfile

• UniverseFieldAttribute: Implements a universe field attribute.

• UniverseMethodAttribute: Implements a universe method attribute.

• UniverseClassAttribute: Implements the universe class attribute.

All attributes inherit from org.multijava.util.classfile.Attribute. The universe attributes
are just wrappers for their uninterpreted, raw data values (e.g. a single byte for UniverseField-
Attribute). Two wrapper classes, CUniverseTypeAnnotation and CUniverseMethodAnnotation
were added to the package org.multijava.mjc to simplify code. They basically parse the raw
data provided by the universe attributes and provide accessor functions.

5.1.2 Attribute parsing

The MultiJava compiler (mjc) uses a chain of responsibility pattern (described in [6]) to parse
attributes from class files. The attribute is passed along a chain of attribute parsers, until some
parser recognizes it, or it reaches the end of the chain, in which case the attribute cannot be recog-
nized. So we simply create a new class UniverseAttributeParser which implements an abstract
AttributeParser, and append the singleton instance to the chain. This parser recognizes the
universe attributes, and returns objects of type UniverseFieldAttribute, UniverseMethodAt-
tribute, and UniverseClassAttribute.

To support annotations, the existing attribute parser BaseAttributeParser had to be ex-
tended as well, enabling it to recognize the RuntimeVisibleAnnotations attribute and its com-
panion attributes.

All these classes are located in the package org.multijava.util.classfile.

29

30 5 MultiJava compiler and JML extensions

5.2 Annotations

Apart from the new annotation attributes, several annotation-related classes were added to the
org.multijava.util.classfile package as well. These represent the data structures used for
storing annotations in the class file, as well as the attributes that are added to annotated program
elements.

Package org.multijava.util.classfile

• Annotation: Represents the annotation data structure. Holds a list of element/value pairs.

• Annotation.ElementValuePair: Nested class representing a name/value pair stored in an
annotation structure. Contains an ElementValue.

• ElementValue: Abstract class representing a value in a name/value pair.

• AnnotBooleanElementValue, AnnotByteElementValue , ...: Concrete classes representing
different types of values in annotation structures.

• RuntimeVisibleAnnotationsAttribute: Implements a RuntimeVisibleAnnotations attribute
as specified in [10].

• RuntimeVisibleParameterAnnotationsAttribute: Implements a RuntimeVisibleParameter-
Annotations attribute as specified in [10].

These classes represent the low-level infrastructure for the annotations facility, and are imple-
mented in a reusable way. Full support for annotations (on the source code level) can be built on
top of these classes.

The universe annotation types described in 3.3.1 were added to the org.multijava.universes
package.

Package org.multijava.universes

• UniverseClass: Annotation type for storing the version of the encoding and availability of
run-time checks.

• UniverseType: Annotation type storing an encoded type modifier.

• UniversePure: Marker annotation type for method purity.

5.3 Disassembler

Some straightforward modifications to the disassembler org.multijava.dis were made, namely
to the Disassembler class, to support displaying of universe information from .class files. This
is useful because it allows us to create testcases where we compare the output of the disassembler
to the expected output and then check if everything has been written to the class file correctly.
The modifications were minimal, since most of the work is already done in other classes. Again
we insert our UniverseAttributeParser instance into the chain of responsiblity to gain access to
the extended information stored in the universe attributes.

Package org.multijava.dis

• Main: Insert universe attribute parser into chain of responsibility.

• Disassembler: Changed output functions to also output universe related information.

• DisOptions: Added new command-line switch -e (--universes) to toggle output of uni-
verse information.

5.4 Modifications to compiler 31

5.4 Modifications to compiler

Several modifications to the compiler org.multijava.mjc had to be made in order to intergate
the new functionality.

Package org.multijava.mjc

• Main: Insert universe attribute parser into chain of responsibility

• CType: Extended signature parsing methods to call getTypeRep() with correct universe
modifier

• CClassType, CArrayType: New method to get the type’s encoded universe modifier

• CUniverse, CUniversePeer, CUniverseImplicitPeer, CUniverseRep, CUniverseReadonly:
new methods to get the byte constant representing a particular universe

• CSourceMethod: Add universe method attribute or annotation to MethodInfo output

• CBinaryMethod: Pass universe modifiers to type loader

• CField: Add universe field attribute or annotation to FieldInfo output

• CBinaryField: Pass universe modifier to type loader

• CClass: Add method for determining Universe version and availability of run-time checks

• CSourceClass: Add universe class attribute or annotation to ClassInfo output

• CBinaryClass: Enable access to version of universe encoding and availability of run-time
checks

+ CUniverseTypeAnnotation, CUniverseMethodAnnotation: new wrapper classes for uni-
verse fields and methods

5.4.1 Modifications to class file utility classes

Several classes in org.multijava.util.classfile had to be extended to enable convenient access
to universe information stored in attributes or annotations.

Package org.multijava.util.classfile

• ClassInfo: New method to extract the version of the Universe type system used to compile
this class, and check if the class has run-time checks enabled.

• FieldInfo: New method to extract the universe modifier from a universe field attribute or
annotation.

• MethodInfo: New methods to extract purity and universe modifiers for return and parameter
types from a universe method attribute or annotations.

+ UniverseByteConstants: New class containing utility methods to work with the byte con-
stants representing universe modifiers in annotations and attributes.

32 5 MultiJava compiler and JML extensions

5.5 Testcases

A number of very simple testcases were created in the org.multijava.mjc.testcase.universes.-
codegen package to test if the universe modifiers are written correctly to the class file. Separate
testcases are provided for both the attributes-based and the annotation-based approach. They
work by first compiling a number of universe-enabled Java source files, then disassembling the
resulting class files and comparing the output of the disassembler with the expected output. This
is one of the reasons that the disassembler was modified, so it could be used to validate testcases,
otherwise the disassembler would ignore universe attributes or annotations. The testcases are
integrated into the MultiJava testing framework, and can be invoked by executing the runtests
target of the project’s Makefile.

5.6 JML

The Java Modelling Language [8] is a behavioral interface specification language that can be used
to specify the behavior of Java classes. The JML tools are built on top of the MultiJava compiler
and its utility classes, so they can immediately benefit from the extensions described in the previous
chapters.

5.6.1 jmlspec

The jmlspec (org.jmlspecs.jmlspec) tool generates specification skeletons from Java source
files, and also from class files. In the latter case it can now also extract universe information for
fields and methods when invoked with the --universes command-line switch. The only class
that had to be slightly modified is JspBinaryPrinter, changes being minimal. The modifications
were similar to the ones in the disassembler (see 5.3), since all the actual work of reading universe
annotations and attributes is done in the MultiJava class file packages.

The specification skeleton generated by jmlspec when invoked with the class file for the Stack
example is shown in listing 5.1. Without the changes, the universe modifiers would not have been
extracted from the class file.

// Generated by jmlspec from the . class file

public class Stack extends java.lang.Object {

// CLASS SPECIFICATIONS
/∗@

@
@∗/

// FIELDS

// METHODS AND CONSTRUCTORS

/∗@
@
@∗/

public Stack();

/∗@
@
@∗/

public /∗+@ readonly @+∗/ java.lang.Object pop();

5.6 JML 33

/∗@
@
@∗/

public void push(/∗+@ readonly @+∗/ java.lang.Object Param0);

/∗@
@
@∗/

public /∗+@ pure @+∗/ int size();
}

Listing 5.1: jmlspec output for Stack.class

34 5 MultiJava compiler and JML extensions

Chapter 6

Conclusion and future work

6.1 Conclusion

Bytecode support for the Universe type system can be implemented in a way that does not conflict
with the Java class file format. Two solutions to the problem have been implemented. With rising
adoption of J2SE 5.0, it is expected that the annotation-based approach will prevail, because of its
favorable properties that allow reflection through the standard API. However, the attribute-based
approach is less demanding in terms of space, and does not have any backward compatibility
issues. It is therefore the preferred solution for the time being.

6.2 Bytecode verification

When the JVM attempts to load a class from a .class file, it first checks for basic integrity of
the class file, i.e. correct magic number, proper length of attributes, no superficial information in
constant pool, and so on. Then the verifier proceeds and performs some additional verification,
including checks if every class (except Object) has a direct superclass, final classes are not
subclassed or final methods overridden and so on.

When these static constraints are fulfilled, the verifier checks the bytecode for every method
by performing a data-flow analysis using an abstract interpreter. The abstract interpreter models
the effect of instructions on the operand stack and local variables at a type level. For instance,
if the instruction uses a local variable, it checks if the specified variable contains a value of the
correct type. If it uses a value on the operand stack, it checks if the operand stack has a value of
the correct type on top. The exact process is described in detail in [9].

For the Universe type system, an extended verifier which takes the universe types into con-
sideration is needed. In particular, it needs to check if the smallest common super type on the
stack or in a register is compatible with the instruction (e.g. no invocations of non-pure methods
on readonly references). The extended verifier could use the information stored in attributes or
annotations to gain the needed type information, so no additional information has to be stored.

6.3 Reflection

Both solutions allow reflection, though the annotation-based approach is preferred because anno-
tations are accessible directly through the J2SE 5.0 Reflection API, so no additional libraries are
needed. The information gained through reflection could be used by software development tools
for a variety of purposes. Reflection is also useful for the optimization of runtime support, as
described below.

35

36 6 Conclusion and future work

6.4 Optimization of Runtime Support

Runtime support for the Universe type system, as described in [12], can be optimized when it
is known if a compiled class has runtime support enabled. In particular, object creation can be
facilitated. When runtime support is enabled, newly created objects are registered in an owner
hashtable, to store the ownership relation between objects. A problem arises when the newly
allocated object attempts to create new objects itself in its constructor, because those objects have
to be registered in the hashtable relative to the current object, which at that point in time has not
been registered yet, because the registration happens after the constructor is called. Therefore,
a second registration of the object is done at the beginning of the constructor, before any other
objects are created. If it is known beforehand that the class is universe-aware, the call to the
hashtable method after the constructor is not necessary, because classes with runtime support
register themselves when instantiated.

Unfortunately this optimization can be problematic because the class of the instantiated object
could later be recompiled without runtime support. This would lead to the object no longer being
entered into the owner hashtable, because the code that creates the object was not recompiled as
well, and therefore still assumes that the class is universe-aware.

Bibliography

[1] B. Bokowski and J. Vitek. Confined types. In Proceedings of Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), ACM SIGPLAN Notices, 1999.

[2] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava: Design rationale, compiler imple-
mentation, and user experience. Technical Report 04-01, Iowa State University, Dept. of Computer Science, January
2004. Submitted for publication.

[3] Markus Dahm. BCEL: The Bytecode Engineering Library. http://jakarta.apache.org/bcel/.

[4] IBM DeveloperWorks. Annotations in Tiger, Part 1: Add metadata to Java code. http://www-106.ibm.com/
developerworks/java/library/j-annotate1/.

[5] IBM DeveloperWorks. Annotations in Tiger, Part 2: Custom annotations. http://www-106.ibm.com/developerworks/
library/j-annotate2.html.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995.

[7] Sun Microsystems Inc. JSR 175: A Metadata Facility for the Java Programming Language. http://www.jcp.org/en/
jsr/detail?id=175.

[8] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface specification language for
Java. Technical Report 98-06x, Iowa State University, Department of Computer Science, 2004. See www.jmlspecs.org.

[9] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated Reasoning, 30(3–4):235–
269, 2003.

[10] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[11] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency control. Technical Report 279,
Fernuniversität Hagen, 2001.

[12] Daniel Schregenberger. Runtime checks for the Universe type system. Semester Thesis, October 2004.

37

http://jakarta.apache.org/bcel/
http://www-106.ibm.com/developerworks/java/library/j-annotate1/
http://www-106.ibm.com/developerworks/java/library/j-annotate1/
http://www-106.ibm.com/developerworks/library/j-annotate2.html
http://www-106.ibm.com/developerworks/library/j-annotate2.html
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175
www.jmlspecs.org

	1 Introduction
	1.1 Aliasing in object-oriented programming
	1.2 The Universe type system
	1.3 Classification of references
	1.4 Bytecode support

	2 The class file format
	2.1 Structure of a class file
	2.1.1 Classes
	2.1.2 Fields
	2.1.3 Methods

	2.2 Attributes
	2.2.1 Structure of an attribute
	2.2.2 Defining custom attributes

	2.3 Annotations
	2.3.1 Introduction
	2.3.2 Annotation types
	2.3.3 Annotating program elements
	2.3.4 How annotations are stored in the class file

	3 Implementation
	3.1 Encoding of universe modifiers
	3.2 Implementation with simple attributes
	3.2.1 Classes
	3.2.2 Fields
	3.2.3 Methods

	3.3 Implementation with annotations
	3.3.1 Annotation types
	3.3.2 Classes
	3.3.3 Fields
	3.3.4 Methods

	3.4 Class loading
	3.4.1 Classes
	3.4.2 Fields
	3.4.3 Methods

	3.5 Comparison of the two approaches
	3.5.1 Reflection
	3.5.2 Space usage
	3.5.3 Backward compatiblity
	3.5.4 Remarks

	4 Example
	4.1 Example program
	4.2 Disassembling the example program
	4.2.1 Attributes
	4.2.2 Annotations

	5 MultiJava compiler and JML extensions
	5.1 Attributes
	5.1.1 New attribute classes
	5.1.2 Attribute parsing

	5.2 Annotations
	5.3 Disassembler
	5.4 Modifications to compiler
	5.4.1 Modifications to class file utility classes

	5.5 Testcases
	5.6 JML
	5.6.1 jmlspec

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Bytecode verification
	6.3 Reflection
	6.4 Optimization of Runtime Support

