
Practical Runtime Universe Type Inference

Marco Bär

Master Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

November 16, 2005 — May 16, 2006

Supervised by:
Dipl.-Ing. Werner M. Dietl
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

ii

Abstract

The Universe type system provides means to structure the heap memory into so-called Universes.
This structuring makes it easier to reason about object structures on the heap by assigning all
references an additional Universe type. These additional types specify the access rights of the
holder of such a reference. In this work, we extended an existing Runtime Inference tool that
infers Universe annotations for existing Java programs through runtime observation of a test case.

We have added the possibility to handle arrays and static methods. Furthermore, we developed
a method body inference algorithm using abstract interpretation of the types on the method’s
operand stack and registers. The abstract interpretation is a static analysis that uses the results
of the runtime inference as input. The tool is now able to infer types of local variables, new-
statements, static method invocations, and it is able to insert Universe type casts where it is
necessary.

To improve the code coverage of our Runtime Inference Tool, we have added the possibility
to combine several test cases. The dynamic heap structure of the different test cases is globally
harmonized and Universe annotations for the source code is inferred. The possibility to join several
test cases increases the quality of the inferred annotations significantly.

iii

iv

Acknowledgments

First of all, I would like to thank my girlfriend Serena for supporting me during the course of this
thesis. Especially, I would like to say ”sorry” for all the time I have spent working on this thesis
instead of spending time with you.

Special thanks to my supervisor Werner Dietl for taking so much time to help me with this
thesis, for his useful advice and comments on the report.

Thanks to Michael Szönyi for the peer review of this report.

Finally, I would like to thank my parents for supporting me throughout my studies at the ETH
and for making my life beyond school as easy as possible.

v

vi

Contents

1 Introduction 1
1.1 Universe Type System . 1
1.2 Goal . 4
1.3 Outline . 4

2 Runtime Inference Tool 5
2.1 Algorithm Overview . 5
2.2 Implementation . 6
2.3 Limitations of Version 1 . 9

3 Static Methods & Object Creation 11
3.1 Instance Method Calls . 11
3.2 Static Method Calls . 11
3.3 Implementation . 15
3.4 Annotation Output . 17

4 Arrays 19
4.1 Arrays in the Universe type system . 19
4.2 One-dimensional Array Operations . 20
4.3 Multidimensional Array Operations . 24
4.4 Implementation . 27

4.4.1 Bytecode Instrumentation . 27
4.4.2 Annotation and Harmonization . 31

5 Annotation of Method Bodies 35
5.1 Methods in Java . 35
5.2 Method Bodies . 36
5.3 Bytecode Instrumentation . 38
5.4 Abstract Interpretation . 39

5.4.1 Algorithm Overview . 39
5.4.2 Detailed Description of the Algorithm . 42

5.5 Implementation . 45
5.5.1 Java type representation . 46
5.5.2 Verification visitors . 46
5.5.3 Indexing within Method Bodies . 47

6 Joining multiple Test runs 49
6.1 Information separation . 49
6.2 Visitors . 50
6.3 Merge Example . 52

vii

viii CONTENTS

7 Results and future work 55
7.1 Program Examples . 55

7.1.1 Producer Consumer . 55
7.1.2 Array Example . 57
7.1.3 LinkedList . 59
7.1.4 Tree . 62

7.2 Related work . 64
7.3 Future work . 65
7.4 Conclusion . 66

A State Transition Rules 69

B Tree Example 75

C Agentoutput XML Schema 83

D Annotations XML Schema 87

E Configuration XML Schema 97

Definition of Terms

Term Explenation
EOG Extended Object Graph.
JVM Java Virtual Machine.
JVMTI Java Virtual Machine Tooling Interface.
JNI Java Native Interface.
JDK Java Development Kit.
JML Java Modeling Language.
Array Component A component of an array. An array object contains of a number of

variables called components.
Field Fields are variables of a class type (either instance or class variables).
Instance Variable A field that is not declared static is called an instance variable.
Class Variable A field that is declared static is called a class variable.

Table 1: Notations. Most of the definitions are taken from the Java Language Specification [13]
or the Java VM Specification [25].

ix

x CONTENTS

Chapter 1

Introduction

The Universe type system provides means to structure the heap memory into so-called Universes.
This structuring makes it easier to reason about object structures on the heap. The structuring
of the heap is performed by assigning each reference in the program an additional Universe type
(also referred to as Ownership modifier). The Universe type system will be described in more
detail in Section 1.1.

Runtime Universe type inference is trying to infer these Ownership modifiers for all variables of
a given Java program by examining the execution of a test case of this program. The representation
of the dynamic heap structure that was generated throughout this test case has to be mapped to
the static structure of the source code. This way, we may gain insight on how well the Universe
type system can be applied to real-world problems, i.e. how well it maps to the dynamic object
structure on the heap. On the down-side however, runtime inference has to deal with code coverage
issues like any other test based approach. Bad code coverage may lead to incomplete or even wrong
inference of Universe types.

The goal of this Master thesis is to bring the existing Runtime Inference tool developed by
Frank Lyner [19] to a stage where no restrictions on the input program are necessary and the
Inference tool produces the desired output. The Inference tool should produce output that can be
used to annotate existing Java source code. The annotated source code should then be compilable
by the MultiJava[7] compiler into which the Universe type system was integrated.

1.1 Universe Type System

Aliasing

In object-oriented programming languages, every access to an object is done through a reference.
An inevitable effect of this mechanism is the introduction of aliases. We speak of aliasing when
two or more variables hold a reference to the same object. In some cases this is voluntary and
brings benefits (e.g. parameter object can be passed by reference and do not need to be copied),
in other cases aliasing is not wanted and introduces difficulties. This is why every object-oriented
programming language has a notion of access modifiers which regulate the access of variables
to some extent. However, the common access modifiers for Java (public, protected, package,
private) have proven not to be powerful enough to really take advantage of formal methods such
as invariants or pre- and postconditions, not speaking of even more sophisticated ones. Two
common examples where Java access modifiers fail due to aliasing are reference leaking (Listing
1.1) and reference capturing (Listing 1.2).

Reference leaking is the leaking of implementation details to the outside. In the example, a
reference to the private array b is passed to the caller of the method getB(). A hostile caller can now
simply break A’s invariant by assigning a value greater than 10 to an array component. In order
to prove the invariant, it is therefore not enough to show that the class invariant of A is preserved
by all methods of A itself. Additionally, it needs to be proved that all methods of all classes in

1

2 1 Introduction

the system preserve the invariant, which is definitely not desirable. Reference capturing has the
same effect as leaking. The mechanism of getting the reference to the internal representation of
the structure is different and can be seen in the second example.

Listing 1.1: Reference Leaking. The public method getB() leaks a reference to the private array b.
A caller of getB() can break A’s invariant.
class A{

// invariant : b[i] <= 10, for all i
private int [] b; //private object should not be modifiable from the outside

public int [] getB(){
return b; //leaks b

}
}

class C{
public void violate1 (A a){

int [] b= a.getB();
b[1]= 12; //breaks A’s invariant

}
}

Listing 1.2: Reference Capturing. Method setB() captures the passed reference. The caller of the
method still has access to the private array b and can break A’s invariant.
class A{

// invariant : b[i] <= 10, for all i
private int [] b;

public void setB(int [] newB){
for (i=0; i< newB.length; i++){

if (newB[i] > 10){ //Checks the invariant
return;

}
}
b= newB; //capture newB

}
}

class C{
public void violate2 (A a){

int [] b= new int[2];
b[0]=1;
b[1]=2;
a.setB(b);
b[1]= 12; //breaks A’s invariant

}
}

Universes

The central idea of the Universe type system is the structuring of the heap into Universes (generally
referred to as contexts). Every object belongs to a context and each context has at most one

1.1 Universe Type System 3

owner. The whole hierarchy is rooted at the root context which is the only context not owned by
a particular object. All objects that are created from the main() method are added to this context
and have no owner, all other objects belong to the owner of the context they belong to. This idea
originates in the work The Geneva convention on the treatment of object aliasing [15] by Hogg et
al.

In the Universe type system, each reference needs to be assigned a Universe type that is
dependent on the relationship between the source and the target of the reference. There are three
Universe types describing this relationship:

• peer The source of the reference and the target of the reference are in the same context.

• rep The target of the reference is in the context owned by the source.

• readonly Nothing can be said about the relationship of the two objects.

Write access is only granted for rep and peer references, but not for readonly ones. I.e. write
accesses across context boundaries are not allowed.

Subtyping

The subtype relation on Universe types follows the subtype relation in Java. Every rep and peer

type of a class is a subtype of the readonly type of the same class. If one class is a subtype of
another class in Java, it is also a subtype in the Universe type system, if its Universe type is in a
subtype relationship to the Universe type of the other class (see Figure 1.1).

Figure 1.1: Subtyping relationship between Universe types. T is a subtype of S; peer and rep are
subtypes of readonly.

Type Combinator

In order to determine the resulting Universe type of a dereferencing chain, e.g. a field access on an
object such as x. f, the type modifier of the first object and the type modifier of the second object
have to be considered. For this, the type combinator matrix in Table 1.1 is applied. The Universe
type of the first object is displayed in the first column, the Universe type of the second object in
the top row. For the previously mentioned field access x. f, x is the first object and f the second.
The type combinator is also used to get the Universe type of method arguments or return types,
because they have to be interpreted relative to the target object.

4 1 Introduction

* peer rep readonly
peer peer readonly readonly
rep rep readonly readonly

readonly readonly readonly readonly

Table 1.1: Type Combinator of the Universe Types. The this reference is always a peer reference.
If the first parameter is a this reference, the type combinator is not applied.

Method calls

In general, a method call on an object is considered to be a write access, because the method
may change the state of the object. However, this would mean that no methods can be called
on readonly objects, which is far too restrictive. This is why the notion of pure methods was
introduced. Pure methods may not change the state of any existing object, they may only call
other pure methods, and all parameters must be readonly.

Instance methods always run in the context of the target object. Since static methods do not
have a target object, their execution context needs to be specified upon the invocation of the
method. Static methods may be executed either in the peer or rep context of the caller method.
A more detailed description of static method calls follows in Chapter 3.

Incorporation into Java

The Universe type system is integrated into the MultiJava compiler [7] and the Java Modeling
Language (JML) Tools. Existing Java source code needs to be annotated with Universe types
and can then be compiled with the MultiJava compiler. The generated bytecode can be run by a
normal Java Virtual Machine; all Universe type checks are added using normal bytecode that is
injected (e.g. a non-readonly check on a target before method invocation).

1.2 Goal

Lyner [19] developed the basic algorithms and provided a prototypical implementation of the
Runtime Inference algorithm. The goal of this thesis is to extend his work to be practically
usable. This means that there should be no restrictions on the input program of the tool. Namely,
array annotation, static method handling, and method body annotation have to be implemented.
The code coverage of test cases should be improved, such that our tool produces good results.

1.3 Outline

In Chapter 2 we describe the Inference tool developed by Lyner during his Master thesis [19] and
point out its limitations. In Chapter 3 we present a way to handle static methods. With the
chosen approach, we can successfully determine the execution context of a static method and the
Universe type of newly created objects. In Chapter 4 we present array annotation using the byte-
code instrumentation features of the Java Virtual Machine Tool Interface (JVMTI). Furthermore,
in Chapter 5 we will present an approach for method body inference that is based on abstract
interpretation. The types on the operand stack and in the method frame registers are interpreted
abstractly and the Universe annotation of method body statements (e.g. local variable declara-
tions, new-statements, etc.) are inferred. A method to increase the code coverage of our tool
by joining multiple test runs is presented in Chapter 6. Chapter 7 concludes this thesis with the
discussion of a set of test runs with the Inference tool, the presentation of related work, and the
suggestion of future work on the Runtime Inference program.

Chapter 2

Runtime Inference Tool

In this chapter we will explain the basic algorithm of the Runtime Inference tool implemented by
Frank Lyner. The algorithm overview is presented in Section 2.1. Some implementation details
that help understanding the rest of this report are outlined in Section 2.2. We will also point out
the limitations of his implementation to which we will refer to as Version 1 in Section 2.3.

2.1 Algorithm Overview

The basic algorithm consists of the following steps:

1. Information gathering

(a) Monitoring program execution and building a log file (Tracing agent).

(b) Building data structure (Extended Object Graph) from log file.

2. Structuring the object store in Universes.

3. Finding valid annotations.

4. Generating output.

The information is gathered using a Tracing agent that is built on top of the Java Virtual
Machine Tool Interface (JVMTI). It is a native interface part of the Java Development Kit (JDK)
that allows to inspect the state and control the execution of applications running inside the Java
Virtual Machine. Since the interface of the JVMTI is native, the code of the Tracing agent is
written in C++. The Tracing agent creates a log of a program execution and stores it in an XML
file format. The log is event based and consists of events such as method entry, method exit, field
update and so on.

The produced log is parsed and processed by the so-called Type inferer which performs all
other steps of the algorithm. The Type inferer (written in Java) builds up an Extended Object
Graph (EOG) from the events in the log. The EOG is an overlay of all object graphs of a program
execution (see Figure 2.1). A simple object graph is a snapshot of the heap at a certain point
in time. The nodes of the object graph represent objects on the heap; vertices represent either
variable references or write references. Variable references are used to denote that an object is
stored in a variable of another object. E.g. if object b is stored in a field of object a, a variable
reference from a to b is added to the graph. Each event in the log will trigger some manipulations
of the EOG. For example, a non-pure method call from object c to object a is considered to be a
write access from c to a. Therefore, a write reference from c to a is added to the graph.

Once the EOG is completely built up, the Type inferer structures the object store into Uni-
verses. Every object must be assigned to exactly one owner. Lyner used the well researched notion
of dominators for flowgraphs as a first approximation for the owner of an object, this property

5

6 2 Runtime Inference Tool

Figure 2.1: Extended Object Graph. Overlay of two object graphs with write references denoting
write accesses from one object to another and variable references denoting that an object is stored
in another object’s variable.

is known as owners as dominators [6, 4, 5]. In the Universe type system, the root context is not
owned by any object. However, to make sure that the data structure stays consistent and every
object has an owner, an artificial object that is the owner of the root context is introduced. The
property of the Universe type system that no write reference may cross any context boundary
(write accesses are only allowed in rep or peer relationships) is enforced and possible conflicts are
resolved until a valid hierarchy is established.

Once all conflicts in the graph are resolved, the annotation step is performed. For each variable
(e.g. fields of classes, method return values, and method arguments), every variable reference in
the graph is followed. The contexts to which the target and the source of these references belong
to are inspected. If both ends belong to the same Universe, a peer annotation can be inferred,
if the starting object of the reference is the owner of the end object, a rep annotation can be
inferred. If the reference connects two objects in arbitrary Universes, nothing can be said about
their relationship and a readonly annotation must be inferred.

In the end, the found annotations are stored in an XML file format that conforms to the
annotations.xsd1 schema. This file can be used by Marco Meyer’s annotation tool [20] to annotate
existing Java source code.

2.2 Implementation

Since we needed to make some additions to the implementation during the course of this thesis,
we present some implementation details of Version 1. As mentioned before, the implementation is
divided into two parts. The first part (called Tracing agent) is built on top of the JVMTI and is
used to produce the trace file. The second part (called Type inferer) is the actual type inferring
program that builds up the EOG, infers the Universe types, and writes the found annotations to
a file.

The Tracing agent makes use of the callback functions provided by the JVMTI. The agent
can specify functions that will be called if a certain operation was performed by the Java Virtual
Machine. These functions are used to extract the necessary information from the JVM and generate
xml tags for the output file. We will refer to one of these tags as event. The events stored in the
Tracing agent output file are then parsed by the Type inferer and the EOG is built up. The

1see Appendix C

2.2 Implementation 7

following is a list of events that are used by Version 1 and it is stated what modifications on the
EOG are needed:

Method Entry If the method that is entered is non-pure, the event is considered to be a write
access on the target of the call. A write reference from the caller to the target is added to the
EOG. Additionally, all parameters become accessible to the target object. For each parameter, a
variable reference is added, starting at the target object and ending at the parameter object.

Method Exit If the method does not have a return value of reference type, the EOG is not
modified. Otherwise, a variable reference is added, starting from the target object and ending at
the returned object.

Class Prepared A class is prepared for loading. This will not have any impact on the graph.
All methods and fields of this class are parsed and made ready for further use by the algorithm.

Field Modification A field modification is treated as a write access on the target object. A
write reference from the caller to the target is added. A variable reference from the target object
to the object assigned to the field is added as well.

The implementation of the Type inferer (the Java part) is built around the representation of the
EOG (see Figure 2.2). The class Graph is used to store all information about the EOG. That is,
objects (class GObject) and references, which can be either variable references (class VarReference)
or write references (class WReference). The same class is also used to store the variables to be
annotated, such as parameter variables and field variables.

The different steps of the algorithm are implemented as visitors of the Graph class (see Figure
2.3). The visitor approach has the benefit that additional steps can be easily added by simply
plugging in an additional visitor. Furthermore, it is not hard-coded which visitors are applied to
the graph, it can be specified by a configuration file. This makes it possible to run the algorithm
with optional visitors as well. The configuration file is also used to specify the input files for the
algorithm (e.g. the trace file, the file specifying the pure methods in the system, and the output
filename). Version 1 used the following visitors (in the order they are applied to the graph):

BuildUpVisitor builds up the graph by reading in events from the log file and performing the
necessary modifications to the EOG.

DominatorVisitor applies the dominator algorithm by Lengauer/Tarjan [17] to the EOG. This
computes the direct dominator for each object and the owner of each object is set.

StoreDominatorLevelVisitor computes the depth of each object in the dominator tree.

ResolveConflictsVisitor resolves possible conflicts that were introduced by the ”owner as dom-
inator” approximation. Conflicts originating by write references crossing context boundaries are
also resolved.

HarmonizationVisitor maps the dynamic structure of the EOG to the static structure of the
program classes. Inconsistent references are harmonized and the annotations are found for each
variable. Harmonization may be necessary, for example, if not all of the objects that are stored in
a variable belong to the same context.

OutputVisitor writes the found annotation to an XML file using the Apache XMLbeans pack-
age [23].

8 2 Runtime Inference Tool

Figure 2.2: UML diagram of the graph package with the classes used to build up and maintain the
EOG. GObject is the representation of a Java object. There are two kinds of references: VarReferences

denote a variable (field, parameter, return type) relationship, WReferences denote a write access
from one object to another.

2.3 Limitations of Version 1 9

Figure 2.3: UML diagram of the algorithm package which includes all visitors. Each visitor stands
for a particular step in the algorithm and visits the Graph object. The EventQueue is used to parse
the tracing information stored in the input xml file generated by the Tracing agent.

2.3 Limitations of Version 1

Version 1 imposed some restrictions about the supported language structures. It is the goal of this
thesis to loosen up these restrictions such that the Runtime Inference tool can be used for any
Java program.

Static methods were handled in a simplified way because the lack of a target object did not
allow to let them be handled like instance methods. We will show how they can be dealt with in
Chapter 3. Arrays were not addressed because of some limitations of the JVMTI, we will present
a solution to this problem in Chapter 4. Furthermore, the scope of the project was restricted to
programs with only one thread. We did not make any more investigations about the implications
of multiple threads in a program, but our implementation of static methods might lead to some
problems there, which are mentioned in Section 3.3.

The annotation of method bodies, i.e. local variables, object creations, and casts, was also
beyond the scope of the original project and will be discussed in Chapter 5. For this problem, we
combined the approaches of static and runtime inferences by using an abstract interpretation of
the types on the method argument stack which uses the static bytecode information.

10 2 Runtime Inference Tool

Chapter 3

Static Methods & Object Creation

In Version 1 of the Inference tool, static method calls were treated to be running inside the root
context. Conceptually, this is only correct for the static main() method of each program, because
any other static method will not necessarily run in the root context. However, this simplification is
valid if all static methods neither create any objects nor modify any of their parameters. Of course
these assumptions cannot be made for regular programs, so we had to find a new approach to solve
this problem. The reason why static methods need to be handled differently is that there is no
target object of the call. As we implemented static method handling, we discovered a simple way
to annotate object creations (i.e. new-statements). In Section 3.1 we take a look at how instance
methods are handled. The way we handle static methods that requires only minor changes of
Version 1 is presented in Section 3.2. In Section 3.3 we take a look at our implementation. Finally,
in Section 3.4 we show in what form the output needs to be generated.

3.1 Instance Method Calls

An instance method call of a non-pure method on object b from object a is treated like a write
operation from a to b (see Figure 3.1). This is indicated by a write reference from a to b in the
Extended Object Graph. Pure methods are not allowed to modify any existing object. Therefore,
a pure method call is not treated as a write operation and no write reference needs to be added.
In any case, all parameters of reference type will become accessible from the target object b, hence
variable references from b to the parameters (p1 and p2) are added. Return values of reference
type are handled like parameters. Of course, write operations within the called method will yield
write references from object b to the altered (or newly created) objects such as o. This means that
the called method will execute relative to the target object.

The Universe modifiers of the parameter and return types are deduced from the relationship
between the target object of the call and the parameter/return objects. In the example 3.1, a peer

annotation for p1 and p2 would be inferred, because they belong to the same context as b.

3.2 Static Method Calls

For static method calls, there is no target object because static methods do not belong to a specific
instance of a class. This implies that rep types cannot be used in their signature, for local variables,
or anywhere else within the method. Rep can only be interpreted relative to an object currently in
charge, which is not present for static methods. Unlike for instance methods, which are executed
relative to the target object, the execution context of static methods needs to be specified by
the programmer. Either the static method is executed in the peer context of the caller or in the
context owned by the caller (rep). Argument and return types of the called static method are then
interpreted relative to the context in which the called method executes. Listing 3.1 shows a class

11

12 3 Static Methods & Object Creation

Figure 3.1: Instance method call from a to b with parameters p1 and p2. Object o is created by
the called method and will therefore be added to the context of b. For p1 and p2, the algorithm
would infer a peer annotation, even though there is no write reference to p1.

X with a static method returning a new object. Calls to this method can be annotated in two
ways (this annotation is called the invocation type of the call).

• Without Ownership modifier, this means the method is called relative to the current context
(line 11). The returned object becomes peer to the caller.

• With the modifier rep, this means the method is called relative to the context owned by this

(line 15). The returned object becomes rep to the caller.

A readonly annotation of a static call (either pure or non-pure) is not allowed. This would not
make sense because if there are any objects created within that static method, it will be undefined
which context this object needs to be added to. Objects can be created within pure or non-pure
methods.

Listing 3.1: Two possibilities of static method invocation.
1 class X{
2 static peer Object newObject(){
3 return new peer Object();
4 }
5 }
6
7 //from somewhere else:
8
9 //peer call

10 peer Object peer obj ;
11 peer obj= X.newObject();
12
13 //rep call
14 rep Object rep obj ;
15 rep obj= rep X.newObject();

As shown previously, all parameter and return objects of reference type of an instance method
call are connected to the target object by a variable reference. Again, there is no such object for

3.2 Static Method Calls 13

static calls that could be the source of such a reference. In Version 1 of the Inference tool, the
artificial root object that is the dominator of all objects in the EOG is used as the target object
of any static call, which is, as we pointed out earlier, only correct for the static main() method.
Objects created by a static method should be added to the context specified by the invocation
type (as shown in Listing 3.1). A better way to treat static method calls that is correct in all cases
has to be found.

Artificial Target

To overcome the lack of a target object, an artificial object which is described in more detail in
Section 3.3 is inserted into the EOG for each static method call. These artificial objects can now
act as target objects and static calls can be handled almost like any instance method call. The
algorithm needs to make sure that no type in the signature of a static method is rep and that the
call itself is annotated either with peer or rep. The same is true for pure static methods, the only
additional constraint for these methods is that parameter types may only be readonly, just like for
pure instance methods. We can now review the handling of static method entry, static method exit
and write operation events within static methods to see how the EOG needs to be modified upon
these events, such that we can ensure the properties mentioned above.

Method Entry To distinguish between rep and peer calls, a variable reference representing the
method call needs to be added to the EOG. This variable reference connects the caller object
a with the artificial target object X (Figure 3.2) and ensures that the call will be annotated in
the harmonization and annotation phase just like any other variable. To ensure a non-readonly

annotation of the call, a write reference to the artificial object is introduced. This will cause
the object to be either in the peer or rep context of the caller, since write references can never
cross context boundaries. This write reference is also needed for pure static methods, because a
static method call can never be annotated with readonly. The readonly annotation of pure method
parameters is not affected by this write reference as it does not connect any parameter object with
the artificial target object.

Figure 3.2: Static method call. Caller a is connected to the artificial target X, representing the
static method call, by a write and a variable reference (StaticCallVariable). The variable reference
is used to infer the invocation type of the call and the write reference ensures a non-readonly

annotation.

Write operation A write operation inside a static method (i.e. field modification or non-pure
method call) can be handled almost like other write operations. The artificial object is used as
the source of the write reference that needs to be added to the EOG. This is correct, because

14 3 Static Methods & Object Creation

the artificial object will be in the same context where the static call was specified to execute
(either peer or rep to the caller of the method). Since rep annotations are not allowed inside static
methods, a peer annotation of the altered object has to be ensured. An artificial cycle is introduced
in the EOG by adding a write edge from the modified object (p2 in Figure 3.3) to the artificial
object X as well, this cycle will be resolved in the dominator tree phase of the algorithm and the
two objects become peer. The cycle will also ensure that no argument or return type is annotated
with rep, because as soon as there is a write operation on one of the parameters, the cycle will be
added making the artificial object and the parameter object peer to each other.

Figure 3.3: Write operation within a static method to a parameter p2. A cycle of write references
is inserted between the artificial target object X representing the static method call and the object
being written to, p2. This cycle will cause the two objects to be in the same context after all
conflicts in the EOG are resolved. The variable references between X and (p1, p2) are added if p1

and p2 are parameters of the static method.

Method Exit The static method exit event is handled like any other method exit event. A
variable reference from the artificial object to the return value is added. The return type can
be annotated like return types of instance methods. A non-rep annotation is ensured as we have
shown in the previous paragraph.

Static Initializers

For every class there is one special kind of static method, the static initializer. This initializer
method is called clinit and will be executed as soon as the class is loaded by the classloader. Since
these methods are not called from one object to another and do not contain argument and return
values, nothing in their signature can be annotated. Therefore, no variables need to be created
upon a method entry event caused by a static initializer. We have treated the static initializers
to be running in the root context. As soon as a static initializer is called, a new artificial target
object is added to the root context. After that, the static initializer is handled just like any other
static call.

Object creation

Similar to the invocation of static method calls, the invocation type for object creations needs to
be specified as well. The type can be either peer or rep just like for static method calls, or peer x,
rep x for array types, where x denotes any allowed Ownership modifier. Since object creations are

3.3 Implementation 15

already being traced by the Tracing agent through the method entry events of the corresponding
constructors, we can add a variable reference to the EOG from the caller of the constructor to the
created object. This variable reference will then be annotated just like a static method call.

3.3 Implementation

In order to implement the behavior specified in the previous section, we needed to add three new
classes to the graph package.

StaticCallGObject The class StaticCallGObject is used for the artificial objects that act as
targets of static calls, it is a subtype of GObject. By making it a subtype of GObject and adding it
to the graph, it will be treated like any other object when the dominator tree is built up. At the end
of the dominator phase it will be either rep or peer to the caller, as we have shown in Section 3.2.
The object also acts as the source for the variable references to the parameter and return objects
(in the instance method case, the target object of the call is the source). This allows the algorithm
to annotate the parameter and return types like instance method parameter and return types, by
examining the relationship between the StaticCallGObject and the parameter/return objects.

StaticCallVariable To ensure that the HarmonizationVisitor annotates static calls, a new type of
variable – the StaticCallVariable – is introduced (see Figure 3.4). Objects of this variable type are
used by variable references that connect the caller object of a static call with the StaticCallGObject

representing the target object. The StaticCallVariable is a subtype of Variable and will be treated
like any other Variable by the HarmonizationVisitor . The invocation type of the call is given by the
relationship between the source and the target objects of the variable references using a specific
StaticCallVariable instance. In order to be able to uniquely identify calls to the same static method
(see Listing 3.2), the StaticCallVariable needs to store the called method, the calling method and
the bytecode location of the call within the calling method. The bytecode location is necessary,
because the same method can be called from different locations within a method (e.g. the calls
on line 9 and 11 in Listing 3.2). If there was any loop unrolling when the bytecode was generated
from the source, i.e. one call in the source code is mapped to several calls in the bytecode, the tool
would not produce correct results. This is why no bytecode optimization should be performed.

Listing 3.2: Static calls are identified by their bytecode location, calling method, and called
method. Different calls to the same method (e.g. the calls on line 9 and 11) need to use dif-
ferent target objects, while multiple executions of the same call (e.g. the call within the loop on
line 11) need to use the same target object.

1 class X{
2 static void doStatic1 (){...}
3 static void doStatic2 (){...}
4 }
5
6 class Y{
7 void callStatics (){
8 peer X.doStatic1 ();
9 rep X.doStatic2 ();

10 for (int i=0; i<10; i++){
11 peer X.doStatic2 ();
12 }
13 }
14 }

16 3 Static Methods & Object Creation

Figure 3.4: UML diagram of the Variables. The StaticCallVariable was added to support the
annotation of static calls. NewVariable was added to support the annotation of object creations.
The two variable classes store the bytecode location of the call in the original bytecode and the
location after the instrumentation. The bytecode location will have to be transformed into an
index value during the method body inference phase.

NewVariable The NewVariable is very similar to the StaticCallVariable . The only difference is
that the NewVariable stands for an object creation (i.e. a new-statement in the source code) rather
than a static call.

Tracing agent changes

The additional information for static method calls, the calling method and the bytecode location
of the call within the method is provided by the Tracing agent. The agent can easily gather
the bytecode location and the calling method when handling the MethodEntryEvent, since they are
passed to the callback function as arguments. The bytecode information needs to be processed
by the Type inferer to produce the desired annotation output (which will be described in Section
3.4), this processing is done during the method body inference, since it requires some knowledge
of the bytecode of a method under consideration. Method body inference will be described in
Chapter 5. Because the trace file is event driven and each event is independent of the others, the

3.4 Annotation Output 17

Type inferer needs to be able to ”remember” which StaticCallGObject is currently in charge (i.e.
which static method is on top of the call stack), to be able to add the write references to the
correct object. For write operations within instance methods, the Tracing agent writes the ID of
the object currently in charge to the trace file; for write operations within static methods, this
ID is always 0. Therefore, we keep a stack with all the objects representing static method calls
(StaticCallGObjects) during the BuildUp phase. The top of the stack can be used as source for write
operations on other objects.

Our approach may lead to problems when more than one thread is being executed in the
system. If there is only one static call stack maintained and the program switches between two
threads, the object on top of the call stack may not be the one that is currently in charge. Suppose
thread 1 enters a static method foo(), the corresponding static call object is put on the static call
stack. Then thread 2 takes over and enters another static method bar(), whose static call object
is also put on the stack. If the program switches back to thread 1 now, the static call object on
top of the stack is not the one actually in charge. In order to be thread-save, one static call stack
per thread must be maintained.

The thread number of the thread currently being executed is always passed to the callback
functions of the Tracing agent and this information could be used to maintain multiple static call
stacks (i.e. the thread number is passed for every event). However, we have experienced some
problems with this thread ID as it seemed to change suddenly and without cause even in single-
threaded applications. This behavior will have to be examined more closely in the future, so the
current implementation is limited to single-threaded applications.

3.4 Annotation Output

The annotation output for static calls and object creations are the following: All static calls within
a method to the same class are indexed, starting from zero. It is not specified which method was
called, the class defining the method is sufficient. For the examples in Listing 3.2, the tool would
produce the output in Listing 3.3.

If Marco Meyer’s annotation tool [20] is used to insert the annotations to a source file, it is
important that static calls include the name of the declaring class (i.e. X.doStatic() instead of
just doStatic ()). In the Java syntax this is not necessary for a method of the same class, but the
annotation tool cannot deal with it otherwise.

Listing 3.3: Annotation output of example 3.2.
<ann: static call modifier=”implicit peer ” index=”0” type=”X”/>
<ann: static call modifier=”rep” index=”1” type=”X”/>
<ann: static call modifier=”implicit peer ” index=”2” type=”X”/>

The indexing of new-statements is similar, except that all new-statements use the same index,
the created class does not matter. Listing 3.5 shows the output for the example in Listing 3.4.

Since the Tracing agent only produces output that identifies different static calls by their
bytecode location, the Type inferer needs to translate this information somehow into the indexes
required for the annotation output. This can only be done with information of the original byte-
code, so this translation is done at a later stage during the annotation of method bodies and is
described in Section 5.5.3. A translation only makes sense if the method body inference is activated
for a given method anyhow.

18 3 Static Methods & Object Creation

Listing 3.4: New-statements within method bodies are numbered from top to bottom.
1 class A{
2 void newExample(){
3 peer Object x= new peer Object();
4 rep A a= new rep A();
5 for (int i=0; i<10; i++){
6 peer Object obj= new peer Object();
7 }
8 }
9 }

Listing 3.5: Annotation output of example 3.4.
<ann:new modifier=”peer” index=”0” type=”java.lang.Object” />
<ann:new modifier=”rep” index=”1” type=”some.package.A”/>
<ann:new modifier=”peer” index=”2” type=”java.lang.Object” />

Chapter 4

Arrays

The Inference tool that Lyner developed during his master thesis [19] did not handle arrays at
all, because it is hard to gather information about the creation, modification, and access of array
objects with the JVMTI. Array operations do not trigger the standard events defined by the
JVMTI, such as method entry, method exit, or field modification. In this chapter we present a way
to handle array operations that relies on the bytecode instrumentation features of the JVMTI.

The notation used in this chapter sticks to the notation of the Java Language Specification [13]
where possible. The specification states the following about arrays and their component types:

All the components of an array have the same type, called the component type of
the array. If the component type of an array is T, then the type of the array itself
is written T[]. The component type of an array may itself be an array type. The
components of such an array may contain references to subarrays. If, starting from any
array type, one considers its component type, and then (if that is also an array type)
the component type of that type, and so on, eventually one must reach a component
type that is not an array type; this is called the element type of the original array,
and the components at this level of the data structure are called the elements of the
original array.

If a new value is assigned to an array component, we will call this a component update. If an
object that is referenced by an array component is updated, we will call this an object update
using component reference, i.e. the reference stored in an array component was used to perform
the update on an object.

The remainder of this chapter is organized as follows: In Section 4.1 we will show how arrays
are handled in the Universe type system and we show why they were not handled in Version
1 of the Inference tool. In Sections 4.2 and 4.3 we discuss all one- and multidimensional array
operations and what modifications they entail on the Extended Object Graph. In Section 4.4 we
present our implementation using bytecode instrumentation and show what additional steps are
needed in the harmonization and annotation phase of the algorithm.

4.1 Arrays in the Universe type system

In the Universe type system, references to arrays of reference type need two Ownership modifiers:
the first describes the relationship between the this object and the array, the second the relationship
between the array and objects referenced by its components. The latter may never be rep, because
a rep annotation would always yield a readonly reference when the type combinator is applied
with the first Ownership modifier. This would make the references unusable by all objects (even
owners of the array). For arrays of primitive type the second Ownership modifier is omitted and
the array can be treated like any other object variable. An example EOG with an array variable
to be annotated is shown in figure 4.1.

19

20 4 Arrays

Figure 4.1: Arrays in the Universe type system: ref 2 would be annotated with rep peer. The first
Ownership modifier describes the relationship between object a and the array, the second modifier
the relationship between the array and the objects referenced by its elements. Ref 1 would be
annotated rep readonly.

The main problem with the array event generation is that array creations (Listing 4.1) and
component updates (Listing 4.2) do not trigger any JVMTI callbacks. Only modifications of fields
of array type (Listing 4.3) do so. For this reason, arrays were completely ignored in Lyner’s work.
We had to develop the handling of arrays from scratch and take a look at all array operations and
their implications on the EOG.

4.2 One-dimensional Array Operations

For each one-dimensional array operation we discuss what actions need to be taken upon such an
operation on the EOG during the build-up phase of the algorithm. We also state what information
needs to be provided by the JVMTI to be able to perform these actions on the EOG. At this stage
we are not interested how the information is generated. This will be discussed in Section 4.4.

Creation

Array creation (Listing 4.1) is handled like normal object creation. A write reference from the
this object to the newly created array object is added to the graph. The event generated by the
JVMTI needs to provide the references to the creating object and the created array object. It
does not matter if an array of reference type or a primitive array was created.

Listing 4.1: Array Creation. Array arr is created as an array of 5 Objects.
void create () {

Object [] arr= new Object[5];
//do something with arr

}

4.2 One-dimensional Array Operations 21

Array Component Update

In order to be able to handle array component updates, we need to introduce a new kind of
reference for the EOG. So far we have seen variable references, which are used to indicate variable
relationships between two objects (e.g. field variables, method return values, etc.), and write
references, which represent write accesses from one object to another. For arrays we also need
component references that connect array objects with the objects referenced by its components.
A simple variable reference would not be suitable, because there is no corresponding variable. For
every variable reference there should be exactly one variable in the source code to be annotated.
However, for a component reference of an array, there is no such variable. More precisely, an array
component may be used by many variables and its annotation may be different for the various
variables using this component.

The example in Figure 4.2 illustrates this problem. There are two objects a and b and two
array objects arr1 and arr2. Suppose the algorithm comes to the harmonization and annotation
phase with this EOG. First, variable var1 is annotated. The annotation for the arrays that are
stored in var1 is rep peer, i.e. the component reference ref1 is annotated with peer. Now, the
algorithm tries to annotate variable var2. There are actually two variable references using var2, so
all of them need to be considered. The correct annotation for this variable is readonly readonly.
The first Ownership needs to be readonly, because arr1 is neither in the peer nor in the rep context
of b. The second Ownership modifier needs to be readonly, because el2 is not in the peer context
of arr2.

Figure 4.2: Array Component References.

Listing 4.2: Array Component Update. The component of array arr at the given index is updated.
After the component update, the array component at the index holds a reference to object e.

void setArrayComponent(Object e, int index) {
this . arr [index] = e;

}

For array component updates, a distinction has to be made between the update of a primitive
component and an update of a component of reference type. If the array is of primitive type, the
component update is treated as a simple write access on the array object. An update of an array
component with reference type (Listing 4.2) has the following implications (see Figure 4.3): First,
the array object arr will get a component reference to the stored object e. Second, the component

22 4 Arrays

update is treated as a write access on the array object: a write edge between the this object (a in
this case) and the array arr is inserted.

Figure 4.3: Array Component/Element Update. The write reference between a and arr is inserted
to indicate that the update is a write operation on the array. The component reference between
arr and e is added to indicate that the array now holds a reference to the object e.

The information needed for this manipulation of the EOG is the writing object a, the array
object arr and the referenced object e.

Modification of a Field of Array Type

A modification of a field of an array type (Listing 4.3) can be treated like a field modification of
any other variable type: a write reference from the this object to the modified object x is inserted
and a variable reference between object x and the array object arr is introduced. Obviously, the
references to the this object, the modified object x and the array object arr are needed to apply
the changes to the graph. No distinction between arrays of reference type and arrays of primitive
type is necessary.

Listing 4.3: Modification of a Field of Array Type. The field array is modified such that a reference
to the array arr is now stored in the field.

class X{
Object [] array ;
...
void setArray(X x, Object [] arr) {

x. array = arr;
}

}

Object Update using Component Reference

A write operation (either a non-pure method call or a field modification) performed on an ob-
ject using a reference stored in an array component (Listing 4.4) is somewhat more complicated
to handle. Obviously, this operation can only be performed on arrays of reference type. The
algorithm has to ensure that none of the Ownership modifiers of the array field are annotated
with readonly, because the Universe type combinator applied to the two modifiers may not yield
readonly. Furthermore, the array object and the object referenced by the array component need

4.2 One-dimensional Array Operations 23

Listing 4.4: Write operation on an object using a reference stored in an array component. The
reference stored in the array at a given index (4) is used to perform a write operation (method
call doWrite()) on an object. The Tracing agent does not observe that the array variable was used
to access the object. Only the write access from this to x is observed.

X[] arr ;

void arrayComponentWrite() {
X x= new X();
arr [4] = x;
this . arr [4]. doWrite();

}

to be peer to each other. This is due to the fact that a rep annotation is not allowed there (the
result of the type combinator would also yield readonly). The following changes must be made to
the graph to ensure these properties (Figure 4.4):

• Insert a write reference from the this object (a in this case) to the object referenced by
the array component el , because the access must be treated as a write operation on the
component performed by the this object.

• Insert a write reference from a to the array object arr . This ensures a non-readonly annotation
of the array.

• Insert a cycle of write references between the array object arr and the object referenced by
the array component el to ensure a peer relationship between the two.

Figure 4.4: Write operation on an object using a reference stored in an array component. Variable
references and component references are omitted in the example. The cycle between arr and el

is needed to ensure a peer relation between them. The write reference from a to arr ensures a
non-readonly annotation of the array. However, the only reference that can actually be added is
the red one from a to el , due to limitations of the JVMTI.

The Inference tool needs to know the source and target object of the write operation (a and
el) as well as the array object arr that was used to get the reference to the object el .

Since we did not find a way to generate all of this information with the JVMTI, we had to
come up with a different solution. The problem is that we cannot distinguish if the object el

was accessed through a direct reference or through a reference stored in a component of the array

24 4 Arrays

arr (see Listing 4.5). The only information that can be extracted from the JVM are the writing
object a and the updated object el . This problem is similar to the ”dereferencing chains” problem
described by Lyner in Section 4.3.4 of his Master Thesis [19], so we have no choice but to treat this
operation like a direct write access on object el . This means that the write references to and from
the array object arr will not be added to the graph, therefore a non-readonly annotation of the
two Universe type modifiers is not guaranteed. However, as we will show in Chapter 5, the write
operations using a readonly annotated array can be made legal by casting the reference component
to the correct Universe type during the annotation of the method bodies.

Listing 4.5: The JVMTI cannot distinguish between the two write operations on lines 6 and 7.
There is no way to figure out whether the write operation was performed using the array variable
arr or the Object variable x.

1 Object [] arr ;
2 ...
3 Object x= new Object();
4 arr [2]= x;
5
6 arr [2]. doWrite();
7 x.doWrite();

4.3 Multidimensional Array Operations

Multidimensional arrays introduce even more difficulty, because of the way they are implemented
in Java. They are implemented as an array that stores references to other arrays (we will call
them subarrays). Since multidimensional arrays are also annotated with only two type modifiers,
the subarrays that form the multidimensional array all have to be in the same context. Lyner
proposed the following solution to this problem: whenever a one-dimensional array aone is added
to a multidimensional array amult, the write references aone–amult and amult–aone are inserted in
the EOG (see Figure 4.5). By creating this cycle, the conflict resolution step will make both objects
peer to each other. Since there is no variable reference between the two, the reference will not
be annotated. This is the easiest way to make sure that all arrays making up a multidimensional
array end up in the same context, so we have chosen to implement it this way.

There are some more differences between the one-dimensional array operations and the multi-
dimensional ones. Next, we take a look at the different operations on multidimensional arrays.

Creation The new-statement for multidimensional arrays initializes the array object and a given
number of subarray dimensions. If the array has m dimensions, the programmer can specify the
sizes of the dimensions 1 to n, leaving the sizes of dimensions n+1 to m open. This means that all
the subarray objects until dimension n are also created and initialized, while the rest are set to null .
The elements, objects in the highest dimension, are always initialized to null . Upon the creation
of a multidimensional array, a write reference is added to the multidimensional array amult (Figure
4.5). Additionally, write references from amult to the one-dimensional subarrays (aone, atwo) and
back are needed to introduce the cycle of write references described at the beginning of this section.

Array Component Update For multidimensional arrays there are two kinds of component
update possibilities. Either one of the references to the subarrays that make up the multidimen-
sional array is updated or an actual element, i.e. a component that holds a reference which is not
a subarray, is updated.

The update of an element reference is illustrated by Listing 4.6. This operation can be handled
exactly like a simple array component update for one-dimensional arrays of reference type. A write
reference from the this object to the subarray aone (ref 2 in Figure 4.5) is added and a component

4.3 Multidimensional Array Operations 25

Figure 4.5: EOG of a two dimensional array amult with subarrays aone and atwo. The subarrays
always need to be peer to the multidimensional array. This is ensured by the cycle of write
references between them. A write reference to any of the arrays (e.g. ref2) has the same effect as
a write reference to any other array, since they will all stay in a peer relationship.

reference to the object el1 referenced by the element of the subarray aone (ref 1) is inserted. A
non-readonly annotation of the multidimensional array amult is guaranteed even though there is
no write reference from this to amult added. This is due to the fact that the subarrays and the
multidimensional array are peer to each other (due to the write cycle that was created between
amult and its subarrays). Because of this peer relationship, a write reference to any of the subarray
objects has the same effect as a write reference to amult. The information needed is therefore the
same as for a one-dimensional array component update: the writing object this , the array object
aone and the object el1 referenced by the array element. Since the handling of this event is exactly
the same as if the subarray was used as a one-dimensional array, the algorithm does not need to
distinguish these two cases.

Listing 4.6: Multidimensional Component Update
Object [][] amult= new Object[2][10];
Object el1= new Object();
...
amult[0][1]= el1 ;

When a component holding a reference to a subarray is updated (see Listing 4.7), a write
reference cycle between amult and aone needs to be added to the EOG to ensure a peer relationship
between the multidimensional array and its subarrays. Additionally, a write reference between
the this object and amult is added to indicate that a write operation on the array object was
performed. The information needed in this case is amult, aone and this , just like for the case of an
update of an element described earlier.

The two cases of multidimensional array component updates (subarray update and element

26 4 Arrays

update) need to be distinguished. In the case of an update of a reference to one of the subarrays, a
write cycle has to be inserted, in the case of an update of reference to an actual element, no write
cycle needs to be added. The component reference between the array and the object referenced
by the component must be added in either case.

Listing 4.7: Component with Subarray Reference Update
Object [][] amult= new Object[2][10];
Object [] aone= new Object[10];
...
amult[0]= aone;

Since every array is a subtype of java . lang .Object, we run into problems when arrays of type
Object [] are used to store references to other arrays (see Listing 4.8). In this case, our tool will
make array b peer to array a, because it thinks that b is a subarray making up the (allegedly)
multidimensional array a. Checking if the signature of a is multidimensional does not work either,
because Object [][] arrays can be used to store array references in their elements as well.

Listing 4.8: Component with Subarray Reference Update
Object [] a, b;
a= new Object[10];
b= new Object[10];
...
a[2]= b;

Modification of a Field of Multidimensional Array Type A simple assignment of a mul-
tidimensional array object to a field can be handled like the one-dimensional case. A variable
reference to the assigned multidimensional array object is added to the owner of the field.

Object Update using Component Reference The same problems occur as for one-dimensional
arrays. Conceptually, the write operation on an object referenced by a multidimensional array el-
ement (Listing 4.9) can be treated like a write operation in the one-dimensional case. A write
reference from the subarray aone to the element being written to, el1 and a write reference from
the modifying object (this) to the subarray aone are sufficient to establish the correct relationship
between this and amult for the same reason as explained for the component update (due to the
peer relationship of all subarrays).

As we have shown in the section about one-dimensional arrays, it is not possible to add the
write references to the array object, so the only write reference added is the one from the writing
object, this in this case, to object el1 referenced by the array element.

Listing 4.9: Write operation on a multidimensional array element.
SomeClass [][] amult;
.....

amult [0][1]. field = value;

4.4 Implementation 27

Figure 4.6: Object Update using Component Reference. Object el1 is updated using a reference
stored in the subarray aone of amult. The only write reference that can be added is the one between
this and el1.

4.4 Implementation

4.4.1 Bytecode Instrumentation

As we pointed out earlier, not all of the events and information mentioned in the previous section
can be generated with the standard JVMTI callbacks. It is possible to register callbacks for
events such as field update/modification, method entry and method exit. The field modification
callback can be used to cover array field updates, so nothing special has to be done for this
operation. However, array operations such as component updates or array creations do not trigger
any callbacks.

The JVMTI provides a callback that is triggered whenever a new class is loaded by the JVM.
This callback can be used to instrument the bytecode of the class, i.e. injecting bytecode in-
structions that can alter the operand stack or call methods. We use this possibility of bytecode
instrumentation to generate the missing events for array operations. The goal of the instrumenta-
tion is to call a specific method of the Type inferer with the necessary references extracted from
the JVM stack passed as arguments. The bodies of the called methods are empty, but the calls
will trigger a MethodEntryEvent in the Tracing agent which is used to generate two custom events:
ArrayCreatedEvents and ArrayCompUpdateEvents (for component updates).

In the future, the Tracing agent might be incorporated in the Type inferer, so that the time
consuming indirection via xml trace file can be omitted. The tracing would then be done with
the Java Debug Interface (JDI), which unfortunately does not provide facilities to do bytecode
instrumentation at runtime. We think it would still be possible to use the bytecode instrumentation
features of the java . lang . reflect package to achieve the same results as with the JVMTI. However,
the advantage using trace files is that multiple test runs can be joined and therefore a better code
coverage may be achieved.

The instrumentation of the bytecode uses some operand stack manipulation instructions, Table
4.1 shows their definitions.

28 4 Arrays

Instruction Effect
dup x1 Duplicate the top word of the stack to place 3 of the stack
dup x2 Duplicate the top word to place 4
dup2 x1 Duplicate the top two words to places 4 and 5
dup2 x2 Duplicate the top two words to places 5 and 6
pop Pop the top word
swap Swap the top two words
invokestatic Invoke a static method

Table 4.1: Definitions of the bytecode instructions used to instrument the array instructions. The
word stack denotes the operand stack of the currently executing method. The numbering of the
places on the stack starts with one.

anewarray and newarray instrumentation

The two opcodes for one-dimensional array creation, anewarray for arrays of reference type and
newarray for arrays of primitive type can be instrumented the same way, because these creation
events are both handled just like normal object creations. The instrumentation is only needed
because the JVMTI does not generate these events by default. The instrumentation is rather
easy: a simple call to the static method arrayCreated(Object array) has to be made, after the newly
created array object was duplicated on the stack. The tracing tool creates an ArrayCreatedEvent

upon a method entry event to this specific method.

multianewarray instrumentation

The multianewarray instruction is used to create both arrays of reference type and arrays of primitive
type with more than one dimension. The JVM stack before and after this operation can be seen in
Table 4.2. The multianewarray instruction initializes the multidimensional array object and a given
number of subarray dimensions, as described in Section 4.3. The number of subarray dimensions
to be initialized is part of the opcode for the instruction and is not passed on the stack. The
total number of dimensions is given by the type of the array, which is stored in a constant pool
entry. The instrumentation code consists of a duplication of the array object followed by a call
to the static method multidimArrayCreated(Object array). The Tracing agent will then be able to
get the references of all subarrays; they are collected by a recursive traversal through the objects
referenced by the components that proceeds with the next object as soon as a null reference was
found. Anything but a null reference in a subarray component must be a subarray again because
only the subarrays are initialized after the multianewarray instruction.

Before After
size of dimension n
...
size of dimension 2
size of dimension 1 array reference
... ...

Table 4.2: JVM stack before and after a multianewarray operation. The multianewarray instruc-
tion takes the number of dimensions to be initialized (n) as an argument. The total number of
dimensions is given by the type of the created array.

Xastore instrumentation

The family of array store instructions of primitive type bastore, castore , dastore, fastore , iastore ,
lastore , sastore are used to store a component of a primitive type in a given array. These bytecode
instructions correspond directly to the array component update operation described in Section

4.4 Implementation 29

4.2. For primitive arrays it does not matter what is stored in the array, because this event will be
handled as a simple write access to the array object. The operand stack for array store instructions
with types that are one word wide can be seen in Table 4.3, for two word wide types refer to Table
4.4. The goal of the instrumentation is to duplicate the array object and call the static method
primitiveArrayCompUpdate(Object array). Table 4.5 shows an instruction series that achieves this
goal. In Table 4.6, the effect on the stack of each instruction within the series is illustrated. The
sequence for double word types is slightly different, but basically it does the same thing. The
MethodEntryEvent triggered by this method call will be used to generate a ArrayCompUpdateEvent.

Before After
value
index
array
... ...

Table 4.3: JVM stack before and after
an Xastore instruction (where ’X’ de-
notes a single word primitive type).

Before After
value word1
value word2
index
array
... ...

Table 4.4: JVM stack before and after
an Xastore instruction (where ’X’ de-
notes a double word primitive type).

Initial bytecode Instrumented bytecode
... ...
bastore dup2 x1
... pop

pop
dup x2
invokestatic
bastore
...

Table 4.5: Initial bytecode and the instrumented bytecode for a bastore instruction.

Initial stack dup2 x1 pop pop dup x2 invokestatic
value
index index array

Stack value array array array value value
index value value value index index
array index index index array array
...

Table 4.6: Bytecode instruction series that will produce the desired stack before the call to the
static method primitiveArrayCompUpdated(Object array).

aastore instrumentation

The aastore instruction is used to store a reference at a given component of an array of reference
type. This can be either a subarray or an object of an arbitrary reference type. Table 4.7 shows
how the JVM stack looks before and after an aastore instruction. The goal of the instrumenta-
tion is to duplicate the value and the array references and to have them at the top of the stack
before calling the static method objectArrayCompUpdate(Object[] array, Object value) with these two
arguments. Table 4.8 shows what the operand stack looks like before the instrumentation code is
executed and what it should look like before the static method is invoked. A series of bytecode

30 4 Arrays

instructions showing a step-by-step transition from the original stack to the stack before calling the
static method is listed in Table 4.9. The static method objectArrayCompUpdate() will then produce
a MethodEntryEvent that will be used by the Tracing agent to produce an ArrayCompUpdateEvent.

Before After
value
index
array
... ...

Table 4.7: JVM stack before and after
an aastore instruction.

T1 T2
value
array

value value
index index
array array
... ...

Table 4.8: JVM stack before the instru-
mentation instructions are executed
(T1) and before the static method is
invoked (T2).

Initial stack dup x2 pop dup2 x1 pop swap dup x1
index value

value array array value array
Stack value index index value value array value

index array array index index index index
array value value array array array array
...

Table 4.9: Bytecode instruction series that will produce the desired stack in Table 4.8. The
invokestatic instruction that actually calls the method objectArrayCompUpdate() is omitted here.

Bytecode Engineering Tool

In order to manipulate the bytecode of the loaded classes we evaluated several bytecode engineering
tools. The main requirement for a tool was that it is easily usable from the C++–environment of
the JVMTI agent, so we first searched for a library that is written in C/C++. However, apart
from the java crw demo that comes with the Java Development Kit there are no such libraries.
The java crw demo is very hard to use and a lot of additional coding would have been necessary to
make it powerful enough for our purpose. Therefore we have chosen to take a look at the various
Java bytecode engineering libraries and invoke them from the JVMTI agent using the JNI, the
Java Native Interface.

jclasslib is a library that was developed for a bytecode viewer program. It is very versatile, but
it has too many unnecessary features that are used for the viewer program and are not needed for
our purpose.

BCEL is the most often used bytecode engineering library and it is part of the Apache Jakarta
project. It provides the possibility to parse and manipulate Java class files. However, the JVMTI
callback gets a byte array representation of the loaded class and we did not find a simple way to
parse this byte array into the BCEL internal data structure.

javasist is a high-level bytecode manipulation library that allows to conveniently inject Java
bytecode to method bodies and constant pool entries. It offers the possibility to inject bytecode
in the form of source text that is compiled into bytecode and then injected.

4.4 Implementation 31

ASM is, according to their analysis [10], the library with the best performance. It allows dealing
directly with a class constant pool and offsets within method bytecode. Much of its implementation
is based on the Visitor pattern. It has a lot of potential, but it would have needed a lot of time to
get familiar with the way it works, so it was not chosen to be used in this project.

Javasist [3] turned out to be the most convenient library to use, because it offers the easiest
way to iterate through the bytecode instructions of methods and inject code. Since all libraries
are generally very similar, we chose to work with javassist. However, as we will show in Chapter
5, we ended up using BCEL to implement our abstract interpretation implementation for method
body inference. The two libraries will never be loaded at the same time, because one is used by
the Tracing agent, the other by the Type inferer, so there is no memory overhead when using both
libraries. However, it would be nice to use just one tool for both tasks in the future.

4.4.2 Annotation and Harmonization

Only a few changes have to be applied to the harmonization and annotation phase of the algorithm.
Variables for fields of arrays of primitive type can be handled like other field variables, they do
not have to be treated specially. However, arrays of reference type need to be treated specially
(see Figure 4.7). When an array variable is annotated, two Universe types have to be found. The
first one describes the relationship between the owner of the variable and the array object (in this
case a and arr). This works the same way as the annotation of normal variables. The second
Universe type is found by following all component references of the array (ref2 and ref3). The end
of such a component reference may be an array itself (sub1 and sub2), because the original array
may be multidimensional. Therefore, the algorithm needs to traverse all subarrays recursively
until it reaches objects that are not arrays anymore (el1 and el2), i.e. that have no more outgoing
component references. Then the context of the array is compared to the context of those elements
and the Universe type is set correspondingly. In the example, a readonly annotation would be
correct.

Figure 4.7: References considered during the harmonization and annotation phase.

The fact that we cannot distinguish whether an object was accessed through a reference stored
in an array or whether it was accessed directly (as we presented in Section 4.2) when performing
a write operation, needs to be considered as well in this phase. Due to the omission of write
references from the array object to the object being written to and vice versa, it is possible that

32 4 Arrays

the annotation of one of the array’s Universe types may be annotated readonly instead of peer or
rep. A scenario that leads to a wrong annotation is illustrated by Listing 4.10 and Figure 4.8.
Even though a1 performs a write operation on an object referenced by the array arr (on line 16
of the example code), there is no write reference to the array added. As a result, arr is neither in
the peer context nor in the rep context of a1 and must be annotated readonly. It is not clear how
we should handle this case. In Chapter 5, we will show how to add casts to the source code. This
way we can make the write access on the object referenced by the array compilable, even though
the array is annotated with readonly. In future versions of the tool, we hope that the user is able
to interact with the algorithm and to resolve such conflicts.

There may also be the case that some objects referenced by array components end up in an
arbitrary context, because there was not a write access on all objects referenced by the array
during the execution of the program. Here again, a readonly annotation is found instead of a peer

or rep one. It would be useful as well if the user could interact with the program and specify if all
these object should be made peer. However, this is rather a problem of code coverage and should
be taken care of by using good test cases.

Listing 4.10: Scenario where the ”write on array components” simplification leads to a wrong an-
notation. Object b creates objects arr and a1, which performs write operations on the components
of the array. Since we cannot add a write reference from a1 to arr , the array and its components
end up in a different context. Only a cast for the write operation on line 16 can make this code
compilable.

1 class A{
2 public readonly readonly Object [] arr ; //arr is wrongly annotated with readonly readonly
3
4 public A(readonly readonly Object[] arr){
5 this . arr= arr;
6 }
7
8 //Makes another object peer to this one.
9 public void makePeer(peer Object other){

10 other .writeOp();
11 }
12
13 //execute a write operation on all components
14 public doWriteOnComponents(){
15 for (int i=0; i<arr. length ; i++){
16 arr [i]. writeOp(); //this operation should make the array non−readonly
17 }
18 }
19
20 //Symbolical write operation (non−pure method call)
21 public void writeOp(){
22 }
23 }
24
25 //somewhere in b:
26 rep readonly Object [] arr= new rep readonly Object[2];
27 peer A a1= new peer A(arr);
28
29 arr [0]= e1; //e1 and e2 were created by some other object
30 arr [1]= e2;
31 a1.makePeer();
32 a1.doWriteOnComponents();

4.4 Implementation 33

Figure 4.8: Object Graph of the example in Listing 4.10

In order to be able to distinguish between normal variables and array variables (of reference
type), a flag was added to the class Variable . This flag is set in the build-up phase and checked
before a variable is annotated in the harmonization and annotation phase of the algorithm. If it
is set, the algorithm will follow the component references of the arrays stored in the variable to
find the annotation of the second Ownership modifier.

34 4 Arrays

Chapter 5

Annotation of Method Bodies

The ultimate goal of the Inference tool is the production of annotation output that can be used
to generate compilable, Universe typed Java code. So far, we have shown how to annotate fields,
method signatures, static method calls, and object creations using the runtime information gen-
erated by the JVMTI tracing tool. However, the annotation of the whole method body, e.g. local
variables and Ownership casts was not discussed. In this chapter we show why method body an-
notation was not implemented in Version 1 of the Inference tool and we present a way to annotate
method bodies using abstract interpretation.

The remainder of this chapter is organized as follows: Section 5.1 provides an overview of
how methods are executed in the Java Virtual Machine and how they are stored in the bytecode.
In Section 5.2 we show what is necessary for method body annotation and we point out some
difficulties that have to be dealt with. In Section 5.3 we show how we could annotate local variables
using a bytecode instrumentation approach and why we did not do so. Section 5.4 focuses on our
solution that is based on abstract interpretation. Implementation details are presented in Section
5.5.

5.1 Methods in Java

In order to understand this chapter we present the basic functionalities of methods in Java. Every
time a method is invoked in Java, the Virtual Machine creates a new frame. The frame is destroyed
when the method invocation is completed. ”A frame is used to store data and partial results, as
well as to perform dynamic linking, return values for methods, and dispatch exceptions.” (JVM
Spec, Section 3.6 [25]). Each frame has an array of local variables and an operand stack as well as
a reference to the runtime constant pool of the class of the current method. The runtime constant
pool of the class contains several kinds of constants, these can be method and field references,
string constants, numerical constants and others.

Local Variable Array The array that contains all local variables of a method is called local
variable array in the JVM Specification. This array is not only used to store all the values of the
local variables, but the parameter values of the method are also passed in that array. Non-static
methods get a reference to the this object at index 0 of the array and the parameters 1 to n at
indexes 1 to n. Static methods cannot receive a this reference, therefore parameter i is found
at index i − 1. Since the components of the local variable array are also used to pass the input
parameters, we will refer to them as registers, as this seems to be the standard in most technical
papers.

The JVM Specification does not pose any restriction on the reuse of registers, i.e. one register
may be used for an arbitrary number of local variables in the source code and vice versa. The
only restriction is that whenever a value is loaded from a register it must be initialized and have
a type appropriate to the instruction.

35

36 5 Annotation of Method Bodies

Operand Stack The operand stack is a regular last-in-first-out data structure. Whenever the
JVM needs to store an intermediate result it will push it on the stack. The next instruction can
then use the previously calculated value by popping it off the operand stack and can push back
the result if there is one. Operations are not performed directly on the registers; values in the
registers are always loaded on the stack first and then processed. The maximum stack height is
given at compile time and must never be exceeded.

5.2 Method Bodies

Listing 5.1 illustrates the different possibilities of Universe type annotation within a method body.
For local variables, an Ownership modifier is specified in the variable declaration (lines 3 and 4).
Object creations can either create peer or rep objects (lines 5 and 7). Ownership casts are possible
just like normal type casts (line 6). On line eight, a static method is invoked. As we have seen in
Chapter 3, static calls can run in either the peer or rep context of the caller and this can be specified
by the respective keyword. There, we have already shown how to annotate object creations and
static method invocations. Ownership casts and local variable declarations are handled in this
chapter.

Listing 5.1: The various possibilities for annotations within a method body.
1 class A{
2 rep Object newObject(){
3 readonly Object ro local ; // local variable declaration
4 rep Object rep local ;
5 ro local = new rep Object(); //object creation
6 rep local = (rep Object) ro local ; //Ownership cast
7 ro local = new peer Object(); //this causes the readonly annotation of ro local
8 peer A. staticCall (); // static method invocation
9 return rep local ;

10 }
11
12 static void staticCall (){
13 ...
14 }
15 }

There are three cases where Ownership casts are necessary: local variable harmonization, deref-
erencing chains, and code coverage issues.

At this stage of the algorithm, we decided that we do not alter the annotations that were
inferred by the harmonization visitor anymore, i.e. no harmonization of variables is conducted.
We did this to ensure the modularity of the different steps of the algorithm. This may lead to the
situation that is illustrated by Listing 5.1. Suppose that one of the two new-statements on lines
5 and 7 is annotated with rep, the other with peer after the harmonization and annotation phase.
Each of these created objects is assigned to the same local variable ro local . If these variables were
fields or parameters, the harmonization visitor would have to harmonize the variables and make
them all peer. However, since the harmonization visitor does not annotate local variables, we have
no choice but to assign ro local the smallest common supertype of all types that were assigned to
this variable (readonly Object in this case). Furthermore, since the local variable will be annotated
with a readonly Universe type, the assignment source on line 6 needs to be casted to rep.

Another problem was already described by Lyner[19]; it is being referred to as the dereferencing
chains problem. A dereferencing chain is a number of read accesses followed by a write access
(Listing 5.2). Dereferencing chains are problematic, because the Tracing agent only generates an
event for the write access to the object that is on the stack at last. Universe modifiers within the
chain are not considered, even though the type combinator would have to be applied subsequently
after each object is loaded on the stack. In the example, the chain is treated as a write operation
from an instance of class A to the object referenced by field c of the object stored in b. The

5.2 Method Bodies 37

object referenced by field b is totally unaffected and a readonly annotation is possible. However,
the type combinator has to be applied for the field access b.c (readonly*peer). The result is a
readonly reference, making the non-pure method call doWrite() on this reference illegal. A cast to
peer needs to be inserted. Since there is a write reference between the two objects, we know that
they must be either in a peer or a rep relationship to each other (write references cannot cross
context boundaries). However, we do not know which cast is correct, so we have no choice but to
chose a default peer cast and output a warning. The user can supply another value for the cast in
the default annotations input file that can be used instead.

As mentioned in Chapter 4, write accesses to objects referenced by array components pose the
same problem. In the example in Listing 5.2, instead of the chain b.c, an array access, such as
arr [n], could be substituted where arr denotes an array and n is an index into the array. This array
access would result in the exact same situation as the case mentioned in the previous paragraph.
Here, a cast will be needed as well.

Listing 5.2: Dereferencing chain. The type combinator returns readonly for the read access b.c.
However, read accesses do not trigger any event, so the Tracing agent treats the write access on c
as a direct write access.

class A{ class B{
readonly B b; peer C c;

}
void foo(){

((peer C)b.c).doWrite(); //write operation on c needs cast
}

}

Another case where casts may be necessary are code coverage issues. Remember that until
now, we have inferred the Universe types of a program based on a given test run. This means that
we may have execution paths that might not have been taken by the program, leading to wrong
annotations. Consider the example in Listing 5.3: there are two execution paths; depending on the
boolean condition cond, a write operation on obj is performed or not. If by chance, in a given test
case, cond was always true, our algorithm will find a readonly annotation for variable obj. However,
if we add this annotation to the source code and try to compile it, we will get an error, because
the write access on line 5 is illegal. It can be made compilable by adding a cast or setting the
Universe type of the variable to peer. Just like adding casts for dereferencing chains, it is not sure
whether a peer or rep cast is correct, so the user can also supply a default value. As pointed out
in the first example, changing the Universe type of a variable at this stage of the algorithm is very
difficult, because it may introduce a lot of conflicts and it has an effect on other variables as well.
All method bodies accessing the changed variable would have to be revisited again.

As this problem originates from bad code coverage, it is more helpful to achieve better code
coverage than to provide workarounds. One improvement is the possibility to join several test
cases into one Runtime Inference run. This would obviously increase the code coverage and will
be described in Chapter 6.

Listing 5.3: Code Coverage issue.

1 readonly T obj;
2 if (cond){
3 //no access on obj
4 } else{
5 ((peer T) obj).doWrite();
6 }

38 5 Annotation of Method Bodies

5.3 Bytecode Instrumentation

The first idea to annotate the local variables was to use the same approach as for arrays, namely
bytecode instrumentation. By instrumenting the astore bytecode, which stores a reference into a
register, it would be possible to track which references are stored in the registers and the registers’
Universe types could be annotated that way. However, we had some concerns that the tracing of
all astore instructions would generate a significantly larger trace file which is already the bottleneck
of our Inference tool.

To illustrate this, we have run three tests with the LinkedList example of [19]. The test case
inserts about 1000 objects into the list, the linked list’s insert method is implemented recursively
and has an O(n) runtime. This causes many method entry and exit events to be created. The
tests were run on a 900 MHz Pentium III Laptop computer, so disk-I/O was rather slow.

First, we ran the original test program without the Tracing agent enabled. After that, we have
run the agent without output enabled, i.e. the events were generated but not written to a file. The
last run included writing the output to a file, so the I/O was fully enabled. We have measured the
execution time with the linux command time. The results can be seen in Table 5.1. The generated
output file was about 115 MB in size and 593’336 events were generated. The example illustrates
that the Tracing agent itself produces quite a lot of overhead, and the disk-I/O more than doubles
this overhead again.

Original Agent (no I/O) Agent (with I/O)
real 0m0.249s 6m50.240s 24m20.673s
user 0m0.148s 2m51.680s 5m9.395s
sys 0m0.034s 3m31.720s 5m46.682s

Table 5.1: Three test runs with the Tracing agent. The first column shows the original program
without the agent. The second column shows the execution time with the tracing agent, but no
output is written to a file. The third column shows the execution time including output generation.

The Java part of the program’s execution time for this test run is listed in Table 5.2. It
illustrates clearly that building up the EOG, which includes the parsing of the input file, requires
by far the most time. We also extracted the time the parsing took on its own, without actually
building up the EOG data structure. The parsing of all events took 497s, which is more than 50%
of the build-up time.

Algorithm Step Execution Time
Build EOG 952.84s
Dominator 3.16s
Store Dominator level 0.978s
Resolve Conflicts 0.966s
Harmonize and Annotate 19.312s
Method Body Annotation 4.393s
Output 0.509s

Table 5.2: Execution time of each step of the Inference algorithm. It can be seen that building up
the EOG takes by far the most time.

The second problem with this approach is that there is no possibility to add Ownership casts.
This is because dereferencing chains cannot be detected for the same reason as for other variables.
It can only be traced that a write operation on an object is performed, but not how the object
got on the stack, i.e. which variable(s) were used to load the object on the stack. In order to get
this information every bytecode instruction that puts an object on the stack or removes an object
from the stack would need to be instrumented and the trace file would become much too big.

5.4 Abstract Interpretation 39

Unless there is a more efficient way to store and load generated events, it makes no sense to
enlarge the trace file even more. In general, we can say that it is responsible for about 50% of the
execution time.

5.4 Abstract Interpretation

Our approach to annotate method bodies relies on a combination of runtime and static inference.
The information gathered during the runtime inference about the method signatures, fields, object
creations, and static method invocations will be used while conducting an abstract interpretation
of the types on the operand stacks of the methods to be annotated. This approach is static in
the sense that not an actual method execution is interpreted, but the bytecode of a method is
interpreted abstractly.

The abstract interpretation we need to perform is very similar to the one bytecode verifiers
for the JVM implement. However, in our case the bytecode is not verified, it is assumed to be
correct and well-typed. This means that all checks of the stack-size and Java type checks can
be omitted. At this point, we have annotated the class fields, method signatures, static method
calls, and object creations using the information gathered by the Tracing agent running a test
case on the given program. Unless the code coverage of the given test case is 100%, there might
be some variables without inferred Universe type, because no operation using these variables was
traced. In a first step, we will simply use a default Universe type for those variables. If the default
value does not produce a correct result, the user may specify a Universe type that is passed in the
default annotations input file.

Since this stage of the algorithm will not deal with runtime information anymore, it has to take
the Java bytecode (either in a .jar or .class file) as input. The bytecode and additional information
of a class’ methods are stored in the classfiles in so-called method info structures, which further
contain attribute info structures. The most important attribute info of the method info structure
is the code attribute, it contains the bytecode of the method. Depending on the arguments sup-
plied to the javac compiler, a LocalVariableTable and/or a LineNumberTable are generated as
attributes of the code attribute. By default, only the LineNumberTable is generated. The Local-
VariableTable is generated with the argument -g. The LocalVariableTable is especially interesting
for our purpose, because it contains information on how the local variables of the sourcecode are
mapped into the local variable array of the method in the bytecode. Without this information we
have no information on the variable names, scope and Java type, therefore we require the table
to be present for the method bodies that need to be annotated. The LineNumberTable contains
information about the mapping between the bytecode location of an instruction and the location of
its pendant in the source code. Since we need to know the ordering of the instructions in the source
code and since there is no way to generate this information from the raw bytecode, we require a
LineNumberTable as well. The ordering of bytecode instructions within a line of source code can
still not be determined, which could yield wrong annotations if there are several statements on one
line. This can only be solved by spreading multiple statements over multiple lines. An example
where statements on the same line of source code appear in another order in the bytecode is shown
in Figure 5.1. Two new-statements and their corresponding constructor calls are nested, so the
order they appear in the source code is not the same as the order they appear in the bytecode.

5.4.1 Algorithm Overview

Our abstract interpretation algorithm starts building up a call-graph first. The call-graph keeps
track of all methods that are called within the body of a given method. The call-graph is necessary,
because, as it was pointed out earlier, there might be some variables with an unknown Universe
type due to bad code coverage. These unknown types (e.g. method parameters/return types)
may become known during a method body inference, so the signature of a method can change.
A signature change of a method may have an impact on the method body inference of all its
callers, so they have to be revisited. The algorithm therefore runs a fixpoint iteration over all

40 5 Annotation of Method Bodies

public void newTest(){
new Integer(new Short((short)5));

}

0: new #34 <java/lang/Integer>
3: new #36 <java/lang/Short>
6: dup
7: iconst 5
8: invokespecial #39 <java/lang/Short.<init>>

11: invokevirtual #43 <java/lang/Short.shortValue>
14: invokespecial #46 <java/lang/Integer.<init>>
17: return

Figure 5.1: Source- and bytecode of the same method. The new-statements and their correspond-
ing constructor calls are nested in the bytecode. In general, it is not specified in what order
statements appear in the bytecode. This means that our tool may run into problems when there
are multiple statements on one line of source code.

methods that are supposed to be annotated. The method body inference should be conducted in
an optimal order such that the least amount of methods need to be revisited. David Graf has
implemented an algorithm by Sǎlcianu and Rinard [24] finding such an optimal order in his work
[14]. It tries to visit methods first which others are dependent on. In our current implementation,
we run the method body inference in a random order. The performance should still not be much
worse, because if the test cases are carefully chosen (i.e. code coverage is high), method signatures
change very seldom during method body inference.

The user may specify which classes or packages should be considered when the method body
inference is conducted. It does not make sense, for example, to run a method body inference
on library classes for which there is no sourcecode to be annotated. For these classes, only the
signatures of the methods are interesting. The classes or packages to be annotated are specified
in the configuration file supplied to the Type inferer.

In order to conduct the method body inference of a single method, we use an adapted version of
the bytecode verifier algorithm described in Chapter 4.9.2 of the Java Virtual Machine Specification
[25]. The bytecode verifier is used to statically check bytecode for type safety and that there are
no stack over- or underflows. The verifier simulates the execution of a method, but instead of
operating on values, it operates on types. It is a fixpoint iteration on the types in the registers
and on the stack of a method. Once the verifier reaches a fixpoint and there were no constraints
violated, the method has successfully been verified. Note that termination of the method is not
guaranteed, the verification algorithm may terminate even if the Java code does not.

In our case, we want all types in the registers to be the types (including the Universe type)
of the corresponding parameters or local variables once the fixpoint is reached. Since we require
a LocalVariableTable to be present, we know the scope of each local variable and can therefore
internally use different variables if registers are reused. A register is therefore accessed with two
arguments, the register index and the bytecode location of the current operation. The algorithm
to annotate a single method works as follows:

A worklist is kept with all the instructions that need to be looked at. Initially, only the first
instruction of the given method is in the worklist. The types (including Universe types) of the
method arguments are stored in the corresponding registers. The special reference to the this

object in register ’0’ has a special Universe type ’ this peer ’. A simple peer Universe type would
not be correct, because the type combinator does not need to be applied for the this reference. As
soon as the this reference is stored into another register, though, the Universe type is changed to
a common peer type. If no Universe type was set for a parameter yet, it is left in the unset state
(this may happen if a method was not called at all during the test case). The operand stack of
the method is empty. The abstract interpreter executes the following loop:

1. Select a virtual machine instruction that is in the worklist. If the worklist is empty, the
method body has successfully been annotated. All types stored in the registers are the

5.4 Abstract Interpretation 41

inferred types for the corresponding local variables. There is one type stored for each local
variable using a certain register depending on the scope of the local variable (given in the
LocalVariableTable). Otherwise, select an instruction and remove it from the worklist.

2. Model the effect of the selected instruction on the operand stack and registers by doing the
following 1 (make sure to apply the type combinator where it is necessary):

• If the instruction modifies a register, record that the register now contains a new type.
The new type is the smallest common supertype of the type stored in the register and
the assigned type, unless the register was in uninitialized state (see definition of scs* in
Section 5.4.2).

• If the instruction uses values from the operand stack, ensure that the top values on the
stack are of an appropriate type. Otherwise, insert a cast to the correct type (Check if
the user set a default).

• If the instruction expects a certain type in a register, assume that the specified register
contains a value of the appropriate type (since we assume that the bytecode is correct).

• If the instruction pushes values onto the operand stack, add the indicated types to the
top of the modeled operand stack.

3. Determine the instructions that can follow the current instruction. Successor instructions
can be one of the following:

• The next instruction, if the current instruction is not an unconditional control transfer
instruction (for instance goto, return, or athrow).

• The target(s) of a conditional or unconditional branch or switch.

• Any exception handlers for this instruction.

4. Merge the state of the operand stack and registers at the end of the execution of the current
instruction into each of the successor instructions. In the special case of control transfer to
an exception handler, the operand stack is set to contain a single object of the exception
type indicated by the exception handler information.

• If this is the first time the successor instruction has been visited, record that the operand
stack and register values calculated in steps 2 and 3 are the state of the operand stack
and registers prior to executing the successor instruction. Add the successor instruction
to the worklist.

• If the successor instruction has been seen before, merge the operand stack and register
values calculated in steps 2 and 3 into the values already there. Add the successor
instruction to the worklist if there is any modification to the values.

5. Continue at step 1.

In order to find the annotation of parameters that had an unknown Universe type prior to
the method body inference, we thought of the following simplification: Un-annotated method
parameters are set to peer if there is a write access anywhere in the body of the method and
readonly if there is not. This makes sense for all methods that are not private, because for non-
private methods a rep annotation of a method parameter makes no sense. For private methods,
a rep annotation is used when there is a write operation. The default for new-statements and for
fields is rep. For static method calls, we try to figure out the annotation of the call by looking at
the passed arguments to the method. If there is a peer annotation in the method signature, the
annotation of the call equals the annotation of the passed argument.

1A detailed list of all instructions and their effects on the registers and stack is provided in Appendix A

42 5 Annotation of Method Bodies

Example

Next, we demonstrate a small example of the method body inference algorithm for the method in
Figure 5.2. The sample code is not of practical use, because it will result in an infinite loop, but
the abstract interpretation algorithm can still be demonstrated.

class A{
public void test (rep peer Object [][] param arr){

rep peer Object [] local arr = param arr[2];
while (true){

rep Object local obj = local arr [2];
}

}
}

0: aload 1
1: iconst 2
2: aaload
3: astore 2
4: aload 2
5: iconst 2
6: aaload
7: astore 3
8: goto 4

Figure 5.2: Source- and bytecode of the method body to be annotated. The two local variables
local arr and local obj are to be annotated. The parameter param arr has been assigned a rep peer

annotation by the previous steps of the Inference tool. Note that the code does not terminate, but
the abstract interpretation algorithm does.

The annotation for the parameter param arr has been set to rep peer by the previous steps
of the Inference tool. The initialization of the stack and the registers is therefore the following:
register ’0’ is initialized with type this peer A (the this object), register ’1’ with rep peer Object [][]

(parameter param arr). Registers ’2’ and ’3’ are initialized with the uninitialized type, denoted by
’>’. Table 5.3 shows the execution of the described algorithm. In this case, each instruction has
exactly one successor. Except for the goto instruction (8), the successor is the next instruction
in the bytecode. This means that one instruction will be in the worklist at a time. The outgoing
frame situation of each bytecode instruction of the example in Figure 5.2 is displayed in the table.

When the algorithm reaches the goto instruction on line 8 whose successor has been visited
before, the outgoing frame situation has to be merged with the present incoming frame situation
of instruction 4 (i.e. outgoing frame of instruction 3). Other than register ’3’, which contained the
uninitialized type before, all registers are the same. We have to apply our special smallest common
supertype function (described in Section 5.4.2) to this register, which will yield rep Object.

The algorithm will then process instructions 5-8 again. When instruction 8 is processed this
time, the incoming frame situation for instruction 4 will be the same as before and the instruction
is not put into the worklist. The worklist is now empty, and the types of the local variables are
stored in the corresponding registers (rep peer Object [] for local arr , rep Object for local obj).

5.4.2 Detailed Description of the Algorithm

Determination of Successor Instruction

The determination of successor instructions works exactly the same as for regular bytecode verifiers.
For most instructions, the successor instruction is simply the next instruction in the bytecode. For
branches and switches the successors are all possible targets. There is a pair of instructions that
usually creates some problems with bytecode verifiers, the jump to subroutine instruction jsr and
its return instruction ret . The target of the jsr is simply the target supplied as argument to the
instruction. The ret instruction, however, retrieves the return address from a register, therefore
the return address is not statically known. The Java Virtual Machine Specification (Section
4.9.6 [25]) states the following on ret instructions: ”When executing the ret instruction, which
implements a return from a subroutine, there must be only one possible subroutine from which
the instruction can be returning. Two different subroutines cannot ”merge” their execution to a
single ret instruction.”This means that we can assign to each ret instruction a set of corresponding

5.4 Abstract Interpretation 43

Instruction Outgoing frame situation (Stack, Registers)
init: ([],[this peer A, rep peer Object[][], >, >])
0: aload 1 ([rep peer Object[][]], [this peer A, rep peer Object[][], >, >])
1: iconst 2 ([int, rep peer Object[][]], [this peer A, rep peer Object[][], >, >])
2: aaload ([rep peer Object[]], [this peer A, rep peer Object[][], >, >])
3: astore 2 ([], [this peer A, rep peer Object[][], rep peer Object[], >])
4: aload 2 ([rep peer Object[]], [this peer A, rep peer Object[][], rep peer Object[], >])
5: iconst 2 ([int, rep peer Object[]], [this peer A, rep peer Object[][], rep peer Object[], >])
6: aaload ([rep Object], [this peer A, rep peer Object[][], rep peer Object[], >])
7: astore 3 ([], [this peer A, rep peer Object[][], rep peer Object[], rep Object])
8: goto 4 ([], [this peer A, rep peer Object[][], rep peer Object[], rep Object])
goto 4 => merge with outgoing frame situation of instruction 3; instruction 4 is put in the

worklist.
4: ([rep peer Object[]], [this peer A, rep peer Object[][], rep peer Object[], rep Object])
5: ([int, rep peer Object[]], [this peer A, rep peer Object[][], rep peer Object[], rep Object])
6: ([rep Object], [this peer A, rep peer Object[][], rep peer Object[], rep Object])
7: ([], [this peer A, rep peer Object[][], rep peer Object[], rep Object])
8: ([], [this peer A, rep peer Object[][], rep peer Object[], rep Object])

goto 4 => merge with outgoing frame situation of instr. 3. The result is the same as before, so
successor 4 is not added to the worklist again. The worklist is now empty and the inferred types

are stored in the corresponding registers.

Table 5.3: Abstract interpretation of the operand stack and registers. The outgoing frame situation
of each instruction is displayed. The algorithm executes from top to bottom, because every
instruction has exactly one successor. The successor of the goto instruction (inst. 8) is instruction
4. Since this instruction has been visited before, the outgoing frame situation of instruction 8 is
merged with the other predecessor of instruction 4. The result is compared to the frame situation
that was already there. If it is the same, the instruction will not be put into the worklist (which
is the case when the algorithm reaches this instruction for the second time).

jsr instructions, which all have the same target. The instructions that follow these jsr instructions
are successor instructions of the ret instruction.

State Merge

There is a difference between our algorithm and the algorithm for bytecode verifiers when merging
the state of the operand stack and registers. Bytecode verifiers will always assign the smallest
common supertype (according to the type hierarchy shown in Figure 5.3) of two types that are
stored in the same register or at the same place on the operand stack. This means that whenever
one of the two types that are merged is in the uninitialized state, the result of the merge is the
uninitialized state. This is very impractical for our purpose, because we want the inferred type of
a given local variable to be stored in the corresponding register upon termination of our algorithm.
We do not care about uninitialized registers, because we assume that the given bytecode is correct.
Therefore, the result of a merge with an uninitialized register and a type τ is always τ . Additionally,
we have to include the Universe type when determining the smallest common supertype.

For bytecode verifiers, the jsr and ret instructions pose some problem at this stage again. The
problem is that upon entering the subroutine, all output states of corresponding jsr instructions
are merged. This can lead to loss of precision in the register types inferred, as the example in
Listing 5.4 taken from Leroy[18] shows.

At the target of the two jsr instructions at 0 and 52, their output states are merged into a
single state. This means that if the type of register 0 was ”uninitialized” when the subroutine
was called from 0 and ”int” when called from 52, its state will be merged to ”uninitialized” by
the bytecode verifier. After returning from the subroutine, the ”uninitialized” state of register 0 is
preserved and the code following the jsr instruction at 52 will be rejected. For this purpose, the

44 5 Annotation of Method Bodies

Figure 5.3: Some type expressions with their subtyping relationship. C, D, E are user-defined
classes, with D and E extending C. ”>” represents the ”uninitialized” state or type. This figure is
taken from Leroy[18].

Sun’s bytecode verifier keeps track of all registers that are used within a subroutine and only those
registers are merged, the rest stays unaffected. However, for our purpose this is not necessary,
because we do not care about uninitialized registers and our special merge function scs∗() will
never revert a register back to the uninitialized state.

Listing 5.4: Subroutine Example

// register 0 uninitialized here
0: jsr 100 // call subroutine at 100
3: ...

50: iconst 0
51: istore 0 // register 0 has type ”int ” here
52: jsr 100 // call subroutine at 100
55: iload 0 //load integer from register 0
56: ireturn //and return to caller

....
//subroutine at 100

100: astore 1 //store return address in register 1
101: ... //execute some code that does not use register 0
110: ret 1 //return to caller

Effects of Bytecode Instructions

Each instruction of a method has a certain effect on the registers and the stack of this method,
this is modeled by a stack and register state transition rule. A complete list of all transition rules
for every bytecode instruction is found in Appendix A. At this point we will only discuss some
interesting instructions that have implications on the Universe types of the types on the stack or
in the registers.

In order to explain the transition rules, the following helper functions are used:

5.5 Implementation 45

om(τ) = Ownership modifier of type τ.

jt(τ) = Java type of type τ.

tc(τ1, τ2) = om(τ1) ∗ om(τ2) jt(τ2)
comp(α) = Component type of array α.

τ <: τ ′ = τ is a subtype of τ ′. (Ownership modifier included)

scs ∗ (τ1, τ2) =


τ2 if τ1 = uninitialized

τ1 if τ2 = uninitialized

smallest common supertype(τ1, τ2) if τi 6= uninitialized

The selected rules in Figure 5.4 are interesting because they all differ in some way from the
rules that a bytecode verifier would normally use. The astore instruction stores an object reference
that is on the stack into a given register. This means that the reference needs to be on the stack
before the instruction (denoted by τ.S) and the smallest common supertype of the value already
in the given register and the type on the stack, τ , is stored into register n after the instruction
(denoted by R{n← scs ∗ (τ,R(n))}). A bytecode verifier would simply store the new type in the
register.

The aastore instruction requires three arguments to be on the stack. The array type α, the
index into the array (as int) and the component type. For the component type, the Universe type
combinator needs to be applied. The actual type that needs to be on the stack is given by the
Universe type combination of the first and the second Ownership modifier of the array.

The invokevirtual instruction is very interesting, because for each type in the signature of the
invoked method, the Universe type combinator with the type of the target object needs to be
applied. This simply means that the types on the stack need to be compliant with the signature
of the invoked method relatively interpreted to the target object. A small example: suppose the
signature of a method contains only peer types. If you invoke this method on a rep object, all
parameters need to be rep, too. This is because the arguments need to be peer relative to the
target object. Furthermore, if a method uses rep anywhere in its signature, it may only be invoked
on the this object. This is specified by the last condition of the rule. Of course, non-pure methods
may only be invoked on types that are not readonly.

The last rule in Figure 5.4 for the instruction checkcast illustrates the effect of an existing
cast. These are casts that were not added by the Inference tool, but where already present in the
given program. Statically, the cast is always thought to succeed; the Ownership modifier remains
unaffected. If the cast really succeeds can only be checked at runtime.

astore n : (τ.S,R)→ (S, R{n← scs ∗ (τ,R(n))})
aastore : (tc(α, τ).int.α.S, R)→ (S, R), comp(α) = τ ∧ own(α) 6= readonly
invokevirtual C.m.σ : (tc(τ ′, τn′)...tc(τ ′, τ1′).τ ′.S,R)→ (tc(τ ′, τ).S,R)
if σ = τ(τ1, ..., τn), τ ′ <: C, τi′ <: τi for i = 1...n, om(τ ′) 6= readonly,
if ∃ τi with own(τi) = rep then om(τ ′) = peer this
putfield C.f.τ : (tc(τ2, τ1).τ2.S,R)→ (S, R) if τ1 <: τ, τ2 <: C, om(τ2) 6= readonly
checkcast τ : (τ ′.S,R)→ (τ.S,R), τ <: τ ′, om(τ) = om(τ ′)

Figure 5.4: Selected stack and register state transition rules. They illustrate the effect of a bytecode
instruction on the stack and register pair (S, R). The types on the stack are separated by ’.’.

5.5 Implementation

Since the abstract interpretation approach for the annotation of method bodies is very similar to
the abstract interpretation performed by bytecode verifiers, it was intriguing to use parts of an

46 5 Annotation of Method Bodies

open source verifier. Open source implementations of the Java Virtual Machine should provide
a bytecode verifier, so we have taken a look at them first. Namely, we evaluated kaffe[26] and
sablevm[12]. The sablevm did not seem to include a bytecode verifier at all. Kaffe includes a
verifier implementation even though they state on their homepage that it does not. However, the
code is written in C and very much tied into the rest of the virtual machine code, so it is not very
useful for our purpose.

The bytecode engineering library BCEL includes a bytecode verifier called JustIce. JustIce is
entirely written in Java and uses the bytecode engineering facilities provided by BCEL. JustIce
turned out to be a good starting point for our abstract interpreter as we could use a lot of its
code. JustIce uses the visitor pattern to go through the code of the methods to be verified, so
we can specify our own visitors that can be used to annotate method bodies. Furthermore, it
should be possible to improve or modify our abstract interpretation implementation later on such
that a Universe type bytecode verifier can be produced. The highest benefit from using BCEL
and JustIce was that we did not have to care about the successor problem of jsr /ret pairs and
the program flow in general. We could simply rely on the verifier facilities. As we have shown in
Section 4.4, we use the bytecode engineering tool javassist to implement the instrumentation of
loaded classes. Since these two libraries are not loaded at the same time (javassist is used in the
Tracing agent, BCEL in the Type inferer), we do not introduce any runtime overhead by using
both libraries.

The separate abstract interpretation step is tied into the existing system as an additional visitor
(class AbstractInterpretationVisitor). This way, the method body annotation is optional and can be
deactivated by removing its entry in the configuration file. This would make sense when library
code is examined which does not provide any source code that could be annotated.

At first, we wanted to run a normal bytecode verification prior to the method body inference
to be sure that the given bytecode is correct. Unfortunately, the JustIce version we used (as part
of BCEL 5.1) had some problems with interfaces and abstract classes, so we could not rely on the
verifier result (the verifier rejected correct bytecode).

5.5.1 Java type representation

To represent Java types on the stack and in the registers, the BCEL uses the following classes
(see Figure 5.5): BasicType, ReturnaddressType, and ReferenceType. Furthermore, there are two
kinds of ReferenceTypes: ObjectType, which stands for all kinds of class types and ArrayType, which
stands for all array types. Of course, these classes consider no Universe modifiers, so we had
to add new classes that do. Since only reference types may have Universe modifiers, we added
a UniverseReferenceType, a UniverseObjectType and UniverseArrayType. The most convenient way to
add our classes storing Universe type information to the existing class hierarchy would have been
to make UniverseObjectType a subclass of ObjectType and UniverseArrayType a subclass of ArrayType.
This way, we would have achieved the best compatibility with the existing JustIce code, as it did
not have to deal with any Universe type information and our additional classes could use this
information. However, those two types are declared final so we could not do it this way. Instead,
we had to make UniverseReferenceType a subclass of ReferenceType and the array and object types
inherit from this one. This made the rest of the implementation significantly more difficult, as
instanceof checks of either ArrayType or ObjectType within the JustIce code did not work anymore.
We therefore could not inherit from the code visitors, but had to implement our own doing a lot
of copy and paste of existing JustIce code.

5.5.2 Verification visitors

The JustIce bytecode verifier implements the verification algorithm described in the JVM Spec,
which we customized for our purpose (see Section 5.4.1). We had to alter the method frame
representation to be able to deal with our new UniverseReferenceTypes and had to make sure that each
local variable stored in a register can be accessed separately. Constraints of a bytecode instruction
are checked by the InstConstraintVisitor . This visitor checks all constraints of an instruction, e.g.

5.5 Implementation 47

Figure 5.5: BCEL classes to simulate types on the stack and in the registers.

if there are enough objects on the stack and so forth. Our implementation only checks Universe
type constraints, e.g. a non-pure method invocation needs to have a target on the stack that is
not readonly. Once the constraint visitor ensured that the given constraints are met, the effect
of the instruction is modeled, i.e. the instruction is virtually executed using the ExecutionVisitor .
Here, we simply copied all methods that visited an instruction that was not using any Universe
types and reimplemented the ones using Universe types.

5.5.3 Indexing within Method Bodies

As specified in the annotations.xsd schema2, the output of the Type inferer needs to index static
calls, new-statements, local variables, and casts within a method body. For each target class of
a static call and for each new-statement one index is maintained, e.g. all new-statements are
assigned an increasing index as they appear in the source code of a method body. Local variable
declarations are indexed in the order they appear in the source code.

The indexing of casts is somewhat less trivial. In general, there are three types of cast targets:
assignments, method calls, and array initializers. Each target type is indexed throughout the
method body, this number is called the index. Within a cast target, there may be a number of
objects that can be casted (we call this the position): the target of an assignment or a method call
is at position −1, the n parameters of a method call are numbered from 0 through (n-1). For an
assignment, the expression that is assigned to the target is at position 0. The example in Listing
5.5 shows a method body with 4 assignments and one method call.

2see Appendix D line 387ff

48 5 Annotation of Method Bodies

Listing 5.5: Example of cast numbering within a method. All assignments and method calls are
numbered from top to bottom of the method (this number is called the index). Within a method
call or assignment, the position of the cast must be specified (this number is called the position).
E.g. the cast of the target of the method call on line 5 would get index = 0, position = −1.

1 public void foo(){
2 int x= 5; //type:assignment, index=0
3 readonly Object y= new Object(); //type:assignment, index=1
4 XY obj= (readonly XY) obj 2; //type:assignment, index=2, position= 0
5 ((peer XY) obj).bar(y, x); //type:method call , index=0, position= −1
6 ((peer XY) obj). field = new Object(); //type:assignment, index=3, position= −1
7 }

Once a method’s bytecode is parsed, we go through the code array and assign the indexes
of static calls, cast targets, and new-statements. We do this by using the information in the
LinenumberTable, which can be used to look up the source code line number of each bytecode
instruction. However, if two statements are on the same line, we do not know in which order they
appear in the source code. This means that the Type inferer might mix up statements on the same
line (as pointed out by Figure 5.1 in Section 5.4). This can be resolved by separating different
statements on different lines.

Furthermore, indexes for constructors may cause additional problems, because their instance
initializers are inlined into all constructors during compilation (see Listing 5.6). In the example,
the object construction on line 6 will get the index 1, the array construction on line 2 will get
the index 0. This behavior does not comply with the specification in the annotations.xsd schema,
instance initializer code should be numbered independently. Handling this problem remains future
work.

Listing 5.6: Instance initializers, such as the statement on line 2 are inlined into the constructors
during compilation. In the bytecode, it cannot be seen if the construction of the array is done in
the constructor or as part of the instance initializer.

1 class X1{
2 Object [] array= new Object[4];
3 Object obj ;
4 ...
5 public X1(){
6 obj= new Object();
7 }
8 }

In our implementation using the BCEL library, we did not find a way to index local variables
correctly. BCEL only provides information about the register slot in which a certain variable is
stored, not the information at which position in the source code a local variable is declared. All
entries of a local variable table are stored in an array. It seems that most of the time, the order in
the array and the order in the source code is the same. However, there are cases where this order
is not the same and the tool will produce wrong local variable indexes. Since we also output the
name of the local variable, though, the user can still correct the result by hand or the annotation
tool could use the variable name instead of the index to insert the annotations. Using the variable
names for the annotation tool requires that no name is used multiple times within a method body.

Chapter 6

Joining multiple Test runs

Code coverage is crucial for the quality of the annotations found by the Inference tool. Even though
the abstract interpretation for the method body inference can deal with code that has not been
visited to some extent, the abstract interpretation might get stuck and no valid annotation can
be found in some cases. In this chapter, we show how multiple test cases can be joined, resulting
in better code coverage and hence less unannotated variables prior to the abstract interpretation
phase. In Section 6.1 we show how global information, valid for all test cases, and local information,
valid for just one test case, is separated. The implications of this separations on the visitors is
presented in Section 6.2. The chapter is concluded with a presentation of a test case that shows
the benefits of the possibility to join multiple test runs in Section 6.3.

6.1 Information separation

Until now, we have only dealt with one program trace. Meaning only one EOG needed to be built
up and all operations were performed on this graph. When multiple traces need to be joined,
it is not possible to build up a single EOG. This will not work, because object IDs assigned by
the Tracing agent are only unique for one run. The same ID can be used for different objects in
two runs which will cause errors when building up the EOG. In Version 1, all information about
variables, mappings from trace file IDs to objects in the EOG, etc. was handled by the same class
Graph. If we want to have multiple EOGs, we need to separate global and local information. Here
is a list of global and local information to be separated:

1. Global information:

• Pure methods, default annotations

• Variables to be annotated

• Variable → Reference mapping (needed in harmonization phase)

2. Local information:

• References and objects of the EOG

• Field/Method ID → java.lang.reflect.Field/java.lang.reflect.Method mapping

• Object ID → object mapping

Since we now have multiple graphs, it makes sense to use the existing Graph class as represen-
tation of a single EOG and add a new layer above the existing, dealing with all global information.
The UML diagram of the new class ProgramTraces and the changes to the existing Graph class can
be seen in Figure 6.1. We have changed the name of the observer interface, such that it is clear
that the observers observe a ProgramTraces object, not a Graph object. We have added the method
graphAdded() to the interface, which will be called when a new graph is created. Other than that,

49

50 6 Joining multiple Test runs

we have not changed the interface to ensure that only minor changes need to be applied to the
existing tools such as Marco Meyer’s EOG visualization tool[20].

6.2 Visitors

In Version 1 of the tool, all visitors were operating on the single Graph object, since it contained
all information about the variables and the EOG. Now that we have separated information locally
relevant for each EOG and information globally relevant for the variables to be annotated, we can
classify the existing visitors into three categories:

1. Visitors using only local information about an EOG:

• DominatorVisitor

• StoreDominatorLevelVisitor

• ResolveConflictsVisitor

2. Visitors using only global information about annotation variables:

• AbstractInterpretationVisitor

• OutputVisitor

3. Visitors using both global and local information:

• BuildUpVisitor

• HarmonizationVisitor

Even though we have pointed out that there are different kinds of visitors, now that we have sep-
arated some data, we did not change the visitor interface (except a name change from GraphVisitor

to TraceVisitor). All visitors visit objects of the same class ProgramTraces. This still makes sense,
because only ProgramTraces objects keep track of how many EOGs there are in the system.

Here is how the different steps of the algorithms are executed now that multiple trace files are
supported:

The build-up phase of the algorithm consists of two steps: first, the global information such
as default annotations and pure methods is parsed and registered with the ProgramTraces object.
Then, one EOG is locally built up for each trace file that was specified as input.

Once all EOGs are built up, the three local visitors (Dominator−, StoreDominatorLevel−, and
ResolveConflictsVisitor) resolve local conflicts until a valid object hierarchy is established in each

graph.
The HarmonizationVisitor then needs to harmonize global conflicts. Global conflicts might occur

if one EOG suggests a peer annotation of a variable while another suggests a rep annotation. This
conflict, for example, needs to be resolved by making objects connected by the given variable
references in all graphs peer to each other. In order to be able to identify an object’s or reference’s
graph, a reference to the graph is stored in each object and reference. This increases the total
memory usage slightly, but is necessary to resolve global conflicts. This reference can also be used
by observers to locate the graph of an object.

The AbstractInterpretationVisitor and OutputVisitor only use the information stored in the Program-
Traces object (i.e. inferred and default annotations of the variables). If memory usage was an issue,
all references to the EOGs and their objects could be nullified such that their memory could be
freed. We have not chosen to do this, because the abstract interpretation and output steps do not
need excessive amounts of memory themselves.

6.2 Visitors 51

Figure 6.1: The new class ProgramTraces deals with global information that is shared by all graphs,
e.g. variable information, pure method information, etc., while class Graph now holds local infor-
mation that is only relevant for a particular EOG. The names of the observer classes has been
changed to indicate that not a single EOG (i.e. class Graph) is observed anymore, but the class
ProgramTraces.

52 6 Joining multiple Test runs

6.3 Merge Example

To demonstrate the benefit of merging several test runs into a single Inference run, we tested the
example in Listing 6.1. We ran the example two times, once the argument for the method test ()

was ”true”, once it was ”false”.

Listing 6.1: Class to test the merging of several test runs. We ran the method test () once with
the argument ”true”, once with the argument ”false”, producing two trace files.

1 public class Test {
2 public Test test field ;
3
4 public Test(){
5 }
6
7 public void test (boolean bool){
8 Test local test ;
9 if (bool){

10 test field = new Test();
11 }else{
12 test field = new Test();
13 test field .makePeer(this);
14 }
15 local test = test field ;
16 }
17
18 //non−pure method call, i .e. write operation
19 public void doWrite(){
20 }
21
22 //makes ”other” peer to this
23 public void makePeer(Test other){
24 other .doWrite();
25 }
26
27 public static void main(String [] args) {
28 Test test= new Test();
29 test . test (true); //second run with argument ”false ”
30 }
31 }

If we use just the first run as input, we get a rep annotation for the field test field , the local
variable local test , and both new-statements within method test (). The new-statement in the
”else” branch defaults to rep, because it is never called during the test run. The parameter other

of method makePeer defaults to peer, because it is a public method. This makes sense, because
the method performs a write operation on the parameter. However, the method body annotation
of test () does not terminate and aborts with an error. When the method invocation on line
13 is processed, the parameter of the method must be interpreted relative to the target object
test field (which is rep), so the supplied argument must be rep as well. Since the actual argument

(this) currently on top of the stack is not rep, the algorithm checks if a cast is possible. There is
no way to cast a peer object to a rep object, so the abstract interpretation fails. This example
cannot be made working by setting default annotations, because a default annotation may only
be set for the new-statement in the ”else” branch. Any other default would be overridden by the
runtime annotation, since defaults are only regarded in the method body annotation step. All
other variables (e.g. the field test field) already have been annotated at that time.

6.3 Merge Example 53

If we use just the second run as input, we get a peer annotation for the field test field and
for the new-statement in the ”else” branch. The new-statement in the ”if” branch defaults to rep,
which causes the abstract interpretation to fail again (after it tries to assign the newly created rep

object to the peer field test field). However, this time we can make it work by supplying a default
peer annotation for the new-statement in the ”if” branch. The result when we do this is the same
as the one presented in the next paragraph using both runs as input.

If we use both runs as input we get a valid, compilable solution without further interaction. Both
new-statements, the local variable, as well as the field test field are annotated with peer. The
example shows that bad code coverage may lead to wrong results and the abstract interpretation
may get stuck finding no valid solution. In these cases either code coverage must be improved,
or good defaults must be set. As we have seen in this chapter, code coverage may be improved
significantly by using several test cases as input to the Type inferer.

54 6 Joining multiple Test runs

Chapter 7

Results and future work

In this chapter we discuss the results of this thesis. Some examples that demonstrate the function-
ality of the tool are presented in Section 7.1. In Section 7.2 we take a look at some related work.
Possible future work that could improve the existing tool is presented in Section 7.3. Finally, we
will draw the conclusion in 7.4.

7.1 Program Examples

We have tested the Inference tool with some simple examples focusing on the new features im-
plemented. In the end of this section, we discuss a larger example that uses interfaces, abstract
classes, and inheritance.

7.1.1 Producer Consumer

The Producer/Consumer example (see Listings 7.1, 7.2) is taken from the article ”Universes:
Lightweight ownership for JML” [9]. The producer writes products into the shared buffer, whereas
the consumer reads from this buffer. The producer, the consumer, and the products are in the
same context, because they are all created by the static main() method (see figure 7.1). The
producer and the consumer store a reference to each other.

After running a test case producing 100 products and directly consuming them, we got the same
result as [9]: The producer and the consumer are peer to each other, while the buffer array is in
the rep context of the producer. Therefore, the consumer only gets a readonly readonly reference to
the buffer. Then we added a write access from the consumer to an object referenced by the buffer
array (on line 16 in Listing 7.2). This write access did not change the annotation of the array,
because we cannot add a write reference to the array (see Section 4.2). However, the write access
is allowed, because the object referenced by the array is in the same context as the consumer. The
method body annotation algorithm added a cast to peer as expected, so the result is compilable.

Listing 7.1: Producer.

1 public class Producer {
2
3 public rep readonly Product[] buf;
4 public int n;
5 public peer Consumer con;
6
7 public Producer() {
8 buf = new rep readonly Product[10];
9 }

10

55

56 7 Results and future work

11 public void produce(peer Product p) {
12 buf[n] = p;
13 n = (n+1) % buf.length;
14 }
15
16 public static void main(readonly readonly String args){
17 peer Producer producer= new peer Producer();
18 peer Consumer consumer= new peer Consumer();
19 for (int i=0; i<100; i++){
20 peer Product p= new peer Product();
21 producer.produce(p);
22 consumer.consume();
23 }
24 }
25 }

Figure 7.1: The Producer prod, the Consumer cons and the Products p1 and p2 are in the same
context. The buffer array buf is in the context owned by the Producer. Write operations on the
products by the Consumer using the buffer array variable is legal even though the array’s Universe
type is readonly readonly.

Listing 7.2: Consumer.
1 public class Consumer {
2
3 public readonly readonly Product[] buf;
4 public int n;
5 public peer Producer pro;
6
7 public Consumer(peer Producer p) {
8 buf = p.buf;
9 pro = p;

10 n = buf.length−1;
11 p.con = this;
12 }
13

7.1 Program Examples 57

14 public readonly Product consume() {
15 n = (n+1) % buf.length;
16 //modification : ((peer Product) buf[n]). field = 10;
17 return (readonly Product) buf[n];
18 }
19 }

7.1.2 Array Example

The Producer/Consumer example already included the annotation of an array. In this ArrayTest

example (Listing 7.3), we have two fields of array type and one local variable of array type. We
have also added a method that will never be called during the test run, to see how our tool handles
this. Version 1 would not have generated any annotations for that method.

Listing 7.3: Example to test some array annotations. Two fields of array type rep peer array and
peer peer array are created and filled. Peer peer array must be annotated with peer peer because an
object that is peer to this (peer other) writes to the array as well.

1 public class ArrayTest {
2
3 private rep peer ArrayTest [][] rep peer array ;
4 private peer peer ArrayTest [] peer peer array ;
5
6 private peer ArrayTest peer other ;
7
8 public void test (){
9 readonly peer ArrayTest [] local array ;

10 rep peer array = new rep peer ArrayTest [3][4];
11 for (int i=0; i<3; i++){
12 for (int j=0; j<4; j++){
13 rep peer array [i][j]= new rep ArrayTest();
14 }
15 }
16 local array = rep peer array [1];
17 peer peer array = new peer peer ArrayTest[4];
18 for (int i= 0; i<4; i++){
19 peer peer array [i]= new peer ArrayTest();
20 }
21 peer other= new peer ArrayTest();
22 peer other .makePeer(this);
23 peer other .writeToArrayComponents(peer peer array);
24 peer other .writeToArray(peer peer array);
25 if (peer other == null){
26 peer peer ArrayTest [] new array= not called(peer peer array);
27 peer peer array [0]= new array [0];
28 }
29 local array = peer peer array ;
30 }
31
32 //writes to all array components
33 public void writeToArrayComponents(peer peer ArrayTest[] arr){
34 for (int i=0; i<arr. length ; i++){
35 arr [i]. doWrite();
36 }
37 }
38
39 //write operation on the array
40 public void writeToArray(peer peer ArrayTest [] arr){

58 7 Results and future work

41 arr [0]= arr [1];
42 }
43
44 //A method that is never called in the test case
45 public ArrayTest [] not called (peer peer ArrayTest [] arr){
46 arr [0]=new peer ArrayTest();
47 return (peer peer ArrayTest []) arr ;
48 }
49
50 //simulates a write operation
51 public void doWrite(){
52 }
53
54 //makes the calling object peer, if caller == other
55 public void makePeer(peer ArrayTest other){
56 other .doWrite();
57 }
58
59 public static void main(readonly readonly String [] args){
60 peer ArrayTest test= new peer ArrayTest();
61 test . test ();
62 }
63 }

The tool produces the expected output. Field rep peer array is annotated with rep peer because
the only object writing to the array is the one created by the static main() method. On the other
hand, Field peer peer array is written to by two objects that are peer to each other. If two objects
that are peer to each other write to the same object (the array in this case), all three object must
be peer, otherwise at least one write reference would cross a context boundary (see Figure 7.2).

Figure 7.2: If two objects that are peer to each other (a and b) write to the same object arr , all
objects must be in the same context. Otherwise there is at least one conflicting write reference (in
this case from b to arr).

Local variable local array of method test () is annotated with readonly peer, because both a
peer peer array and a rep peer array are stored in that variable at some point during the program
execution. Therefore, the smallest common super type of these two Universe types must be
assigned to the local variable, which is readonly peer.

7.1 Program Examples 59

The method argument and the return type of method not called () default to peer peer, which
is correct in this case. However, a peer annotation must be set in the default annotations input
file for the new-statement in this method (line 46), because the default used by the abstract
interpretation algorithm (rep) would not work (the assignment to the peer peer array fails). If the
write operation on the array on line 46 is omitted, the annotations of the parameter and return
types become readonly readonly.

7.1.3 LinkedList

The linked list example presented in this section is taken from [19]. We used the same test case as
Lyner in his work to be able to compare the results of the current version to the results of Version
1 of the Inference tool (see Listing 7.4). The implementation of the linked list is displayed in
Listing 7.5. Note that there are two kinds of remove() methods: one takes an integer as parameter,
the other takes a parameter of type Object. Method contains () of class ListItem and Object.equals ()

are marked as pure by the input file.
Our tool produces the same results as Version 1 for the signatures of the methods and for

the fields of the classes. All list items belong to the context owned by the linked list. The stored
objects are readonly to the items. However, Version 1 did not produce any output for the remove(int)

method, because it has never been called in the test case. The current version infers a readonly

annotation of the method return type during the method body inference, which is correct.
The method body annotation works well: all local variables and new-statements are inferred

correctly. Object creations within the static main() method are annotated with peer. All new-
statements in the implementation code use the same Ownership type as the variable into which
the newly created object is stored.

Listing 7.4: Test case for the linked list example.
1 public class LinkedListUser {
2 public static void main(String [] args) {
3 peer LinkedList list = new peer LinkedList();
4 peer A a1 = new peer A();
5 peer A a2 = new peer A();
6 peer A a3 = new peer A();
7 peer B b1 = new peer B();
8 peer B b2 = new peer B();
9 peer B b3 = new peer B();

10 list . insert (a1);
11 list . insert (a2);
12 list . insert (a3);
13 list . insert (b1);
14 list . contains(a1);
15 list . contains(b1);
16 list . size ();
17 list .remove(a3);
18 list . insert (b2);
19 list .remove(a2);
20 list .remove(b1);
21 list . insert (b3);
22 list . size ();
23 }
24 }

60 7 Results and future work

Listing 7.5: Implementation of the linked list.

1 public class LinkedList {
2 rep ListItem head;
3 int size ;
4
5 public LinkedList (){
6 head = null;
7 size = 0;
8 }
9

10 public int size (){
11 return size ;
12 }
13
14 public void insert (readonly Object o){
15 if (head == null){
16 head = new rep ListItem(o);
17 }else{
18 head. insert (o);
19 }
20 size++;
21 }
22
23 public boolean contains(readonly Object o){
24 if (head != null){
25 return head.contains(o);
26 }else{
27 return false ;
28 }
29 }
30
31 public readonly Object remove(int index){
32 if (head == null || index < 0){
33 return null ;
34 }else if (index == 0){
35 readonly Object ret = head.stored;
36 head = head.next;
37 return ret ;
38 }else{
39 return head.remove(index−1);
40 }
41 }
42
43 public readonly Object remove(readonly Object o){
44 if (head == null){
45 return null ;
46 }else if (o. equals(head.stored)){
47 readonly Object ret = head.stored;
48 head = head.next;
49 size−−;
50 return ret ;
51 }else{
52 readonly Object ret = head.remove(o);
53 if (ret != null){
54 size−−;
55 }
56 return ret ;
57 }

7.1 Program Examples 61

58
59 }
60 }
61
62 public class ListItem {
63 readonly Object stored ;
64 peer ListItem next;
65 public String name;
66
67 ListItem(Object toStore){
68 stored = toStore;
69 next = null ;
70 }
71
72 public peer ListItem getNextItem(){
73 return next;
74 }
75
76 public void insert (readonly Object toStore){
77 if (next == null){
78 next = new peer ListItem(toStore);
79 next.name = ”item”;
80 }else{
81 next. insert (toStore);
82 }
83 }
84
85 public readonly Object remove(readonly int index){
86 if (next == null){
87 return null ;
88 }else if (index == 0){
89 readonly Object ret = next.stored ;
90 next = next.next;
91 return ret ;
92 }else{
93 return next.remove(index−1);
94 }
95 }
96
97 public readonly Object remove(readonly Object o){
98 if (next == null){
99 return readonly null ;

100 }else if (o. equals(next. stored)){
101 readonly Object ret = next.stored ;
102 next = next.getNextItem();
103 return ret ;
104 }else{
105 return next.remove(o);
106 }
107 }
108
109 public pure boolean contains(readonly Object o){
110 if (o. equals(stored)){
111 return true ;
112 }else{
113 if (next == null){
114 return false ;
115 }else{

62 7 Results and future work

116 return next. contains(o);
117 }
118 }
119 }
120 }

7.1.4 Tree

The tree example presented here is taken from [16]. It uses interfaces, abstract classes, and
subclassing (see Figure 7.3). The source code of the example with all inferred annotations is found
in Appendix B. A test class is displayed in Listing 7.6. As it can be seen in the code for the
static main method, there are three ways to use this class: with one of the arguments ”average”,
”sumsub”, and ”search int”. Of course we used the possibility to join several trace files in this case,
by using one trace file for each of the invocation possibilities.

We have had to separate the two new-statements on lines 15 and 16 so that the Inference tool
does not mix them up. After the separation, the tool produced the correct result for class Test:
all new-statements and local variables of static methods are annotated with peer.

The rest of the code was annotated as expected: The SortedTree class is the owner of all
SortedTreeNodes. The two kinds of tree iterators (PostorderTreeIterator and InorderTreeIterator) only
have a readonly reference to the elements of the tree (i.e. tree nodes). The PostorderTreeIterator is
annotated correctly, even though there is never an instance of this class created in the given test
case. However, method createPostorderIterator () of class SortedTree, which is never called either,
creates the iterator in its rep context instead of the peer context like the createInorderIterator ()

method. The iterator is still usable from the outside if all its methods are pure . If this is not the
case, a default can be set by the user in the default annotations input file.

We have experienced some problems with this example, though. Methods of interfaces were not
annotated at all. This is the case, because there is never an instance of an interface; there are only
instances of the implementing classes. This means that all events are triggered by implementing
classes and the variables to be annotated are associated with those classes. The same thing
happens for methods of abstract classes. Only fields of abstract classes are annotated, because
they do trigger events.

The general problem is that events such as method exit creating a variable for the return value,
store the method of the actual type of the object triggering the event in the variable. This means
that if the method is inherited, the variable is not used to annotate a possible super implementation
of the same method. To solve this problem, we should probably create an additional variable
for each super implementation of the same method. These variables could then be annotated
separately in the harmonization and annotation phase. There might be some harmonization
necessary if the inferred types for the method signatures in different subclass implementations
are not the same.

Listing 7.6: Test class for the Tree example.
1 public class Test {
2
3 public static void main(readonly readonly String [] argsv) {
4 peer Statistics s = null ;
5 if (argsv . length < 1) {
6 return;
7 }
8 else if (argsv [0]. equals(”average”)) {
9 s = new peer Average();

10 }
11 else if (argsv [0]. equals(”sumsub”)) {
12 s = new peer SumAndSubtract();
13 }
14 else if (argsv [0]. equals(”search”)) {

7.1 Program Examples 63

Figure 7.3: UML diagram of the Tree example taken from [16]. There are two collection imple-
mentations: an ArrayCollection and a SortedTree implementation. The elements of the SortedTree

are stored in SortedTreeNodes while elements of the ArrayCollection are stored in a simple array.

15 s = new peer Checker(
16 new Integer(Integer . parseInt (argsv [1])));
17 }
18 else {
19 return;
20 }
21 Test.measure(10000, s);
22 }
23
24 private static void measure(int elements, peer Statistics s) {
25 int i ;
26 long start , end;
27 start = System.currentTimeMillis ();
28 peer ArrayCollection array = new peer ArrayCollection();
29 fill (array , elements);
30 apply(array , s);
31 peer SortedTree tree = new peer SortedTree();
32 fill (tree , elements);
33 apply(tree , s);

64 7 Results and future work

34 end= System.currentTimeMillis();
35 System.out. println (”Time: ”+(end−start)+”ms”);
36 }
37
38 private static void apply(peer Collection coll , peer Statistics s) {
39 peer Iterator iter = coll .elements ();
40 while(! iter . isDone()) {
41 s .sample(iter .getCurrent ());
42 iter .next ();
43 }
44 }
45
46 private static void fill (peer Collection coll , int elements) {
47 peer Random random = new peer Random();
48 random.setSeed(42);
49 for(int i = 0; i<elements; i++) {
50 coll .addElement(new Integer(random.nextInt() \% 100));
51 }
52 }
53 }

7.2 Related work

The Master thesis by Nathalie Kellenberger ”Static Runtime Inference” [16] and its follow-up ”Sta-
tic Universe Type Inference using a SAT-Solver” [22] by Matthias Niklaus deal with the inference
of Universe types of a given program by analyzing the source code statically. The problem with
the static inference is that the solution returned by the program may not be the optimal one,
whereas the Runtime Inference tool will always return the best (i.e. most nested) solution. Since
the static inference does not have to make the indirection via a trace file, its performance was
much better than the one our runtime approach.

Marco Meyer has completed a semester project ”Interaction with Ownership Graphs” [20]. The
resulting program can be used together with the Type inferer to visualize the manipulations of the
Extended Object Graph. If extended further, this program may allow the user to interact with
the algorithm by resolving conflicts and other problems while the Inference tool is running.

Rayside, Mendel, and Jackson presented [8] a dynamic analysis for revealing object ownership.
They use the owner as dominator property to find the ownership structure of all objects on the
heap. However, they do not map this dynamic structure to a static structure such as source code.
They implemented an interesting way to add write edges into the object graph that could be
used to conduct a purity analysis while tracing the program flow. They also describe a caching
mechanism that reduces the size of the trace file by about 50%, which could be implemented for
our program as well.

Moelius and Souter [21] presented an algorithm for automatically identifying data sharing
relationships in Java programs. Their implementation is based on escape-analysis.

Agarwal and Stoller [1] work on a combination of static and dynamic analysis to infer types
for Parameterized Race Free Java [2]. Just like in our implementation, the dynamic analysis is
used to infer the types for fields and method parameters, while the static analysis is used to
infer local variable types. The Parameterized Race Free Java type system is focused mainly on
multi-threaded programs.

Wren [27] has presented a theoretical foundation for a combination of runtime and static
Ownership Inference. However, he does not present in implementation for his theoretical work.

7.3 Future work 65

7.3 Future work

Disk-I/O Since disk-I/O contributes to about 50% of the total execution time of the Inference
tool, it may be worthwhile to improve the file exchange format and file generation mechanism.
When we zipped the 115 MB trace file from the Linked List example mentioned in Section 5.3,
the size was compressible down to 3 MB. This means that there is a lot of redundant data, which
may be compressed right away. A caching mechanism for events may be implemented such that
events that do not add any more information to the EOG are not written to the trace file. In our
LinkedList example in Section 7.1, there are many method calls with the same target and source,
which do not add any more information to the EOG. An implementation of such a mechanism
would reduce the trace file size significantly.

It may also be possible to get rid of the intermediate step of the trace file and directly build
up the EOG while tracing events. This may be done by either using the JNI inside the Tracing
agent to call methods of the Type inferer, or by reimplementing the Tracing agent using JDI and
incorporating it into the Type inferer. Both of these approaches have the disadvantage that only
one test run at a time can be handled; the joining of multiple runs is not possible.

Threads The Inference tool does not work with multi-threaded programs yet. This is due to the
fact that we had some problems with the thread ID that is supplied as argument to every callback
function of the JVMTI agent. We have experienced sudden thread ID switches in the middle of a
program execution. Some investigation has to be made on what causes these thread ID changes.
Once the problem is resolved, the Type inferer can safely use one static call stack per thread ID
and the whole program becomes thread safe.

Code coverage Until now, we have not investigated if general software engineering metrics
measuring the test case quality apply well to our program. It is not clear whether a good test case
in software engineering terms is also a good test case for our Inference tool. If so, it would bring
the benefit that existing code coverage and testing tools can be used to automatically generate
test cases as input for our tool.

Unannotated code In the current implementation, we simply use a default value for variables
that were not annotated in the runtime inference phase. It may be possible to infer more variables
by running a more intelligent global fixpoint iteration over all method bodies during the method
body annotation. It also be possible to use the generated output from the harmonization and
annotation visitor as input to the static inference tool by Kellenberger [16].

Indexing Producing valid indexes with the Inference tool has proved to be a difficult task.
Since all instance initializers of a class are inlined into every constructor when the bytecode is
generated, it is not possible to know where exactly the code of a constructor starts. This problem
should probably be taken care of in the Annotation tool, because there, we parse source code
information and could possibly detect the starting instruction of a constructor. The indexes for
the constructors can then be split into indexes in instance initializers and indexes of the actual
constructors.

The second indexing problem we still have is concerning local variables. As described in Section
5.5.3, a way has to find the index of local variable declarations within a method body has yet to
be found. It should be possible, because the viewer tool of the bytecode library jclasslib [11] does
display the local variables in the order they are declared within a method body. The question is
whether this information is extractable with the BCEL library.

Superclass annotation The annotation of super declarations of methods is not supported yet.
Methods declared in interfaces and methods of abstract classes are not annotated at all. Only
fields of abstract classes are annotated correctly. Method entry and exit events are triggered by
the actual class of an object, super classes or interfaces are not considered. Therefore, only the

66 7 Results and future work

actual class is annotated. We should be able to solve this problem, if one additional variable is
added to the data structure for each super class or interface declaring that same method. This
way, virtual calls to implementations of a method in subclasses can be harmonized.

7.4 Conclusion

The main contribution of this thesis is the extension of the Runtime Inference tool by array
inference, static method handling, and method body inference. Whole Java programs can now be
annotated with Universe types and the resulting annotations can be compiled with the Multijava
compiler[7].

The abstract interpretation approach for method body annotation is able to deal with code
that has not been visited by a given test case. This is used to infer Universe types for the signatures
of methods that were never called. The user of the tool may provide default annotations where it
is necessary. These default annotations will be considered only during the method body inference
phase of the algorithm. Universe types inferred from the Extended Object Graph have precedence
over these default types.

Furthermore, it is now possible to join several test runs, achieving better code coverage. Since
code coverage is crucial for the quality of the resulting annotations, this possibility is very powerful.
The dynamic structure of multiple runs is harmonized and mapped to Universe annotations of the
Java source code.

The Inference tool is now practically applicable for small and medium programs. However,
the handling of the trace file is the dominant factor for the execution time. The runtime of the
Inference tool is virtually independent from the size of the source code (e.g. number of classes, lines
of code, etc.). Nevertheless, the trace file can become much too big to handle within reasonable
time if a test case is chosen that triggers many events.

Bibliography

[1] Rahul Agarwal and Scott D. Stoller. Type inference for parameterized race-free java. In Proceedings of the Fifth
International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI), pages 149–160.
Springer-Verlag, 2004. Available from http://www.cs.sunysb.edu/~ragarwal/.

[2] Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-free Java programs. In 16th
Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Tampa
Bay, FL, October 2001.

[3] Shigeru Chiba. javassist. Available from http://www.csg.is.titech.ac.jp/~chiba/javassist/.

[4] D. Clarke. Object Ownership and Containment. PhD thesis, University of New South Wales, 2001. Available from
http://www.cs.uu.nl/~dave/publications.html.

[5] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and effect. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 292–310. ACM Press,
2002.

[6] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In Proceedings of Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), volume 33(10) of ACM SIGPLAN No-
tices, October 1998.

[7] Craig Chambers Curtis Clifton, Gary T. Leavens and Todd Millstein. Multijava project. OOPSLA 2000, 2000.
Available from http://multijava.sourceforge.net/.

[8] Lucy Mendel Derek Rayside and Daniel Jackson. A dynamic analysis for revealing object ownership and sharing. In
WODA, 2006.

[9] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology (JOT), 4(8):5–32,
October 2005.

[10] T. Coupaye E. Bruneton, R. Lenglet. Asm: a code manipulation tool to implement adaptable systems. Technical
report, France Télécom, R&D, November 2002. Available from http://asm.objectweb.org/current/asm-eng.pdf.

[11] ej technologies. Jclasslib. http://www.ej-technologies.com/products/jclasslib/overview.html.

[12] Etienne Gagnon. The SableVM Project. http://sablevm.org/.

[13] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Java Series. Sun Microsystems, 1996.

[14] David Graf. Implementing a purity and side effect analysis for java programs. Winter Semester 2005/2006.

[15] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard Holt. The geneva convention on the treatment
of object aliasing. SIGPLAN OOPS Mess., 3(2):11–16, 1992.

[16] Nathalie Kellenberger. Static runtime inference. Master’s thesis, ETH Zurich, 2005.

[17] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM Trans.
Program. Lang. Syst., 1(1):121–141, 1979. Available from http://doi.acm.org/10.1145/357062.357071.

[18] Xavier Leroy. Java bytecode verification: An overview. Lecture Notes in Computer Science, 2102:265+, 2001.

[19] Frank Lyner. Runtime universe type inference. Master’s thesis, ETH Zurich, 2005.

[20] Marco Meyer. Interaction with ownership graphs. January 2006.

[21] Samuel Moelius and Amie Souter. An object ownership inference algorithm and its applications. In Proceedings of
MASPLAS’04. Mid-Atlantic Student Workshop on Programming Languages and Systems, April 2004. Available from
http://sciris.shu.edu/masplas2004/proceedings.html.

[22] Matthias Niklaus. Static universe type inference using a sat-solver. Master’s thesis, ETH Zurich, May 2006.

[23] Apache XML Project. Java xmlbeans, 2003. Available from http://xmlbeans.apache.org.

67

http://www.cs.sunysb.edu/~ragarwal/
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://multijava.sourceforge.net/
http://asm.objectweb.org/current/asm-eng.pdf
http://www.ej-technologies.com/products/jclasslib/overview.html
http://sablevm.org/
http://doi.acm.org/10.1145/357062.357071
http://sciris.shu.edu/masplas2004/proceedings.html
http://xmlbeans.apache.org

68 BIBLIOGRAPHY

[24] Alexandru Sǎlcianu and Martin Rinard. A combined pointer and purity analysis for java programs. Master’s
thesis, Massachusetts Institute of Technology, 2004. Available from http://www.mit.edu/~salcianu/publications/
vmcai05-purity.pdf.

[25] F. Yellin T. Lindholm. The Java Virtual Machine Specification. Java Series. Sun Microsystems, 1997.

[26] Tim Wilkinson. The Kaffe OpenVM. http://www.kaffe.org/.

[27] Alisdair Wren. Inferring ownership. Master’s thesis, Imperial College, June 2003. Available from http://www.cl.cam.
ac.uk/users/aw345/writings/.

http://www.mit.edu/~salcianu/publications/vmcai05-purity.pdf
http://www.mit.edu/~salcianu/publications/vmcai05-purity.pdf
http://www.kaffe.org/
http://www.cl.cam.ac.uk/users/aw345/writings/
http://www.cl.cam.ac.uk/users/aw345/writings/

Appendix A

State Transition Rules

This section states the stack and register transition rules for each bytecode instruction.

om(τ) = Ownership modifier of type τ.

jt(τ) = Java type of type τ.

tc(τ1, τ2) = om(τ1) ∗ om(τ2) jt(τ2)
comp(α) = Component type of array α.

τ <: τ ′ = τ is a subtype of τ ′. (Ownership modifier included)

scs ∗ (τ1, τ2) =


τ2 if τ1 = uninitialized

τ1 if τ2 = uninitialized

smallest common supertype(τ1, τ2) if τi 6= uninitialized

a

aaload : (int.α.S, R)→ (tc(α, τ).S,R), comp(α) = τ
aastore : (tc(α, τ).int.α.S, R)→ (S, R), comp(α) = τ ∧ om(α) 6= readonly
aconst null : (S, R)→ (null.S,R)
aload n : (S, R)→ (R(n).S,R), R(n) <: Object
aload <n> : (S, R)→ (R(n).S,R)
anewarray α: (int.S,R)→ (α.S, R)
areturn : (τ.S,R)→ (empty, R), τ <: Object
arraylength : (α.S, R)→ (int.S,R)
astore n : (τ.S,R)→ (S, R{n← scs ∗ (τ,R(n))})
astore <n> : (τ.S,R)→ (S, R{n← scs ∗ (τ,R(n))})
athrow : (ε.S,R)→ (ε, R), ε <: Throwable

b

baload : (int.α.S, R)→ (int.S,R), comp(α) = {byte,boolean}
bastore : (int.int.α.S, R)→ (S, R), comp(α) = {byte,boolean} ∧ om(α) 6= readonly
bipush : (S, R)→ (int.S,R)

c

caload : (int.α.S, R)→ (int.S,R), comp(α) = char
castore : (int.int.α.S, R)→ (S, R), comp(α) = char ∧ om(α) 6= readonly

69

70 A State Transition Rules

checkcast τ : (τ ′.S,R)→ (τ.S,R), om(τ) = om(τ ′)

d

d2f : (double.S,R)→ (float.S,R)
d2i : (double.S,R)→ (int.S,R)
d2l : (double.S,R)→ (long.S,R)
dadd : (double.double.S,R)→ (double.S,R)
daload : (int.α.S, R)→ (double.S,R), comp(α) = double
dastore : (double.int.α.S, R)→ (S, R), comp(α) = double ∧ om(α) 6= readonly
dcmpg : (double.double.S,R)→ (int.S,R)
dcmpl : (double.double.S,R)→ (int.S,R)
dconst <d> : (S, R)→ (double.S,R)
ddiv : (double.double.S,R)→ (double.S,R)
dload n : (S, R)→ (double.S,R)R(n) = double
dload <n> : (S, R)→ (double.S,R)R(n) = double
dmul : (double.double.S,R)→ (double.S,R)
dneg : (double.S,R)→ (double.S,R)
drem : (double.double.S,R)→ (double.S,R)
dreturn : (double.S,R)→ (empty, R)
dstore n : (double.S,R)→ (S, R{n← double})
dstore <n> : (double.S,R)→ (S, R{n← double})
dsub : (double.double.S,R)→ (double.S,R)
dup : (τ.S,R)→ (τ.τ.S, R), τ 6= {long,double}
dup x1 : (τ1.τ2.S,R)→ (τ1.τ2.τ1.S,R), τi 6= {long,double}

dup x2 : (τ1.τ2.τ3.S,R)→ (τ1.τ2.τ3.τ1.S,R) if τx 6= {long, double}
(τ1.τ2.S,R)→ (τ1.τ2.τ1.S,R) if τ2 6= long,double ∧ τ1 = {long, double}

dup2 : (τ1.τ2.S,R)→ (τ1.τ2.τ1.τ2.S,R) if τx 6= {long,double}
(τ.S,R)→ (τ.τ.S, R) if τ = {long,double}

dup2 x1: (τ1.τ2.τ3.S,R)→ (τ1.τ2.τ3.τ1.τ2.S,R) if τx 6= {long,double}
(τ1.τ2.S,R)→ (τ1.τ2.τ1.S,R) if τ1 = {long,double} ∧ τ2 6= {long,double}

dup2 x2: (τ1.τ2.τ3.τ4.S,R)→ (τ1.τ2.τ3.τ4.τ1.τ2.S,R) if τx 6= {long,double}
(τ1.τ2.τ3.S,R)→ (τ1.τ2.τ3.τ1.S,R) if τ1 = {long,double} ∧ τ2, τ3 6= {long,double}
(τ1.τ2.τ3.S,R)→ (τ1.τ2.τ3.τ1.τ2.S,R) if τ3 = {long,double} ∧ τ1, τ2 6= {long,double}
(τ1.τ2.S,R)→ (τ1.τ2.τ1.S,R) if τx = {long,double}

f

f2d : (float.S,R)→ (double.S,R)
f2i : (float.S,R)→ (int.S,R)
f2l : (float.S,R)→ (long.S,R)
fadd : (float.float.S,R)→ (float.S,R)
faload : (int.α.S, R)→ (float.S,R), comp(α) = float
fastore : (float.int.α.S, R)→ (S, R), comp(α) = float ∧ om(α) 6= readonly
fcmpg : (float.float.S,R)→ (int.S,R)
fcmpl : (float.float.S,R)→ (int.S,R)
fconst <d> : (S, R)→ (float.S,R)
fdiv : (float.float.S,R)→ (float.S,R)
fload n : (S, R)→ (float.S,R), R(n) = float

71

fload <n> : (S, R)→ (float.S,R), R(n) = float
fmul : (float.float.S,R)→ (float.S,R)
fneg : (float.S,R)→ (float.S,R)
frem : (float.float.S,R)→ (float.S,R)
freturn : (float.S,R)→ (empty, R)
fstore n : (float.S,R)→ (S, R{n← float})
fstore <n> : (float.S,R)→ (S, R{n← float})
fsub : (float.float.S,R)→ (float.S,R)

g

getfield C.f.τ : (τ ′.S,R)→ (tc(τ ′, τ).S,R) if τ ′ <: C
getstatic C.f.τ : (S, R)→ (τ.S,R)
goto : (S, R)→ (S, R)
goto w : (S, R)→ (S, R)

i

i2b : (int.S,R)→ (int.S,R)
i2c : (int.S,R)→ (int.S,R)
i2d : (int.S,R)→ (double.S,R)
i2f : (int.S,R)→ (float.S,R)
i2l : (int.S,R)→ (long.S,R)
i2s : (int.S,R)→ (int.S,R)
iadd : (int.int.S,R)→ (int.S,R)
iaload : (int.α.S, R)→ (int.S,R), comp(α) = int
iand : (int.int.S,R)→ (int.S,R)
iastore : (int.int.α.S, R)→ (S, R), comp(α) = int ∧ om(α) 6= readonly
iconst <i> : (S, R)→ (int.S,R)
idiv : (int.int.S,R)→ (int.S,R)
if acmp<cond> : (int.int.S,R)→ (S, R)
if icmp<cond> : (int.int.S,R)→ (S, R)
if<cond> : (int.S,R)→ (S, R)
ifnonnull : (τ.S,R)→ (S, R)
ifnull : (τ.S,R)→ (S, R)
iinc : (S, R)→ (S, R)
iload n : (S, R)→ (int.S,R), R(n) = int
iload <n> : (S, R)→ (int.S,R), R(n) = int
imul : (int.int.S,R)→ (int.S,R)
ineg : (int.S,R)→ (int.S,R)
instanceof : (τ.S,R)→ (int.S,R)
invokeinterface C.m.σ : (tc(τ ′, τn′)...tc(τ ′, τ1′).τ ′.S,R)→ (tc(τ ′, τ).S,R)

if σ = τ(τ1, ..., τn), τ ′ <: C, τi′ <: τi for i = 1...n, om(τ ′) 6= readonly,
if ∃ τi with om(τi) = rep then om(τ ′) = peer this

invokespecial C.m.σ : (tc(τ ′, τn′)...tc(τ ′, τ1′).τ ′.S,R)→ (tc(τ ′, τ).S,R)
if σ = τ(τ1, ..., τn), τ ′ <: C, τi′ <: τi for i = 1...n, om(τ ′) 6= readonly,
if ∃ τi with om(τi) = rep then om(τ ′) = peer this

invokestatic ι C.m.σ : (tc(ι, τn′)...tc(ι, τ1′).S,R)→ (tc(ι, τ).S,R)
if σ = τ(τ1, ..., τn), τi′ <: τi for i = 1...n, ι = invocation type

invokevirtual C.m.σ : (tc(τ ′, τn′)...tc(τ ′, τ1′).τ ′.S,R)→ (tc(τ ′, τ).S,R)
if σ = τ(τ1, ..., τn), τ ′ <: C, τi′ <: τi for i = 1...n, om(τ ′) 6= readonly,
if ∃ τi with om(τi) = rep then om(τ ′) = peer this

72 A State Transition Rules

ior : (int.int.S,R)→ (int.S,R)
irem : (int.int.S,R)→ (int.S,R)
ireturn : (int.S,R)→ (empty, R)
ishl : (int.int.S,R)→ (int.S,R)
ishr : (int.int.S,R)→ (int.S,R)
istore n : (int.S,R)→ (S, R{n← int})
istore <n> : (int.S,R)→ (S, R{n← int})
isub : (int.int.S,R)→ (int.S,R)
iushr : (int.int.S,R)→ (int.S,R)
ixor : (int.int.S,R)→ (int.S,R)

j

jsr : (S, R)→ (returnAddress.S,R)
jsr w : (S, R)→ (returnAddress.S,R)

l

l2d : (long.S,R)→ (double.S,R)
l2f : (long.S,R)→ (float.S,R)
l2i : (long.S,R)→ (int.S,R)
ladd : (long.long.S,R)→ (long.S,R)
laload : (int.α.S, R)→ (long.S,R), comp(α) = long
land : (long.long.S,R)→ (long.S,R)
lastore : (long.int.α.S, R)→ (S, R), comp(α) = long ∧ om(α) 6= readonly
lcmp : (long.long.S,R)→ (int.S,R)
lconst <l> : (S, R)→ (long.S,R)

ldc index : (S, R)→ (int.S,R) if cpool(index) = int
(S, R)→ (float.S,R) if cpool(index) = float
(S, R)→ (τ.S,R) if cpool(index) = τ, with τ <: String

ldc w index : (S, R)→ (int.S,R) if cpool(index) = int
(S, R)→ (float.S,R) if cpool(index) = float
(S, R)→ (τ.S,R) if cpool(index) = τ, with τ <: String

ldc2 w index : (S, R)→ (long.S,R) if cpool(index) = long
(S, R)→ (double.S,R) if cpool(index) = double

ldiv : (long.long.S,R)→ (long.S,R)
lload n : (S, R)→ (long.S,R), R(n) = long
lload <n> : (S, R)→ (long.S,R), R(n) = long
lmul : (long.long.S,R)→ (long.S,R)
lneg : (long.S,R)→ (long.S,R)
lookupswitch : (int.S,R)→ (S, R)
lor : (long.long.S,R)→ (long.S,R)
lrem : (long.long.S,R)→ (long.S,R)
lreturn : (long.S,R)→ (empty, R)
lshl : (int.long.S,R)→ (long.S,R)

73

lshr : (int.long.S,R)→ (long.S,R)
lstore n : (long.S,R)→ (S, R{n← long})
lstore <n> : (long.S,R)→ (S, R{n← long})
lsub : (long.long.S,R)→ (long.S,R)
lushr : (int.long.S,R)→ (long.S,R)
lxor : (long.long.S,R)→ (long.S,R)

m

monitorenter : (τ.S,R)→ (S, R)
monitorexit : (τ.S,R)→ (S, R)
multianewarray ι C n : (int1...intn.S,R)→ (α.S, R), n ≥ 1, α <: C, om(α) = ι,

ι = invocation type

n

new ι C : (S, R)→ (τ.S,R), τ <: C, om(τ) = ι, ι = invocation type
newarray ι atype : (int.S,R)→ (α.S, R), comp(α) = atype, om(α) = ι, ι = invocation type
nop : (S, R)→ (S, R)

p

pop : (τ.S,R)→ (S, R), τ 6= {long,double}

pop2 : (τ1.τ2.S,R)→ (S, R) if τi 6= {long,double}
(τ.S,R)→ (S, R) if τ = {long,double}

putfield C.f.τ : (tc(τ2, τ1).τ2.S,R)→ (S, R) if τ1 <: τ, τ2 <: C, om(τ2) 6= readonly
putstatic C.f.τ : (τ ′.S,R)→ (S, R), τ ′ <: τ, om(τ) = readonly

r

ret n : (S, R)→ (S, R), R(n) = returnAddress
return : (S, R)→ (empty, R)

s

saload : (int.α.S, R)→ (int.S,R), comp(α) = short
sastore : (int.int.α.S, R)→ (S, R), comp(α) = short ∧ om(α) 6= readonly
sipush : (S, R)→ (int.S,R)
swap : (τ1.τ2.S,R)→ (τ2.τ1.S,R), τi 6= {double, long}

t

tableswitch : (int.S,R)→ (S, R)

74 A State Transition Rules

w

wide : (S, R)→ (S, R) (no change on stack, only the behavior of following instruction is changed)

Appendix B

Tree Example

Collection

1 interface Collection {
2 public Iterator elements ();
3
4 public void addElement(Integer i);
5
6 public boolean isEmpty();
7 }

ArrayCollection

1 public class ArrayCollection implements Collection {
2
3 public rep readonly Integer [] data;
4 public int pos;
5 private static final int SIZE = 64;
6
7 public ArrayCollection () {
8 data = new rep readonly Integer[SIZE];
9 pos = 0;

10 }
11
12 public void addElement(Integer i) {
13 if (pos >= data.length) {
14 rep readonly Integer [] oldData = data;
15 data = new rep readonly Integer[data. length ∗2];
16 for(int j = 0; j<oldData.length; j++) {
17 data[j] = oldData[j];
18 }
19 data[pos++] = i;
20 }
21 }
22
23 public boolean isEmpty() {
24 return (pos == 0);
25 }
26
27 public peer Iterator elements() {
28 return new peer ArrayCollectionIterator (this);

75

76 B Tree Example

29 }
30 }

SortedTree

1 public class SortedTree implements Collection {
2 protected rep SortedTreeNode rootNode;
3
4 public SortedTree() {
5 rootNode = null;
6 }
7
8 public boolean isEmpty() {
9 return (rootNode == null);

10 }
11
12 public void addElement(Integer i) {
13 if (rootNode == null) {
14 rootNode = new rep SortedTreeNode(i);
15 }
16 else if (i . intValue () <=rootNode.key.intValue()) {
17 insertInLeftSubtree (i , rootNode);
18 }
19 else {
20 insertInRightSubtree (i , rootNode);
21 }
22 }
23
24 public peer Iterator elements() {
25 return peer createInorderIterator ();
26 }
27
28 public rep Iterator createPostorderIterator () {
29 return new rep PostorderTreeIterator (rootNode);
30 }
31
32 public peer Iterator createInorderIterator () {
33 return new peer InorderTreeIterator (rootNode);
34 }
35
36 private void insertInLeftSubtree (Integer i , rep SortedTreeNode node) {
37 rep SortedTreeNode leftChild = node. left ;
38 if (leftChild == null) {
39 rep SortedTreeNode newnode = new rep SortedTreeNode(i, node);
40 node. left = newnode;
41 }
42 else if (i . intValue () <= leftChild.key. intValue ()) {
43 insertInLeftSubtree (i , leftChild);
44 }
45 else {
46 insertInRightSubtree (i , leftChild);
47 }
48 }
49
50 private void insertInRightSubtree (Integer i , rep SortedTreeNode node) {
51 rep SortedTreeNode rightChild = node.right ;
52 if (rightChild == null) {

77

53 rep SortedTreeNode newnode = new rep SortedTreeNode(i, node);
54 node. right = newnode;
55 }
56 else if (i . intValue () <= rightChild.key. intValue ()) {
57 insertInLeftSubtree (i , rightChild);
58 }
59 else {
60 insertInRightSubtree (i , rightChild);
61 }
62 }
63 }

SortedTreeNode

1 public class SortedTreeNode {
2
3 public Integer key;
4
5 public peer SortedTreeNode left ;
6
7 public peer SortedTreeNode right;
8
9 public peer SortedTreeNode parent;

10
11 public SortedTreeNode(Integer i) {
12 key = i;
13 this . parent = null ;
14 }
15
16 public SortedTreeNode(Integer i , peer SortedTreeNode parent) {
17 key = i;
18 this . parent = parent;
19 }
20 }

Iterator

1 interface Iterator {
2
3 public void first ();
4
5 public void next() throws NoSuchElementException;
6
7 public Integer getCurrent ();
8
9 public boolean isDone();

10 }

ArrayCollectionIterator

1 public class ArrayCollectionIterator implements Iterator {
2 private int pos;
3 private peer ArrayCollection coll ;
4

78 B Tree Example

5 public ArrayCollectionIterator (peer ArrayCollection coll) {
6 this . coll = coll ;
7 }
8
9 public void first () {

10 pos = 0;
11 }
12
13 public void next() throws NoSuchElementException {
14 if (pos < coll .data. length −1) {
15 pos++;
16 }
17 else {
18 throw new rep NoSuchElementException(”ArrayCollectionIterator”);
19 }
20 }
21
22 public Integer getCurrent() {
23 return coll .data[pos];
24 }
25
26 public boolean isDone() {
27 return (pos >= coll.pos) || (pos >= coll.data. length);
28 }
29 }

TreeIterator

1 abstract class TreeIterator implements Iterator {
2
3 protected readonly SortedTreeNode currentNode;
4
5 protected readonly SortedTreeNode startNode;
6
7 public void first () {
8 currentNode = startNode;
9 }

10
11 abstract public void next() throws NoSuchElementException;
12
13 public Integer getCurrent() {
14 return currentNode.key;
15 }
16
17 public boolean isDone() {
18 return (currentNode == null);
19 }
20 }

InorderTreeIterator

1 public class InorderTreeIterator extends TreeIterator {
2
3 public InorderTreeIterator (readonly SortedTreeNode rootNode) {
4 startNode = rootNode;

79

5 if (rootNode != null) {
6 while(startNode. left != null) {
7 startNode = startNode. left ;
8 }
9 }

10 currentNode = startNode;
11 }
12
13 public void next() throws NoSuchElementException {
14 if (currentNode == null) {
15 throw new rep NoSuchElementException(”InorderTreeIterator”);
16 }
17 else if (currentNode. right != null) {
18 currentNode = currentNode.right;
19 while(currentNode. left != null) {
20 currentNode = currentNode.left ;
21 }
22 }
23 else {
24 while((currentNode.parent != null) && (currentNode.parent. left != currentNode)) {
25
26 currentNode = currentNode.parent;
27 }
28 currentNode = currentNode.parent;
29 }
30 }
31 }

PostorderTreeIterator

1 public class PostorderTreeIterator extends TreeIterator {
2
3 public PostorderTreeIterator (readonly SortedTreeNode rootNode) {
4 startNode = rootNode;
5 if (startNode != null) {
6 while((startNode. left != null) || (startNode. right != null)) {
7 while(startNode. right != null) {
8 startNode = startNode.right ;
9 }

10 if (startNode. left != null) {
11 startNode = startNode. left ;
12 }
13 }
14 }
15 currentNode = startNode;
16 }
17
18 public void next() throws NoSuchElementException {
19 if (currentNode == null) {
20 throw new NoSuchElementException(”PostorderTreeIterator”);
21 }
22 if (currentNode.parent == null) {
23 currentNode = currentNode.parent;
24 return;
25 }
26 if (currentNode.parent. right == currentNode) {
27 if (currentNode.parent. left != null) {

80 B Tree Example

28 currentNode = currentNode.parent. left ;
29 }
30 else {
31 currentNode = currentNode.parent;
32 return;
33 }
34 while((currentNode. left != null) || (currentNode. right != null)) {
35 while(currentNode. right != null) {
36 currentNode = currentNode.right;
37 }
38 if (currentNode. left != null) {
39 currentNode = currentNode.left ;
40 }
41 }
42 }
43 else {
44 currentNode = currentNode.parent;
45 }
46 }
47 }

Statistics

1 interface Statistics {
2 public void sample(Integer i);
3
4 public Object result ();
5
6 public String getName();
7 }

SumAndSubtract

1 public class SumAndSubtract implements Statistics {
2
3 private int sum;
4 private int operator ;
5
6 public SumAndSubtract() {
7 sum = 0;
8 operator = 1;
9 }

10
11 public void sample(Integer i) {
12 sum += operator ∗ i.intValue ();
13 operator −= operator;
14 }
15
16 public Object result () {
17 return new Integer(sum);
18 }
19
20 public String getName() {
21 return ”SumAndSubtract”;
22 }

81

23 }

Average

1 public class Average implements Statistics {
2
3 private int sum;
4 private int counter;
5
6 public Average() {
7 sum = 0;
8 counter = 0;
9 }

10
11 public void sample(Integer i) {
12 sum += i.intValue();
13 counter++;
14 }
15
16 public Object result () {
17 return new Double(sum / (double) counter);
18 }
19
20 public String getName() {
21 return ”Average”;
22 }
23 }

Checker

1 public class Checker implements Statistics {
2
3 private boolean found;
4 private Integer element;
5
6 public Checker(Integer val) {
7 element = val;
8 found = false ;
9 }

10
11 public void sample(Integer i) {
12 if (i . equals(element)) {
13 found = true;
14 }
15 }
16
17 public Object result () {
18 return new Boolean(found);
19 }
20
21 public String getName() {
22 return ”Checker”;
23 }
24 }

82 B Tree Example

Appendix C

Agentoutput XML Schema

1 <?xml version=”1.0”encoding=”UTF−8”?>
2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
3 <xs:element name=”trace”>
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element ref=”classPrepare” minOccurs=”0”maxOccurs=”unbounded”/>
7 <xs:element ref=”methodentry”minOccurs=”0”maxOccurs=”unbounded”/>
8 <xs:element ref=”methodexit”minOccurs=”0”maxOccurs=”unbounded”/>
9 <xs:element ref=”fieldmodification ” minOccurs=”0”maxOccurs=”unbounded”/>

10 </xs:sequence>
11 </xs:complexType>
12 </xs:element>
13 <!−−XXX−−>
14 <!−− class prepare event −−>
15 <xs:element name=”classPrepare”>
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element ref=”field ” minOccurs=”0”maxOccurs=”unbounded”/>
19 <xs:element ref=”method”minOccurs=”0”maxOccurs=”unbounded”/>
20 </xs:sequence>
21 < xs:attribute name=”name” type=”xs:string”/>
22 < xs:attribute name=”id” type=”xs:int” />
23 </xs:complexType>
24 </xs:element>
25 <!−− field −−>
26 <xs:element name=”field”>
27 <xs:complexType>
28 < xs:attribute name=”id” type=”xs:int” use=”required” />
29 < xs:attribute name=”name” type=”xs:string”/>
30 </xs:complexType>
31 </xs:element>
32 <!−− method −−>
33 <xs:element name=”method”>
34 <xs:complexType>
35 < xs:attribute name=”id” type=”xs:int” use=”required” />
36 < xs:attribute name=”name” type=”xs:string”/>
37 < xs:attribute name=”signature” type=”xs:string ”/>
38 </xs:complexType>
39 </xs:element>
40 <!−−XXX−−>
41 <!−− method entry event −−>
42 <xs:element name=”methodentry”>

83

84 C Agentoutput XML Schema

43 <xs:complexType>
44 <xs:sequence>
45 <xs:element ref=”method”minOccurs=”1”maxOccurs=”1”/>
46 <xs:element ref=”callerObj ” minOccurs=”1”maxOccurs=”1”/>
47 <xs:element ref=”targetObj” minOccurs=”1”maxOccurs=”1”/>
48 <xs:element ref=”callingMethod” minOccurs=”1”maxOccurs=”1”/>
49 <xs:element ref=”location” minOccurs=”1”maxOccurs=”1”/>
50 <xs:element ref=”param”minOccurs=”0”maxOccurs=”unbounded”/>
51 </xs:sequence>
52 </xs:complexType>
53 </xs:element>
54 <!−− callerObj −−>
55 <xs:element name=”callerObj”>
56 <xs:complexType>
57 < xs:attribute name=”id” type=”xs:int” use=”required” />
58 </xs:complexType>
59 </xs:element>
60 <!−− targetObj −−>
61 <xs:element name=”targetObj”>
62 <xs:complexType>
63 < xs:attribute name=”id” type=”xs:int” use=”required” />
64 </xs:complexType>
65 </xs:element>
66 <!−− callingMethod −−>
67 <xs:element name=”callingMethod”>
68 <xs:complexType>
69 < xs:attribute name=”id” type=”xs:int” use=”required” />
70 </xs:complexType>
71 </xs:element>
72 <!−− location −−>
73 <xs:element name=”location”>
74 <xs:complexType>
75 < xs:attribute name=”id” type=”xs:int” use=”required” />
76 </xs:complexType>
77 </xs:element>
78 <!−− param −−>
79 <xs:element name=”param”>
80 <xs:complexType>
81 < xs:attribute name=”id” type=”xs:int” use=”required” />
82 < xs:attribute name=”value” type=”xs:int” use=”required” />
83 </xs:complexType>
84 </xs:element>
85 <!−−XXX−−>
86 <!−− method exit event −−>
87 <xs:element name=”methodexit”>
88 <xs:complexType>
89 <xs:sequence>
90 <xs:element ref=”method”minOccurs=”1”maxOccurs=”1”/>
91 <xs:element ref=”targetObj” minOccurs=”1”maxOccurs=”1”/>
92 <xs:element ref=”returnValue” minOccurs=”1”maxOccurs=”1”/>
93 </xs:sequence>
94 </xs:complexType>
95 </xs:element>
96 <!−− returnValue −−>
97 <xs:element name=”returnValue”>
98 <xs:complexType>
99 < xs:attribute name=”id” type=”xs:int” use=”required” />

100 </xs:complexType>

85

101 </xs:element>
102 <!−−XXX−−>
103 <!−− field modification event −−>
104 <xs:element name=”fieldmodification”>
105 <xs:complexType>
106 <xs:sequence>
107 <xs:element ref=”field ” minOccurs=”1”maxOccurs=”1”/>
108 <xs:element ref=”modifiedObj”minOccurs=”1”maxOccurs=”1”/>
109 <xs:element ref=”modifyingObj”minOccurs=”1”maxOccurs=”1”/>
110 <xs:element ref=”referencedObj” minOccurs=”1”maxOccurs=”1”/>
111 </xs:sequence>
112 </xs:complexType>
113 </xs:element>
114 <!−− modifiedObj −−>
115 <xs:element name=”modifiedObj”>
116 <xs:complexType>
117 < xs:attribute name=”id” type=”xs:int” use=”required” />
118 </xs:complexType>
119 </xs:element>
120 <!−− modifyingObj −−>
121 <xs:element name=”modifyingObj”>
122 <xs:complexType>
123 < xs:attribute name=”id” type=”xs:int” use=”required” />
124 </xs:complexType>
125 </xs:element>
126 <!−− referencedObj −−>
127 <xs:element name=”referencedObj”>
128 <xs:complexType>
129 < xs:attribute name=”id” type=”xs:int” use=”required” />
130 </xs:complexType>
131 </xs:element>
132 <!−−XXX−−>
133 <!−− array created event −−>
134 <xs:element name=”arraycreated”>
135 <xs:complexType>
136 <xs:sequence>
137 <!−− Indicates that this array is multidimensional −−>
138 <xs:element ref=”multidim”minOccurs=”0”maxOccurs=”1”/>
139 <xs:element ref=”creatorObj” minOccurs=”1”maxOccurs=”1”/>
140 <xs:element ref=”createdObj”minOccurs=”1”maxOccurs=”1”/>
141 <xs:element ref=”subarray” minOccurs=”0”maxOccurs=”unbounded”/>
142 </xs:sequence>
143 </xs:complexType>
144 </xs:element>
145 <!−− multidim −−>
146 <xs:element name=”multidim”>
147 <xs:complexType>
148 </xs:complexType>
149 </xs:element>
150 <!−− creatorObj −−>
151 <xs:element name=”creatorObj”>
152 <xs:complexType>
153 < xs:attribute name=”id” type=”xs:int” use=”required” />
154 </xs:complexType>
155 </xs:element>
156 <!−− createdObj −−>
157 <xs:element name=”createdObj”>
158 <xs:complexType>

86 C Agentoutput XML Schema

159 < xs:attribute name=”id” type=”xs:int” use=”required” />
160 </xs:complexType>
161 </xs:element>
162 <!−− subarray −−>
163 <xs:element name=”subarray”>
164 <xs:complexType>
165 < xs:attribute name=”id” type=”xs:int” use=”required” />
166 </xs:complexType>
167 </xs:element>
168 <!−−XXX−−>
169 <!−− array component updated event −−>
170 <xs:element name=”arraycompupdate”>
171 <xs:complexType>
172 <xs:sequence>
173 <!−− indicates that this is an object array −−>
174 <xs:element ref=”objectarray ” minOccurs=”0”maxOccurs=”1”/>
175 <!−− indicates that the value assigned is a subarray −−>
176 <xs:element ref=”subarrayvalue” minOccurs=”0”maxOccurs=”1”/>
177 <xs:element ref=”callerObj ” minOccurs=”1”maxOccurs=”1”/>
178 <xs:element ref=”arrayObj” minOccurs=”1”maxOccurs=”1”/>
179 <xs:element ref=”valueObj”minOccurs=”1”maxOccurs=”1”/>
180 </xs:sequence>
181 </xs:complexType>
182 </xs:element>
183 <!−− objectarray −−>
184 <xs:element name=”objectarray”>
185 <xs:complexType>
186 </xs:complexType>
187 </xs:element>
188 <!−− subarrayvalue −−>
189 <xs:element name=”subarrayvalue”>
190 <xs:complexType>
191 </xs:complexType>
192 </xs:element>
193 <!−− arrayObj −−>
194 <xs:element name=”arrayObj”>
195 <xs:complexType>
196 < xs:attribute name=”id” type=”xs:int” use=”required” />
197 </xs:complexType>
198 </xs:element>
199 <!−− valueObj −−>
200 <xs:element name=”valueObj”>
201 <xs:complexType>
202 < xs:attribute name=”id” type=”xs:int” use=”required” />
203 </xs:complexType>
204 </xs:element>
205 <!−−XXX−−>
206 </xs:schema>

Appendix D

Annotations XML Schema

1 <?xml version=”1.0”?>
2
3 <!−−
4 Schema for annotation files that specify Universe annotations that
5 should be added to existing sources .
6
7 Author: WMD
8 −−>
9

10 <!−−
11 TODO:
12 −
13 −−>
14
15 <xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”xmlns:po=”http://sct.inf.ethz.ch/↘

→annotations” targetNamespace=”http://sct.inf.ethz.ch/annotations”>
16
17
18 <!−−XXX
19 Some additional types to automatically check the input .
20 XXX−−>
21
22 <!−−
23 The modifiers that are valid for simple reference types .
24 −−>
25 <xsd:simpleType name=”SimpleUniverseModifier”>
26 < xsd:restriction base=”xsd:string ”>
27 <xsd:enumeration value=”implicit peer ”/>
28 <xsd:enumeration value=”peer”/>
29 <xsd:enumeration value=”rep”/>
30 <xsd:enumeration value=”readonly”/>
31 </ xsd:restriction >
32 </xsd:simpleType>
33
34 <!−−
35 The modifiers that are valid for types , including arrays .
36 −−>
37 <xsd:simpleType name=”UniverseModifier”>
38 < xsd:restriction base=”xsd:string ”>
39 <xsd:enumeration value=”implicit peer ”/>
40 <xsd:enumeration value=”peer”/>
41 <xsd:enumeration value=”rep”/>

87

88 D Annotations XML Schema

42 <xsd:enumeration value=”readonly”/>
43
44 <xsd:enumeration value=”peer peer”/>
45 <xsd:enumeration value=”peer readonly”/>
46 <xsd:enumeration value=”rep peer”/>
47 <xsd:enumeration value=”rep readonly”/>
48 <xsd:enumeration value=”readonly peer”/>
49 <xsd:enumeration value=”readonly readonly”/>
50 </ xsd:restriction >
51 </xsd:simpleType>
52
53
54 <!−−
55 The modifiers that are valid for methods.
56 −−>
57 <xsd:simpleType name=”UniverseMethodModifier”>
58 < xsd:restriction base=”xsd:string ”>
59 <xsd:enumeration value=””/>
60 <xsd:enumeration value=”pure”/>
61 </ xsd:restriction >
62 </xsd:simpleType>
63
64 <xsd:simpleType name=”CastPositionType”>
65 < xsd:restriction base=”xsd:string ”>
66 <xsd:enumeration value=”assignment”/>
67 <xsd:enumeration value=”method call”/>
68 <xsd:enumeration value=” array initialyzer ”/>
69 </ xsd:restriction >
70 </xsd:simpleType>
71
72
73 <!−−
74 What target should be modified?
75 −−>
76 <xsd:simpleType name=”ToolTarget”>
77 < xsd:restriction base=”xsd:string ”>
78 <!−− Modify the original Java sources −−>
79 <xsd:enumeration value=”java”/>
80
81 <!−− Create JML specification files −−>
82 <xsd:enumeration value=”jml”/>
83 </ xsd:restriction >
84 </xsd:simpleType>
85
86
87 <!−−
88 With what style should the annotations be inserted ?
89 −−>
90 <xsd:simpleType name=”ToolStyle”>
91 < xsd:restriction base=”xsd:string ”>
92 <!−− As standard type annotations, e.g. ”peer T”−−>
93 <xsd:enumeration value=”types”/>
94
95 <!−− Within JML comments, e.g. ”/∗@ peer T @∗/”−−>
96 <xsd:enumeration value=”jml”/>
97
98 <!−− As escaped JML comments, e.g. ”/∗@ \peer T @∗/”−−>
99 <xsd:enumeration value=”oldjml”/>

89

100 </ xsd:restriction >
101 </xsd:simpleType>
102
103
104 <!−−XXX
105 The elements of our schema.
106 XX−−>
107
108 <!−−
109 The top−level element consisting of one header element and
110 at least one class element.
111 −−>
112 <xsd:element name=”annotations”>
113 <xsd:complexType>
114 <xsd:sequence>
115 <xsd:element ref=”po:head”minOccurs=”1”maxOccurs=”1”/>
116 <xsd:element ref=”po:class ” minOccurs=”1”maxOccurs=”unbounded”/>
117 </xsd:sequence>
118 </xsd:complexType>
119 </xsd:element>
120
121
122 <!−−
123 Some additional information at the beginning.
124 Should be overridable on the command line.
125 −−>
126 <xsd:element name=”head”>
127 <xsd:complexType>
128 <xsd:sequence>
129 <!−− Should we create a ”.jml” specification or embed the
130 annotations in existing ”. java” files ? −−>
131 <xsd:element name=”target” type=”po:ToolTarget”/>
132
133 <!−− What style of Universe annotations should we use? −−>
134 <xsd:element name=”style” type=”po:ToolStyle”/>
135
136 <!−− Maybe the source of the annotations. −−>
137 <xsd:element name=”comment” type=”xsd:string”/>
138 </xsd:sequence>
139 </xsd:complexType>
140 </xsd:element>
141
142
143 <!−−
144 The annotations for one class .
145 −−>
146 <xsd:element name=”class”>
147 <xsd:complexType>
148 <xsd:sequence>
149 <!−− Annotations for the fields of the class . −−>
150 <xsd:element ref=”po:field ” minOccurs=”0”maxOccurs=”unbounded”/>
151
152 <!−− Annotations for the methods of the class . −−>
153 <xsd:element ref=”po:method”minOccurs=”0”maxOccurs=”unbounded”/>
154
155 <!−− Annotations for the object initializers . −−>
156 <xsd:element name=”object init” type=” po:object class init ”
157 minOccurs=”0”maxOccurs=”unbounded”/>

90 D Annotations XML Schema

158
159 <!−− Annotations for the class initializers . −−>
160 <xsd:element name=”class init” type=” po:object class init ”
161 minOccurs=”0”maxOccurs=”unbounded”/>
162 </xsd:sequence>
163
164 <!−− The fully qualified name of the class . −−>
165 <xsd:attribute name=”name” type=”xsd:string”use=”required”/>
166
167 <!−− Optionally, the relative path to the source file . −−>
168 <xsd:attribute name=”file” type=”xsd:string ”/>
169 </xsd:complexType>
170 </xsd:element>
171
172
173 <!−−
174 The annotation for a field .
175 −−>
176 <xsd:element name=”field”>
177 <xsd:complexType>
178 <xsd:sequence>
179 <!−− The annotations for the field initializer . −−>
180 <xsd:element ref=” po:field init ” minOccurs=”0”maxOccurs=”1”/>
181 </xsd:sequence>
182
183 <!−− The name of the field. −−>
184 <xsd:attribute name=”name” type=”xsd:string”use=”required”/>
185
186 <!−− The Java type of the field . −−>
187 <xsd:attribute name=”type” type=”xsd:string” use=”required”/>
188
189 <!−− Optionally, the source line of the declaration .
190 Would this really help a tool to insert the annotation?
191 What if there is more than one declaration per line ?
192 −−>
193 <xsd:attribute name=”line” type=”xsd:int ”/>
194
195 <!−− One of the Universe modifiers. −−>
196 <xsd:attribute name=”modifier” type=”po:UniverseModifier” default=”implicit peer ”/>
197 </xsd:complexType>
198 </xsd:element>
199
200
201 <!−−
202 The annotations for a method or constructor .
203 −−>
204 <xsd:element name=”method”>
205 <xsd:complexType>
206 <xsd:sequence>
207 <!−− The annotation for the return type. −−>
208 <xsd:element ref=”po:return” minOccurs=”0”maxOccurs=”1”/>
209
210 <!−− The annotations for the parameter types. −−>
211 <xsd:element ref=”po:parameter”minOccurs=”0”maxOccurs=”unbounded”/>
212
213 <!−− The annotations for the local variables . −−>
214 <xsd:element ref=”po:local ” minOccurs=”0”maxOccurs=”unbounded”/>
215

91

216 <!−− The annotations for object creations in this method. −−>
217 <xsd:element ref=”po:new”minOccurs=”0”maxOccurs=”unbounded”/>
218
219 <!−− The annotations for casts in this method. −−>
220 <xsd:element ref=”po:cast” minOccurs=”0”maxOccurs=”unbounded”/>
221
222 <!−− The annotations for casts in this method. −−>
223 <xsd:element ref=”po:addcast” minOccurs=”0”maxOccurs=”unbounded”/>
224
225 <!−− The annotations for static calls in this method. −−>
226 <xsd:element ref=” po:static call ” minOccurs=”0”maxOccurs=”unbounded”/>
227 </xsd:sequence>
228
229 <!−− The name of the method. Multiple methods can have the
230 same name, the parameters resolve the overloading . −−>
231 <xsd:attribute name=”name” type=”xsd:string”use=”required”/>
232
233 <!−− Optionally, the source line of the declaration .
234 Would this really help a tool to insert the annotation?
235 What if there is more than one declaration per line ?
236 −−>
237 <xsd:attribute name=”line” type=”xsd:int ”/>
238
239 <!−− Modifiers that should be added to the method.
240 At the moment there is only ”pure” or ””. −−>
241 <xsd:attribute name=”modifier” type=”po:UniverseMethodModifier”default=””/>
242 </xsd:complexType>
243 </xsd:element>
244
245
246 <!−−
247 The annotations for a field initialzier .
248 −−>
249 <xsd:element name=”field init ”>
250 <xsd:complexType>
251 <xsd:sequence>
252 <!−− The annotations for object creations in this initializer . −−>
253 <xsd:element ref=”po:new”minOccurs=”0”maxOccurs=”unbounded”/>
254
255 <!−− The annotations for casts in this initializer . −−>
256 <xsd:element ref=”po:cast” minOccurs=”0”maxOccurs=”unbounded”/>
257
258 <!−− The annotations for casts in this initializer . −−>
259 <xsd:element ref=”po:addcast” minOccurs=”0”maxOccurs=”unbounded”/>
260
261 <!−− The annotations for static calls in this initializer . −−>
262 <xsd:element ref=” po:static call ” minOccurs=”0”maxOccurs=”unbounded”/>
263 </xsd:sequence>
264 </xsd:complexType>
265 </xsd:element>
266
267
268 <!−−
269 The annotations for an object or class initializer .
270 Careful: all the initializer blocks are merged into one of each kind
271 for execution .
272 So if the annotation information comes from the runtime inference tool ,
273 the indices might be larger than expected from one initializer alone .

92 D Annotations XML Schema

274 −−>
275 <xsd:complexType name=”object class init”>
276 <xsd:sequence>
277 <!−− The annotations for the local variables . −−>
278 <xsd:element ref=”po:local ” minOccurs=”0”maxOccurs=”unbounded”/>
279
280 <!−− The annotations for object creations in this method. −−>
281 <xsd:element ref=”po:new”minOccurs=”0”maxOccurs=”unbounded”/>
282
283 <!−− The annotations for casts in this method. −−>
284 <xsd:element ref=”po:cast” minOccurs=”0”maxOccurs=”unbounded”/>
285
286 <!−− The annotations for casts in this method. −−>
287 <xsd:element ref=”po:addcast” minOccurs=”0”maxOccurs=”unbounded”/>
288
289 <!−− The annotations for static calls in this method. −−>
290 <xsd:element ref=” po:static call ” minOccurs=”0”maxOccurs=”unbounded”/>
291 </xsd:sequence>
292
293 <!−− The index of the initializer within the class ,
294 starting from zero .
295 −−>
296 <xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>
297
298 <!−− Optionally, the source line of the opening ”{”. −−>
299 <xsd:attribute name=”line” type=”xsd:int ”/>
300
301 <!−− Modifiers that should be added to the method.
302 At the moment there is only ”pure” or ””.
303 Not supported yet , but might come...
304 <xsd:attribute name=”modifier” type=”UniverseMethodModifier”default=””/>
305 −−>
306 </xsd:complexType>
307
308
309 <!−−
310 The annotation for the return type.
311 −−>
312 <xsd:element name=”return”>
313 <xsd:complexType>
314 <!−− The Java type of the return value. −−>
315 <xsd:attribute name=”type” type=”xsd:string” use=”required”/>
316
317 <!−− Optionally, the source line of the declaration .
318 Would this really help a tool to insert the annotation?
319 What if there is more than one declaration per line ?
320 −−>
321 <xsd:attribute name=”line” type=”xsd:int ”/>
322
323 <!−− One of the Universe modifiers. −−>
324 <xsd:attribute name=”modifier” type=”po:UniverseModifier” default=”implicit peer ”/>
325 </xsd:complexType>
326 </xsd:element>
327
328
329 <!−−
330 The annotation for a parameter.
331 −−>

93

332 <xsd:element name=”parameter”>
333 <xsd:complexType>
334 <!−− The index of the parameter, starting from zero .
335 Might be the only thing available . −−>
336 <xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>
337
338 <!−− The Java type of the parameter. −−>
339 <xsd:attribute name=”type” type=”xsd:string” use=”required”/>
340
341 <!−− The name of the parameter, if available .
342 Otherwise ”param”+ index is used as name if needed. −−>
343 <xsd:attribute name=”name” type=”xsd:string”/>
344
345 <!−− Optionally, the source line of the declaration .
346 Would this really help a tool to insert the annotation?
347 What if there is more than one declaration per line ?
348 −−>
349 <xsd:attribute name=”line” type=”xsd:int ”/>
350
351 <!−− One of the Universe modifiers. −−>
352 <xsd:attribute name=”modifier” type=”po:UniverseModifier” default=”implicit peer ”/>
353 </xsd:complexType>
354 </xsd:element>
355
356
357 <!−−
358 The annotation for a local variable .
359 −−>
360 <xsd:element name=”local”>
361 <xsd:complexType>
362 <!−− The index of the local variable , starting from zero .
363 Might be the only thing available . −−>
364 <xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>
365
366 <!−− The Java type of the local variable . −−>
367 <xsd:attribute name=”type” type=”xsd:string” use=”required”/>
368
369 <!−− The name of the local variable, if available .
370 Otherwise ”local ” + index is used as name if needed. −−>
371 <xsd:attribute name=”name” type=”xsd:string”/>
372
373 <!−− Optionally, the source line of the declaration .
374 Would this really help a tool to insert the annotation?
375 What if there is more than one declaration per line ?
376 −−>
377 <xsd:attribute name=”line” type=”xsd:int ”/>
378
379 <!−− One of the Universe modifiers. −−>
380 <xsd:attribute name=”modifier” type=”po:UniverseModifier” default=”implicit peer ”/>
381 </xsd:complexType>
382 </xsd:element>
383
384
385 <!−−
386 The annotation for an object creation .
387 The existing new expressions in a method are indexed, starting from zero .
388 −−>
389 <xsd:element name=”new”>

94 D Annotations XML Schema

390 <xsd:complexType>
391 <!−− The index of the new, starting from zero . −−>
392 <xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>
393
394 <!−− The Java type of the new. −−>
395 <xsd:attribute name=”type” type=”xsd:string” use=”required”/>
396
397 <!−− Optionally, the source line of the new.
398 Would this really help a tool to insert the annotation?
399 What if there is more than one new per line?
400 −−>
401 <xsd:attribute name=”line” type=”xsd:int ”/>
402
403 <!−− One of the Universe modifiers. −−>
404 <xsd:attribute name=”modifier” type=”po:UniverseModifier” default=”implicit peer ”/>
405 </xsd:complexType>
406 </xsd:element>
407
408
409 <!−−
410 The annotation for a cast .
411 At the moment this is very limited .
412 The existing casts in a method are indexed, starting from zero .
413 No new casts can be introduced .
414 How could we exactly say where a new cast should be inserted ??
415 −−>
416 <xsd:element name=”cast”>
417 <xsd:complexType>
418 <!−− The index of the cast, starting from zero . −−>
419 <xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>
420
421 <!−− The Java type of the cast. −−>
422 <xsd:attribute name=”type” type=”xsd:string” use=”required”/>
423
424 <!−− Optionally, the source line of the cast .
425 Would this really help a tool to insert the annotation?
426 What if there is more than one cast per line ?
427 −−>
428 <xsd:attribute name=”line” type=”xsd:int ”/>
429
430 <!−− One of the Universe modifiers. −−>
431 <xsd:attribute name=”modifier” type=”po:UniverseModifier” default=”implicit peer ”/>
432 </xsd:complexType>
433 </xsd:element>
434
435
436 <!−−
437 The annotation for an additional cast .
438 At the moment we only support static type inference tools .
439 −−>
440 <xsd:element name=”addcast”>
441 <xsd:complexType>
442
443 <!−− The Java type of the cast. −−>
444 <xsd:attribute name=”type” type=”xsd:string” use=”required”/>
445
446 <!−− Optionally, the source line of the cast .
447 Would this really help a tool to insert the annotation?

95

448 What if there is more than one cast per line ?
449 −−>
450 <xsd:attribute name=”line” type=”xsd:int ” use=”optional”/>
451
452 <!−− One of the Universe modifiers. −−>
453 <xsd:attribute name=”modifier” type=”po:UniverseModifier” use=”required”/>
454
455 <!−− One of the possible postitions to insert casts method, assignment or
456 array initializer −−>
457 <xsd:attribute name=”position type” type=”po:CastPositionType” use=”required”/>
458
459 <!−− The index of the position. e.g the 5th method −−>
460 <xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>
461
462 <!−− The position in the position type. −1 means target and positive
463 values means the parameter at this position .
464 In an assignment 0 is the expression to assign . −−>
465 <xsd:attribute name=”position” type=”xsd:int ” use=”required”/>
466
467 </xsd:complexType>
468 </xsd:element>
469
470
471 <!−−
472 The annotation for a static method call .
473 The existing static method calls in a method are indexed, starting from zero .
474 −−>
475 <xsd:element name=”static call ”>
476 <xsd:complexType>
477 <!−− The index of the static call , starting from zero . −−>
478 <xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>
479
480 <!−− The Java type of the call . −−>
481 <xsd:attribute name=”type” type=”xsd:string” use=”required”/>
482
483 <!−− Optionally, the source line of the call .
484 Would this really help a tool to insert the annotation?
485 What if there is more than one new per line?
486 −−>
487 <xsd:attribute name=”line” type=”xsd:int ”/>
488
489 <!−− One of the simple Universe modifiers , because static calls are
490 not possible on array types .
491 −−>
492 <xsd:attribute name=”modifier” type=”po:SimpleUniverseModifier”
493 default=”implicit peer ”/>
494 </xsd:complexType>
495 </xsd:element>
496
497
498 </xsd:schema>

96 D Annotations XML Schema

Appendix E

Configuration XML Schema

1 <?xml version=”1.0”encoding=”UTF−8”?>
2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
3 <xs:element name=”configuration”>
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element ref=”observers” minOccurs=”0”maxOccurs=”1”/>
7 <xs:element ref=”algorithm” minOccurs=”1”maxOccurs=”1”/>
8 </xs:sequence>
9 </xs:complexType>

10 </xs:element>
11
12 <!−− the list of observers that have to be instantiated by the tool −−>
13 <xs:element name=”observers”>
14 <xs:complexType>
15 <xs:sequence>
16 <xs:element ref=”observer” minOccurs=”0”maxOccurs=”unbounded”/>
17 </xs:sequence>
18 </xs:complexType>
19 </xs:element>
20
21 <!−− defines the classname of an observer to be instantiated −−>
22 <xs:element name=”observer”>
23 <xs:complexType>
24 < xs:attribute name=”classname” type=”xs:string” use=”required” />
25 </xs:complexType>
26 </xs:element>
27
28 <!−− the list of GraphVisitors that defined the algorithm and
29 have to be instantiated by the tool −−>
30 <xs:element name=”algorithm”>
31 <xs:complexType>
32 <xs:sequence>
33 <xs:element ref=”visitor ” minOccurs=”1”maxOccurs=”unbounded”/>
34 </xs:sequence>
35 </xs:complexType>
36 </xs:element>
37
38 <!−− defines the classname of a GraphVisitor to be instantiated −−>
39 <xs:element name=”visitor”>
40 <xs:complexType>
41 < xs:attribute name=”classname” type=”xs:string” use=”required” />
42 <xs:sequence>

97

98 E Configuration XML Schema

43 <xs:element ref=”option” minOccurs=”0”maxOccurs=”unbounded”/>
44 </xs:sequence>
45 </xs:complexType>
46 </xs:element>
47
48 <!−− defines an option for a visitor with an optionname and a value
49 each visitor may have an unlimited number of options. See the sample
50 config .xml file .−−>
51 <xs:element name=”option”>
52 <xs:complexType>
53 < xs:attribute name=”name” type=”xs:string”use=”required” />
54 < xs:attribute name=”value” type=”xs:string ” use=”required” />
55 </xs:complexType>
56 </xs:element>
57
58 </xs:schema>

	1 Introduction
	1.1 Universe Type System
	1.2 Goal
	1.3 Outline

	2 Runtime Inference Tool
	2.1 Algorithm Overview
	2.2 Implementation
	2.3 Limitations of Version 1

	3 Static Methods & Object Creation
	3.1 Instance Method Calls
	3.2 Static Method Calls
	3.3 Implementation
	3.4 Annotation Output

	4 Arrays
	4.1 Arrays in the Universe type system
	4.2 One-dimensional Array Operations
	4.3 Multidimensional Array Operations
	4.4 Implementation
	4.4.1 Bytecode Instrumentation
	4.4.2 Annotation and Harmonization

	5 Annotation of Method Bodies
	5.1 Methods in Java
	5.2 Method Bodies
	5.3 Bytecode Instrumentation
	5.4 Abstract Interpretation
	5.4.1 Algorithm Overview
	5.4.2 Detailed Description of the Algorithm

	5.5 Implementation
	5.5.1 Java type representation
	5.5.2 Verification visitors
	5.5.3 Indexing within Method Bodies

	6 Joining multiple Test runs
	6.1 Information separation
	6.2 Visitors
	6.3 Merge Example

	7 Results and future work
	7.1 Program Examples
	7.1.1 Producer Consumer
	7.1.2 Array Example
	7.1.3 LinkedList
	7.1.4 Tree

	7.2 Related work
	7.3 Future work
	7.4 Conclusion

	A State Transition Rules
	B Tree Example
	C Agentoutput XML Schema
	D Annotations XML Schema
	E Configuration XML Schema

