
Implementing a
Universe Type System for Scala

Manfred Stock

Master Thesis Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

August 2007 – January 2008

Supervised by:
Dipl.-Ing. Werner M. Dietl
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

2

Abstract

The Universe type system is based on the concept of ownership where every object has at most one
owner object. It structures the object store using different contexts, which are sets of objects with
the same owner, and restricts how references can be passed and used. When enforcing the owner-
as-modifier property, the Universe type system guarantees that any modification of an object can
only be initiated by its owner object.

Scala is a multi-paradigm programming language combining features of object-oriented and
functional languages. It supports compiler plugins and annotations on types which allows the
implementation of additional type constraints such as those imposed by the Universe type system.

This thesis presents an implementation of the Universe type system for Scala. The imple-
mentation supports a subset of the Scala language. It provides two compiler plugins for the Scala
compiler and a set of annotations for the use in programs. One plugin performs the static Universe
type checks and the other plugin inserts additional runtime checks during compilation.

4

Acknowledgements

I would like to thank my supervisor Werner Dietl for his support and feedback. Particular thanks
go to Lex Spoon for his help with certain aspects of Scala and especially for his work on type
annotations.

Special thanks also go to my parents and to my sister for their support during my studies and
the work on this master thesis.

5

6

Contents

1 Introduction 9
1.1 Scala . 9

1.1.1 Implicit Conversions and Views . 10
1.1.2 Class Hierarchy . 11
1.1.3 Type Inference . 12
1.1.4 Annotations . 12
1.1.5 Self types . 12
1.1.6 Compiler Plugins . 12
1.1.7 Universe Types in Scala . 15

1.2 Universe Type System . 16
1.2.1 Type Rules . 17

1.3 Notation and Naming Conventions . 23
1.3.1 Notation in Diagrams . 23

1.4 Overview . 24

2 User’s Guide for the Universe Type System Plugins 25
2.1 Universe Type System . 25

2.1.1 Annotations . 25
2.1.2 Types . 25
2.1.3 Methods . 26
2.1.4 Viewpoint Adaptation . 26
2.1.5 Subtyping . 27
2.1.6 Generics . 27
2.1.7 Casts and Instanceof . 27
2.1.8 Dynamic Checks . 27

2.2 Installation of the Plugins . 27
2.2.1 Requirements . 27
2.2.2 Binary . 27
2.2.3 Scala Bazaars . 28
2.2.4 Source . 29

2.3 Usage . 29
2.3.1 Annotations . 29
2.3.2 scalac . 31
2.3.3 Plugin Options . 31
2.3.4 ant . 32
2.3.5 Running the Compiled Application . 32

3 Architecture 35
3.1 Overview . 35
3.2 Ownership Modifiers . 36
3.3 Static Checks . 38

3.3.1 Type Representation . 38
3.3.2 Method Representation . 39
3.3.3 Assembling the Abstraction of the Compiler’s Type Representation 39
3.3.4 Checking Type Rules . 39

3.4 Runtime Checks . 40

7

Contents

4 Implementation 43
4.1 Abstract Syntax Tree . 43

4.1.1 Nodes of the Abstract Syntax Tree . 43
4.1.2 Symbols and Types . 44

4.2 Inference of Ownership Modifiers . 46
4.2.1 Recursive Definitions and Ownership Modifier Propagation 47
4.2.2 Symbol Extraction . 47
4.2.3 Inference and Propagation . 48

4.3 Static Universe Type Checker . 50
4.3.1 Internal Type Representation . 50
4.3.2 Type Checks . 50

4.4 Runtime Checks . 51
4.4.1 Modification of the Abstract Syntax Tree 51
4.4.2 Runtime Library . 52
4.4.3 Storage of the Ownership Relation . 52

4.5 Logging and Error Reporting . 52
4.5.1 Logging and Error Reporting in the Scala Compiler 53

4.6 Testing . 53
4.6.1 Test Cases . 54

5 Conclusion 55
5.1 Status of the Implementation . 55
5.2 Development of a Compiler Plugin for Scala . 56
5.3 Future Work . 56

A Developer’s Guide for the Universe Type System Plugins 59
A.1 Introduction . 59
A.2 Directory Layout . 59
A.3 Extending the Type Checker . 59

A.3.1 Defaults . 59
A.3.2 Type Rules . 61

A.4 Customizing the Runtime Checks . 63
A.5 Compilation . 63

A.5.1 Building a Distribution . 63
A.6 Setting Up a Scala Bazaar . 64

A.6.1 Creation and Deployment of sbaz.war . 64
A.6.2 Setup of the Bazaar . 65
A.6.3 Setup of Access Control . 65
A.6.4 Uploading a First Package . 66

List of Figures 67

List of Listings 69

Bibliography 71

8

1 Introduction

This first chapter gives short introductions to the Scala programming language and to the type
rules of the Universe type system. The introduction to Scala highlights some of its differences to
Java and especially those features which are relevant for this thesis. This comprises its compiler
plugins which were used to implement a Universe type system for Scala, Scala’s type inference,
and its support for annotations on types.

1.1 Scala

Scala [20] is a programming language which combines functional and object-oriented features. It
is compiled to Java byte code and is therefore interoperable with Java. There are many tutorials
for Scala, for example [25, 34, 16]. The next few subsections nevertheless give a short introduction
to Scala, especially to those features which were used in the implementation of a Universe type
system presented in this thesis.

Every value in Scala is an object, there are no primitive types like in Java [19, Section 3]. Scala
supports a similar set of object-oriented features like Java, but there are some differences:

• There is usually no explicit constructor method, but instead the class body itself serves as
one. References and methods defined in the class body become the fields and methods of
the class. Parameters to the default constructor are therefore specified when defining the
class as can be seen for class Complex in Listing 1.1. It is nevertheless possible to overload
the constructor method by defining other def this(<parameters>) methods with different
parameters.

A noteworthy feature of the default constructor is that parameters marked with var or val

are automatically transformed into mutable or final fields of the class, respectively.

• A Scala class may not have static members. Instead, Scala supports the creation of singleton
objects by using the keyword object. Such an object cannot be instantiated explicitly, but
it gets created automatically the first time it is used. The singleton in the name already
implies that there is only one instance of an object in the scope of its definition and below.

Static members of a class can be simulated by using a special so-called companion object
which shares its name with a class. Other objects are also called stand-alone objects. It is
important to distinguish between these two kinds of objects because companion objects get
more privileges, such as access to private members of the class they share the name with.

• Scala does not use interfaces, but a similar concept called traits. Traits can be seen as a
construct between interfaces and abstract classes: They may contain method signatures and
implementations of methods like an abstract class. In addition, other classes can extend
several traits, which is similar to Java’s handling of interfaces which are therefore internally
mapped to Scala’s traits. This so-called mixin-class composition allows the combination
of several classes containing implementations, but without the complications of multiple
inheritance.

A function in Scala is also a value which allows the implementation of higher-order functions
such as map. In addition, there are several other features shared between Scala and most common
functional programming languages. This includes nesting of function definitions and modelling of
algebraic types through its case classes and its built-in pattern matching.

9

1 Introduction

package complex

/** Static object for complex numbers */

object Complex {

val i = Complex (0,1)

5 implicit def double2complex(x: Double) = Complex(x,0)

implicit def int2complex(x: Int) = Complex(x.toDouble ,0)

def apply(re: Double , im: Double) = new Complex(re ,im)

}

/** Class representing complex numbers */

10 class Complex(val re: Double , val im: Double) {

def +(that: Complex) = Complex(this.re + that.re , this.im + that.im)

def -(that: Complex) = Complex(this.re - that.re , this.im - that.im)

def *(that: Complex) = Complex(this.re * that.re - this.im * that.im ,

this.re * that.im + this.im * that.re)

15 def /(that: Complex) = {

val denom = that.re * that.re + that.im * that.im

Complex(

(this.re * that.re + this.im * that.im) / denom ,

(this.im * that.re - this.re * that.im) / denom

20)

}

override def toString = re+(if (im < 0) "-" + (-im) else"+" + im) + "*I"

}

Listing 1.1: Implementing complex numbers for Scala.

Listing 1.1 contains an example of a Scala program which was taken from [17]: It implements
complex numbers as a library. One can see several syntactical similarities to Java but also some
differences, three of which seem particularly prominent: (1) Semicolons are mostly optional, they
are only required if one wants to put more than one statement on a line. (2) Types of variables,
the method return type and type arguments usually do not need to be specified: Scala is able to
infer them, except for recursive functions and definitions. (3) Names of methods are less restricted
than in Java, it is therefore possible to declare operators like +, -, etc. as methods of a class.
However, one needs to be aware of the operator precedence and associativity which are derived
from the first and last character, respectively, of the method’s name [18, Section 6.12.3].

1.1.1 Implicit Conversions and Views

After importing the Complex singleton object’s members using import Complex._ into the current
scope, it is possible to seamlessly work with complex numbers: 1 + 1 * i for example is a legal
expression now. The reason why this works are implicit conversions called views. There are two
cases where the Scala compiler applies views:

1. If an expression e is of type T, and T does not conform to the expression’s expected type T’.

2. If the selector m does not denote a member of type T in a selection e.m where e has type T.

In the first case, a view v, i.e. a function declared as implicit, is searched which is applicable to
e and whose result type conforms to T’. In the other case, a view v is searched which is applicable
to e and whose result provides a member conforming to m.

The expression 1 + 1 * i is processed as follows: First the compiler handles 1 * i which could
be rewritten as 1.*(i). Since i is of type Complex and 1 is an Int instance, the compiler cannot find
a matching method *(that: Complex) in class Int. It therefore searches for a view which converts
an Int to a type providing such a method. As object Complex provided an implicit conversion
from Int to Complex with the function int2complex, the compiler will implicitly apply this view.
The same will be done for the subsequent addition.

10

1.1 Scala

1.1.2 Class Hierarchy

Scala uses a unified object model with scala.Any at the base of its class hierarchy. See Figure 1.1
for a diagram showing this hierarchy.

scala

Any

AnyVal AnyRef

ScalaObject Java classes

Nothing
Null

java.lang.Object

Other reference classes

Other value classes Unit

Figure 1.1: Class hierarchy of Scala.

There are two categories for the subclasses of scala.Any: Value classes subclassing scala.AnyVal

and reference classes subclassing scala.AnyRef. Each primitive type of Java has a corresponding
value class while scala.AnyRef is identified with java.lang.Object. scala.Unit basically corre-
sponds to Java’s void but there actually is an instance of scala.Unit, namely the value ().

The two types at the bottom of the class hierarchy do not have a direct analogon in Java:
scala.Null is a subtype of all reference types and its only instance is the null reference. This
prevents the assignment of null to an instance of a value class since scala.Null is not a subtype of
scala.AnyVal. The type scala.Nothing is a subtype of every other type. There exists no instance
of scala.Nothing but it is useful as a type parameter’s lower bound.

Arrays

There is no special syntax for arrays in Scala. Instead, it uses the normal, parameterized class
Array[A] to represent polymorphic arrays. It is nevertheless possible to mimic the syntax of Java
by using a more general syntactic concept of Scala: When applying parentheses to a variable while
passing in some arguments, Scala will transform this into an invocation of a method named apply

if possible. This can be seen in Listing 1.1: object Complex provides an apply method which takes
two arguments. It is therefore allowed in this case to write Complex(0,1) in order to create a new
instance of a complex number.

For arrays, this is similar: Let a be of type Array[Int](10). a(5) would then return the element
at index position 5. There is also an akin concept for updates: An expression like a(5) = 10 gets
mapped to a.update(5,10) if a’s type provides a conforming update method, which is the case for
Array[A].

First-Class Functions

The Scala compiler desugars first-class functions to concrete implementations of the FunctionN

trait, with N ∈ 0 . . . 9. Parameters of the first-class function are turned into parameters of the

11

1 Introduction

specialization’s apply function and the body of the first-class function becomes the body of the
apply function.

In addition, it is also necessary to adapt higher-order functions as their actual arguments are not
functions, but instances of FunctionN. Their parameter types are therefore transformed such that
they subsequently take FunctionN instances. The body of a higher-order function gets adapted, too:
Applications of the first-class function are turned into calls of the apply method of the respective
FunctionN instance.

The above transformations make is possible to handle first-class functions just like any other
object. Hence, first class functions also fit into Scala’s unified object model, and it is usually not
necessary to treat them specifically.

1.1.3 Type Inference

According to [5, Section 5] the type inference in Scala is based on Colored Local Type Inference [21]
which is a refinement of local type inference [24]. Local type inference basically means that the
inference uses only information from adjacent nodes in the syntax tree to recover missing type
information. This avoids global constraint solving and implies that the type is inferred from the
initialization of a variable or the definition of a method.

1.1.4 Annotations

Scala supports annotations on definitions and declarations, types, and expressions. An annotation
has the form @a or @a(a1,a2,...). In these cases, a is the constructor of a class conforming to
scala.Annotation. Annotations directly extending scala.Annotation are neither preserved for the
Scala type checker nor for the class file. They are only visible locally during the compilation
run which analyzes them. However, specializations of the alternate scala.StaticAnnotation trait
which extends scala.Annotation are available to Scala’s type checker in every compilation unit
where the annotated construct is accessed.

1.1.5 Self types

Self-type annotations allow one to attach a type to this which is different from the surrounding
class. Combined with Scala’s abstract type members and its modular mixin composition, this
results in a mechanism for the construction of reusable components [22]. This mechanism is
employed at the core of the implementation of the Scala compiler and also in the implementation
of the Universe type system presented in this thesis.

The self type of a class or object must conform to the self types of all classes it inherits from.
Listing 1.2 shows an example of a class A whose self type was declared as being B. It is now
possible to write the expression (new A with B).saySomething which results in “Hello, B-World!”
being printed. Similarly, one could write the expression (new A with C).saySomething which would
result in “Hello, C-World!”. Of course one may also declare a named class like in class D extends

A with C and get the same result as in the second example when running (new D).saySomething.

1.1.6 Compiler Plugins

The Scala compiler may be extended by writing compiler plugins. These plugins are also written
in Scala and get access to the abstract syntax tree of the standard compiler after a specified
compiler phase. A list of available phases may be obtained by executing the command scalac
-Xshow-phases. The output of this command depends on the plugins which are currently in use.

Since compiler plugins get access to the complete abstract syntax tree, they may conduct ad-
ditional checks or even modify it to change the runtime behavior of the program. Both variants
are used in this thesis in order to execute static type checks on the programs and to add runtime
checks to the generated byte code (see Sections 4.3 and 4.4).

12

1.1 Scala

class A {

self: B =>

def saySomething = sayHello

}

5

trait B {

def sayHello = println("Hello , B-World!")

}

10 trait C extends B {

override def sayHello = println("Hello , C-World!")

}

Listing 1.2: Example of using Scala’s self types.

There are two abstract classes provided by the Scala compiler which must be extended when
implementing a compiler plugin. See Figure 1.2 for the overall structure of these classes. The
Plugin class is the entry point to a compiler plugin. It contains the name and a list of compo-
nents which are provided by the plugin and which should be executed during the compilation.
A PluginComponent must specify the name of the compiler phase after which it should be run.
See Listing 1.3 for a basic example of a “Hello, World!” compiler plugin which implements these
abstract classes. It prints a message and the filename of each source file it processes.

scala.tools.nsc

SubComponent
global: Global
phaseName: String
phaseNewFlags: Long
phaseNewFlags: Long
newPhase(prev: Phase): Phase

scala.tools.nsc.plugins

Plugin
name: String
description: String
global: Global
optionsHelp: Option<String>
processOptions(options: List<String>, error: String => Unit)

PluginComponent
runsAfter: Stringcomponents

1..*

Figure 1.2: Basic hierarchy for compiler plugins.

A Plugin gets a global reference to an instance of class scala.tools.nsc.Global at runtime.
This class provides many methods and inner classes required during compilation as well as access
to the settings of the current compilation run. The provided classes comprise both those for the
representation of the abstract syntax tree and those for Scala’s type description. The field global of
class SubComponent is abstract, hence actual PluginComponent implementations must implement this
field by providing a val global: Global class parameter. This ensures that the PluginComponent

gets access to the same settings and classes as the Plugin and all other compiler phases.
The runsAfter field of the PluginComponent is used to tell the compiler after which phase the

component should run. Both built-in phases and phases defined in other plugins are allowed.
Plugins are packaged as Java archive files which contain two files besides the compiled classes:

(1) A file named scalac-plugin.xml (see Listing 1.4) containing the name of the plugin and the

13

1 Introduction

package ch.ethz.inf.sct.uts.plugin.helloworld

import scala.tools.nsc._

import scala.tools.nsc.plugins._

5 /** Compiler plugin for the Scala compiler. */

class HelloWorldPlugin(val global: Global) extends Plugin {

/** Name of this plugin. */

val name = "helloworld"

10 /** Description of this plugin. */

val description = "Compiler plugin which prints out ’Hello , World!’"

/** Components of this plugin. */

val components = List(new HelloWorldPluginComponent(global))

15

/** Handling of any plugin -specific options. */

override def processOptions(options: List[String],

error: String => Unit) {

options foreach {

20 case o => error("Unknown option "+o+" for "+name)

}

}

/** A description of this plugin ’s options , for -help. */

25 override val optionsHelp: Option[String] = None

}

/** Plugin component which runs after runsAfter. */

class HelloWorldPluginComponent (val global: Global)

30 extends PluginComponent {

import global._

/** Name of this compiler phase. */

val phaseName = "helloworld -phase"

35 /** When to execute this phase. */

val runsAfter = "refchecks"

/** Factory to create the new phase for the graph generation. */

def newPhase(prev: Phase) = new Phase(prev) {

40 def name = phaseName

/** Process the compilation units. */

def run {

println("Hello , World!")

45 currentRun.units foreach {u => println("Processing "+u.source.path)}

println("Done.")

}

}

}

Listing 1.3: Basic “Hello, World!” compiler plugin.

14

1.1 Scala

<?xml version="1.0" encoding="utf-8"?>

<plugin >

<name>

helloworld

5 </name>

<classname >

ch.ethz.inf.sct.uts.plugin.helloworld.HelloWorldPlugin

</classname >

</plugin >

Listing 1.4: Example for the scalac-plugin.xml file.

version.major=0

version.minor=1

Listing 1.5: Example for the helloworld.version.properties file.

name of the class implementing the abstract Plugin class. (2) An optional file providing some
version information for the plugin named <plugin-name>.version.properties (see Listing 1.5).
The version information is currently not used, but one could employ it during the compilation
of the plugin. A future version of the Scala compiler might also make use of this information if
the compiler gets support for the specification of explicit dependencies between plugins, which is
currently not possible.

Using Compiler Plugins

In order to use a plugin, one needs to pass the option -Xplugin:<path-to-plugin.jar> to the
scalac command. This results in the execution of the plugin’s components after the phases
specified in the field runsAfter of the PluginComponent instances. It is possible to specify more
than one plugin or a directory with several plugins. The latter can be done using -Xpluginsdir
<dir> which will load and use all plugins from dir during compilation.

There are two more options that might be useful when working with plugins: (1) The option
-Xplugin-list prints the list of active plugins together with their synopsis. This is for example
useful if some plugins have been copied to the special directory mentioned in Section 2.2.2: Plugins
from this directory are loaded automatically and may therefore change the normal compilation
process. If such a plugin contains an error, it may modify the compilation in a detrimental
way – and this option is a facility to identify such spurious plugins. (2) The more general option
-Xshow-phases displays the order in which the phases of built-in compiler components and the
phases from plugins are executed during compilation. One case is particularly interesting: It may
happen that there are two or more plugins which define new phases that should be executed after
the same existing phase. If for some reason the sequence of execution for these new phases must
be changed, one may simply load the plugins in a different order.

1.1.7 Universe Types in Scala

The objective of this thesis is that the user should be able to write down a Scala program like the
one in Listing 1.6. It includes only a few so-called ownership modifiers represented as source code
annotations – the missing ownership modifiers should be inferred or defaulted automatically by
the compiler plugins. After inferring these modifiers, the type rules of the Universe type system
(see Section 1.2.1) should be checked as well. If the user used type casts or instanceof tests in
the program, additional checks must be done at runtime [26]. These should also be added during
compilation.

15

1 Introduction

package ch.ethz.inf.sct.uts.examples

import ch.ethz.inf.sct.uts.annotation._

class A {

val b = new (B @rep)

5 val s = b.s

def t = new (Cls @peer)

val u = b.t

}

Listing 1.6: Simple example of the usage.

1.2 Universe Type System

The Universe type system [15, 7, 6] is used to control aliasing and dependencies in object-oriented
programs by hierarchically structuring the object store. Its underlying basis is the concept of
ownership where each object is owned by at most one distinct owner object.

All objects of a program execution are organised into contexts, which are sets of objects with
the same owner. Objects without owner are grouped into the so-called root context, which also
forms the root of the tree of contexts of a program execution. When enforcing the so-called
owner-as-modifier discipline, the owner must have control over the modification of its objects.

Ownership modifiers statically express object ownership relative to some object called the view-
point. The ownership modifiers of the Universe type system are always relative to this: A peer
reference denotes a reference to an object in the same context as this while a rep reference iden-
tifies an object as being owned by this. An any reference may cross context boundaries and
reference an object with statically unknown owner.

rep

this

rep rep

rep rep

peer

peer

peer

any

any

Figure 1.3: Ownership relations in an object structure.

Figure 1.3 shows an exemplar object store. The arrows denote references between objects which
are annotated with ownership modifiers. Dashed arrows are used for any references which may
cross context boundaries while rep references are expressed by slightly thicker arrows. Rectangles

16

1.2 Universe Type System

with rounded corners define contexts whereas the outermost rectangle is the root context.
The following subsection gives a formal introduction to the actual type rules which are imple-

mented in this thesis. It can safely be skipped if one is not interested in the rules: Chapter 2
presents a more informal overview of the type system which should suffice in order to understand
the remainder of this thesis.

1.2.1 Type Rules

This subsection introduces the variant of the Universe type system’s rules which is implemented
in this thesis. These rules are based on a revised version of the type system presented in [6] and
have in addition been adapted to Scala. The explanations are therefore basically a summary of
those found in [6], but adapted to the changed rules.

Since the presented rules are taken from an intermediate version between [6] and as yet un-
published work, there is no soundness proof for the type system. The original work in [6] also
discusses a runtime model which is not covered in this thesis. Instead, the runtime checks are
based on earlier work for Java [26] and do therefore not support generics. Such support was im-
plemented for Java in [23] and could be implemented for Scala as well. The focus of this thesis is
also on the implementation of a Universe type system checker for Scala, and not on the refinement
of the type system. However, the implementation provides a framework which makes it easy to
experiment with different variants of the Universe type system for Scala. It also provides a default
implementation which uses the type rules of this subsection.

Syntax and Type Environments

Figure 1.4 presents the syntax of the language and the naming conventions for variables. Both are
based on and therefore similar to [6], but they have been adapted to match the syntax of Scala:
Type parameters and arguments are therefore written in squared brackets. Method signatures
contain the def keyword, the type parameters are between the method’s name and its parame-
ters, and the return type follows the parameters, separated by a colon. The ownership modifier
also follows the type, which is certainly the most significant difference. Type casts are written
differently as Scala implements them via calls to the parameterized asInstanceOf[T]: T method.

A possibly empty sequence of Ts is denoted by T. The i-th element of the sequence is identified
by Ti, and the empty sequence is denoted by ε. A sequence of tuples X T constitutes a map. Substi-
tutions are written with double brackets like in [[new/old]] because the meaning of single squared
brackets could be ambiguous in the presence of type parameters. In addition, support for the
if-then-else expression has been added to the rules. However, the rules do not model constructor
methods nor interfaces and traits which are nevertheless handled by the implementation.

P ∈ Program ::= Cls C e
Cls ∈ Class ::= class C[X N] extends C[T] { f T; mt }
T ∈ Type ::= N | X
N ∈ NType ::= C[T] u
u ∈ OM ::= peeru | repu | someu | anyu | thisu | lostu

mt ∈ Meth ::= w def m[X N](x T): T = { e }
w ∈ Purity ::= pure | nonpure
e ∈ Expr ::= null | x | e.f | e.f=e | e.m[T](e) | new N | e.asInstanceOf[T] |

if (e0) {e1} else {e2}
Γ ∈ Env ::= X N; x T

Figure 1.4: Syntax and type environments.

A program P ∈ Program consists of any number of classes and a main class with a main
expression e ∈ Expr. Classes Cls ∈ Class may have type parameters and they can specialize

17

1 Introduction

another class. Their body may define methods and fields.
The type rules distinguish two kinds of types: A non-variable NType and type variables X ∈

TVarID. Non-variable types may have any number of type arguments T ∈ Type and a main
ownership modifier u ∈ OM. The subscript u is omitted if it is clear from context that an ownership
modifier is meant.

There are some restrictions on the use of ownership modifiers. this and lost are internal
modifiers, they cannot be used in the program’s source code. this is only employed for the type
of the this reference while lost indicates that ownership information got lost during the viewpoint
adaptation. In addition, some is only allowed in type arguments, but not as a main modifier.

Methods mt ∈ Meth have a purity indicator w ∈ Purity, any number of type and method
parameters, and a method return type. Their body contains any number of expressions e ∈ Expr.

Type checks take place in a type environment Γ ∈ Env. It maps type variables to their upper
bounds and method parameters to their types. The notation Γ(X) refers to the upper bound of
type variable X, while Γ(x) refers to the type of method parameter x.

Viewpoint Adaptation

All ownership modifiers express ownership relative to an object, the so-called viewpoint. Since the
type rules use this as the viewpoint, all types T which are seen from another type T′ need to be
adapted to the viewpoint this. This so-called viewpoint adaptation is done by the overloaded B
operator: It adapts (1) an ownership modifier from a viewpoint described by another ownership
modifier, (2) a type from a viewpoint described by an ownership modifier, and (3) a type from a
viewpoint described by another type.

Adapting an Ownership Modifier w.r.t. an Ownership Modifier The viewpoint adaptation of
an ownership modifier from another ownership modifier could be explained using a field access
e.f: Let u be the main ownership modifier of e and u′ be the main ownership modifier of e’s field
f. Then relative to this, the type of the field access e.f has the main modifier uBu′.

B :: OM× OM → OM
peerBpeer = peer repBpeer = rep

uBsome = some uBany = any
thisBu′ = u′ if u′ 6= this uBu′ = lost otherwise

Accessing the reference f to a peer object through a peer reference yields peer since all involved
objects have the same owner. If u is rep, that is this is the owner of e, and u′ is peer, then a
peer object of e is also owned by this, which results in rep.

Adapting some from the viewpoint of an arbitrary ownership modifier to the viewpoint this

results in some. In the case that u′ is any, f already points to an object in an unknown context.
Accessing the object through e does not result in more precise ownership information, hence this
yields any.

As this is only used for the type of this, no viewpoint adaptation is necessary because the
viewpoint already is this. In all other cases, ownership information gets lost during the viewpoint
adaptation, hence the resulting modifier is lost.

Adapting a Type w.r.t. an Ownership Modifier Type variables are not subject to viewpoint
adaptation because the substitution by actual type arguments takes place in the scope where the
type variables are instantiated. The type arguments of non-variable types are adapted recursively.

B :: OM× Type → Type
uBX = X

uBC[T] u′ = C[uBT] (uBu′)

18

1.2 Universe Type System

Adapting a Type w.r.t. a Type A type T gets adapted from the viewpoint described by a non-
variable type:

B :: NType× Type → Type

C[T] uBT = (uBT)[[T[[lost/some]]/X]] where X=dom(C)

The ownership modifiers of T are adapted first, then its type arguments get processed: Type
arguments T are substituted for the type variables X of C. dom(C) denotes C’s type variables X in
the declaration class C[X] . . . of class C. The substitution of some by lost is done in order to
express the fragility of some.

Subclassing

The term subclassing is used to describe the relation on classes as declared by the extends keyword –
it does not take ownership modifiers into account. Subtyping on the other hand respects ownership
modifiers.

SC-1
class C[X] extends C′[T′]

C[X] v C′[T′]
SC-2

C[X] v C[X]

SC-3

C[X] v C′′[T′′]
C′′[X′′] v C′[T′]

C[X] v C′[T′[[T′′/X′′]]]

Figure 1.5: Rules for subclassing.

The subclass relation v is defined on instantiated classes C[T]. Its rules in Figure 1.5 state the
following: Each un-instantiated class is a subclass of the class it extends (SC-1). Subclassing is
reflexive (SC-2) and transitive (SC-3).

Subuniversing

There is also a relation between ownership modifiers, similar to a simple subtype relation, called
subuniversing. It is shown in Figure 1.6.

SU-1
thisu <:u peer

SU-2
peer <:u lost

SU-3
rep <:u lost

SU-4
lost <:u some

SU-5 some <:u any SU-6 u <:u u

Figure 1.6: Rules for subuniversing.

This relation is used in subtyping rule ST-2 in order to express that e.g. C rep is a subtype of
C any. The relation builds a tree with any at the root.

Subtyping and Limited Covariance

The subtype relation <: of Figure 1.7 is defined on types and Γ ` T <: T′ expresses that T is a
subtype of T′ in the type environment Γ.

Rule ST-1 conveys that two types sharing the same ownership modifier are subtypes if the cor-
responding classes are subclasses. However, ownership modifiers in T′ are relative to the instance

19

1 Introduction

ST-1
C[X] v C′[T′]

Γ ` C[T] u <: C′[(uBT′)[[T/X]]] u
ST-2

u <:u u′ Γ ` T <:a T′

Γ ` C[T] u <: C[T′] u′

ST-3

Γ ` T <: T′′

Γ ` T′′ <: T′

Γ ` T <: T′
ST-4

T = X ∨ Γ(X) <: T
Γ ` X <: T

TA-1
Γ ` T <:a T

TA-2
u′ ∈ {u, some} Γ ` T <:a T′

Γ ` C[T] u <:a C[T′] u′

TA-3
T = Γ(X)[[some/peer, some/rep, some/any]]

Γ ` X <:a T

Figure 1.7: Rules for subtyping and limited covariance.

of class C, therefore a viewpoint adaptation and a substitution of type variables needs to take
place. Two types are also subtypes if their corresponding classes are the same, their main owner-
ship modifiers fulfill the subuniversing relation, and if their type arguments satisfy the covariant
subtyping relation <:a (ST-2). The subtyping relation is also transitive (ST-3) and reflexivity
of <: follows from ST-2. A type variable X is a subtype of type T if T is X itself or if the upper
bound of X is a subtype of T (ST-4).

Covariant subtyping is reflexive (TA-1). Two types are covariant subtypes if the corresponding
classes are the same, if their main ownership modifiers are either equal or if the prospective
supertype’s main modifier is some, and if their type arguments are also covariant subtypes (TA-2).
Finally, TA-3 expresses that X is a covariant subtype of T if T equals the upper bound of X where
the peer, rep and any ownership modifiers were substituted by some.

Variances Scala supports variance annotations of type parameters of generic classes. It is there-
fore possible to declare type parameters as being covariant or contravariant. However, this is
neither supported in the above subtyping rules nor the implementation, although earlier work [27]
already provided adapted rules.

Lookup Functions

The lookup functions defined below are used in the type rules to get the possibly viewpoint adapted
type of a field or signature of a method.

Field Lookup fType(C, f) returns the type of field f in class C or an undefined result if class C
does not declare field f. If the function is called with a non-variable type N instead of a class, the
result will be viewpoint adapted.

SFT-1
class C[] extends [] { . . . T f . . . ; }

fType(C, f) = T

SFT-2
N = C[] fType(C, f) = T

fType(N, f) = NBT

Method Lookup As for the above fType function there are two variants of the mType function:
One which returns the method signature as it is declared in the defining class and one which
adapts the viewpoint of the method signature’s types before returning the signature. If the given
method m is not declared in class C, the result is undefined.

20

1.2 Universe Type System

SMT-1
class C[] extends [] { ; . . . w def m[Xm Nb](x Tp): Tr . . . }

mType(C, m) = w def m[Xm Nb](x Tp): Tr

SMT-2

N = C[] mType(C, m) = w def m[Xm Nb](x Tp): Tr

NBNb = N′b NBTr = T′r NBTp = T′p

mType(N, m) = w def m[Xm N′b](x T′p): T
′
r

Overloaded methods are not explicitly supported. However, if the actual method lookup is not
solely based on the name, they can be handled as well. The original version of the type system
in [6] did not allow overloaded methods, but as Scala already relies on overloading for simple
arithmetic expressions like 0 + 1, this had to be relaxed.

Well-Formedness

Types, methods, classes, programs and type environments must be well-formed. Enforcement of
the rules summarized in Figure 1.8 guarantees the well-formedness property for these constructs.

WFT-1
X ∈ dom(Γ)
Γ ` X ok

WFT-2

class C[N] . . .
Γ ` T ok Γ ` T <: ((C[T] u)BN)

Γ ` C[T] u ok

WFM-1

Γ = Xm Nb, X N; this (C[X] thisu), x Tp

Γ ` Tr, Nb, Tp ok Γ ` e : T Γ ` e0 : Tr override(C, m)

w def m[Xm Nb](x Tp): Tr = { e; e0 } ok in C[X N]

WFM-2

∀ class C′[X′ N′] : C[X] v C′[T′] ∧ dom(C) = X⇒
mType(C′, m) is undefined ∨mType(C, m) = mType(C′, m)[[T′/X′]]

override(C, m)

WFC

X N; ` N, T, (C′[T′] thisu) ok
mt ok in C[X N] rep /∈ N

class C[X N] extends C′[T′] { mt; f T } ok

WFP

Cls ok
class C[] . . . ∈ Cls

ε; this (C[] thisu) ` e : N
Cls, C, e ok

SWFE

Γ = X N, X′ N′ ; this (C[X] thisu), x T
class C[X N] . . . Γ ` N, N′, T ok

Γ ok

Figure 1.8: Well-formedness rules.

The judgment Γ ` T ok means that type T is well-formed in type environment Γ. A type variable
is well-formed if its upper bound is contained in Γ (WFT-1). Non-variable types are well-formed
if their type arguments are well-formed and if the type arguments are subtypes of the viewpoint
adapted upper bound of the corresponding type parameters (WFT-2).

The judgment mt ok in C[X N] expresses that method mt is well-formed in a class C with type
parameters X N. According to WFM-1, this is the case if: (1) The return type, the upper bounds
of type parameters and the parameter types are well-formed, (2) the type of the method body
conforms to the declared return type, and (3) the method correctly overrides any matching method
in its superclasses (WFM-2). Overriding rules are respected if no method is overridden at all or

21

1 Introduction

if the overriding method has the same signature as the overridden method after substituting type
variables in the superclass’ method.

Actual implementations of the type system may safely relax the requirement for equality of
method signatures as follows: It suffices if the return type of the overriding method is a subtype of
the overridden method’s return type (covariance). In addition, the overriding method’s parameter
types may be supertypes of the overridden method’s parameter types (contravariance). Overriding
a non-pure method with a pure method would also be safe.

The judgment Cls ok expresses that class declaration Cls is well-formed. Rule WFC conveys
that this is the case if (1) the upper bounds of Cls’s type variables, the types of its fields, and the
instantiation of the superclass are well-formed; (2) Cls’s methods are well-formed; (3) no upper
bound contains the rep modifier.

The judgment P ok expresses that program P is well-formed. According to rule WFP this
applies if all classes in P are well-formed, the main class C is non-generic, and the main expression
e is well-typed.

The judgment Γ ok expresses that type environment Γ is well-formed. For this to hold, rule
SWFE requires that all upper bounds and method parameters are well formed. In addition, this
must be mapped to a non-variable type with main modifier this and an uninstantiated class.

Type Rules

Figure 1.9 presents the actual type rules. The judgment Γ ` e : T expresses that expression e is
well-typed with type T in environment Γ. Type rules can only be applied if all involved types are
well-formed in the respective environment.

GT-Subs

Γ ` e : T
Γ ` T <: T′

Γ ` e : T′
GT-Var

x ∈ dom(Γ)
Γ ` x : Γ(x)

GT-Null
T 6= [] thisu

Γ ` null : T

GT-New
N 6= [] anyu some, lost 6∈ N

Γ ` new N : N
GT-Cast

Γ ` e0 : T0

Γ ` e0.asInstanceOf[T] : T

GT-If

Γ ` e0 : Boolean Γ ` e1 : T1 Γ ` e2 : T2

Γ ` T1 <: T Γ ` T2 <: T
Γ ` if (e0) {e1} else {e2} : T

GT-Read

Γ ` e0 : N0

fType(N0, f) = T

Γ ` e0.f : T
GT-Upd

Γ ` e0 : N0 fType(N0, f) = T
Γ ` e2 : T lost 6∈ T

N0 = [] u u ∈ {peer, rep, this}
OaM

Γ ` e0.f=e2 : T

GT-Invk

Γ ` e0 : N0

mType(N0, m) = w def m[Xm Nb](x Tp): Tr lost 6∈ Tp ◦ Nb

Γ ` T <: Nb[[T/Xm]] Γ ` e2 : Tp[[T/Xm]]

N0 = [] u u 6∈ {peer, rep, this} ⇒ w=pure
OaM

Γ ` e0.m[T](e2) : Tr[[T/Xm]]

Figure 1.9: Type rules.

An expression of type T can also be typed with a supertype T′ of T (GT-Subs). The type

22

1.3 Notation and Naming Conventions

of method parameters (including the implicit this parameter) can be retrieved from the type
environment (GT-Var). The null reference may have any ownership modifier except for this
(GT-Null). New instances of a class must be created in a specific context, therefore any is not
allowed (GT-New). The type of a cast is the type the object gets casted to (GT-Cast). An if-
then-else expression is correctly typed if the type of both branches is a subtype of the expression’s
type (GT-If).

The type of a field read is the type of the field adapted from the receiver’s type (GT-Read).
In the case that the receiver’s type is a type variable, its upper bound is used. A field update
is similar (GT-Upd). However, it is not allowed to update a field whose type contains lost or
to update it with a value of a non-conforming type. If the owner-as-modifier property is being
enforced, then this must be the owner or a peer of the receiver, or the receiver itself.

Finally, rule GT-Invk handles method calls, which are similar to field reads and updates: The
upper bounds of type arguments and the method arguments’ types must not contain lost. Types
of method and type arguments must be subtypes of the method parameter types and the type
parameter’s upper bounds, respectively, with substituted type variables. The type of the expression
is the method’s return type from its signature where type variables have been substituted. If the
owner-as-modifier property should be enforced, only pure methods may be called on receivers
which point to an unknown context.

Separating Encapsulation and Topology In deviation from the original type rules the variant
used in this thesis is divided into two parts, as indicated above: It distinguishes between (1) the
ownership topology and (2) aliasing control. The basic rules only establish the ownership topology.
In order to enforce encapsulation, the type rules from Figure 1.9 are extended by additional rules
marked with a frame and OaM. These rules enforce the owner-as-modifier property.

Default Ownership Modifiers

According to [6], earlier work in [7] has shown that the annotation overhead can be reduced by
using appropriate defaults. In general, the default ownership modifier is peer. For upper bounds
of type variables, exceptions, and immutable types it defaults to any. Immutable types are for
example Int and String.

1.3 Notation and Naming Conventions

Usually the term type annotation refers to the type of a variable, method return type, etc. which is
written down in the source code, for example Int in val a: Int = 0. Scala also supports annotated
types (see Listing 1.6), therefore this term is slightly ambiguous as it may also refer to the actual
annotation (for example @rep) of a type. Since this thesis is about the implementation of a
Universe type system, annotations of types are typically used to represent the ownership modifier
of a reference. Therefore type annotation refers to the type including type annotations (which is
for example List[AnyRef @any] @rep) while ownership modifier means the actual annotation of a
type (such as @rep).

The term main ownership modifier or simply main modifier refers to the ownership modifier
which is not part of the type arguments, e.g. @rep in List[AnyRef @any] @rep.

1.3.1 Notation in Diagrams

There are several diagrams contained in this thesis which use a UML-like notation to describe
class hierarchies. The specific meaning of the elements of this notation is as follows:

23

1 Introduction

A
a: String
b: Int
c: Boolean
f(a: Int) : Int

A class with three fields: a is of type String and public (indicated
by the open lock), b is of type Int and protected (indicated by the
semi-open lock), and c is of type Boolean and private (indicated by
the closed lock). The method at the bottom is public, it takes an
Int parameter and returns an Int.

A B

Class A extends the abstract class B: A specialization is expressed
by an arrow with a triangular head and an abstract class’ name is
printed in italics. Fields and methods are not explicitly shown in
this example, but they may exist – an even more condensed variant
does not show the empty rectangles at all.

A B

Class A contains an inner singleton object (or: module) B. If B was a
class or trait, this would be an inner class or inner trait, respectively.
Containment is expressed by the crossed circle on the side of the
container. A singleton object’s name is underlined. Such an object
may also appear directly in a package, it does not need to be nested.

A
«trait»

B

The abstract class A extends trait B whose self-type is A. As a trait
is similar to an abstract class, its name is also printed in italics, but
is has the additional <<trait>> stereotype. Trait B having the self-
type A is expressed by the black diamond on the side of the actual
self type.

A B
components

1..*

Directed associations between classes are expressed by arrows. In
this case class A has one or more references to instances of the ab-
stract class B. The name of this association is components. A bidirec-
tional association is expressed by a straight line. If the multiplicity
is 1, it is not explicitly printed.

package

Note in a package.

A note represents a comment in a diagram. It may appear every-
where, for example inside of a package like in this example.

1.4 Overview

The rest of this thesis is structured as follows. Chapter 2 gives an informal introduction to the
Universe type system and subsequently explains the installation and usage of the implemented
plugins. In Chapter 3, the architecture of the plugins gets introduced. This comprises an overview
of the plugins’ design and a detailed illustration of their class hierarchy. Chapter 4 discusses the
actual implementation and Chapter 5 concludes. Appendix A provides some technical details
which might be of use to someone who wants to modify or extend the implemented compiler
plugins.

24

2 User’s Guide for the Universe Type
System Plugins

This guide serves as a quick reference to the Universe type system by providing an informal
overview. It also explains the installation of the Universe type system plugins for Scala and their
usage. The content of this guide is inspired by the quick-reference of the Universe type system
implementation for JML [8].

2.1 Universe Type System

In Scala, every value is an object, it would therefore be possible to record an owner for every
value. However, value types such as Boolean, Int, etc. are immutable. These types are therefore
handled slightly different: In the static type checks, their default ownership modifier is any instead
of peer, and at runtime, instances of immutable types do not get an owner assigned. They are
not subject to the additional runtime checks, either.

2.1.1 Annotations

Ownership modifiers express object ownership relative to the current receiver object this. The
implementation of ownership modifiers for Scala uses its support for annotations on types which
allows the extension of Scala’s normal type system.

2.1.2 Types

Figure 2.1 shows the ownership modifiers which are used in this implementation of the Universe
type system. It also displays the relationship between the modifiers which could be seen as some
kind of a subtype relation between ownership modifiers. Main modifiers can be used anywhere in
the type while some is only allowed in type arguments. The internal modifiers cannot be written
down in the program, they are only used internally by the type checker. They may nevertheless
become visible in error messages and warnings from the plugins. The meaning of the modifiers is
as follows:

any An any reference may point to arbitrary contexts. It is read-only when the owner-as-modifier
property is being enforced.

some This modifier can only be used in type arguments. It is similar to any, but more restrictive
except for subtyping, where some is more flexible.

lost The internal lost modifier indicates that ownership information got lost, for example during
a viewpoint adaptation.

rep A rep reference expresses that an object is owned by this.

peer A peer reference expresses that the referenced object has the same owner as the this object.

this This internal modifier is only used as a main modifier for the current object this in order
to distinguish accesses through this from other accesses.

25

2 User’s Guide for the Universe Type System Plugins

 any

 some

 lost

 rep peer

 this

Main modifiers Internal modifiers

Figure 2.1: Subuniversing of ownership modifiers.

2.1.3 Methods

To indicate that a certain method does not have any side effects it can be marked as pure.
Such methods do not modify any existing objects and may therefore be called on objects in
arbitrary contexts, even when the optional owner-as-modifier property of the Universe type system
is enforced.

2.1.4 Viewpoint Adaptation

The ownership expressed by ownership modifiers is always relative to this, hence it must be
adapted if this viewpoint changes. This is for example the case for a field access like x.f: Here
the types and especially the ownership modifiers of both x and f need to be taken into account
when determining the owner, i.e. the type, of the referenced object:

• If x is this, then the ownership modifier of x.f (i.e. this.f) is the same as the one of f since
it already is relative to x, which is this in this case.

• If the types of both references are peer types, this means that the object referenced by x

has the same owner as this. As f is a peer reference of x and therefore has the same owner
as x, the type of x.f must consequently be peer, too.

• If x has a rep type and f a peer type, then x.f yields a rep type. This is because x is owned
by this and since f is of a peer type when seen from x, it has the same owner as x, which
is this.

• If the type of f is an any type, the expression x.f also yields an any type since the owner of
f is statically unknown.

• In all other cases, ownership information got lost, therefore the type of x.f is a lost type.

26

2.2 Installation of the Plugins

Method calls are handled by the same rules. This is especially relevant for Scala where every field
access gets mapped to a call of a getter or setter method on the receiver object.

2.1.5 Subtyping

The subtype relation of the Universe type system extends the subtype relation of Scala by using the
additional ownership modifiers. If two types are subtypes in Scala and have the same ownership
modifiers, they are also subtypes in the Universe type system. Since there is also a subuniverse
relationship between ownership modifiers as depicted in Figure 2.1, an additional subtype relation
is possible: A peer or rep type, for example, is a subtype of the corresponding any type since it
contains more specific ownership information.

2.1.6 Generics

Scala and the implementation of the Universe type system for Scala both support generics. The
general ideas concerning viewpoint adaptation and subtyping are the same as mentioned above
for non-generic types, but obviously more involved. See for example [6] for a detailed description
of generics in the context of the Universe type system.

Scala also supports variance annotations of type parameters of generic classes. This is currently
not supported in this implementation of the Universe type system.

2.1.7 Casts and Instanceof

If a read-write reference was passed out as a read-only reference, it may be required to cast it back
down later in order to modify the referenced object. This cast operation is also supported by the
implementation of the Universe type system. It is implemented by adding an additional check to
calls of Scala’s asInstanceOf[T] function. If the cast fails, a ClassCastException is thrown. Calls
to isInstanceOf[T] are also modified in order to consider ownership.

2.1.8 Dynamic Checks

Typecasts and instanceof operations require additional checks and information about the owner
of objects at runtime. Therefore some instructions for the runtime checks and the maintenance of
the required information are added during the compilation of programs.

2.2 Installation of the Plugins

The following subsections assume that the environment variable $SCALA HOME refers to the direc-
tory where the Scala installation resides. This variable is therefore synonymous to the $JAVA HOME
environment variable from Java. It is further assumed that the variable $UTS HOME points to the
directory which contains the Java archive files of the plugins and the accompanying libraries.

2.2.1 Requirements

The plugins were developed and tested with Scala 2.6.1. Later versions might work as well but as
the plugins are highly dependent on the data structures used in the compiler, subtle breakage can
occur. Some classes make use of Java’s generics, therefore a version of Java supporting them is
also needed, i.e. Java ≥ 1.5. The plugins were developed and tested with Java 1.5 and 1.6. When
installing the source version of the plugins, Ant ≥ 1.6.3 is necessary for the build.

2.2.2 Binary

A binary distribution of the Universe type system plugins contains several Java archive files,
namely the following:

27

2 User’s Guide for the Universe Type System Plugins

uts-static.jar This file contains the plugin for the static Universe type system checks.

uts-runtime.jar This file contains the plugin which adds runtime checks to the compiled pro-
grams.

uts-annotations.jar This file provides the annotation classes. It is required when compiling or
executing programs which were annotated with ownership modifiers.

uts-rt-sc.jar The support classes for the runtime checks, implemented in Scala. This file’s
classes must be available in the class path when the runtime checks are generated for the
Scala implementation of the runtime support library.

uts-rt-mj.jar The support classes for the runtime checks, implemented in Java by [26], and part
of MultiJava [32]. This file’s classes must be available in the class path when the runtime
checks are generated for the Java implementation of the runtime support library. Doing this
results in interoperability with the Universe type system implementation for JML [7, 26].

uts-scala-src.jar The source code for the plugins, the annotations, and the runtime libraries.

Both plugin archives contain all classes required for the plugins themselves. The annotations
must always be available in the class path because the input to the compiler may contain annota-
tions and since the generated class files are decorated with even more annotations.

For the runtime support libraries this is similar. However, as it is possible to choose the library
which should be used during the additional runtime checks with a compile-time option, it suffices
if the library matching the chosen target library is available in the class path.

As these libraries must be available whenever a program compiled with the Universe type system
plugins is to be executed, they must be shipped together with the program.

The installation of the above files is straightforward: The plugins ought to be copied to a
directory where they are easy to find and access, for example $SCALA HOME/plugins/uts. If
the plugins should always be used automatically1, they may also be copied to the directory
$SCALA HOME/misc/scala-devel/plugins.

Scala adds all libraries in $SCALA HOME/lib to the class path, therefore copying the other Java
archive files (except for the one with the source code) into this directory avoids the need to
explicitly add them each time. The source code is not required in order to use the plugins.

2.2.3 Scala Bazaars

Scala Bazaars [28] is a package management system for Scala. By using the sbaz tool it is possible
to install, update, and remove Scala extensions like libraries and plugins. If the URL of a Scala
Bazaar providing a package for the Universe type system plugins is known, a universe descriptor
like the one in Listing 2.1 can be stored in a file. Passing it to sbaz setuniverse <file> will
then change the universe sbaz uses and update the list of available packages. The descriptor also
contains the scala-devel universe which provides final releases of the Scala distribution and some
third-party software. Now executing sbaz available should yield a list of the available packages
which also contains the uts-scala meta-package. This package depends on all the other packages
related to the Universe type system plugins, i.e. the plugins, the annotations, the runtime support
libraries, the API documentation, and the source code.

In order to install the plugins, it suffices to execute sbaz install uts-scala which will down-
load and install all the packages into the local managed directory. This is usually the directory
$SCALA HOME. Removal of a package is possible using the sbaz remove <package-name> com-
mand. Unfortunately, this can be a little tedious as one can only remove a package if no other
package depends on it. The command sbaz installed prints the list of installed packages.

1This is not recommended, as they cannot cope with every Scala construct yet.

28

2.3 Usage

<overrideuniverse >

<components >

<simpleuniverse >

<name>uts-scala </name>

5 <location ><!-- URL to the uts-scala Scala bazaar --></location >

</simpleuniverse >

<simpleuniverse >

<name>scala-dev </name>

<location >http :// scala-webapps.epfl.ch/sbaz/scala-dev </location >

10 </simpleuniverse >

</components >

</overrideuniverse >

Listing 2.1: Bazaar descriptor for scala-devel and the Universe type system plugins.

2.2.4 Source

The build process of the plugins is based on Apache Ant. Since the build script depends on
Scala, it checks if $SCALA HOME is defined and if yes, this directory is used to look for the Scala
compiler. In case this environment variable is not set, it will try to use the Scala compiler in
${user.home}/sbaz.

After setting up the environment, it suffices to call ant in the top-level directory of the source
tree, i.e. where the file build.xml resides. This builds the binary distribution mentioned in
Section 2.2.2 except for the Java archive with the source code. The resulting files can be found in
the target directory and may be installed accordingly.

The build script also supports a run.tests target which may be used to execute a set of test
cases. Most of these tests compile a program using the plugins. The programs contain a known
number of errors and warnings: A test is therefore successful if the number of detected errors
matches the number of expected errors.

2.3 Usage

The following subsections explain how the plugins are actually used. This usually consists of
three distinct actions: (1) At the beginning, a program gets manually decorated with ownership
modifiers. In many cases, however, ownership modifiers do not need to be specified explicitly: They
can usually either be inferred automatically or the default of peer is acceptable. The program
can subsequently be (2) compiled and (3) run.

2.3.1 Annotations

As mentioned in Section 2.1.1 ownership modifiers are implemented by using Scala’s annotations on
types. The classes of the implementation reside in the ch.ethz.inf.sct.uts.annotation package.
It is provided in the uts-annotations.jar file which therefore must be on the class path when
using the annotations. For an example of the usage, see Listing 2.2: After importing the complete
contents of the package, the ownership modifier annotations may be used by writing them on the
right hand side of a type. This is a minor syntactical difference from other work (e.g. [7, 6]) that
may require some adaption. Unfortunately, this can also make certain expressions hard to read.
It also requires many brackets, as can be seen in the example. Some of them may be omitted,
though, but it is better to always write them down.

One of the trickier examples where annotations are used can be seen in the definition of field
d of class C: In this case, a new Generic[Cls @any] instance is created, and the reference to this
instance is a rep reference. The constructor gets called with a rep reference to an instance of class
Cls.

29

2 User’s Guide for the Universe Type System Plugins

package utsdemo

// Import the annotations

import ch.ethz.inf.sct.uts.annotation._

5

// Application which creates a new instance of class C

object Main extends Application {

new (C @rep)

}

10

// An example class which uses ownership modifiers

class C {

// Use the annotations

val a = new (Cls @rep)

15 var b : Cls @any = new (Cls @rep)

val c = new (Cls @peer)

b = c

// More complex example with annotations on the type arguments ,

20 // the type and the constructor argument.

val d = new (Generic[Cls @any] @rep)(new (Cls @rep))

b = d.field

// Print a message to say that initialization is done

25 println("Done.")

}

class Cls

30 class Generic[T <: Any @any](a: T) {

val field = a

}

Listing 2.2: Example program which uses ownership modifier annotations.

30

2.3 Usage

In order to indicate to the plugins that a certain method may be considered as pure, a @pure

annotation is also available. However, using this annotation does not result in any purity check
of the annotated method. It is the programmer’s responsibility to make sure there are no side
effects.

2.3.2 scalac

To employ a plugin during the compilation with scalac, one can use the -Xplugin:<path to
plugin.jar> option. This option may be used several times, i.e. once for each plugin which
should be loaded. Alternatively one could also provide the option -Xpluginsdir <path> with a
path to the directory containing the plugins. If no further options are given, scalac will print out
a list of available command line arguments for the scalac compiler and the selected plugins.

In addition to the above options, it is necessary to pass -Xplug-types and -Ygenerics to
scalac in order to make it process annotations on types and to enable support for Java’s generics2,
respectively. If the uts-annotations.jar file was not copied to $SCALA HOME/lib, it is also
required to pass the path to this Java archive in the -cp option. The same applies for the
uts-rt-sc.jar and uts-rt-mj.jar files, depending on the target library of the runtime checks.
Putting it all together, this yields a command like

$ scalac -cp $UTS HOME/uts-rt-sc.jar:$UTS HOME/uts-annotations.jar \
-Xpluginsdir $UTS HOME -Xplug-types -Ygenerics <sourcefiles>

for the compilation using the Universe type system plugins.

2.3.3 Plugin Options

The plugins provide several options which can be used during compilation. Most of these op-
tions change the verbosity of the plugins, but some of them also affect their behavior. Options
for a compiler plugin are specified by passing -P:<plugin-name>:<option-value> to the Scala
compiler. There are two possible values for <plugin-name> when using the Universe type system
plugins: uts-static for the plugin which checks the type rules statically and uts-runtime for
the plugin which adds runtime checks.

Common Options

All those options related to verbosity are available in both plugins, as well as one option which
affects the behavior.

-P:<plugin-name>:[no]browser Display a Swing-based browser which shows the abstract syntax
tree after it has been processed by the plugin.

-P:<plugin-name>:[no]ast Print the abstract syntax tree after processing it in the plugin. This
uses the toString: String method of the tree.

-P:<plugin-name>:loglevel=<level> The plugins contain a logging facility which supports dif-
ferent log levels. There are five levels, in ascending order of severity: debug, info, notice,
warn, and error. Level notice is the default level. The last two levels will also print an
excerpt of the source code which is related to the message. By specifying a certain log level,
all messages below this level are suppressed. Hence, it is not possible to ignore errors.

-P:<plugin-name>:defaults=<class> This option allows to pass the name of a class which
implements the ch.ethz.inf.sct.uts.plugin.common.UTSDefaults trait. These defaults will
then be used during compilation. The option differs from the others in that it affects both
plugins if it is specified for the uts-static plugin only. It is possible, though not recom-
mended, to use different defaults for the two plugins.

2These options will not be present anymore in Scala > 2.6.1 where this is the default.

31

2 User’s Guide for the Universe Type System Plugins

Options for the Static Type Checks

In addition to the compile-time selectable defaults, the plugin for the static checks also supports the
-P:uts-static:typerules=<typerules> option. This allows to use a different implementation of
the abstract ch.ethz.inf.sct.uts.plugin.staticcheck.TypeRules class, that is, a different variant
of the type rules.

An actual implementation of the type rules may also provide additional options for the compiler.
In the case of the default type-rules implementation, this is the -P:uts-static:oam option which
enables the static checks of the owner-as-modifier property.

Options for the Addition of Runtime Checks

As already mentioned in Section 2.2.2, there are two different runtime support libraries. The
-P:uts-runtime:runtime=<library> option therefore allows to choose the actual target library
the runtime checks should be generated for. <library> can be either sc for the Scala implemen-
tation, which is the default, or mj for the MultiJava implementation. Both implementations are
largely equivalent, although the Scala implementation lacks the additional implementations of [26]
which for example allow a visualization of the object store.

2.3.4 ant

Listing 2.3 shows an example of an Ant build script which makes use of the compiler plugins. It
employs both plugins in order to do the static checks and to add runtime checks to the compiled
classes. In addition it uses a directory layout for the source tree and the target directory which
was adopted from the standard directory layout of Apache Maven [33]. This should ease a future
migration of a project to Maven using the Scala plugin [3] if it ever provides proper support for
Scala’s compiler plugins.

The build script consists of four parts: (1) First, several properties are set. The most important
ones are scala.home and uts.home which point to the directories where Scala and the Universe type
system plugins, respectively, can be found. These properties are set in such a way that they point
to the directories stored in the $SCALA HOME and $UTS HOME environment variables, respectively,
if they are set. If not, they get initialized to a directory below ${user.home}/sbaz. Several other
defaults are also provided using properties, which allows overriding on the command line using
-D<propertyname>=<value>. (2) The class path contains the Scala compiler and library as well
as the runtime support libraries and annotations of the Universe type system plugins. (3) In order
to load the <scalac/> and other Scala related Ant tasks, the <taskdef/> declaration is used. It
includes the file antlib.xml from the Java archive with the Scala compiler. (4) Finally, the build

target compiles the source files using the compiler plugins.
When starting a new application which makes use of the Universe type system, this build script

may serve as a starting point. It provides everything which is required to build the application
and could e.g. be extended to execute unit tests.

2.3.5 Running the Compiled Application

After the program has been compiled successfully, it can be executed using scala. As mentioned
before, the annotation classes and the runtime support library the runtime checks were built for
must be on the class path. This yields a command like

$ scala -cp $UTS HOME/uts-rt-sc.jar:$UTS HOME/uts-annotations.jar:. \
<main-class>

to execute the main class of a program.
Of course it is also possible to execute the compiled program with Ant. This is especially useful

if Scala’s SUnit is used for the implementation of unit tests as these tests are encapsulated in Scala
applications. Listing 2.4 shows an Ant build script which includes the script from Listing 2.3. It
provides an additional run target and a preset definition which declares a new <scala/> task. This
task can be used to execute the main class of a Scala program.

32

2.3 Usage

<?xml version="1.0" encoding="UTF-8"?>

<project name="Ant Example" default="build">

<property environment="env" />

5 <!-- Set scala.home to local sbaz-managed directory or $ SCALA_HOME if set -->

<condition property="scala.home"

value="${ env.SCALA_HOME}"

else="${ user.home }/sbaz">

<isset property="env.SCALA_HOME" />

10 </condition >

<!-- Use plugins from ${ scala.home }/ plugins/uts or $UTS_HOME if set -->

<condition property="uts.home"

value="${ env.UTS_HOME}"

15 else="${ scala.home }/ plugins/uts">

<isset property="env.UTS_HOME" />

</condition >

<!-- Input and output directories -->

20 <property name="src.main" value="src/main/scala" />

<property name="target" value="target" />

<property name="target.classes" value="${ target }/ classes" />

<!-- Options for the compiler -->

25 <property name="options.plugins"

value="-Xplugin :${ uts.home }/ uts-static.jar -Xplugin :${ uts.home }/

uts-runtime.jar" />

<property name="options.plugin"

value="-P:uts-static:loglevel=info -P:uts-runtime:loglevel=info" />

<property name="options.scalac" value="-Xplug-types -Ygenerics" />

30

<!-- Construct build.classpath for use during compilation -->

<path id="build.classpath">

<pathelement location="${ scala.home }/lib/scala-library.jar" />

<pathelement location="${ scala.home }/lib/scala-compiler.jar" />

35 <!-- Library with runtime support classes -->

<pathelement location="${ uts.home }/ uts-rt-sc.jar" />

<pathelement location="${ uts.home }/ uts-rt-mj.jar" />

<!-- The annotations for the ownership modifiers -->

<pathelement location="${ uts.home }/ uts-annotations.jar" />

40 </path>

<!-- Include ant-support from Scala -->

<taskdef resource="scala/tools/ant/antlib.xml"

classpathref="build.classpath" />

45

<!-- Compile the example program -->

<target name="build" description="Compile the source.">

<echo level="info">Scala location: ${ scala.home}.</echo>

<echo level="info">Plugin location: ${ uts.home}.</echo>

50 <mkdir dir="${ target.classes}" />

<scalac srcdir="${ src.main}"

destdir="${ target.classes}"

classpathref="build.classpath"

addparams="${ options.scalac} ${ options.plugins} ${ options.plugin}"

55 includes="**/* .scala">

</scalac >

</target >

<target name="clean" description="Remove the target directory.">

60 <delete dir="${ target}"

quiet="yes" />

</target >

</project >

Listing 2.3: Example build.xml for use with Scala and the Universe type system plugins.

33

2 User’s Guide for the Universe Type System Plugins

<?xml version="1.0" encoding="UTF-8"?>

<project name="Ant example to run a Scala program" default="run">

<import file="build.xml"/>

5

<!-- Declare some presets for the predefined java task, accessible via

the new scala task -->

<presetdef name="scala">

<java fork="true" failonerror="true" classpathref="build.classpath">

<arg line="${ options.scalac}" />

10 <classpath >

<pathelement location="${ target.classes}"/>

</classpath >

</java>

</presetdef >

15

<!-- Run the main class -->

<target name="run" depends="build">

<scala classname="utsdemo.Main" />

</target >

20 </project >

Listing 2.4: Example run.xml for use with the build.xml from Listing 2.3. These files can also
be merged.

34

3 Architecture

This chapter presents the architecture of the Universe type system implementation for Scala. It
starts with a general overview and subsequently shows how ownership modifiers are represented.
It finally discusses the design of the two plugins which together implement the static type checks
as well as the runtime checks.

3.1 Overview

The Universe type system covers static type safety as well as a runtime model. It is therefore
sensible to mirror this separation in an implementation of the type system. Hence, there are two
plugins for the Scala compiler: The first one checks the type rules statically and the second one
adds runtime checks to the program.

As Scala usually infers the type for variables, type arguments, and method return types, the
first plugin also infers ownership modifiers. A condensed overview of the architecture may be
found in Figure 3.1.

ch.ethz.inf.sct.uts

ch.ethz.inf.sct.uts.plugin

ch.ethz.inf.sct.uts.plugin.common

Common classes used in both plugins, e.g. for logging.

ch.ethz.inf.sct.uts.plugin.staticcheck

Implementation of the plugin which
executes static type checks.

ch.ethz.inf.sct.uts.plugin.runtimecheck

Implementation of the plugin which
adds runtime checks.

ch.ethz.inf.sct.uts.annotation

Implementation of the annotations.

Figure 3.1: Overview of the architecture.

The implementation of the type system consists of two major parts which are distributed over
two packages:

1. Ownership modifiers such as any, peer, and rep are represented by annotations. The classes
implementing these annotations are collected in the ch.ethz.inf.sct.uts.annotation package
which is therefore the only package a user of this Universe type system implementation
usually notices.

35

3 Architecture

2. The actual implementation of the plugins consists of three prominent packages:

a) A common package with classes used in both plugins. This comprises a class for logging
and a class with defaults used during the execution of the plugins. A user of the plugins
may provide an alternate implementation of these defaults which are then used during
compilation. This allows a modification of certain aspects of the compiler’s behavior.
It comprises for example the default ownership modifiers which should be used if no
modifier has been specified explicitly in new expressions or method parameters.

b) The plugin for the static type checks. It allows the user to select the actual implemen-
tation of the type rules which should be employed during compilation. This way it is
possible to use different variants of the Universe type system by specifying a compile-
time option.

c) The plugin for the addition of the runtime checks. It modifies the program in order
to add additional checks which will be executed at runtime. Since these checks require
information about the ownership relation, it also inserts code which maintains this
topology.

Figure 3.2 shows where these two plugins fit into the structure of compiler plugins introduced
in Section 1.1.6. The abstract base classes for the Universe type system plugins provide some
common functionality: The abstract UniverseTypeSystemPlugin handles command line options and
usually passes them to implementations of the abstract UniverseTypeSystemComponentBase class.
This abstract class provides a logging facility, several helper functions, and also stores the values
of certain command line options.

ch.ethz.inf.sct.uts.plugin

ch.ethz.inf.sct.uts.plugin.staticcheck

StaticComponentStaticPlugin

ch.ethz.inf.sct.uts.plugin.runtimecheck

RuntimePlugin RuntimeComponent

UniverseTypeSystemComponentBaseUniverseTypeSystemPlugin

scala.tools.nsc.plugins

Plugin PluginComponent
1..*

Figure 3.2: Hierarchy of the plugins in the context of the general layout for Scala’s compiler plugins
from Figure 1.2.

3.2 Ownership Modifiers

Ownership modifiers such as any, peer, and rep are represented using source code annota-
tions in the program. Some modifiers are only used internally, e.g. lost. This difference can
be modeled by using the hierarchy in Figure 3.3: The OwnershipModifier trait lies at the root.

36

3.2 Ownership Modifiers

OwnershipModifierAnnotation extends scala.StaticAnnotation and its specializations may there-
fore be used in the program’s source code. Static annotations are preserved in the final class file
such that they are available to the type checker across different compilation units.

ch.ethz.inf.sct.uts.annotation

«trait»

OwnershipModifier

any reppeer some

lost thiz
«trait»

OwnershipModifierAnnotation

scala

«trait»

Annotation

«trait»

StaticAnnotation

Figure 3.3: Class hierarchy for ownership modifiers.

As mentioned in Section 3.1, the implementation supports different variants of the Universe
type system. The meaning and behavior (for example in viewpoint adaptations) of ownership
modifiers usually depends on this variant. Therefore most of the operations an OwnershipModifier

provides are declared in an OwnershipModifierExtender trait’s abstract ExtendedOwnershipModifier
class. Since the trait is mixed into the TypeAbstraction trait which finally gets mixed into the
abstract TypeRules class, the ExtendedOwnershipModifier is available when implementing actual
type rules. Figure 3.4 shows this hierarchy and also includes the concrete default implementation.
This diagram is an excerpt of Figure 3.5 and only shows the classes relevant for the handling of
ownership modifiers.

ch.ethz.inf.sct.uts.plugin.staticcheck

«trait»

TypeAbstraction

ch.ethz.inf.sct.uts.plugin.staticcheck.common

«trait»

OwnershipModifierExtender ExtendedOwnershipModifier

ch.ethz.inf.sct.uts.plugin.staticcheck.rules

ch.ethz.inf.sct.uts.plugin.staticcheck.rules.default

«trait»

DefaultTypeAbstraction
«trait»

DefaultOwnershipModifierExtender DefaultExtendedOwnershipModifier

Figure 3.4: Simplified class hierarchy for extended ownership modifiers, extracted from Figure 3.5.

The OwnershipModifierExtender trait also provides an implicit and abstract conversion function
from an OwnershipModifier to an ExtendedOwnershipModifier. This allows actual implementations
of the OwnershipModifierExtender trait to implicitly create instances of a concrete implementation
of the abstract ExtendedOwnershipModifier class with a specialized behavior.

In the default implementation of the Universe type system’s rules from Figure 3.4, this spe-
cialized behavior is implemented by the DefaultExtendedOwnershipModifier class. It provides for

37

3 Architecture

example the actual viewpoint adaptation function for ownership modifiers.
In order to get access to the class with the concrete implementation of the behavior of ownership

modifiers, the DefaultOwnershipModifierExtender trait gets mixed into the DefaultTypeAbstraction

class. This so-called mixin-class composition also results in the implicit conversion function be-
ing available via the DefaultTypeAbstraction trait. Concrete implementations of the abstract
TypeRules class mix in their corresponding TypeAbstraction trait. It is therefore possible to seam-
lessly use an OwnershipModifier in the type rules as if it was an ExtendedOwnershipModifier since
this conversion takes place implicitly.

3.3 Static Checks

Figure 3.5 shows the class hierarchy of the plugin for the static type checks. This plugin is
designed in a way which allows the implementation of different variants of actual type rules. It
provides a default implementation of these rules in its ch.ethz.inf.sct.uts.plugin.staticcheck.

rules.default package. The rule set which should be used during the type checks may be chosen
at compile time by specifying a concrete implementation of the abstract TypeRules class.

The diagram shows that the plugin consists of several traits, most of which declare one or more
inner classes. This architecture is similar to the Scala compiler [22] and it is also partially necessi-
tated by the compiler’s design: As mentioned in Section 1.1.6, the global reference provides access
to the types used for Scala’s type representation and other types used in the compiler. Since these
types are only accessible through the global reference, it is for example not possible to implement
a top-level class with a parameter of such a type. This issue can be solved by specifying an ab-
stract member global of type scala.tools.nsc.Global in the UniverseTypeRepresentationBase and
TypeAbstraction traits. The member is then implemented in the abstract TypeRules class which
gets the global reference from the StaticComponent.

3.3.1 Type Representation

The representation of types in the Scala compiler is more complex than the minimal calculi usu-
ally found in papers and Section 1.2.1. The TypeAbstraction trait therefore supplies a suitable
abstraction from the internal representation of Scala. This representation reflects the notation
from Section 1.2.1: A type is either a non-variable type or a type variable identifier with an upper
bound. Non-variable types consist of a main ownership modifier, the name of the usual Scala type,
and a possibly empty sequence of type arguments.

At the base of the abstraction lies the abstract UType class which specifies a common interface
for concrete implementations. It includes operations for the viewpoint adaptation and a subtype
test as well as a function to test the type for well-formedness. There are two classes to represent
the two different kinds of types and some classes used for error handling.

Non-variable types These types are represented by the abstract NType class. In addition to the
common UType methods, it also contains functions for the handling of ownership modifiers
(i.e. to substitute or query them) and type arguments (i.e. to substitute or instantiate them).

Type variable identifiers The abstract TVarID class represents type variable identifiers and in-
cludes a function to get the upper bound of the type variable.

Type errors Whenever an operation which should return a UType detects an error, it returns an
instance of the abstract ErroneousType class containing a textual reason for the error. This
may for example happen during the test for well-formedness of a type. The general idea
behind this concept is to avoid the use of exceptions. It is inspired by the scala.Option class
which represents optional values and may also be used for error handling.

There are two concrete implementations of the ErroneousType: InvalidType is used for a
single error and contains therefore only one reason, whereas an InvalidTypes instance may

38

3.3 Static Checks

contain several InvalidType instances. This is used in methods checking rules where more
than one error may be found, for example in the type parameters of a method definition.

The StaticErrors trait is also used during error handling. It provides some functions to
create standardized error messages for inclusion in an InvalidType’s textual reason. This is
used for example in the case of type errors where a different type was found than expected.

3.3.2 Method Representation

Section 1.2.1 also uses a general notation for method signatures. It comprises a purity indicator,
type and method parameters, and the return type. In order to mirror this abstraction, the
UTSMethodSignature provides the abstract MethodSignature class. It offers methods to resolve type
variables, to substitute type parameters and to compare two method signatures for equality.

3.3.3 Assembling the Abstraction of the Compiler’s Type Representation

When looking at the class diagram in Figure 3.5 one can see that the above abstraction is spread
over several traits, abstract classes, and also some concrete classes. Among these traits, the
TypeAbstraction trait is particularly central: It mixes in all traits which are used to abstract
from the Scala compiler’s type representation and the OwnershipModifierExtender explained in
Section 3.2. In addition, it is also declared as being the self type (see Section 1.1.5) of all those
traits which are part of the abstract type representation. It may therefore be compared with the
abstract SymbolTable class of the Scala compiler.

Using abstract type members, mixin class composition, and self types can generally result in
a modular architecture based on reusable components [22]. The architecture of the plugin for
the static type checks tries to utilize this in order to be extensible with different variants of the
Universe type system. A concrete implementation of type rules would therefore specialize the
traits which contain abstract classes. It may then provide concrete implementations of these
abstract classes which are usable in the type rules. This can be seen at the bottom of Figure 3.5:
The DefaultTypeAbstraction trait mixes in the TypeAbstraction and those traits which provide
implementations of the abstract classes. By extending the DefaultTypeAbstraction, the concrete
implementation of the type rules in DefaultTypeRules gains access to these implementations.

The DefaultTypeRules class could therefore be compared to the scala.tools.nsc.Global class
which extends the aforementioned SymbolTable: Both are central in the particular applications
and they both mix in a type representation.

Distributing the implementation into several traits and classes and subsequently mixing them
together also makes it possible to spread the source code over multiple files. This is also done in
the Scala compiler itself.

3.3.4 Checking Type Rules

Actual checks of the type rules are done in concrete implementations of the TypeRules trait.
This trait specifies a checker function for each relevant language construct and comprises for
example a checkAssignment and checkMethodDefinition function. These functions are called by
the StaticComponent class during a traversal of the abstract syntax tree of the input program. The
checker functions take arguments which allow them to verify if the type and well-formedness rules
of the construct hold: This usually comprises the involved types, possibly a relevant compiler
symbol, and sometimes also the position of a construct (e.g. the position of the then and else
branches of the if-then-else expression).

All checker methods return a UType instance or a list thereof as result. Usually, this is the type
of the checked expression or definition, but with adapted viewpoint. This type is then used in
the StaticComponent for type inference and propagation. As mentioned in Section 3.3.1, UType

instances are also used in error handling, so the return value may also express the violation of a
rule from the type system. The SymbolStates trait which gets mixed into the StaticComponent is
used in the type inference; see Section 4.2.2.

39

3 Architecture

3.4 Runtime Checks

Runtime checks are required to make operations like type casts and instanceof checks Universe-
aware. In order to achieve this, the ownership hierarchy must be built and maintained at runtime.
It is then possible to use this information to conduct additional checks. Earlier work [26] already
implemented this for Java in the MultiJava compiler [32].

The required modifications and extensions of the abstract syntax tree are performed in a second
plugin. It adds the runtime checks and is smaller than the first plugin since it only needs to extend
the abstract syntax tree in three situations:

Constructor methods Since newly created objects should be assigned an owner, additional in-
structions are inserted into the constructor methods to store the owner of the new object.

Object creation The object which initiated a method call is usually not known to the executed
method. However, a constructor method must know the object which is creating the new
instance, since it has to set the owner of the newly created object. It is therefore necessary
that a reference to this gets stored whenever a new statement is encountered in the abstract
syntax tree. The reference must be saved such that it is available in the constructor.

Typecasts and typetests Unlike Java, Scala does not support special language constructs for
typecasts and typetests. Instead, these operations are provided via the two parameterized
methods asInstanceOf[T]: T and isInstanceOf[T]: Boolean of class scala.Any. This class
is at the root of Scala’s class hierarchy and therefore these methods are available on every
object.

As the runtime checks need to extend these operations to do additional examinations, calls
to the respective methods must be modified as well.

Maintaining the information about owners and implementing the checks by directly modifying
the abstract syntax tree alone would be neither simple nor feasible. Hence, additional runtime
support libraries are used which are implemented in a high-level programming language. There
are two such libraries, one of which is directly taken from earlier work in [26], while the other one
is based on this same work. Both libraries are used for the management of ownership information
and the additional checks at runtime. The first one is written in Java and it is part of the MultiJava
compiler [32] while the latter is an adapted version of it, ported to Scala. They consequently both
use a hash table to store the ownership relation. Two reasons led to the decision to support and
use two different runtime support libraries:

Interoperability The implementation of the Universe type system for JML [7] uses the runtime
support library from [26]. Generating code which uses this library results in interoperability
with Java code compiled using the Universe type system implementation for JML. The
methods which create calls to the methods of the Java version of the library are implemented
in the MJRuntimeCheckTransform class.

Extensibility The class RuntimeCheckTransform extends the abstract syntax tree such that the
methods of the Scala implementation are called at runtime. This allows extensions of the
runtime checks by using features available to Scala only, without the need to modify the
MultiJava compiler and possibly JML as well.

The target library for the runtime support can be selected at compile time. It defaults to the
Scala implementation.

Figure 3.6 shows the class diagram of the architecture of this second plugin. Its implementa-
tion specializes the transformer provided by the Scala compiler in order to add runtime checks
to the abstract syntax tree. A concrete implementation of the abstract RTCTransformer is con-
tained in the implementation of the RuntimeCheckTransformBase trait for the respective library:
The RuntimeCheckTransformer classes therefore provide specialized methods to create subtrees rep-
resenting runtime checks which make use of the corresponding runtime library.

40

3.4 Runtime Checks

ch.ethz.inf.sct.uts.plugin.staticcheck

StaticPlugin

StaticComponent

TypeRules

«trait»

SymbolStates

ch.ethz.inf.sct.uts.plugin.staticcheck.common

«trait»

UniverseTypeRepresentationBase

«trait»

OwnershipModifierExtender

«trait»
ErrorTypes

«trait»

UniverseTypeRepresentation

«trait»

UTSMethodSignature

ErroneousType

InvalidType

InvalidTypes

UType

NType TVarID

MethodSignature

ExtendedOwnershipModifier

«trait»

TypeAbstraction

«trait»

StaticErrors

ch.ethz.inf.sct.uts.plugin.staticcheck.rules

ch.ethz.inf.sct.uts.plugin.staticcheck.rules.default

DefaultTypeRules

«trait»

DefaultOwnershipModifierExtender

«trait»

DefaultUniverseTypeRepresentation

«trait»

DefaultUTSMethodSignature

DNType DTVarID

DefaultExtendedOwnershipModifier

DefaultMethodSignature

«trait»

DefaultTypeAbstraction

Figure 3.5: Plugin for the static checks.

41

3 Architecture

ch.ethz.inf.sct.uts.plugin.runtimecheck

RuntimePlugin RuntimeComponent

RuntimeCheckTransform

MJRuntimeCheckTransform

RTCTransformer

RuntimeCheckTransformer

RuntimeCheckTransformer

«trait»

RuntimeCheckTransformBase

scala.tools.nsc.ast

«trait»
Trees Transformer

Figure 3.6: Plugin for the addition of runtime checks.

42

4 Implementation

This chapter presents the implementation of the plugins. It starts with an introduction to the
abstract syntax trees used in the Scala compiler and shows the inference of ownership modifiers.
It subsequently addresses the actual plugins and also explains the implemented logging facility
and the test-suite.

4.1 Abstract Syntax Tree

The Scala compiler uses an abstract syntax tree (AST) to represent and process a program at
compile time. The AST can be seen as an intermediate language. In the case of the Scala
compiler, this language is a typed and desugared version of Scala itself [1].

A unit of compilation typically corresponds to one file of source code. Therefore, if more than one
file is being compiled, there are also several compilation units, each of which contains a reference
to the AST of the underlying file in its body field. All compilation units are gathered in a so-called
compilation run.

The compilation process consists of a succession of code rewriting phases each of which further
simplifies the code by replacing complex constructs by simpler ones. In the end this AST is
converted to Java byte code and written to one or more class files.

Listing 4.1 shows a very simple Scala class which contains the definition of a final field and a
method call with this field as a parameter. When the Scala compiler processes this file it generates
an AST which resembles the simplified one in Figure 4.1.

4.1.1 Nodes of the Abstract Syntax Tree

Every node in the tree is an instance of the abstract class scala.tools.nsc.ast.Trees.Tree. All
classes which implement this abstract class are case classes; it is therefore possible to do a pattern
match over a tree. When working with trees, it is usually necessary to traverse the trees in some
way. One could do it by hand, which is flexible but tedious. The problem is that one needs to
consider every kind of node in the tree in order to do a complete traversal even if certain kinds are
of no interest. Fortunately, this is typically not necessary as the Scala compiler provides two classes
which may be extended and used: scala.tools.nsc.ast.Trees.Transformer and scala.tools.nsc.

ast.Trees.Traverser. The former is used to match and replace complete subtrees while the latter
may be used to perform side-effects on the nodes or to gather information. Here, side-effect means
for example that the node’s symbol may be updated or that its type could be changed. But it is
not possible to remove, replace or add nodes using a traverser. By using these classes one only
has to consider those nodes which are relevant to the application.

Listing 4.2 shows the SimpleTraverser class which is an example of a traverser. It is enclosed by
an implementation of the Scala compiler’s abstract PluginComponent class (see Section 1.1.6) and
could therefore be part of a compiler plugin. The traverse(tree: Tree): Unit method traverses

class C {

val str = "s"

println(str)

}

Listing 4.1: Code to the AST from Figure 4.1.

43

4 Implementation

ClassDef C

σ: ∗class C

τ : <notype>

DefDef <init>

σ: ∗constructor C

τ : <notype>

Block

σ: null

τ : Unit

Apply

σ: constructor Object

τ : Object

Select <init>

σ: +constructor Object

τ : ()Object

Super

σ: +class C

τ : C.super.type

Literal

σ: null

τ : Unit

ValDef str

σ: ∗value str

τ : <notype>

Literal

σ: null

τ : String("s")

DefDef str

σ: ∗method str

τ : <notype>

Select str

σ: +value str

τ : String

This

σ: +class C

τ : C.this.type

Apply

σ: method println

τ : Unit

Select println

σ: +method println

τ : (Any)Unit

Select Predef

σ: +object Predef

τ : type

This scala

σ: +package scala

τ : type

Select str

σ: +method str

τ : String

This C

σ: +class C

τ : C.this.type

Figure 4.1: Simplified AST for the code in Listing 4.1 after phase superaccessors.

the AST and prints the names of methods and classes when it starts processing a corresponding
definition. Processing of an AST starts when the SimpleTraverser’s traverse method gets called
with the body reference of a compilation unit.

A transformer is similar, but it uses a transform(tree: Tree): Tree method for the traversal.
The main difference is that the transform method must return a Tree instead of Unit: This makes
it possible to modify the currently processed node by, for example, replacing its subtrees or by
completely exchanging the node itself. The plugin which adds runtime checks (see Section 4.4)
employs this in order to add new nodes to the AST.

4.1.2 Symbols and Types

Most nodes of the AST in Figure 4.1 refer to a compiler symbol σ which they either define (marked
by ∗) or use in some way (unmarked or highlighted by +). A symbol stores information about
various source code constructs like fields, variables, methods, or classes. The information comprises
an identifier for the symbol, its type, its kind (i.e. if it is a method, class, field, etc.), and its owner
(i.e. the enclosing class, method, etc.).

Since the AST is typed, most nodes also have a type τ assigned. There is no distinction between
statements and expressions in Scala, hence type τ is the type of the expression represented by
the node. As definitions (represented e.g. by ValDef and DefDef nodes) are neither statements nor
expressions, they do not have a type.

A simple symbol table for the program in Listing 4.1 is shown in Table 4.1. It displays the kind
and the type of those symbols which were defined in the program. The type ()C of constructor C

means that the method does not take any parameters but that it returns an instance of class C.

44

4.1 Abstract Syntax Tree

package ch.ethz.inf.sct.uts.plugin.simpletraverser

import scala.tools.nsc._

import scala.tools.nsc.plugins._

5 /** Plugin component which runs after runsAfter. */

class SimpleTraverserPluginComponent (val global: Global)

extends PluginComponent {

import global._

/** Name of this compiler phase. */

10 val phaseName = "simpletraverser -phase"

/** When to execute this phase. */

val runsAfter = "refchecks"

15 /** Factory to create the new phase for the graph generation. */

def newPhase(prev: Phase) = new Phase(prev) {

def name = phaseName

/** Process the compilation units. */

20 def run {

currentRun.units foreach { unit =>

(new SimpleTraverser).traverse(unit.body)

}

}

25 }

/** A simple traverser which prints the name of the currently processed

class/method */

class SimpleTraverser extends Traverser {

/** Method containing the pattern match. */

30 override def traverse(tree: Tree) {

tree match {

case ClassDef(mods , name , tparams , impl) =>

println("Processing class definition of "+tree.symbol+"...")

case DefDef(mods , name , tparams , vparamss , tpt , rhs) =>

35 println("Processing method definition of "+tree.symbol+"...")

case _ => ()

}

super.traverse(tree)

}

40 }

}

Listing 4.2: Example of a traverser.

45

4 Implementation

The type of method str could also be written as ()java.lang.String which is largely the same
as => java.lang.String in the case of this example: In the compiler, the type of method str is
a so-called PolyType, but as it does not have any type parameters, it represents a parameterless
method type. It is therefore basically the same as ()java.lang.String which is a MethodType that
is also parameterless in this case.

Symbol σ Kind Type of σ
class C class C

constructor C method ()C

value str variable java.lang.String

method str method => java.lang.String

Table 4.1: Simplified symbol table for the symbols defined in Listing 4.1.

When comparing the AST to the source code of the program, several differences and some
interesting details emerge. The AST contains two method definitions which are not visible in the
source code. One of them is the constructor method <init> which calls the super constructor from
class java.lang.Object. In Scala there is usually no explicit constructor method in the program,
instead the class body represents the default constructor. This is also the reason why a class may
have arguments. The other one is method str which is the generated getter method for the field
str. If str was not a final reference (i.e. a var instead of a val field), there would also be a method
str_=(x: String) serving as a setter method for the field. As one can see in the Apply on the
right-hand side, every access to a field is done through a call of the corresponding getter method.

Another notable detail about the AST in Figure 4.1 is that although there is an actual con-
structor method now, the initialization of value str and the call to the println method are not
part of this method. Instead, they are directly under the node ClassDef C. The reason for this is
that the compilation consists of a succession of code rewriting phases as mentioned in Section 4.1.

A snapshot of the AST after a given phase can be examined by using the -Ybrowse:<phase>
option of the Scala compiler. In the case of this example, the snapshot was retrieved after phase
superaccessors. This phase is one of the earlier phases during compilation and the phase af-
ter which the implemented plugins are executed. If the snapshot had been taken after phase
constructors, the aforementioned subtrees would actually be below the DefDef <init> node with
the constructor definition.

4.2 Inference of Ownership Modifiers

As mentioned in Section 1.1.3, the Scala compiler supports local type inference. But the Scala
compiler knows nothing about ownership modifiers, the Universe type system or other, possibly
more restrictive type systems at all. In order to support the Universe type system, ownership
modifiers, implemented using Scala’s annotations on types, must be handled, inferred if possible,
and propagated through the abstract syntax tree. The inference of ownership modifiers is not
strictly required to support the Universe type system. It nevertheless reduces the annotation
overhead for the programmer and results in a smooth integration of the Universe type system
with the normal Scala type system.

The algorithm for the inference of ownership modifiers should infer them for variables, method
return types, and type arguments, i.e. it should infer them at the same places where Scala may
already have inferred a type. But this is not enough: It also needs to take care of propagating all
ownership modifiers throughout the abstract syntax tree since they are required when checking
the Universe type system’s rules. While doing so, it has to add them to the symbol types inferred
by Scala such that they are stored persistently in the class file for later access.

Note that the inference implemented in this thesis is different from earlier work on Universe
type inference in e.g. [14, 12, 2]. The implemented algorithm works only locally, that is, it infers
the Universe type from the initialization. This is similar to what the Scala compiler does for

46

4.2 Inference of Ownership Modifiers

package ch.ethz.inf.sct.uts.examples

import ch.ethz.inf.sct.uts.annotation._

class A {

val b /* : B @rep */ = new (B @rep)

5 val s /* : Cls @any */ = b.s

def t /* : Cls @peer */ = new (Cls @peer)

val u /* : Cls @rep */ = b.t

}

Listing 4.3: Class A, stored in A.scala.

normal types (see Section 1.1.3). The inference does not try to create a good ownership structure
either, it only takes the information which was provided by the programmer and propagates it
such that the program can be compiled. Inferred ownership modifiers are used during compilation
and written to the class files, but they are not added to the source code of programs compiled
using these plugins.

4.2.1 Recursive Definitions and Ownership Modifier Propagation

There are two main difficulties which need to be resolved in order to successfully infer ownership
modifiers:

Recursive definitions Recursively defined functions and fields in different classes which depend on
each other may lead to cycles during the type inference. Scala already detects such cycles for
non-annotated types and forces the programmer to specify the type explicitly in these cases.
This unfortunately is of little help when inferring annotations for an extended type system
like the Universe type system. Therefore an inference algorithm for ownership modifiers has
to detect cycles itself and must force the programmer to provide annotations or use some
default whenever it detects a cycle.

Propagation throughout the AST After the types have been inferred, they must be propagated
through the abstract syntax tree to be usable during the type checks. Since the abstract
syntax tree in the Scala compiler is a typed one, care must be taken to modify the compiler’s
type representation correctly. If any modification yields an abstract syntax tree which is
not correctly typed anymore, later phases of the compiler may violate explicit or implicit
assertions. Both cases result in internal compiler errors and a termination of the compilation.

To solve these problems, the implementation of the inference traverses the abstract syntax tree
two times: The first time it extracts the symbols of value and method definitions which are stored
together with some state information. This is followed by the second traversal which infers types
and propagates them. At the same time, it also enforces the type rules.

The following explanations will use classes A and B from Listing 4.3 and Listing 4.4, respectively,
as an example. These two classes depend on each other, it is therefore not possible to completely
process one class before the other: Field s of class A depends on the type of field s from class B

while the reverse applies for field t of class B.
Both classes already contain the final types in comments. The goal of the ownership modifier

inference is to add the correct modifiers to unannotated types. These unannotated types were
already inferred by the Scala compiler. Hence, inference of ownership modifiers should add them
such that the types finally match those from the comments.

4.2.2 Symbol Extraction

While traversing the abstract syntax tree for the first time, a mapping from symbols to state
information like the one in Table 4.2 is created. This mapping and the state information are saved

47

4 Implementation

package ch.ethz.inf.sct.uts.examples

import ch.ethz.inf.sct.uts.annotation._

class B {

val a /* : A @peer */ = new (A @peer)

5 val s /* : Cls @rep */ = new (Cls @rep)

val t /* : Cls @peer */ = a.t

val u /* : Cls @any */ = a.s

}

Listing 4.4: Class B, stored in B.scala.

in a map provided by the SymbolStates trait which is mixed into the StaticComponent class. The
state stores the following information about a symbol:

Typed A symbol has been typed if the type of the symbol is known and if its definition was type
checked. Therefore this is false in the beginning despite the fact that the type annotation
without ownership modifiers was already inferred by Scala. It only refers to the inference of
the ownership modifier and the type check of the Universe type system’s rules. As soon as
the definition of the symbol has been processed (i.e. the subtree referenced by the “Code”
column), this is set to true.

Locked A symbol is locked if its type is currently being inferred, i.e. the referenced subtree is
being processed. This is used to detect cycles during the inference: Whenever the type of
a symbol is required and the symbol is not typed yet but locked, this means that there is a
recursive definition. In this case the inference algorithm checks if the symbol’s type annota-
tion contained an ownership modifier: If yes, then the type was provided by the programmer
and is therefore accepted, and processing continues as normal. If not, there are two options:
One could either report an error or use some default modifier. The implementation currently
does the former.

Code This is a reference to the subtree of the abstract syntax tree which contains the definition
of the symbol. Such a subtree has either a ValDef node (value definition) or DefDef node
(method definition) at its root.

Unit The symbols of a compilation run may reside in different compilation units, therefore the
unit where a symbol is defined is also stored. This is mainly used for error reporting.

Symbol Typed Locked Code Unit
A.b ⇒ false false ValDef b. . . A.scala
A.s ⇒ false false ValDef s. . . A.scala
B.a ⇒ false false ValDef a. . . B.scala
B.s ⇒ false false ValDef s. . . B.scala

Table 4.2: Simplified state table for the classes in Listing 4.3 and Listing 4.4.

4.2.3 Inference and Propagation

The second traversal of the abstract syntax tree does the main work: It infers the ownership
modifiers where necessary, propagates the ownership modifiers throughout the tree and enforces
the type rules. Figure 4.2 contains highly condensed versions of the abstract syntax trees for the
classes in Listing 4.3 and Listing 4.4.

The trees are processed using a depth-first traversal starting with the abstract syntax tree of the
first compilation unit, in this case A.scala. Whenever a ValDef or DefDef node is encountered on

48

4.2 Inference of Ownership Modifiers

ClassDef A

σ: ∗class A

ValDef b

σ: ∗value A.b

New

σ: constructor B

B @rep

ValDef s

σ: ∗value A.s

Select s

σ: value B.s

b

...

(a) Class A of unit A.scala from Listing 4.3

ClassDef B

σ: ∗class B

ValDef a

σ: ∗value B.a

New

σ: constructor A

A @peer

ValDef s

σ: ∗value B.s

New

σ: constructor Cls

Cls @rep

...

(b) Class B of unit B.scala from Listing 4.4

Figure 4.2: Simplified and condensed abstract syntax trees.

the way down to a leaf of the tree, the symbol referenced by the node gets locked. This indicates
that the symbol’s definition is currently being processed.

Whenever the traversal reaches a leaf node of the tree, this node is immediately processed by
doing the necessary type checks. The most interesting leaf node is This, so there usually is not
much to do: In the case of This, the traverser only needs to add the this ownership modifier
to the node’s type. The traverser then goes upward again and possibly processes other child
nodes of the leaf’s parent ρ. When it eventually gets back to ρ, it does the necessary type
checks. All type-checking functions return a type τ themselves. This type τ is usually the type of
the checked expression represented by the current node, but with added and possibly viewpoint
adapted ownership modifiers. Since the type of node ρ may be required in the type check of ρ’s
parent node, it must be stored in ρ. This is done by copying τ ’s ownership modifiers to ρ’s type.
It is not possible to simply copy τ into ρ since the functions checking the type rules do not work
with Scala’s type representation. They use an abstraction as mentioned in Section 3.3 based on
the UType class of the Universe type system plugin.

When the algorithm gets back to a node which defines a symbol, it copies the ownership modifiers
to the type of the symbol instead of the type of the node. As mentioned in Section 4.1, such a
node does not have a type in the first place, hence it could not be annotated anyways. The state
of the symbol in the state table is also updated since the symbol is typed now and does not need
to be locked anymore. The two copy operations where ownership modifiers get copied to the type
of tree nodes or symbols take care of propagating the modifiers throughout the abstract syntax
tree.

An interesting situation arises when processing the node Select s in Figure 4.2(a): This node
represents the expression b.s and depends on the type of the symbol value B.s during the type
check. Since the type check started within class A, this symbol has not been typed yet. The
implemented inference algorithm solves this problem by processing symbol definitions when their
type is required: In this case the traversal of the abstract syntax tree of class A would be suspended.
Then another traverser would start to process the subtree referenced in symbol value B.s’ state
table entry. As soon as it finishes processing of value B.s’ definition, the type of the symbol is
known and therefore the traversal of class A may be resumed.

The above description of the inference algorithm considered only field accesses but it is equally
valid for method calls. In fact, since every field access in Scala is done using a call to the respective
getter or setter method, there is no difference at all.

Since subtrees of class definitions are processed on demand instead of sequentially, duplicate
traversals of subtrees may occur. In the example of Figure 4.2 this would happen to the subtree

49

4 Implementation

ValDef s of class B: It was processed on demand while traversing class A and would be processed
again when type checking class B. In order to avoid this, the algorithm always checks if a symbol
has already been typed before it starts processing its definition.

4.3 Static Universe Type Checker

The static type checker enforces the type rules of the Universe type system at compile time. As
already noted in Section 4.2.3, the actual type checks are done in parallel to the ownership modifier
inference.

4.3.1 Internal Type Representation

Section 3.3 introduced the abstraction from the type representation of the Scala compiler. In
the Scala compiler, the abstract class scala.tools.nsc.symtab.Types.Type is the base class for all
types. The classes which represent the different types are case classes, it is therefore possible
to do pattern matches over types. This usually makes it fairly easy to deconstruct a type, to
add ownership modifiers where necessary and to subsequently reassemble it into the original type
decorated with ownership modifiers. There are some exceptions, though, but these can often be
handled by provided utility methods.

Nonvariable Types

The NType class takes three parameters: An ownership modifier, the underlying Scala type and a list
of UType instances as type arguments. Since the parameters are annotated with val, they become
final but public fields of the class. It is therefore not possible to modify a NType instance which
avoids aliasing problems in operations such as the viewpoint adaptation. This implies however
that class methods like the substitution of ownership modifiers cannot modify the instance either.
An obvious solution is to return new NType instances each time a modification is required. This
works because all information about a type is stored in the three class parameters.

Type Variables

Type variables represented by class TVarID have only one class parameter which is the underlying
type from Scala. TVarID offers a method ubgamma: UType which returns the upper bound of the
underlying Scala type as a UType instance.

Type Errors

Instead of throwing exceptions during the type check, a special abstract ErroneousType class is used
to indicate type errors. Some type checking methods may detect more than one error, hence there
are two concrete implementations of the ErroneousType class: InvalidType contains the textual
reason and optionally the position of the error while InvalidTypes is merely a container for several
InvalidType instances. Both classes implement a log method which is used to inform the compiler
about the error and to print the error message.

Since ErroneousType is a subtype of UType, it can be returned whenever a UType is expected,
therefore the caller of a type checking method must test the result for an error.

4.3.2 Type Checks

Actual type checks are initiated during the traversal of the abstract syntax tree which takes place
in the StaticComponent class. The traversal is done using a scala.tools.nsc.ast.Trees.Traverser

instance similar to the one in Listing 4.2, but via a depth-first traversal. Of course the traverse(

tree: Tree) method is more complex than the one of the example.

50

4.4 Runtime Checks

It consists of two sequential pattern matches: The first one locks the symbol referenced by the
root node of the subtree if the root node is an unprocessed ValDef or DefDef node. This is described
in Section 4.2.3 which also briefly mentions how duplicate traversals of subtrees are avoided: A
subsequent pattern match checks if the current subtree’s root node is an unprocessed ValDef or
DefDef. In the case that it is as yet unprocessed, a pattern match over all interesting kinds of
nodes of an abstract syntax tree follows.

When the root node of the current subtree matches a given pattern, the node gets processed.
In general, this proceeds as follows: First the required types for a type check are retrieved. They
are usually fetched from the symbol associated with the node, the subtrees of the node, the node
itself, or several of these sources. Then the type checking method of the TypeRules implementation
which corresponds to the kind of the node is called with all the required information. This involves
the retrieved types and possibly also a symbol related to the node. Some of the methods also take
a parameter for the position of certain constructs in order to achieve a more fine-grained error
reporting – this is for example the case for the checkMatch method which is used to type check a
pattern match: It gets the position of each case statement.

All type checking methods of TypeRules implementations return UType instances. Because of the
error handling mentioned above, this UType instance could be an ErroneousType, so when processing
the result of the type check this must be taken care of by emitting an error message if necessary.
If there was no error, the returned type’s ownership modifiers are usually copied to the type of
the node or the referenced symbol, as mentioned in Section 4.2.3.

Nested Classes and Methods

The implemented type checker also supports nested classes and methods. However, the type rules
from Section 1.2.1 do not handle either of those language features. The current implementation
is therefore straightforward: Inner classes are processed like normal classes and nested methods
like methods called on the receiver this. At least for inner classes this is certainly not optimal
because of the outer this of an instance of an inner class: Its type currently defaults to a peer
type, whereas any would certainly be better. Extending the type system with support for nested
classes and methods therefore remains a subject of future work.

4.4 Runtime Checks

The implementation of the runtime checks is basically a port of the earlier work in [26] to Scala.
It is interoperable with this earlier implementation for Java in that it can generate checks which
use the old runtime support library, as mentioned in Section 3.4.

4.4.1 Modification of the Abstract Syntax Tree

All modifications of the AST are performed in implementations of the RuntimeCheckTransformBase

trait: The RuntimeCheckTransform class creates code which targets the Scala implementation of the
runtime support library while the MJRuntimeCheckTransform class results in code for the MultiJava
implementation.

The RuntimeCheckTransformBase trait provides an abstract inner RTCTransformer class which
specializes the abstract scala.tools.nsc.ast.Trees.Transformer class. This inner class is used
for the actual transformation and implements a transform(tree: Tree): Tree function for the
transformation. There are three kinds of subtrees which must be modified in order to add the
runtime checks:

Definitions of constructor methods The body of a constructor method must be modified such
that the owner of the new object gets set before the real method body is executed. This
is taken care of by the processConstructor function which replaces the subtree of the con-
structor method’s body by an extended one.

51

4 Implementation

Calls to constructor methods The modified constructor methods need a reference to the object
which contained the call to the constructor method in order to set the owner of the new
object. Hence, this reference must be stored before executing the call. This is the task of
the processConstructorCall function.

Type casts and instanceof tests These two operations are handled by the processIsAsInstanceOf

function which makes them Universe-aware by performing additional checks that take the
ownership relation into account.

The above functions get the current subtree and return the modified one which subsequently
replaces the original subtree.

In order to create code for a certain runtime support library, these methods are overridden in the
actual implementations of the abstract RTCTransformer class. The specializations are contained in
the RuntimeCheckTransform and MJRuntimeCheckTransform classes and create subtrees which target
the Scala or MultiJava implementation, respectively, of the library.

The abstract transformer also offers several helper methods to generate new trees which for
example can be used to call a method or to log a message. These trees are used as building blocks
for the new or modified subtrees which are created by the above methods.

4.4.2 Runtime Library

Most of the additional work for the runtime checks is performed in a runtime support library. It
provides a singleton object in the Scala version or a class with static methods in the Java version.
Both variants implement a similar interface: It comprises methods to set the owner of an object
and functions to check if a given object is the owner or peer of another object. The operations
are called at runtime by the functions mentioned in Section 4.4.1 to conduct the additional checks
and to maintain the ownership hierarchy. Details about the Java implementation can be found
in [26]; the Scala implementation closely follows this implementation.

4.4.3 Storage of the Ownership Relation

Both runtime support libraries use an optimized hash table to store the ownership relation at
runtime. Whenever a new object is created, it gets inserted into the hash table together with a
reference to its owner.

4.5 Logging and Error Reporting

In order to get a common interface for debugging output and error logging, the UTSLogger trait
was devised. It is inspired by and is partially based on logger.scala from [27]. Another source
of inspiration was log4j [11] from the Apache project. An implementation of the UTSLogger trait
therefore supports several log levels, namely DEBUG, INFO, NOTICE, WARN and ERROR in ascending
order of severity. The purpose of distinct log levels is to allow for a specific handling of each
level: Messages on level WARN and above are passed on to the Scala compiler which will record
the warning or error and also print the excerpt of the source code where the problem occurred.
Messages from lower levels are simply printed without notifying the compiler. The UTSLogger also
allows a user to set a minimal log level: If set to a value above DEBUG, messages on lower levels will
be discarded.

For every log level there is a corresponding method to log a message at the given level. These
methods call method log(level: Level.Value, message: => String, pos: util.Position): Unit

for the actual logging. It takes a level for the message, the message itself, and a position. If the
level is greater or equal to the global minimal log level, it will handle the message.

The position is only relevant for levels above NOTICE, i.e. WARN and ERROR. Lower levels do not
make use of it. As the position changes while traversing the abstract syntax tree, it must be
kept up-to-date in order to provide useful error messages and especially the correct source code

52

4.6 Testing

excerpts. This is achieved by using a stack: Whenever a new subtree is entered, its position gets
pushed, and as soon as the subtree is left, it gets removed again. There are certain cases though
where this is not sufficient (especially if and match expressions), so there is also the possibility to
explicitly specify the position of the error.

The message’s type => String means that the parameter gets passed by reference – it is therefore
not evaluated at the time of the method call, but only when the value is actually used. This avoids
possibly expensive operations (such as calls to the toString method of complex data structures)
in the case where the minimal log level is higher than the current message’s level.

Each of the two plugins may use a different log level which can be set using the command line
option -P:<plugin-name>:loglevel=<level> and a <level> of debug, info, notice, warn, or
error. The default log level for both plugins is notice.

4.5.1 Logging and Error Reporting in the Scala Compiler

The Scala compiler already provides functionality for logging, but as it is distributed over several
classes, it nevertheless seemed sensible to provide a common interface for the Universe type system
plugins.

One of these classes is class Global, an instance of which is available through the global reference
(see Section 1.1.6). It basically provides four methods for the reporting of messages: inform(msg:

String), log(msg: AnyRef), warning(msg: String) and error(msg: String). log will only print a
message if logging is activated for the current compiler phase – if logging is enabled, it will print a
message to the standard error output using the inform method. The warning and error methods
use an instance of scala.tools.nsc.reporters.Reporter, but without passing the position of where
the warning or error was encountered.

Compilation units as represented by scala.tools.nsc.CompilationUnits.CompilationUnit also
provide methods for warnings and error reporting which actually make use of the position of the
error. This results in warnings and error messages with short excerpts of the source code at the
given position. These two methods are used by the UTSLogger which therefore must be kept up-
to-date with the current compilation unit during the traversal of the abstract syntax trees. This
is achieved by updating the UTSLogger’s reference to the current unit whenever the unit changes.

4.6 Testing

Scala provides the SUnit1 framework for unit testing which is in the same spirit as JUnit for
Java. A SUnit test is a Scala application which executes actual scala.testing.SUnit.TestCase

implementations. SUnit is still very elementary when compared to the well-known JUnit testing
framework, but it serves its purpose.

Devising a testing strategy for the compiler plugins turned out to be not entirely trivial – the
main problem is that the classes and methods in the plugins work with abstract syntax trees and
the compiler’s type representation. These data structures would have been very tedious to create
by hand. Therefore the tests of the plugins take a Scala source code file and try to compile it
using the compiler plugins. Since the number of expected errors and warnings is known to the test
case, a comparison of actual and expected numbers allows to conclude if the test was successful or
not. As one plugin adds runtime tests to the programs, they must also be executed to see if they
yield the correct result. This second test is fairly similar in that it simply tests if the program
terminates without error or if an exception is thrown during execution.

The tests use several auxiliary classes, especially two factories which produce test cases where a
given input program gets compiled or executed. A TestRunner trait with a main method is mixed
into those classes which provide a test suite in order to actually execute the tests. It also collects
statistics and finally prints the number of executed tests together with the number of failures. If
there were any failures, it terminates the program with a non-zero exit status.

1Short for “Scala Unit”, which must not be mistaken for the SUnit unit testing framework of Smalltalk, which is
the original source of the xUnit design.

53

4 Implementation

Although the testing procedure is very simple, it proved to be useful during the development of
the plugins. Whenever a new feature of Scala was to be implemented or an error was found, a new
and short example program for the test-suite could be written. It was also useful for regression
testing, especially when refactoring the plugins.

A quick glance at the Scala source code reveals that the test-suite for Scala itself works in a
similar way: They also try to compile input programs and subsequently compare the actual output
to the expected one. This is different from the aforementioned strategy which only compared the
error count: The advantage of the latter is that it is not required to update any tests when some
error message of the compiler changes. An obvious drawback is that one does not necessarily catch
erroneous errors as long as the count matches.

4.6.1 Test Cases

Most test cases, i.e. example programs, are rather small, their length ranges from 2 to 94 lines
of code, with an average of about 30 lines. They usually contain several variations of the same
language construct or rather arbitrary program code which exposed a problem in the type checker.
There are currently more than 55 examples to test the static type checker and more than 5 for
the plugin which adds runtime checks.

Two of the examples implement simple containers: A map and a stack. The map is a port of the
example in [6] to Scala. It contains an additional each(fun: (K,V)=> unit) method which takes a
first-class function fun and applies it to every entry of the map.

The test cases should cover all language constructs supported by the implementation of the type
system. However, real programs are often fairly different from synthetic examples. It was therefore
tried to annotate and compile a subset of Scala’s collection library. This actually exposed several
errors in the type checker which subsequently could be fixed. Unfortunately, the collection library
uses as yet unsupported variance annotations quite often. In the end, there was not enough time
left to extend the type checker or to experiment with other, similarly large programs. But the
experiments with real program code at least made the implementation more robust.

54

5 Conclusion

This chapter starts by presenting the status of the implementation and subsequently mentions
some experiences with the development of a compiler plugin for Scala. It closes with a list of
possible extensions of the presented implementation and some related ideas for future work.

5.1 Status of the Implementation

The implementation works, but it does not yet support all language constructs of Scala. However,
a superset of the minimal language from [6] and the rules from Section 1.2.1 are implemented.
This comprises the following:

• Classes and inheritance.

• Instance fields, dynamically bound methods, and constructors.

• Usual operations on objects: Allocation, field read and update, and type casts.

• Control structures such as if-then-else and match. As the Scala compiler converts loops to
iterations over collections or to recursive methods, while and for loops are also supported.

Some other language constructs are at least partially supported, but not thoroughly tested:

• Anonymous classes: They are supported by the static type checks, but currently unsupported
by the plugin for the runtime checks. This is at least partially caused by a bug in the Scala
compiler [31].

• Nested classes and methods are basically supported, but with the restrictions from Sec-
tion 4.3.2: The implemented type rules are certainly not optimal.

• Traits and mixin-composition: These can be handled like classes and inheritance, but this
has not been tested very well.

• Exceptions: try-catch-finally expressions are basically supported, but the main modifier of
exceptions does not yet default to any, which is in opposition to Section 1.2.1.

• Singleton objects: These are basically supported, but the support is not very well tested,
especially not at runtime.

• First-class functions: The Scala compiler converts first-class functions to FunctionN special-
izations, they can therefore be handled very much like normal classes and objects. However,
it is usually necessary to declare the parameter types when defining an anonymous first-class
function, which is in most cases not required in Scala.

Some constructs, however, are as yet completely untested and therefore possibly also completely
unsupported1. The most notable ones are the following:

• Self-type annotations.

• Variance annotations of type parameters: Earlier work [27] already contains type rules which
support variance annotations, but this has not been implemented.

1As mentiond in Section 4.1, the AST is a desugared version of Scala. It is therefore possible that a not explicitly
supported source language construct gets converted to a construct in the AST which is already supported.

55

5 Conclusion

Ownership modifier inference generally works, but it is only implemented for variable types and
method return types. It is as yet unsupported for type arguments of calls to polymorphic methods
and instantiations of generic classes. Hence, it is necessary to provide more type annotations than
in a normal Scala program where these are often inferred.

5.2 Development of a Compiler Plugin for Scala

Developing a compiler plugin for the Scala compiler is relatively straightforward. It may take
quite some time though to get an overview of the Scala compiler itself as there does not seem to
be a high-level documentation of the compiler. This problem gets emphasized by the fact that
there is often only little documentation in the compiler’s source code.

Scala itself, on the other hand, is documented very well. It is therefore quite easy to start
development with Scala. The implementation of the compiler also provides many facilities which
may be used in a plugin, but it can be difficult to actually find them.

Summarizing, one could say that programming in Scala makes up for quite some of the defi-
ciencies of the compiler’s documentation. It is also relatively easy to actually extend the Scala
compiler using plugins once the inner workings and data structures of the compiler are more or
less understood.

5.3 Future Work

Support for a broader or even the complete set of Scala’s language constructs would certainly
make the implementation more useful. This would also open a new set of possibilities: One could
then annotate and recompile the complete class library of Scala. The annotation overhead should
be reasonable because of the defaulting and the local ownership modifier inference. However, it
would be useful if the Scala compiler supported external annotation files similar to JML [13] as
this would allow a separation of the annotations from the implementation.

The additional runtime checks could also be changed if the complete class library was recompiled
using the plugins: This would make it possible to mix a trait with an owner field into every compiled
class which would make the maintenance of a hash table dispensable in many cases.

Runtime checks currently consider only the main modifier of a type in casts and instanceof tests.
This limitation is imposed by Java and its lack of support for runtime types in type arguments.
However, [6] also provides a runtime model for GUT which was implemented for the MultiJava
compiler [23]. It should be possible to implement this for Scala, too.

The imposed annotation overhead is already relatively small. In order to further reduce the
overhead, the as yet missing inference of type arguments should also be implemented. One could
also come up with a more sophisticated defaulting strategy.

It would also be possible to implement static and runtime inference as it was done for Java in [14,
12, 2] for Scala. Static inference could also use the abstract syntax tree and should work similarly
as for Java. Runtime inference would possibly be more difficult, though, as the compilation of
Scala code results in byte code which may look very different from the input program. Mapping
Java byte code to a Java program, for instance, is more straightforward than mapping Java byte
code to the corresponding Scala program.

Apache Ant [9] is slowly becoming slightly old-fashioned while Apache Maven [33] is gaining
momentum. Switching to Maven and possibly extending its Scala plugin [3] to support compiler
plugins would have at least two advantages: (1) The implementation of the Universe type system
has become quite large, but it contains several rather independent parts (plugins, default type
rules, runtime libraries, annotations, and some common classes). Maven would make it easy to
spread the implementation over several sub-projects. (2) The dependency management could be
handed to Maven. This would generally ease the installation and use of compiler plugins.

The plugin which adds runtime checks to the abstract syntax tree depends on the first plugin
which infers and propagates ownership modifiers. This dependency is not very explicit: It is only

56

5.3 Future Work

visible in the runsAfter field of the second plugin. However, the second plugin could also run after
a later, built-in phase which would make the dependency invisible. One can currently pass the
-Xplugin-require:<plugin> option to scalac which makes the compiler abort the compilation
if a given plugin is not available. It would be useful if this could also be specified explicitly in a
plugin which depends on another plugin.

57

5 Conclusion

58

A Developer’s Guide for the Universe Type
System Plugins

A.1 Introduction

This guide highlights some technical details which may be useful when extending or modifying
the Universe type system implementation for Scala. Most of these details were not or only briefly
covered in the main report [30] which is nevertheless recommended reading.

In order to use and develop the plugins, a working installation of Scala 2.6.1 is recommended.
The plugins were developed and tested with Scala 2.6.1, but some experiments with pre-release
versions of Scala > 2.6.1 looked promising. Since the plugins make use of Java’s generics, Java
≥ 1.5.0 is also needed, as well as Apache Ant ≥ 1.6.3. It is further assumed that the environment
variable $SCALA HOME refers to the directory where the Scala installation resides.

A.2 Directory Layout

The directory layout for the plugin sources was adopted from Apache Maven [33], even though
the build system for the plugins employs Apache Ant [9]. Maven uses a standard directory layout
which separates the implementation from the tests and generally follows best practices. Listing A.1
shows the actual layout of the tree.

The src directory contains the source code and other resources like the descriptors for the
plugins. When ant is executed to build the project, it will save the resulting files, i.e. class files,
Java archives, and the sbaz packages to the target directory.

Tests for the implementation are stored in the src/test subdirectory. There is a test suite for
each plugin, a test for the hash table used in the Scala implementation of the runtime support
library, and a test which checks if the inferred annotations are stored persistently in the class files.
The test suites for the plugins use the example programs below src/examples as input.

Ant uses the file build.xml as a build script. It utilizes several properties which can be over-
ridden by specifying them in the file build.properties. See Section A.5 for some of the most
interesting properties.

A.3 Extending the Type Checker

There are two ways to customise or extend the type checker: One could provide a custom imple-
mentation of the defaults or one could write a specific implementation of the actual type rules.
The former modifies the behaviour of the default implementation of the type rules whereas the
latter is more powerful and flexible, but obviously also more involved.

Figure A.1 and Figure A.2 show the classes and traits which are concerned with the modification
of the type checker’s defaults and the customization of its type rules, respectively.

A.3.1 Defaults

The trait UTSDefaults defines some default values. There are three kinds of defaults:

Default ownership modifiers These modifiers are used where they were neither specified nor in-
ferable in a program. This is usually the case for all members of classes which were not
compiled using the Universe type system plugins. It also applies to object creation if no

59

A Developer’s Guide for the Universe Type System Plugins

.

|-- build.properties

|-- build.xml

|-- src

5 | |-- examples

| | ‘-- scala

| | ‘-- ch

| | ‘-- ...

| |-- main

10 | | |-- resources

| | | ‘-- plugin

| | | |-- runtimecheck

| | | | |-- scalac -plugin.xml

| | | | ‘-- uts -runtime.version.properties

15 | | | ‘-- staticcheck

| | | |-- scalac -plugin.xml

| | | ‘-- uts -static.version.properties

| | ‘-- scala

| | ‘-- ch

20 | | ‘-- ...

| ‘-- test

| ‘-- scala

| ‘-- ch

| ‘-- ...

25 ‘-- target

‘-- ...

Listing A.1: Directory layout of the plugin sources.

modifier was specified, like in new AnyRef. There are default modifiers for five cases: (1) Up-
per bounds of type variables, where it is any. (2) Immutable types like Int, String, etc.,
where it is also any. (3) Singleton objects which are defined inside of a class (peer) or
(4) in a package (any). (5) A general default of peer. These defaults are defined in the
StandardDefaults class and may be overridden.

Pure methods and immutable types Since the Scala library does not declare pure method as
actually being pure, a way to denote methods without @pure annotation as pure methods
was devised. This was necessary as some type rules allow only calls to pure methods on
certain references. It basically works by assuming that all methods of value types (scala.
AnyVal instances) are pure. Since there are also other types which may offer pure methods,
this can be customised: The list immutableTypes contains certain other types like java.lang

.String. In addition, the map pureMethods maps class names to lists of pure methods of the
respective class. In order to cover inheritance, classes in the map are interpreted as base
classes and it is assumed that methods in subclasses which override any method of the list
are also pure.

Default classes There are three values for default classes: Two of them are used to provide
the names of the two main objects of the runtime support libraries. These objects are
used to store the ownership relation at runtime. The third class name specifies the default
implementation of the type rules which should be used in the static type check.

To simplify access to the defaults, there is the static object UTSDefaults which implements
the UTSDefaults interface and encapsulates an actual instance of the UTSDefaults trait. Every
method of the UTSDefaults interface which is called on the static object is forwarded to the en-
capsulated instance. The instance gets initialised from a user-selected class if the -P:<plugin
name>:defaults=<class> command line option for the plugin was given. <plugin name> is ei-

60

A.3 Extending the Type Checker

ch.ethz.inf.sct.uts.plugin

ch.ethz.inf.sct.uts.plugin.common

«trait»

UTSDefaults

UTSDefaults

ch.ethz.inf.sct.uts.plugin.common.defaults

StandardDefaults

Figure A.1: Defaults for the type checker.

ther uts-static for the plugin which performs the static type checks or uts-runtime for the
plugin which adds the runtime checks. It is therefore possible to specify different defaults for
the plugins although this presumably does not make a lot of sense. Hence, it is recommended to
specify custom defaults for the uts-static plugin only. These will automatically be used in the
uts-runtime plugin which runs after the one for the static checks.

A.3.2 Type Rules

A customised variant or a different version of the type rules must provide an actual TypeRules

implementation. The implementation which should be used during the type check can be se-
lected by supplying the -P:uts-static:typerules=<actual TypeRules implementation> op-
tion to scalac. As mentioned in Section A.3.1, this could also be achieved by providing a custom
UTSDefaults implementation which defines a different default for the type rules implementation.
This might be required anyway, as a different implementation might need other defaults for the
ownership modifiers.

Figure A.2 shows the main traits, one class and one abstract class which are involved in the
implementation of type rules and the abstraction from the Scala compiler’s type representation.
It contains only a condensed version of the class hierarchy, the main report in [30] also displays
the abstract inner classes of the traits and several auxiliary classes.

The ch.ethz.inf.sct.uts.plugin.staticcheck.common package at the top provides an abstraction
from the Scala compiler’s type representation. It gets assembled in the TypeAbstraction trait by
mixing in traits which provide abstract factory methods and abstract inner classes that are used
for the abstraction. The ch.ethz.inf.sct.uts.plugin.staticcheck.rules.default package at the
bottom provides the default implementation of the type rules. Its traits specialize traits from
the package at the top and provide concrete implementations of their abstract inner classes. In
addition, they also implement the factory methods in order to create instances of the inner classes.

It is recommended to look at the default implementation of the type rules before implement-
ing a different variant of the rules. The default implementation consists of several traits and
the concrete DefaultTypeRules class which implements the actual rules. Their signatures are de-
clared in the abstract TypeRules class. All those traits which are used to abstract from the Scala
compiler’s type representation are mixed into the DefaultTypeAbstraction trait which also serves
as the self type of these traits (indicated by the black diamonds). In addition, it mixes in the
DefaultOwnershipModifierExtender trait which provides a specialized implementation of the be-
havior of ownership modifiers which also depends on the variant of the implemented type rules.

The architecture of the abstraction from the compiler’s type representation uses Scala’s self
types and mixin class composition. This results in a set of components which should be reusable
in different implementations of the type rules. It is also similar to the design of the Scala compiler
itself which is explained in a case study of [22].

61

A Developer’s Guide for the Universe Type System Plugins

ch.ethz.inf.sct.uts.plugin.staticcheck

TypeRules

ch.ethz.inf.sct.uts.plugin.staticcheck.common

«trait»

OwnershipModifierExtender

«trait»

UniverseTypeRepresentation

«trait»

UTSMethodSignature

«trait»

TypeAbstraction

ch.ethz.inf.sct.uts.plugin.staticcheck.rules

ch.ethz.inf.sct.uts.plugin.staticcheck.rules.default

DefaultTypeRules

«trait»

DefaultOwnershipModifierExtender

«trait»

DefaultUniverseTypeRepresentation

«trait»

DefaultUTSMethodSignature

«trait»

DefaultTypeAbstraction

Figure A.2: Implementation of type rules.

Type Checking Methods

A concrete implementation of the abstract TypeRules class must implement those methods which
are called during the type check. These methods take one or more types or compiler symbols
as arguments and check if the respective type or well-formedness rules hold. They return the
viewpoint adapted type which corresponds to the kind of check they did (e.g. the check of a
method call would return the method’s viewpoint adapted return type) or a special ErroneousType
which denotes a type error. If the check should print a warning instead of an error, this must be
done in these methods as well since all ErroneousType instances returned to the caller are handled
as errors. The warning can be generated using the logger.warn(=> String) method which will also
print a short source code excerpt of the current position. Debugging output can be produced using
logger.debug(=> String), logger.info(=> String) and logger.notice(=> String). The output of
the logger may be suppressed by the default log level (which is notice) or the level which was
set using -P:<plugin name>:loglevel=<level> when invoking the compiler.

Some type rules may employ common helper methods which are for example used to get the
type of a field or method. The type they return is usually also viewpoint adapted. Since these
methods may depend on the variant of the type system which is implemented, they are declared

62

A.4 Customizing the Runtime Checks

as abstract methods in the abstract TypeRules class and must therefore be provided as well.

Types

The UniverseTypeRepresentation trait provides abstract NType and TVarID classes which are used
in the abstraction from the compiler’s types. They contain some abstract methods, for example for
the subtype and well-formedness checks, which must be implemented in a concrete implementation
of the type rules.

A.4 Customizing the Runtime Checks

The behavior of the runtime checks can also be customized. Both implementations (the one in
Scala and the one in Java) of the runtime support library are either based on or taken from earlier
work [26]. This guide will therefore not go into the details of this customization.

Both libraries are divided into implementation and policy classes. At runtime, one of each kind
is needed, and it is possible to select the class by defining a property. The implementation class
maintains the ownership relation and it also does the additional checks. A policy class defines the
behavior of the runtime checks, for example if invalid casts should generate an exception or only
result in a warning.

A.5 Compilation

As mentioned before, the build system for the Universe type system plugins is based on Apache
Ant. A list of available targets and their description may be obtained by calling ant -p. The
default build target simply builds the plugins and places the resulting class files and Java archives
in the target directory. The target run.tests can be used to conduct some tests: Most of them
will compile a given input program which contains errors and compare the error count to the
expected number of errors. If the numbers match, the test was successful.

If desired, the build may be customized to some degree without changing the build.xml file.
This may be achieved by editing the build.properties file which gets loaded in the build script.
The most interesting properties used in build.xml are the following:

version The version of the project is used for the sbaz packages and in the title of the API
documentation.

package.name.prefix Prefix which is used for the name of the Java archive files and the sbaz
packages.

package.urlbase URL of the directory on the web server where the sbaz package of the plugins
will be available for download. The name of the sbaz package gets prefixed by this property’s
value and the resulting URL is then stored in the advertisement file for the Scala Bazaar.

scala.home The directory containing the Scala distribution which should be used during the
build. If neither this property is set in build.properties nor $SCALA HOME was defined,
the build script will use ~/sbaz as the default value for scala.home.

A.5.1 Building a Distribution

The Ant build script supports a dist target which will create a Java archive file of the plugin’s
source, sbaz packages and sbaz advertisement files to share the packages using a Scala Bazaar.
Section A.6.4 describes how the latter can be achieved. The packages contain the plugins, the
annotations, the runtime libraries for programs which use the Universe type system, the source
code of the plugins, and the API documentation.

63

A Developer’s Guide for the Universe Type System Plugins

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http :// java.sun.com/dtd/web-app_2_3.dtd">

5

<web-app >

<servlet >

<servlet-name >uts-scala </servlet-name >

<servlet-class >sbaz.Servlet </servlet-class >

10 <init-param >

<param-name >dirname </param-name >

<param-value ><!-- path to Bazaar directory --></param-value >

</init-param >

<load-on-startup >2</load-on-startup >

15 </servlet >

<servlet-mapping >

<servlet-name >uts-scala </servlet-name >

<url-pattern >/uts-scala </url-pattern >

20 </servlet-mapping >

</web-app >

Listing A.2: web.xml for the sbaz servlet.

A.6 Setting Up a Scala Bazaar

Scala Bazaars [28], or sbaz for short, is a package management system for Scala. It consists of
two parts: The sbaz command line tool and a corresponding Java servlet for the server side. A
universe in sbaz is basically a list of packages.

The server side of sbaz requires a servlet container such as Jetty [4] (which was used in this
guide) or Apache Tomcat [10] to run. There are several ways for deploying servlets to these
containers, but this guide will only describe the deployment using a Web Application Archive
(WAR) file.

A.6.1 Creation and Deployment of sbaz.war

The WAR file must contain the file sbaz.jar and usually also the file scala-library.jar. Both
files can be found in the official Scala distribution in the share/scala/lib directory.

1. Create the required directory layout: mkdir -p sbaz-servlet/WEB-INF/lib

2. Copy the files sbaz.jar and scala-library.jar into sbaz-servlet/WEB-INF/lib.

3. Create the file sbaz-servlet/WEB-INF/web.xml according to Listing A.2 and change the
param-value to a directory on the server where the servlet container has read-write access.
This will be the directory where the configuration of the universe and its package descriptions
are going to be stored. It will be referred to as configuration directory in the remainder of
this document. Since this directory may contain sensitive configuration information, it is
highly recommended to use a directory which is not publicly accessible.

4. Create the WAR file: jar cvf sbaz.war -C sbaz-servlet .

Now that the sbaz.war file has been created, it may be copied to the webapps directory of
the servlet container. Depending on the container and its configuration, it might be necessary to
restart the servlet container in order to load the servlet.

64

A.6 Setting Up a Scala Bazaar

<simpleuniverse >

<name>uts-scala </name>

<description >

The Scala Bazaar for the Universe type system plugins.

5 </description >

<location ><!-- Servlet URL --></location >

</simpleuniverse >

Listing A.3: Bazaar descriptor for the Universe type system plugins, to be used on the server.

<req>

<read/>

<editkeys/>

</req>

Listing A.4: keylessRequests for setup.

<req>

<read/>

</req>

Listing A.5: keylessRequests for use.

A.6.2 Setup of the Bazaar

Listing A.3 shows a Bazaar descriptor which could be used for the Universe type system plugins.
It must be stored in a file called universe in the configuration directory which was set in the
web.xml file. The location must contain the URL of the servlet, which would be http://<name
of the server>:<port>/sbaz/uts-scala if one followed this guide.

It should now be possible to access the URL of the servlet using a web browser and to get back
the Bazaar descriptor together with a list of available packages, which is currently still empty.

A.6.3 Setup of Access Control

The default configuration of the Bazaar is quite restrictive, it is therefore neither possible to get
a list of available packages nor to upload new packages using the sbaz command.

In order to setup the key-based access control using sbaz, the default restrictions must be
relaxed. This can be done by placing a file called keylessRequests in the configuration directory.
It should contain a configuration like the one in Listing A.4 which allows the retrieval of the
package list and key management. For details about the contents of the file, see [29]. It can and
should be replaced by a more restrictive configuration like the one in Listing A.5 after setting
up access control. This still allows the retrieval of package lists without any authentication, but
prevents unauthorised key management. After changes to the keylessRequests file, the servlet
container must be restarted.

Setup of Access Control using sbaz

The server side is now ready for the actual access control setup. It is therefore time to make sbaz
use the new universe: This is done using sbaz setuniverse <path to the Bazaar descriptor
file> where the Bazaar descriptor file should look like the one in Listing A.6. It refers to the
Scala Bazaar with the Universe type system plugins and the scala-dev Bazaar with Scala itself.
The first universe in the descriptor file is the one sbaz subsequently interacts with, later ones are
only used to retrieve package lists. If the command results in a java.io.FileNotFoundException,
the local managed directory1 where sbaz puts everything it installs presumably has not yet been
set up. This can be done by executing sbaz setup.
sbaz showuniverse should now contain the freshly setup universe as well as the scala-dev

universe. sbaz available should print a nonempty package list with the packages from the

1This is usually either the directory $SCALA HOME or ~/sbaz.

65

A Developer’s Guide for the Universe Type System Plugins

<overrideuniverse >

<components >

<simpleuniverse >

<name>uts-scala </name>

5 <location ><!-- URL to the uts-scala Scala bazaar --></location >

</simpleuniverse >

<simpleuniverse >

<name>scala-dev </name>

<location >http :// scala-webapps.epfl.ch/sbaz/scala-dev </location >

10 </simpleuniverse >

</components >

</overrideuniverse >

Listing A.6: Bazaar descriptor for the sbaz tool.

scala-dev universe. One may now create a first key by executing sbaz keycreate $USER ’<edit
nameregex=".*"/>’. The string <edit nameregex=".*"/> is a so-called message pattern. edit
means that someone presenting the correct key may upload new packages if the package’s name
matches the nameregex. The execution of the command will create the file keyring in the config-
uration directory and the file keyring.uts-scala in the meta subdirectory of the sbaz managed
directory. The two automatically generated files contain common secrets, the keys, which are used
for authorisation. sbaz keycreate $USER ’<editkeys/>’ will create another key which can be
used for key management after removing the corresponding option from the keylessRequests
file.

A.6.4 Uploading a First Package

Before uploading a package, care must be taken that sbaz uses the correct Bazaar, otherwise the
upload might yield unexpected results. This can be done by executing sbaz showuniverse: The
first universe in the list must be the one which should receive the package advertisements. If this
is not the case, the universe must be set according to Section A.6.3.

The key for the message pattern <edit nameregex=".*"/> created in Section A.6.3 allows the
upload of package advertisements using sbaz share <package.advert>. This sends the adver-
tisement to the servlet which stores it in the file packages of its configuration directory. Calling
sbaz available afterwards should yield the non-empty list of currently shared packages. The
command sbaz retract <package>/<version> allows to remove a certain package from the uni-
verse.

Since the package advertisement does not contain the actual package, only its URL, the sbaz
package must be uploaded to the given URL by other means. This could for example be done
using scp.

In order to simplify the upload and the retraction of package descriptions, the Ant build script
provided with the Universe type system plugins also supports a share and a retract target.

66

List of Figures

1.1 Class hierarchy of Scala. 11
1.2 Basic hierarchy for compiler plugins. 13
1.3 Ownership relations in an object structure. 16
1.4 Syntax and type environments. 17
1.5 Rules for subclassing. 19
1.6 Rules for subuniversing. 19
1.7 Rules for subtyping and limited covariance. 20
1.8 Well-formedness rules. 21
1.9 Type rules. 22

2.1 Subuniversing of ownership modifiers. 26

3.1 Overview of the architecture. 35
3.2 Hierarchy of the plugins in the context of the general layout for Scala’s compiler

plugins from Figure 1.2. 36
3.3 Class hierarchy for ownership modifiers. 37
3.4 Simplified class hierarchy for extended ownership modifiers, extracted from Figure 3.5. 37
3.5 Plugin for the static checks. 41
3.6 Plugin for the addition of runtime checks. 42

4.1 Simplified AST for the code in Listing 4.1 after phase superaccessors. 44
4.2 Simplified and condensed abstract syntax trees. 49

A.1 Defaults for the type checker. 61
A.2 Implementation of type rules. 62

67

List of Figures

68

List of Listings

1.1 Implementing complex numbers for Scala. 10
1.2 Example of using Scala’s self types. 13
1.3 Basic “Hello, World!” compiler plugin. 14
1.4 Example for the scalac-plugin.xml file. 15
1.5 Example for the helloworld.version.properties file. 15
1.6 Simple example of the usage. 16

2.1 Bazaar descriptor for scala-devel and the Universe type system plugins. 29
2.2 Example program which uses ownership modifier annotations. 30
2.3 Example build.xml for use with Scala and the Universe type system plugins. . . . 33
2.4 Example run.xml for use with the build.xml from Listing 2.3. These files can also

be merged. 34

4.1 Code to the AST from Figure 4.1. 43
4.2 Example of a traverser. 45
4.3 Class A, stored in A.scala. 47
4.4 Class B, stored in B.scala. 48

A.1 Directory layout of the plugin sources. 60
A.2 web.xml for the sbaz servlet. 64
A.3 Bazaar descriptor for the Universe type system plugins, to be used on the server. . 65
A.4 keylessRequests for setup. 65
A.5 keylessRequests for use. 65
A.6 Bazaar descriptor for the sbaz tool. 66

69

List of Listings

70

Bibliography

[1] Philippe Altherr. A typed intermediate language and algorithms for compiling Scala by suc-
cessive rewritings. PhD thesis, École Polytechnique Fédérale de Lausanne, 2006.

[2] Marco Bär. Practical Runtime Universe Type Inference. Master’s thesis, Swiss Federal
Institute of Technology Zurich (ETHZ), Department of Computer Science, 2005–2006.

[3] David Bernard et al. Apache Maven Plugin for Scala. http://www.scala-tools.org/
mvnsites/maven-scala-plugin/.

[4] Mort Bay Consulting. Jetty. http://www.mortbay.org/.

[5] Vincent Cremet, François Garillot, Serguëı Lenglet, and Martin Odersky. A Core Calculus
for Scala Type Checking. In Proc. MFCS, Springer LNCS, September 2006.

[6] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Universe Types. In E. Ernst,
editor, European Conference on Object-Oriented Programming (ECOOP), volume 4609 of
Lecture Notes in Computer Science, pages 28–53. Springer-Verlag, 2007.

[7] Werner Dietl and Peter Müller. Universes: Lightweight Ownership for JML. Journal of Object
Technology, 4(8):5–32, 2005. http://www.jot.fm/issues/issue 2005 10/article1.

[8] Werner Dietl, Peter Müller, and Daniel Schregenberger. Universe Type System – Quick-
Reference. Swiss Federal Institute of Technology Zurich (ETHZ), Department of Computer
Science, August 2005. http://sct.ethz.ch/research/universes/tools/juts-quickref.
pdf.

[9] Apache Software Foundation. Apache Ant. http://ant.apache.org/.

[10] Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/.

[11] Apache Software Foundation. log4j. http://logging.apache.org/.

[12] Nathalie Kellenberger. Static Universe Type Inference. Master’s thesis, Swiss Federal Institute
of Technology Zurich (ETHZ), Department of Computer Science, 2005–2006.

[13] Gary T. Leavens et al. JML - the Java Modeling Language. http://www.jmlspecs.org/.

[14] Frank Lyner. Runtime universe type inference. Master’s thesis, Swiss Federal Institute of
Technology Zurich (ETHZ), Department of Computer Science, 2005.

[15] Peter Müller. Modular Specification and Verification of Object-Oriented Programs. PhD
thesis, Fernuniversität Hagen, 2001.

[16] Martin Odersky. Scala By Example, December 2007.

[17] Martin Odersky. The Scala Experience, 2007. OOPSLA Tutorial, http://lamp.epfl.ch/
∼odersky/talks/pppj07.pdf.

[18] Martin Odersky. The Scala Language Specification, Version 2.6, September 2007.

[19] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet, Burak
Emir, Sean McDirmid, Stphane Micheloud, Nikolay Mihaylov, Michel Schinz, Lex Spoon,
Erik Stenman, and Matthias Zenger. An Overview of the Scala Programming Language (2.
edition). Technical report, École Polytechnique Fédérale de Lausanne, 2006.

71

http://www.scala-tools.org/mvnsites/maven-scala-plugin/
http://www.scala-tools.org/mvnsites/maven-scala-plugin/
http://www.mortbay.org/
http://www.jot.fm/issues/issue_2005_10/article1
http://sct.ethz.ch/research/universes/tools/juts-quickref.pdf
http://sct.ethz.ch/research/universes/tools/juts-quickref.pdf
http://ant.apache.org/
http://tomcat.apache.org/
http://logging.apache.org/
http://www.jmlspecs.org/
http://lamp.epfl.ch/~odersky/talks/pppj07.pdf
http://lamp.epfl.ch/~odersky/talks/pppj07.pdf

Bibliography

[20] Martin Odersky et al. Scala. http://www.scala-lang.org/.

[21] Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored Local Type Inference. In
POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 41–53, New York, NY, USA, 2001. ACM.

[22] Martin Odersky and Matthias Zenger. Scalable Component Abstractions. In OOPSLA 2005,
2005.

[23] Mathias Ottiger. Runtime Support for Generics and Transfer in Universe Types. Master’s the-
sis, Swiss Federal Institute of Technology Zurich (ETHZ), Department of Computer Science,
2007.

[24] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang.
Syst., 22(1):1–44, 2000.

[25] Michel Schinz and Philipp Haller. A Scala Tutorial for Java Programmers, December 2007.

[26] Daniel Schregenberger. Runtime Checks for the Universe Type System, 2004. Semester
Thesis.

[27] Daniel Schregenberger. Universe Type System for Scala. Master’s thesis, Swiss Federal
Institute of Technology Zurich (ETHZ), Department of Computer Science, 2006–2007.

[28] Lex Spoon. Scala Bazaars. http://www.lexspoon.org/sbaz/.

[29] Lex Spoon. Scala Bazaars Manual, March 2006. http://www.lexspoon.org/sbaz/manual.
html.

[30] Manfred Stock. Implementing a Universe Type System for Scala. Master’s thesis, Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Computer Science, 2007–
2008.

[31] Manfred Stock. Compiler crashes when using a plugin after phase “erasure” and certain later
ones, 2008. https://lampsvn.epfl.ch/trac/scala/ticket/375.

[32] The MultiJava Team. MultiJava. http://multijava.sourceforge.net/.

[33] Jason van Zyl et al. Apache Maven. http://maven.apache.org/.

[34] Bill Venners, Martin Odersky, and Lex Spoon. First Steps to Scala, May 2007.

72

http://www.scala-lang.org/
http://www.lexspoon.org/sbaz/
http://www.lexspoon.org/sbaz/manual.html
http://www.lexspoon.org/sbaz/manual.html
https://lampsvn.epfl.ch/trac/scala/ticket/375
http://multijava.sourceforge.net/
http://maven.apache.org/

	Introduction
	Scala
	Implicit Conversions and Views
	Class Hierarchy
	Type Inference
	Annotations
	Self types
	Compiler Plugins
	Universe Types in Scala

	Universe Type System
	Type Rules

	Notation and Naming Conventions
	Notation in Diagrams

	Overview

	User's Guide for the Universe Type System Plugins
	Universe Type System
	Annotations
	Types
	Methods
	Viewpoint Adaptation
	Subtyping
	Generics
	Casts and Instanceof
	Dynamic Checks

	Installation of the Plugins
	Requirements
	Binary
	Scala Bazaars
	Source

	Usage
	Annotations
	scalac
	Plugin Options
	ant
	Running the Compiled Application

	Architecture
	Overview
	Ownership Modifiers
	Static Checks
	Type Representation
	Method Representation
	Assembling the Abstraction of the Compiler's Type Representation
	Checking Type Rules

	Runtime Checks

	Implementation
	Abstract Syntax Tree
	Nodes of the Abstract Syntax Tree
	Symbols and Types

	Inference of Ownership Modifiers
	Recursive Definitions and Ownership Modifier Propagation
	Symbol Extraction
	Inference and Propagation

	Static Universe Type Checker
	Internal Type Representation
	Type Checks

	Runtime Checks
	Modification of the Abstract Syntax Tree
	Runtime Library
	Storage of the Ownership Relation

	Logging and Error Reporting
	Logging and Error Reporting in the Scala Compiler

	Testing
	Test Cases

	Conclusion
	Status of the Implementation
	Development of a Compiler Plugin for Scala
	Future Work

	Developer's Guide for the Universe Type System Plugins
	Introduction
	Directory Layout
	Extending the Type Checker
	Defaults
	Type Rules

	Customizing the Runtime Checks
	Compilation
	Building a Distribution

	Setting Up a Scala Bazaar
	Creation and Deployment of sbaz.war
	Setup of the Bazaar
	Setup of Access Control
	Uploading a First Package

	List of Figures
	List of Listings
	Bibliography

