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Abstract

Ownership is a powerful concept to structure the object store and to control aliasing and modifica-
tions of objects. Generic Universe Types is the first type system to combine the owner-as-modifier
discipline with type genericity.

This report presents the implementation of Generic Universe Types in the Java Modeling
Language. It also describes how concepts of Java such as arrays, exceptions, raw types and
wildcards can be added. Furthermore, an approach is presented to infer the ownership structure
for a normal Java program with generic types.
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Chapter 1

Introduction

1.1 Ownership

In object-oriented programs, we have very limited means to control access to objects. Basically,
an object can reference any other object in the object store and modify it by calling a method on
it, or directly by accessing its fields. Even though most languages provide access modifiers which
can limit access to, for example, a certain class or package, we still cannot be sure if we have the
only reference to an object. There might be another reference pointing to the same object and
allowing to change the object. This is what we call aliasing.

Aliasing helps making programs more efficient because it allows to pass a reference instead of
copying the entire object (pass-by-reference versus pass-by-value). The drawbacks are for example
leaking and capturing. Leaking occurs when an internal reference, i.e. a private field, gets passed
out, e.g. by a getter, which then allows to alter the referenced object. Capturing is the opposite:
When an object is passed to another object, e.g. by a setter, the existing reference can still be
used to do modifications to the object.

Since every reference may be used to modify the referenced object, object-oriented programs
can be hard to understand, to maintain, and to reason about. Especially modular verification
of functional properties typically requires control of how references are passed around and which
operations can be performed on them.

Ownership is one approach to solve this problem. It structures the object store hierarchically.
Each object either has zero or one owner. The owner is another object that has a certain control
over its children, i.e. the objects it owns. A context is the set of all objects having the same owner.
The objects having no owner are in the so-called root context. The contexts build a tree whose
root is the root context.

Ownership is a very powerful concept that can be used to solve various problems, for instance,
memory management, representation independence or program verification. Depending on the
problem to be solved, the owner has a different role.

For memory management and representation independence, the owner needs to be able to
control how the objects it (transitively) owns are accessed. This is what the owner-as-dominator
property is used for. It requires that all reference chains from an object in the root context to an
object o in a different context go through o’s owner.

For program verification, e.g. to prove correctness of invariants, a weaker ownership model
suffices. The owner-as-modifier property allows any object to reference an object o, but reference
chains that do not pass through o’s owner must not be used to modify o. This makes it possible
for the owner to control modifications to owned objects and therefore maintain invariants, but it
cannot control who reads data. This is done is by introducing references that can only be used
to read data. On the references that also allow to write data, the owner-as-dominator property is
enforced.

Universe types discussed in this report both enforce the owner-as-modifier discipline. We will
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8 1 Introduction

not discuss the owner-as-dominator property any further.

1.2 Universe Type System

The Universe Type System [11] is an ownership type system that enforces the owner-as-modifier
discipline with little annotation overhead. To enforce the owner-as-modifier property, the Universe
Type System allows you to modify objects that are either in the same context, or in the context
directly owned by you. It introduces two ownership modifiers which precede references that allow
to modify the object they are pointing to:

• peer denotes a reference pointing to an object in the same context as the current object
(this)

• rep references must only point to objects directly owned by this

As stated, the owner-as-modifier property allows arbitrary references between objects, as long
as they cannot be used to modify the referenced object. These are preceded by a third modifier:

• any annotates references that point to an object in an arbitrary context, but they must not
be used to alter it (in earlier versions of the Universe Type System, any used to be called
readonly)

In addition to reading from a reference, peer and rep references allow to write. Thus, peer
and rep are subtypes of any. There is no subtype relationship between peer and rep since they
denote orthogonal properties: One stays in the same universe whereas the other goes one step
down in the hierarchy. The subtype relationship is illustrated in Figure 1.1.

Figure 1.1: Subtype relationship between ownership modifiers: any is a supertype of peer and
rep

Because methods can possibly alter objects, they must not be called on any references. This is
a very severe restriction. Reference chains often go through many objects and information hiding
encourages to provide getters instead of permitting direct access to the reference. Getters do not
modify the object but just return a reference which would be safe. To solve that problem, it is
legal to call pure methods on any references. A pure method is annotated with the pure keyword,
and must not modify any objects. There exist different definitions of purity — we define that
pure methods must not call non-pure1 methods and must not alter fields of existing objects. It is
allowed to use local variables, e.g. creating an iterator that is used to walk through a list and find
the desired element.

1.2.1 Type Combinator

Ownership modifiers are always relative to this. Whenever a reference is accessed through another
object, the type combination operator * needs to be applied to determine the correct ownership
modifier relative to the origin of the access.

1Note that there is no keyword for non-pure methods. This is the default behavior.



1.2 Universe Type System 9

* peer rep any
peer peer any any
rep rep any any
any any any any

Table 1.1: Type combinator for the Universe Type System

The type combinator is applied from left to right: For a field access e.f, i.e. field f is accessed
through object e, we combine the ownership modifier of e with f’s ownership modifier. The
resulting modifier denotes how e.f relates to the object this access occurred from.

1.2.2 An Example

The following example clarifies how the Universe Type System is used.

Listing 1.1: An example how the Universe Type System is used

1 class UTSExample {
2 class Node {
3 peer Node next;
4 any Object elem;
5 }
6
7 rep Node head;
8
9 void add(any Object element) {

10 rep Node newHead = new rep Node();
11 newHead.elem = element;
12 newHead.next = head;
13 head = newHead;
14 }
15
16 pure any Object getHead() {
17 return head.elem;
18 }
19 }

Listing 1.1 shows a Java class with universe annotations. Inner class Node has a peer reference
to the next node of the list which means that the next and therefore all nodes reside in the same
context. The reference of type any Object to the element can also refer to a peer Object or rep
Object due to the subtype relationship.

On line 7, we define the reference pointing to the first node of the list. The rep modifier implies
that the current instance of UTSExample (this) is the owner of the node, and therefore every node.
The owner-as-modifier property ensures that no node can be modified, or deleted without going
through this. The ownership structure is shown in Figure 1.2.

Method add adds an element to the list. Since it is not pure, it can only be called on peer
or rep references. On line 10, a new instance of Node gets created. The rep modifier declares
the receiver (this) to be the owner. On line 11 and 12, the type combinator needs to be applied
since the access does not happen on this. On line 11, newHead is rep and elem is peer. The
combination results in rep and because head is rep as well, the assignment is valid.

Method getHead is a declared pure and can therefore be called on any references. It performs
no computations, calls no non-pure methods and does not make assignments.

The Universe Type System can cope with almost every feature the Java programming language
offers, including interfaces, arrays, static members, exceptions and inner classes. It cannot cope
with generic types though.
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Figure 1.2: Object structure of the presented example: Instances of UTSExample own their Node
objects due to the rep annotation. The nodes have a peer reference to the next node which
therefore is in the same context, and they have an any reference to an Object in an arbitrary
context. The dashed arrow depicts a read-only reference.

1.3 Generic Types

A data structure like a linked list or a map can contain arbitrary elements. These might have
any type, be it number or string, but you hardly ever put both in the same instance of the data
structure. Before generic types, there was no way to tell the compiler which type the elements are
of. This meant every time an element was extracted from the data structure, a cast was necessary
to get back a reference of a type it was possible to operate on. Casts are checked at runtime, i.e.
they are statically unsafe and might lead to an error when executing the program.

It is already been a few years since generic types have been added to some of the most widely-
used object-oriented programming languages, such as Java 5.0 or C# 2.0. Generic types look very
similar to templates in C++, but the actual inspiration is parametric polymorphism as found in
functional languages like ML and Haskell.

Generic types allow us to have data structures whose element type is more specific than the
language’s root of the type hierarchy, e.g. we can have a list of integers or a map of strings. By
being specific about the type of the elements, the compiler is able to check that we only insert
elements of the given type and thus can ensure that all elements in the data structure have this
type. As opposed to non-generic classes where casts are needed to extract elements, extracting
elements from generic classes is statically safe, i.e. we have stronger static guarantees.

Generic types are parameterized by so-called type variables. A type variable defines a type
which can be used within the class declaring the type variable. Although we do not know the exact
type when writing the class, we know that it will be some specific type. This allows assignments
of references having the same type variable as their type. To instantiate a generic type, a type
argument has to be given for each type variable of the class. For type checking, the type variables
are substituted by their type argument for the given instance of the generic type.

Listing 1.2: An example for a generic class and how to use it in Java 5

1 class Container<E> {
2 E element;
3
4 E get() {
5 return element;
6 }
7
8 void set(E element) {
9 this.element = element;

10 }
11 }
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12
13 class GenericClassExample {
14 void main() {
15 Container<String> containerOfString = new Container<String>();
16 containerOfString.set(”SomeString”);
17 String someString = containerOfString.get();
18
19 Container<Integer> containerOfInteger = new Container<Integer>();
20 containerOfInteger. set(new Integer (77));
21 Integer int77 = containerOfInteger.get();
22 }
23 }

Listing 1.2 shows an example for a generic class and how it is used, in Java 5. Container
is a generic class as you can see from its type variable E. Container is a simple data structure
holding a reference to an object of some type E in field element (line 2). It has a getter (line 4)
and a setter (line 8). Note that the type of element, the return type of method get and the type
of parameter element of method set are all of type E. On line 10, you see an assignment of a
reference of type E to another reference of type E. This is statically safe since all references of type
E are instantiated with the same type for one instance.

Method main of GenericClassExample shows two possible usages of the generic class Con-
tainer: once as a container for an element of type String (line 15) and once for an element of
type Integer (line 19). Note the similarity of the syntax: The class is declared as Container<E>,
i.e. its name is Container with one type variable E. On line 15, it is used as Container<String>
where Container obviously refers to the class and String is the type argument for type variable
E. This implicitly substitutes every occurrence of the type variable by its type argument for this
instantiation, and allows to retrieve the stored reference without cast, i.e. statically safe (line 17
and 21).

Java 5 (and many other languages) not only allow classes to be generic — methods can have
type variables as well. This allows methods to be generic and increases type safety, e.g. it is
possible to relate the return type of a method to the type of one of its parameters. We call type
variables that belong to a method method type variables as opposed to type variables of a class
which we call class type variables.

Type variables can have upper bounds. An upper bound restricts the set of type arguments for
this type variable to subtypes of the bound. Due to this restriction, we can use members of the
upper bound on references of the type variable. Note that type variables without explicit upper
bound have Object as their implicit upper bound.

Listing 1.3: An example for a generic method and a type variable with an upper bound

1 class Collections {
2 static <T extends Comparable> void sort(List<T> list) {
3 // ...
4 Comparable c1 = ...
5 Comparable c2 = ...
6 if (c1.compareTo(c2) < 0) {
7 // ...
8 }
9 // ...

10 }
11 }
12
13 class GenericMethodExample {
14 List<Number> listOfNumbers = new List<Number>();
15
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16 // fill the list ...
17
18 Collections . sort(listOfNumbers);
19 Collections.<Number>sort(listOfNumbers);
20 }

Listing 1.3 shows an excerpt of the static method sort defined in the class Collections of
the Java API2. Its purpose is to sort a list of comparable elements.

Method type variable T has an upper bound, Comparable. This means that T can only be
instantiated with subtypes of Comparable, i.e. types that implement the interface Comparable.
This restriction is necessary to be able to actually sort the elements. Imagine, a variable of
type List<Object> is passed to the method: The list cannot be sorted since there is no order
defined between the different elements. Here, since we know that all possible type arguments for
T implement Comparable, we can take two arbitrary elements, assign them to variables of type
Comparable and call method compareTo to tell us which of the elements has to come first in the
sorted list. Valid types for parameter list are, for example, List<Number> (as on line 18) and
List<String>.

Although Java has an inference algorithm for method type variables, i.e. it automatically infers
the types of all method type variables and checks if the call is valid, it is also possible to explicitly
specify their type. The syntax is as shown on line 19.

1.4 MultiJava and JML

MultiJava [8] is an open source project that adds open classes and symmetric multiple dispatch
to the Java programming language. Open classes allow programmers to add methods to existing
classes without editing those classes, or having their source code. Multiple dispatch allows the
code invoked by a method call to depend on the runtime type of all the arguments, instead of just
the receiver. It comes with a compiler that translates MultiJava code in normal Java bytecode
so it can be run on normal Java virtual machines. The compiler supports version 1.4 of the Java
language — but also has full support for generic types3 that were added in version 5 of Java.

The Java Modeling Language JML [18] is a specification language that can be used to specify
the behavior of Java modules. It makes the Design by Contract [1] approach of Eiffel [3] available
to Java. It is open source and builds on top of the MultiJava compiler, i.e. it extends it and
adds additional checks to enforce the JML contracts such as preconditions, postconditions and
invariants.

1.5 Examples

Throughout the report, we will apply every concept to a short example. These examples are
usually independent from each other — except for Chapter 2 where we use one example to illus-
trate most concepts of Generic Universe Types. In many examples, we refer to classes Data and
ExtendedData. These represent typical classes storing various properties with no business logic.

Listing 1.4: Shared code of the examples

1 class Data {
2 Object property;
3
4 Object getProperty() {
5 return property;
6 }

2It slightly differs from the actual method defined in the Java API. The reason is that it contains wildcards that
will be introduced in Section 3.4.

3This includes raw types and wildcards.
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7
8 void setProperty(Object property) {
9 this.property = property;

10 }
11 }
12
13 class ExtendedData extends Data {
14 }

Listing 1.4 presents classes Data and ExtendedData. Data holds a reference to a property
which is of type Object and has a getter and a setter. ExtendedData inherits from Data without
adding any members — its purpose is to illustrate in the examples how subtype relationships are
handled by the various concepts.

We omit access modifiers in the examples. We assume that you are familiar with the basic
classes of the Java API like Object, Number and List<T>. You can find the documentation of the
Java 5 API in [2].

1.6 Overview

In Chapter 2, we will first give an introduction to Generic Universe Types and then present the
addition of features in Java and describe the implementation. Chapter 3 explains the concepts of
raw types and wildcards, and describes their application to Generic Universe Types. An approach
to infer ownership modifiers in unannotated Java programs is illustrated in Chapter 4. Chapter 5
concludes this report and gives ideas for future work.
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Chapter 2

Generic Universe Types

In this chapter, we will explain Generic Universe Types. We give an informal description of the
core concepts such as viewpoint adaptation in Section 2.2 and the subtyping rules in Section
2.3. We then add Java’s concepts like arrays in Section 2.5, static members in Section 2.6 and
exceptions in 2.7. Defaulting of ownership modifiers is explained in Section 2.9. The chapter is
concluded by a description of the implementation in Section 2.10.

2.1 Basic Concepts

Based on the Universe Type System, a new type system was developed that includes generic types.
It is called Generic Universe Types [9] and it is the first type system that combines the owner-as-
modifier discipline with generic types. It gives even stronger static guarantees, yet has very little
annotation overhead.

Simply spoken, Generic Universe Types does to a generic type system what the Universe Type
System does to a non-generic type system. In a non-generic type system we can specify the type
of a reference. Ownership gives us the power to state that some object a reference is pointing to is
owned by us. With generic types, we are able to denote a collection of some specific type. Adding
ownership again, we are able to tell that we own some collection and that we also own the objects
in that collection.

In this chapter, we will go into detail and discuss how Generic Universe Types can be integrated
into Java 5. We take the core as it is defined in [9] and then add the various concepts of Java. We
use the same example throughout the chapter to explain the concepts behind Generic Universe
Types: a map storing key-value pairs in a linked list. Apart from calling a getter with the key
of the desired element, an iterator is available that allows to walk through all key-value pairs and
access them sequentially. A data structure with an iterator is a very popular example in the world
of ownership. Reason being that many ownership type systems cannot handle that case since there
are actually two objects that want to access the data structure: itself and the iterator. We will
show how Generic Universe Types handles this.

The keywords of Generic Universe Types are the same as with the Universe Type System. The
ownership modifiers peer, rep and any are used to annotate references and state which context
the referenced object resides in, or rather has to reside in. The keyword pure annotates methods
that do not modify state.

2.1.1 Types

We have to deal with two kinds of types in Java: primitive types and reference types. Primitive
types such as int, boolean or byte are value types, i.e. there exists no aliasing problems because
they are copied by value. Therefore, they are not annotated. In the following, we only have to
consider reference types.

15



16 2 Generic Universe Types

For reference types, we have non-variable types and type variables. Non-variable types consist
of an ownership modifier, a class name, and possibly type arguments. Type arguments might also
have ownership modifiers. Type variables on the other hand have no explicit ownership modifier,
as they are substituted by the type arguments when the generic class gets instantiated. You can
see that reference types have an arbitrary number of ownership modifiers.

To instantiate types in Java, we need constructors. Constructors are not part of the core of
Generic Universe Types, but we can easily add them. A constructor in Java unites the allocation
and initialization of an object. So, it simply is the first method that is called on the newly
allocated object. There is one restriction though: The types of the constructor’s parameters must
not contain rep modifiers. This is necessary because the rep modifier implies that this is the
owner of the object and since the object is about to be created, it cannot already own another
objects.

Listing 2.1: Generic class Pair designed to store a key-value pair

1 class Pair<PK, PV> {
2 PK key;
3 PV value;
4
5 Pair(PK key, PV value) {
6 this.key = key;
7 this.value = value;
8 }
9

10 pure PK getKey() {
11 return key;
12 }
13
14 pure PV getValue() {
15 return value;
16 }
17
18 void setValue(PV value) {
19 this.value = value;
20 }
21 }

Listing 2.1 shows the first class of our map with iterator example. It presents a class Pair
which stores a key-value pair. Key and value can be of arbitrary type as they are each typed by
a type variable: PK is the type for the key key. PV represents the type for value1. The class
offers getters for key and value. Since they do not modify state, they are annotated with the pure
keyword which allows them to be called on any references. Pair also offers a setter for the value,
i.e. it is possible to change the value assigned to a key. The initial key set by the constructor
cannot be changed. This is reasonable as you can easily create new instances of Pair.

The following example for a type declaration of Pair gives you a first idea how generic classes
are to be used in Generic Universe Types: peer Pair<rep Integer, any Object> denotes an
instance that lives in the same context as the object it is declared in. This is due to the so-
called main modifier which is peer in this example. It is the first ownership modifier of a type
declaration and defines the context the object is in, relative to this. The same holds for the
ownership modifier occurring in the type arguments: They are relative to the object they are
declared in and not to the class or object they instantiate. In this case, the key (rep Integer) of
the Pair has to be owned by this — the current Pair object — whereas the value (any Object)
can be in an arbitrary context.

1We use PK and PV instead of K and V to eliminate ambiguity between type variable names. We will have more
classes having two type variables for key and value.
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2.1.2 Interfaces

Interfaces is another feature that has been added to Generic Universe Types in order to make
them useful with Java. Their integration is straightforward: Ownership modifiers and pure anno-
tations have to be taken into account when checking properties such as subtype relationships and
implementations of methods.

Listing 2.2: Generic interface Link facilitating the use of a generic implementation of an iterator

1 interface Link<X> {
2 pure X getNext();
3 }

Interface Link shown in Listing 2.2 is a simple interface. Its type variable X represents the
return type of the only method getNext. The interface will be used by the generic implementation
of an iterator that can iterate over any data structure whose data element class implements this
interface.

Declaring a method pure forces the implementor of the method to stick to it, i.e. it must not
modify existing objects or call non-pure methods. The same applies to methods overriding a pure
method: It must again be pure. Since there is no keyword for a non-pure method, it is implicitly
added if a method not being declared pure overrides a pure method. It is also possible to declare a
constructor pure which then implies that no other object than the newly created one is modified.

Listing 2.3: Generic class Entry representing an entry in a map.

1 class Entry<EK, EV> extends Pair<EK, EV> implements Link<peer Entry<EK, EV>> {
2 peer Entry<EK, EV> next;
3
4 Entry(EK key, EV value, peer Entry<EK, EV> next) {
5 super(key, value);
6 this.next = next;
7 }
8
9 pure peer Entry<EK, EV> getNext() {

10 return next;
11 }
12
13 void setNext(peer Entry<EK, EV> next) {
14 this.next = next;
15 }
16 }

Class Entry presented in Listing 2.3 extends Pair and implements Link so it can be used as
a data element in a map, but at the same time use an iterator to walk through all entries of the
map. It inherits the methods from Pair to read the key, to read and write the value, and adds a
getter and a setter for next. The setter for next is not necessary to implement the Link interface,
but it is useful to rearrange the elements in the map, e.g. to delete an entry.

One interesting fact to point out is the usage of peer instead of any as the main modifier for
next. We could as well use any here because neither do we use the reference to modify the next
element nor do we call non-pure methods on it. The reason is that we enforce all entries linking
to each other to be in the same context, i.e. it is impossible to mistakenly link two entries that do
not belong to the same map.

2.1.3 Bounded Type Variables

As in Java, specifying an upper bound for a type variable in Generic Universe Types forces the
type argument to be a subtype of the bound. For references of a type variable type, the bound
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determines which operations are permitted. For example, if the main modifier of the upper bound
is any, modifications are prohibited like for non-variable types whose main modifier is any. Note
that the unbounded type variable has an implicit upper bound any Object, i.e. modifications are
not allowed.

Listing 2.4: Generic implementation of an iterator using the Link interface

1 class Iterator<T extends any Link<T>> {
2 T current;
3
4 pure Iterator(T first ) {
5 current = first ;
6 }
7
8 pure T getNext() {
9 T tmp = current;

10 current = current.getNext();
11 return tmp;
12 }
13
14 pure boolean hasNext() {
15 return current != null;
16 }
17 }

Listing 2.4 shows a very basic iterator. Iterator can iterate over arbitrary subtypes of any
Link as long as the type argument for T is the same as for Link’s type variable. This upper bound
has an interesting property: It contains itself in the upper bound which is allowed by Java and
Generic Universe Types. Since the main modifier of T’s upper bound is any, modifications to
current are prohibited.

For type variables having peer as the main modifier of their upper bound, their references point
to objects in the same context and therefore are safe to modify. On the other hand, rep must not
occur in upper bounds of class type variables for the same reason rep modifiers are not allowed
in constructors: Ownership modifiers of upper bounds are relative to the class in which they are
declared. Since the class is just about to be instantiated, it cannot be the owner of objects.

Java allows to have multiple upper bounds, i.e. it is possible to specify up to one class and an
arbitrary number of interfaces the type argument has to be a subtype of. Such types are called
intersection types. The syntax in the presence of ownership modifiers is T extends peer Data &
Comparable<T>, i.e. only the first bound has a main modifier. Although it is possible to give an
ownership modifier for each upper bound, this is not desireable. It is sufficient to have the most
specific ownership modifier at the beginning as they all define the same relationship of contexts.
If multiple bounds have a main modifier and these modifiers are not subtypes of each other, the
type variable is not instantiable. For that reason, we ensure that are main modifiers are subtypes
of the first main modifier and apply the main modifier of the first bound to all bounds.

2.2 Viewpoint Adaptation

We have explained that ownership modifiers are always relative to the class or the object they
occur in. For upper bounds of type variables, this means that they are relative to the generic class
declaring the type variable. Type arguments are relative to where the generic type declaration
occurs. This might be in a different class which means that the ownership modifiers have to be
adapted in order to validate the instantiation of a type variable, similar to the type combinator
in the Universe Type System. In Generic Universe Types, this extended form of combination is
called viewpoint adaptation.
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2.2.1 An Example

Viewpoint adaptation is needed when accessing a generic type through a chain of references. We
will show how this works by adding the Map interface to our example, and then show possible
usages.

Listing 2.5: Generic interface Map offering the two basic operations and an iterator

1 interface Map<MK, MV> {
2 void put(MK key, MV value);
3 pure MV get(MK key);
4 pure peer Iterator<any Entry<MK, MV>> iterator();
5 }

A simple interface for a map is presented in Listing 2.5. Map has two type variables for the type
of key and value. Method put adds a key-value pair to the map. Its counterpart get looks for the
value that belongs to key key and returns it. The signature of iterator needs some explanation:
The method returns an instance of Iterator that is in the same context as the Map itself. The
elements it iterates over are the entries of the map, i.e. key and value are accessible. The exact type
any Entry<MK, MV> implies that the iterator gives read-only access to map’s entries. Thus, the
non-pure methods setValue and setNext cannot be called which means that the map’s internal
structure cannot be modified although it is exposed. The downside is that safe modifications, such
as changing a value, are prohibited as well. We will show a solution to that problem in Section
2.8.

Listing 2.6: An example where viewpoint adaptation is required

1 class ID {
2 }
3
4 class ViewpointAdaptation {
5 void main() {
6 peer Map<rep ID, any Data> map = ...
7 peer Iterator<any Entry<rep ID, any Data> iterator;
8 iterator = map.iterator();
9 }

10 }

Listing 2.6 lists two possible usages of Map. In the first case, on line 6, the map map is in
the same context as the current instance of ViewpointAdaptation. The keys are objects of type
ID that are owned by this and the values are Data objects that belong to an arbitrary context.
Calling the iterator method requires viewpoint adaptation to determine the return type, i.e.
we have to adapt the return type peer Iterator<any Entry<MK, MV>> from the viewpoint peer
Map<rep ID, any Data> to the viewpoint this.

2.2.2 Adapting a Viewpoint

Adapting a type from a viewpoint to the viewpoint this comes down to combining the ownership
modifier of the first type with the second type since, at first, we do not care about the first type’s
type arguments but only need to know the relationship of the contexts of the two types which
is denoted by the main modifier of the first type. Keep in mind that the main modifier of the
first type states the relationship between its context and the context of the object it refers to.
The main modifier of the second type states the relationship between its context and the context
it refers to. As you can see, viewpoint adaptation can be performed with two types, or with an
ownership modifier and a type.

When combining an ownership modifier u with a type, i.e. potentially several ownership
modifiers, we use the type combinator, as it was already defined and applied in the Universe Type
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System, to combine ownership modifier u with each ownership modifier of the type. The type
combinator for two ownership modifiers is shown in table 2.1.

peer rep any
peer peer any any
rep rep any any
any any any any

Table 2.1: Resulting ownership modifier when combining two ownership modifiers. It is equal to
the type combinator from the Universe Type System shown in Table 1.1.

As a last step, we have to substitute the type variables by their type arguments. The type
arguments belong to the first type and therefore do not need to be adapted since their viewpoint
is already this.

Going back to the example from Section 2.2.1, this means combining type peer Map<rep ID,
any Data> with type peer Iterator<any Entry<MK, MV>>. We first take the main modifier of
the first type, peer and combine it with every modifier of the second type peer Iterator<any
Entry<MK, MV>>. The result is the exact same type since peer combined with peer is again peer
and peer with any is any. After substituting the type variables MK and MV by their type arguments
rep ID and any Data, we get peer Iterator<any Entry<rep ID, any Data>> as type for the
iterator iterator.

2.2.3 Situations Requiring Viewpoint Adaptation

We have presented how viewpoint adaptation is applied to the return type of a method when the
method is not called on this. As you might expect, it works the same when a field is accessed
on another reference: Instead of the return type of the method, the type of the field has to be
adapted.

Viewpoint adaptation is also required to check the validity of the arguments of method and
constructor calls, i.e. the viewpoint of the parameter type has to be adapted to the argument’s
viewpoint. For constructors, we combine the type of the object to be created with the parameter
types. For method calls, we take the type of the receiver of the call and combine it with the
parameter types. This is done for all parameters and checked with their corresponding argument.

Instantiating type variables needs viewpoint adaptation as well. We have to make sure that the
given type argument is a subtype of the type variable’s upper bound. Before we can perform the
subtype check, the upper bound’s viewpoint has to be adapted to the type argument’s viewpoint.
This is done by adapting the viewpoint of the upper bound to the viewpoint this.

We will show an application in the following example.

Listing 2.7: A simple implementation of the Map interface using a linked list

1 class LinkedMap<LK, LV> implements Map<LK, LV> {
2 rep Entry<LK, LV> head;
3
4 void put(LK key, LV value) {
5 head = new rep Entry<LK, LV>(key, value, head);
6 }
7
8 pure LV get(LK key) {
9 peer Iterator<any Entry<LK, LV>> iterator = iterator();

10 any Pair<LK, LV> current;
11 while (iterator .hasNext()) {
12 current = iterator .getNext();
13 if (current.getKey().equals(key)) {
14 return current.getValue();
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15 }
16 }
17
18 return null;
19 }
20
21 pure peer Iterator<any Entry<LK, LV>> iterator() {
22 return new peer Iterator<any Entry<LK, LV>>(head);
23 }
24 }

LinkedMap presented in Listing 2.7 represents a simple implementation of the Map interface.
Internally, it uses a linked list consisting of Entry objects to store key-value pairs. We have the
pure method get retrieving a value from the map based on the passed key. It uses an iterator to
walk through the internal list and return the value if its key matches the given key. Otherwise,
null is returned. Note that, depending on the definition used for purity, method iterator must
not be pure because it creates a new object.

In method put on line 5, a new instance of an Entry owned by this is created and the new
entry is inserted at the beginning of the list2. To check the validity of this call, we have to combine
the type of the object to be created with each parameter type. The most interesting case is the
third parameter next. We combine rep with type peer Entry<EK, EV> and get rep Entry<EK,
EV> as a result before substituting the type variables. The final result of the viewpoint adaptation
is determined by substituting the type variables by their type arguments, which are type variables
as well. We get rep Entry<LK, LV> as the viewpoint adapted type for the third parameter of the
constructor. It remains to check that the argument of the call, head’s type rep Entry<LK, LV>,
is a subtype of the viewpoint adapted parameter type. The types of the other two parameters
of Entry’s constructor are type variables. The viewpoint of type variables does not need to be
adapted as they are substituted by their type arguments, and type arguments are always relative
to this.

Method iterator presents another case where viewpoint adaptation is required: When Iter-
ator’s type variable T is instantiated, the type argument any Pair<K, V> has to comply with its
upper bound any Link<T> as shown in Listing 2.4. Before we can check the subtype relationship,
the upper bound’s viewpoint has to be adapted to the type argument’s viewpoint. We combine
the type itself with the upper bound, i.e. peer Iterator<any Pair<K, V>> is combined with
any Link<T> resulting in any Link<any Pair<K, V>>. In the next section, we will explain why
this is a valid subtype.

Figure 2.1: Ownership structure of LinkedMap, Entry and Iterator

2For simplicity, we assume that no two values with the same key are added to the map.
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2.2.4 Preserving Type Safety

Viewpoint adaptation as we have presented it so far, is not type safe. We will illustrate this with
the following example.

Listing 2.8: An extension to the example showing the problem with viewpoint adaptation as we
have presented it so far

1 class ExtendedIterator<T extends any Link<T>> extends Iterator<T> {
2 void setCurrent(T current) {
3 this.current = current;
4 }
5 }
6
7 interface AlternativeMap<AK, AV> {
8 // ...
9 peer ExtendedIterator<rep Entry<AK, AV>> iterator();

10 }
11
12 class ID {
13 }
14
15 class AlternativeMapClient {
16 void main() {
17 rep AlternativeMap<peer ID, peer Data> alternativeMap = ...
18 rep ExtendedIterator<any Entry<peer ID, peer Data>> iterator;
19 iterator = alternativeMap.iterator(); // invalid assignment
20 iterator .setCurrent( /∗ ... ∗/ );
21 }
22 }

Listing 2.8 presents a more powerful iterator named ExtendedIterator which extends the
known Iterator and has a setter for the current entry of the iterator, i.e. it basically allows
you to jump back and forth. Furthermore, we have an alternative interface for a map, called
AlternativeMap which fits exactly the implementation of LinkedMap: It forces the implementor
to be the owner of the entries by using the rep modifier, as opposed to Map which allows the entries
to be in an arbitrary context due to the any modifier.

Calling iterator on alternativeMap means combining rep AlternativeMap<peer ID, peer
Data> with peer ExtendedIterator<rep Entry<AK, AV>>. The result — based on what we have
presented so far – is type rep ExtendedIterator<any Entry<peer ID, peer Data>>. On line
20, iterator’s setCurrent method now allows us to pass any Entry<peer ID, peer Data> since
that is the type argument for type variable T.

This is obviously not type-safe and therefore wrong. It happened because rep combined with
rep resulted in any. Although we actually know the owner, we cannot express it since we do not
have an ownership modifier describing this relationship and we take any. The solution is, whenever
a rep modifier occurs in one of the type arguments of the second type, to change the main modifier
to any. This prohibits modifying the object and therefore ensures type safety. In the example
above, the correct viewpoint adapted type is any ExtendedIterator<any Entry<peer ID, peer
Data>>.

We present an alternative solution in Section 3.6.

2.3 Subtyping

In Figure 1.1, we have presented the relationship between the various ownership modifiers: any is
at the top of the hierarchy and peer and rep are subtypes of it. peer and rep do not have any
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kind of subtype relationship. In this section, we are looking at subtyping in general.
The following basic rules apply to subtyping in Generic Universe Types:

• Subtyping is always stricter than in Java [14], i.e. if a type A is not a subtype of type B in
Java, A is not a subtype of B in the presence of ownership modifiers either.

• Subtyping is still transitive, i.e. if B is a subtype of A and C is a subtype of B, C is also a
subtype of A.

• Subtyping is still reflexive, i.e. A is a subtype of A.

In order for a type A to be a subtype of another type B, A’s main modifier has to be a subtype
of B ’s main modifier. For example, rep Object is a subtype of any Object, peer ExtendedData
is a subtype of peer Data and any Data is a subtype of any Object. As a counter-example, rep
ExtendedData is not a subtype of peer Data.

These rules are sufficient for non-generic types. When we add generics, the rules get slightly
more complicated: Basically, the ownership modifiers of type arguments have to be equal in order
for two types to be in a subtype relationship. For example, peer List<peer Data> is a subtype
of any List<peer Data>, rep List<rep ExtendedData> is a subtype of rep Collection<rep
ExtendedData>3 and peer List<rep Collection<peer Object>> is a subtype of any List<rep
Collection<peer Object>>. As counter-examples, rep List<peer Object> is not a subtype of
rep List<any Object> and peer List<rep Data> is not a subtype of peer Collection<any
Data>.

We can loosen the above equality constraint of all ownership modifiers by allowing a lim-
ited covariance. As opposed to Java where we have invariance, we can permit limited covari-
ance with respect to ownership modifiers. The intolerable behavior with covariance is that a
List<ExtendedData> can be seen as a List<Data> and Data objects can be inserted into the list
of ExtendedData which is illegal. Let us now consider the following type: any List<any Data>.
The main modifier is any which disallows modifications to the list. Since the behavior stated above
cannot occur, we can allow covariance, e.g. peer List<peer ExtendedData> could be a subtype
of any List<any Data>. This though contradicts one of the basic rules saying that a type not
being a subtype of another in Java, is not a subtype in the presence of ownership modifiers either.
Therefore, we limit covariance to ownership modifiers, i.e. peer List<peer Data> is a subtype
of any List<any Data>. Note that the class may vary, e.g. rep List<rep Data> is a subtype of
any Collection<any Data>.

The idea is to allow covariance for ownership modifiers if the supertype’s main modifier is
any. In the example, since any List<any Data> has any as its main modifier, the ownership
modifier of Data in peer List<peer Data> can be peer and we still have a subtype relationship.
Note that the main modifier of the subtype is irrelevant. As counter-examples, any List<peer
ExtendedData> is not a subtype of any List<any Data> and peer List<rep Object> is not a
subtype of any Collection<peer Object>. Note that this informal description using examples
is vague. We refer to [9] for a formal definition.

2.4 Additional Rules

In the preceding sections, we have presented an almost complete overview of Generic Universe
Types. In this section, we are going to add some rules necessary to ensure type safety.

The only ownership modifier that must occur in parameter types of pure methods is any. Why
is that? We know that methods declared pure can be called on any references, i.e. from any
context. Furthermore, we know that when we check the validity of the arguments, we first have to
combine the receiver type with the declared parameter type to adapt the viewpoint before we can
perform the subtype check. If the receiver type is any, the viewpoint adaptation will yield any
which is not type-safe. Therefore, we require parameter types of pure methods to only have any

3List<E> is a subtype of Collection<E> in Java.
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modifiers. Although this might look restrictive, it is not: Pure methods must not change state,
and due to the subtyping rules (including limited covariance) we can still pass any type we could
pass if other modifiers were allowed.

Similar to that, methods that are not called on this must not contain rep modifiers in their
parameter types. Again, combining a type different from this4 with a rep modifier yields any
which then leads to not type-safe calls. The same applies to upper bounds of method type variables:
As opposed to class type variables, method type variables may have rep modifiers in their upper
bound. Because of that, we have to ensure that calls to such methods only happen on this.

The exact same problem also exists for field updates: Imagine you change a rep field through
a peer or rep reference. The combination of the two is an any reference, thus allows you to
assign a value of type any to it which is not type-safe. We use the same idea to prevent this from
happening: rep references can only be changed on this.

Furthermore, we do not support method overloading based on ownership modifiers. In Java,
it is possible to have two methods void foo(Data d) and void foo(ExtendedData d) with the
same method name but different parameter types. The compiler then selects one of the methods
based on the static type of its arguments5. One might now extend this by having two methods that
are only different with respect to the ownership modifiers, e.g. two methods void bar(rep Data
o) and void bar(peer Data o). This is not supported. Methods that are that similar usually
do the same, otherwise you might want to consider giving them a different name. If they do the
same and you do not care whether you get an object in the same context or an object owned by
you, you probably did something wrong in your ownership hierarchy which you have to fix.

2.5 Arrays

You are now familiar with the core concepts of Generic Universe Types. It is time to integrate
the concepts of Java to make them work together. In this section, we are going to discuss arrays.
Arrays were part of the Universe Type System, but are not included in the core of Generic Universe
Types.

On the one hand, an array is an object itself. On the other hand, it is a collection of values or
references, depending on whether the component type is a primitive type or a reference type. For
arrays of primitive types, the meaning of the ownership modifier is clear: It denotes the context
the array object is in. An example is peer int[] intArray, where intArray is an array in the
same context as this and whose component type is int. Since int is a primitive type, values are
copied and there is no need for an ownership modifier for the component type.

Arrays of reference types are different: Not only do we need to know which context the array
object resides in, but we also need to know where the objects referenced by the array are. Thus,
arrays of reference types have two ownership modifiers. The first denotes the context of the array
itself — the second states the context of the referenced objects. One questions remains: Is the
second ownership modifier relative to this or to the array? In the Universe Type System, it was
decided the second ownership modifier be relative to the array, i.e. rep peer Object[] objArray
declares an array that is owned by this and whose referenced objects are owned by this as well
since they are in the same context as the array itself. Figure 2.2 shows the ownership structure.
This interpretation of the second ownership modifier renders rep as ownerhsip modifier for the
component type useless: An array has no operations and thus cannot be the owner of objects.

This interpretation was reasonable for the Universe Type System, but it would be inconsis-
tent with Generic Universe Types. When thinking about ownership modifiers in Generic Universe
Types, we know that their viewpoint is always the place where the are declared. rep Collec-
tion<peer Object> objColl denotes a collection objColl owned by this. The elements are in
the same context as this, i.e. this and the collection’s elements have the same owner. This
hierarchy is shown in Fgure 2.3.

4Combining this with an ownership modifier u yields u.
5MultiJava even selects the method based on the runtime type.
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Figure 2.2: Ownership structure of rep peer Object[] objArray as it was interpreted in the
Universe Type System

Figure 2.3: Ownership structure of rep Collection<peer Object> objColl

Comparing the two types rep peer Object[] and rep Collection<peer Object>, we see
that they look similar and should have the same ownership structure for consistency. But their
ownership diagrams are different due to the interpretation of the component modifier of the array
type. This is misleading and might cause confusion, especially when changing the interpretation
from an array to a generic Collection, or vice versa. Thus, for Generic Universe Types, we
changed the interpretation of the second ownership modifier to be interpreted relative to this
as well which solves the problem. Figure 2.4 shows the new ownership structure of the new
interpretation and one can see that it now looks equal to the one of the collection. Correctness of
the new semantics has been proven by Martin Klebermaß in his Master’s thesis [17].

Figure 2.4: Ownership structure of rep peer Object[] objArray as it is interpreted in Generic
Universe Types

Another case to consider are arrays whose component type is a type variable such as T[]
genericArray. Although its component type is a reference type, such an array only has one own-
ership modifier: peer T[] genericArray is in the same context as this. The second ownership
modifier is part of the type variable T which is relative to where the type argument for the type
variable is defined.
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2.6 Static Members

The keyword static can be used with various Java constructs: fields, methods, inner classes and
inner interfaces. From a universe point of view, static inner classes and static inner interfaces are
not very interesting as they are simply another way of organizing your code. Instead of putting
them in their own file, they are embedded in another class or interface.

Static fields are more interesting. A static field is a reference that is available per class instead
of per object as it is the case for non-static fields. Although it is possible to access static fields
through an instance, it is recommended to access them through their class name. Static fields are
used for example to implement the singleton pattern [13] in Java.

Since static fields belong to no instance, we do not know which context they are in and therefore
which objects can modify the objects they reference. The simplest approach is to not allow
modifications through static fields at all, i.e. to treat them as any references. Other possible
approaches for the Universe Type System are discussed in [15].

Disallowing modifications through static fields sounds like a severe restriction, but most static
fields in Java are declared final which prohibits assigning another object to such a reference.
From that you can see that changing static references is discouraged. Note the difference between
any and final: any forbids modifications through the object, e.g. its fields, whereas final does
not allow changing the object assigned to the reference. Good programming style tries to avoid
global variables, and static fields basically are global variables. Relying on them can be bad with
respect to multi-threading, and especially in Java where we can have different class loaders or the
code running on several virtual machines concurrently, static is not always static [20].

Static methods are not bound to an instance, either. They can be called from every context
without having an instance of the class they belong to. The idea is that static methods are
executed in the same context as the caller. For that reason, static methods cannot be called on
any references, i.e. we need to have a current context6. In the signature of static methods, any and
peer may occur where peer refers to the context of the caller. rep on the other hand is forbidden
since we do not have a this object in a static context and cannot own any objects. Note that this
rule also applies to types inside a static method’s body and to static initializers.

Listing 2.9: Class Maps offering a method that drops duplicates in a map
1 class Maps {
2 static <K, V> peer Map<K, V> dropDuplicates(peer Map<K, V> map) {
3 peer Map<K, V> result = new LinkedMap<K, V>();
4 peer Iterator<any Entry<K, V>> iterator = map.iterator();
5 while (iterator .hasNext()) {
6 any Pair<K, V> current = iterator.next();
7 if ( result .get(current.getKey()) == null) {
8 result .put(current.getKey(), current.getValue());
9 }

10 }
11 return result;
12 }
13 }
14
15 class StaticCall {
16 void main() {
17 peer Map<rep Integer, any Object> peerMap = ...
18 rep Map<rep Integer, any Object> repMap = ...
19 // insert key−value pairs ...
20 peerMap = peer Maps.<rep Integer, any Object>dropDuplicates(peerMap);
21 repMap = rep Maps.<rep Integer, any Object>dropDuplicates(repMap);

6The current context is important to initialize objects. For dynamic casts, it is necessary that new objects are
created in a specific context.
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22 }
23 }

Listing 2.9 gives an example for a static method and how to call it. We define a class Maps
that — similar to the Collections class in the Java API — provides static methods that either
modify the existing collection or create a new collection with a certain property. Here, we give the
implementation for a method dropDuplicates whose purpose it is to create a new map having
the same key-value pairs but all keys are unique. This is done by creating a new map, iterating
over all entries of the passed map and add each key-value pair that does not yet exist in the newly
created map. To check if a key already exists in the new map, we try to retrieve the value that
belongs to it. If it is null, we know that the key does not yet exist7.

Class StaticCall shows the two ways a static method can be called: in the current context,
i.e. in the context this belongs to, or in the context owned by this. To call the method in the
current context, peer has to be added before the name of the class – to call it in the context you
own, rep has to be used. This triggers viewpoint adaptation, i.e. peer or rep is combined with
the parameter types and the return type of the static method.

As you can see from the example, we explicitly specify the type arguments for the method type
variables although we mentioned in Section 1.3 that an algorithm exists that can automatically
infer type arguments for method type variables. This algorithm is designed for Java and is inher-
ently complex as it has to deal with the various features Java offers in terms of generics such as
multiple upper bounds and wildcards8. Although we suspect that it can be adopted — probably
with slight changes — to Generic Universe Types, we have not done this as the original algorithm
is missing in the compiler we did our implementation. For more details on the implementation,
we refer to Section 2.10.

2.7 Exceptions

In this section, we are going to discuss how to ensure type safety in Generic Universe Types in the
presence of exceptions. Exceptions are meant for cases when something unlikely happens, e.g. if
a connection to a server cannot be established or a buffer overflows. Bad programmers also tend
to use them as a form of control flow. Apart from the type of the exception, they mostly carry
information telling why it has been thrown.

There are two ways to deal with them: They can be caught using a catch statement and then
handled, e.g. attempt to reconnect or flush the buffer. If it is unknown how to recover from the
exception, it can also be rethrown. For so-called unchecked exceptions this happens automatically
if no catch clause is present. For checked exceptions, a throws statement has to be added to the
method signature.

From this description you can see that, when an exception is thrown, we have no idea where
or how it will be handled, because we usually do not know who will call the method that throws
the exception. And, an exception is hardly ever modified. It contains information about the error
case but it does not offer methods to recover from it.

The simplest solution to deal with exceptions is sufficient: All exceptions are read-only by
default, i.e. their ownership modifier is any. In Java, exceptions must not be generic due to the
lack of generic support at runtime9. So, this solution — which is the same as for the Universe
Type System — is fine for Generic Universe Types as well. With exceptions being read-only, we
do not care in which context they end up. Since there usually is no need to modify exceptions,
this is not too restrictive either.

Alternative solutions for the Universe Type System and other ownership type systems are
discussed in [10].

7We assume the value of a key-value pair to be not null.
8Wildcards are covered in Section 3.4.
9We will talk about runtime support of generic types in Chapter 3.
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2.8 Multiple Modifying Objects

Classes Pair and Entry offer setters for the value and the next entry which have not been of use
yet. Since we are enforcing the owner-as-modifier discipline, these methods can only be called by
the owner or peers. In the implementation of Map that we are using, the map itself is the owner
of the entries. This is sensible if we want to prove invariants about the map’s entries. In the
following, we are showing how the map itself can make use of the iterator to modify its entries.

Listing 2.10: ExtendedLinkedMap adds methods to replace a value and to delete a key

1 class ExtendedLinkedMap<K, V> extends LinkedMap<K, V> {
2 peer Iterator<rep Entry<K, V>> internalIterator() {
3 return new peer Iterator<rep Entry<K, V>>(head);
4 }
5
6 void replace(K key, V value) {
7 peer Iterator<rep Entry<K, V>> iterator = internalIterator();
8 while (iterator .hasNext()) {
9 peer Pair<K, V> current = iterator.getNext();

10 if (current.getKey().equals(key)) {
11 current.setValue(value);
12 }
13 }
14 }
15
16 void delete(K key) {
17 peer Iterator<rep Entry<K, V>> iterator = internalIterator();
18 rep Entry<K, V> previous, current;
19 while (iterator .hasNext()) {
20 current = iterator .getNext();
21 if (current.getKey().equals(key)) {
22 if (previous != null) {
23 previous.setNext(current.getNext());
24 } else {
25 head = current.getNext();
26 }
27 } else {
28 previous = current;
29 }
30 }
31 }
32 }

ExtendedLinkedMap shown in Listing 2.10 subclasses LinkedMap and adds functionality to
replace a value and to delete a key. These methods are used to demonstrate how the same iterator
that cannot alter the map from the outside, can be used internally to modify it. Note that these
methods are not available through the Map interface.

Method internalIterator is used internally to retrieve an iterator that allows to modify the
Entry objects. The difference to the iterator providing access the map from the outside is Entry’s
ownership modifier: For internal use it is rep whereas for external use it is any. The necessity
of this distinction is explained in Listing 2.8 and its explanation. In short, this is needed since
viewpoint adaptation would render the internal iterator useless. Thanks to the rep reference, we
can call non-pure methods to modify the entries.

Method replace uses the internal iterator to walk through the list of entries and replace the
value of each entry with the given key by the new value. Method setValue is used to update the
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value.
In method delete, each entry having a specific key is deleted. Again, the internal iterator is

used. Entry’s method setNext is called on the previous entry to have its next reference point to
the next entry after the one to be deleted. Java’s garbage collector will automatically remove the
unused entry.

You might now be wondering if it was possible to have an iterator that could be used to modify
the entries from the outside, e.g. to assign a different value to a key. The answer to that question
is somewhat complicated. The owner-as-modifier discipline requires to go through o’s owner for
every modification of object o. Applying this property to the Entry objects means that each
modification has be initiated by the corresponding Map, i.e. the iterator can definitely not directly
modify the entries. But, since the iterator and the map are in the same context, the iterator could
call non-pure methods on the map that altered its entries. If we wanted to change the value of an
entry, this would require the iterator to pass the entry and the new value to the map which then
updates it.

It is not that simple though: The iterator only has an any reference to the Entry which it can
pass on. The map needs a read-write reference, i.e. in this case a rep reference. A cast is the only
way to solve this but, this is not statically checkable and therefore not desirable. Alternatively,
the map could look up the entry in the list and then modify it. In terms of runtime, this comes
down to the same as calling the replace method.

Another approach is to have peer references to the entries, i.e. instead of owning its Entry
objects, they reside in the same context as the map, and therefore the iterator. This allows both,
the map and the iterator, to modify them. This solution results in a less deep ownership hierarchy
and therefore is not suited to prove certain invariants and properties. As you can see, there is
always a trade-off between strong static guarantees (deep ownership structure) and flexibility (flat
ownership structure).

Figure 2.5: Alternative ownership structure for LinkedMap, Entry and Iterator

2.9 Defaulting

Although Generic Universe Types already have very little annotation overhead, it can be further
reduced by using appropriate defaults. These defaults are applied whenever an ownership modifier
is missing, or it was intentionally left out because the default is fine. Apart from reducing the
annotation overhead, defaulting is designed to make normal Java code, i.e. code without ownership
annotations, valid with respect to the rules of Generic Universe Types.

This is achieved by putting all objects in the root context. Based on that, peer is the obvious
choice as the default ownership modifier. Basically, all missing ownership modifiers are implicitly
set to peer, e.g. List<Data> becomes peer List<peer Data>. New instances are also implicitly
annotated with peer, e.g. new Object() becomes new peer Object() which ensures that new
objects are created in the same context and therefore, peer references are statically correct.

As opposed to type arguments, the ownership modifiers for upper bounds of type variables de-
fault to any. This choice is reasonable since most objects being accessed through a reference whose
type is a type variable, are just read or passed around, e.g. elements in collections. Therefore,
peer would be too restrictive. Furthermore, for type variables without upper bound, this yields
any Object as an upper bound which is more general than peer Object.

References to boxing types of Java’s primitive types, e.g. Integer for int or Boolean for
boolean, as well as String default to any. Since they are immutable, this is a reasonable choice.
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For exceptions, defaulting is different: As mentioned, these are read-only by default since they
cross universe boundaries. Therefore, the reference in the catch clause defaults to any, e.g. catch
(Exception e) becomes catch (any Exception e). As well as static fields. Since they do not
belong to a specific context, they default to any, e.g. static Object o becomes static any
Object o.

The default modifier for method signatures of pure methods is any, e.g. pure Data get-
Description(Object o) becomes pure any Data getDescription(any Object o). Further-
more, methods overriding a pure method automatically become pure as well. A very special case
are arrays of reference types with only one ownership modifier. In such a situation, this modifier
becomes the component (second) modifier and the main (first) modifier defaults to peer.

Defaulting allows to annotate Java programs in multiple steps. Beginning with a valid program
that has all objects in the same context, a deeper ownership hierarchy can be created by adding
more and more contexts. These give you a better understanding and better control of the program.
In Chapter 4 we discuss how a deep universe hierarchy can be inferred.

2.10 Implementation

We have implemented all static checks of Generic Universe Types as presented in this chapter10

in the MultiJava [8] compiler mjc which makes it available to the JML tools [18]. Note that
changes to JML were minimal. In combination with the dynamic checks that are currently being
implemented by Mathias Ottiger [22] as part of his Master’s Thesis, you have full tool support for
Generic Universe Types. This section will only deal with static checks.

We know that Generic Universe Types is a superset of the Universe Type System. The only
difference is the interpretation of the second ownership modifier for arrays of reference types (see
Section 2.5). Therefore, we built our implementation on top of the existing implementation for
the Universe Type System which was done in MultiJava as well. We do not expect issues with the
change in the array semantics as these rare cases can be changed quickly.

2.10.1 General Design Decisions

On each passed source code file – called compilation unit – mjc performs several passes, i.e. it
executes the task on each compilation unit. Examples for passes are parsing, checking correctness
of signatures or typechecking methods.

For our implementation, we intended to add a new pass at the end that performs all checks
that are necessary to ensure the type rules of Generic Universe Types – so-called universe checks.
The reason was that the implementation for the Universe Type System performed their checks
in several passes, i.e. the checks were distributed across the code base and therefore hard to
understand. After taking a closer look at the situation, it turned out that this approach had some
considerable disadvantages:

• The passes change the abstract syntax tree and the semantic table that prevent us from
performing viewpoint adaptation. For example, the typechecking pass substitutes type vari-
ables by their type arguments which makes viewpoint adaptation impossible: We do not
know if a type has to be adapted, or if it is a substituted type variable that does not need
to be adapted.

• All the passes share is the abstract syntax tree and the semantic table. This means that a
lot of information that is computed by other passes had to be recomputed as it is not stored.
This adds additional complexity to the implementation and also slows down the compiler.

Due to these reasons, we decided to continue performing universe checks along the way in other
passes. Yet to make our part of the implementation easier to read, understand and maintain, we
factored out as much of the code as possible in classes only dealing with the semantics of Generic

10The only exception is arrays whose component type is a type variable, e.g. T[].
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Universe Types. All classes of Generic Universe Types are prefixed by CUniverse. We also
maintained a uniform naming style for methods performing universe checks that are placed in
common code.

2.10.2 Changes to the Syntax

Thanks to the existing implementation for the Universe Type System, changes to the syntax were
minimal: What we refer to as main modifiers was already allowed. All we had to do was allow-
ing ownership modifiers in declarations of type variables (namely the upper bounds) and type
arguments. The definitions of the syntax dealing with these two occurrences are jTypeVari-
ableDeclaration and jTypeParameter.

Storing the ownership modifiers was straightforward: CClassType, the base class of all reference
types, contained a field named universe that stored the ownership modifier. For upper bounds
of type variables and type arguments, which are subtypes of CClassType as well, this field was
not used. With Generic Universe Types it now is.

Another important change to the syntax was the introduction of the any keyword. We added
it to the rule mjUniverseReadonlySpec. Throughout the code, you will not find references to the
any keyword. In class names and error messages we still refer to it as readonly.

For the lexer and parser, MultiJava uses ANTLR [4] which allows to have Java code in the
parser definition. Therefore, we have some tasks for Generic Universe Types that are coded in the
grammar Mjc.g:

• Defaulting of upper bounds to any happens in rule jTypeVariableDeclaration. If the type
variable has no explicit upper bound, we use any Object. If the type variable has multiple
upper bounds, we ensure that all main modifiers are assignable to the main modifier of the
first bound and apply the first main modifier to all other bounds.

• The array semantics for the Universe Type System prohibited the second array modifier from
being rep. With the new semantics, this is legal. We removed the checks in jClassTypeSpec
and jNewExpression.

2.10.3 Viewpoint Adaptation

Before we implemented viewpoint adaptation, we had to add an additional ownerhsip modifier:
The this modifier is unknown to the Universe Type System. In Generic Universe Types, it is used
to represent the self-references this and super. We added class CUniverseThis as a subtype of
the base class of all ownership modifiers, CUniverse. All subclasses of CUniverse are singletons.

The type combinator of the Universe Type System was implemented in CUniverse. It offered a
static method named combine which took two ownership modifiers and returned the combination
of them.

In Generic Universe Types, the type combinator is known as viewpoint adaptation, and is a lot
more complicated. We decided to give it its own class: CUniverseViewpointAdaptationService.
As the name suggests, it is a service class which means that it is not instantiable and only has
static methods. That way, its functionality is available to all classes.

Viewpoint adaptation is implemented in CUniverseViewpointAdaptationService exactly as
it is formally specified in [9] in Section 3.2. We define the overloaded method combine and a few
helper functions:

• CUniverse combine(CUniverse first, CUniverse second) combines the ownership mod-
ifier first with second and returns the resulting modifier. It is the implementation of . ::
OM × OM → OM.

• CClassType combine(CUniverse modifier, CClassType type) combines the ownership
modifier modifier with type and returns the resulting type. It implements . :: OM ×
sType → sType.
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• CUniverse combineM(CUniverse modifier, CClassType type) is a helper function to adapt
a type with respect to a ownership modifier. It returns the correct main modifier. It imple-
ments .m :: OM × sNType → OM.

• boolean containsRepModifier(CClassType type) looks for the rep modifier in the given
type. It returns true if there is at least one. This method is overloaded: It also takes an
array of CClassTypes and checks all of them for the rep modifier.

• CClassType combine(CClassType first, CClassType second) combines the type first
with the type second and returns the resulting type. It is the implementation of . ::
sNType × sType → sType.

There is one difference to the formal specification: Method combine adapting a type w.r.t. a
type does not substitute the type parameters of a generic type by their type arguments. Instead it
just ignores them because they are substituted along the way when it is necessary for further checks.
Yet, we have to substitute part of the type variables before performing viewpoint adaptation: Since
we did not define lookup functions as they are outlined in Section 3.4 of [9], we need to substitute
type variables of inherited members by their instantiations in the current class. This is done by
method substituteInheritedTypeVariables which modifies the type to look as if it were defined
in the current class, i.e. the type returned by method substituteInheritedTypeVariables equals
the type returned by the lookup functions.

The combine methods do not modify the passed types but clone them using Java’s clone
method. This is necessary as the same type might be used in multiple statements of the abstract
syntax tree. These might have to be adapted to different viewpoints which we do not know and
therefore do not want to change.

2.10.4 Subtyping

Subtype relationships of types are checked in method descendsFrom of class CClass although the
method actually looks at types, not classes. The reason is that MultiJava had already existed
before generic types were added to Java. Due to that, generics are not completely well integrated,
but rather built on top.

To add the subtyping rules of Generic Universe Types, we had to integrate them into the
existing methods that check the subtype relationship in Java. If we had decided otherwise and
had built our own subtyping algorithm, this would have required to traverse the class hierarchy
twice for each subtype check.

Furthermore, it is not enough to apply subtyping rules of Generic Universe Types when universe
checks are turned on, and use Java’s subtyping rules otherwise. For example, when looking up a
method based on its receiver type, name and the types of the arguments, we use Java’s subtyping
rules for various reasons: First, we would have to perform viewpoint adaptation on the method’s
parameter types to check for a subtype relationship. This is time-consuming when done often.
Second, we want to be able to give different error messages depending on whether the error is on
the Java side, or it is the ownership modifiers that are wrong. This is not possible if the lookup
returns unsuccessfully and we have no idea why no method was found.

To accommodate these requirements, we had to add a switch to the methods that tell which
rules to apply. Most methods that deal with subtype checks now have an additional parameter
called enableUniv of type boolean serving as the switch. In order to not break existing code, the
method with the old signature still exists. It calls the new method and sets enableUniv according
to the compiler’s settings.

In some cases, the methods already had multiple parameters that served as switches to turn
certain checks on or off. We then created a new method with the same name and added the suffix
NoUniverse to indicate that this is the version that does not consider ownership modifiers.

The following classes and their methods implement the main subtype checks for Generic Uni-
verse Types. Note that there exist several versions for most listed methods. We also had to change
or add implementations of these methods in subclasses of the classes given below.
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• CClass: method descendsFrom

• CClassType: methods isAlwaysAssignableTo and isValidTypeArgumentFor

• CTypeVariable: methods equals and isAlwaysAssignableTo

We know that our implementation is far from best-practice. We did it anyway because a proper
solution would have required us to spend a multiple of time on it. And we feared that we could
thereby break existing functionality and we were not willing to take that risk.

2.10.5 Universe Checks

Having viewpoint adaptation and subtyping checks available, we can go on to implement the
type rules of Generic Universe Types. Note that [9] distinguishes between type rules and well-
formedness. We refer to both as rules.

Each class of the abstract syntax tree has a method typecheck being called in the typecheck
pass. The vast majority of universe checks are performed in this pass. Thus, we have created
a method named typecheckUniverse in each class which is called by the typecheck method if
universe checks are turned on. Our method enforces rules for Generic Universe Types without
confusing them with Java’s checks. In the following, we list all classes that have such a method
and explain briefly which checks are performed:

• JClassFieldExpression represents an access to a field. Viewpoint adaptation is applied.

• JMethodCallExpression stands for a method call. Various checks are required to ensure
the method is called on a valid receiver and method arguments are valid. Furthermore, the
return type needs viewpoint adaptation.

• JAssignmentExpression represents an assignment. We make sure that the right hand side
is a subtype of the left hand side. Furthermore, the target must not be an any reference.
Note that this check is also performed for primitive types.

• JCastExpression is an explicit cast. As suggested in [9], we check that the expression
is actually castable to the target type. Due to an extremely complicated structure of the
typecheck method, we did not factor it out into a separate method.

• JNewObjectExpression creates an instance of a class. We have to check that the constructor
call is valid, and that the main modifier is not any.

• JMethodDeclaration declares a method. We ensure that all parameter types of pure meth-
ods only contain any. Furthermore, if the method overrides another method, each parame-
ter’s type has to be subtypes of the corresponding parameter’s type of the overridden method.
In the signature of static methods, no rep modifier must occur.

• JConstructorDeclaration declares a constructor. Checks are the same as in JMethodDec-
laration.

• JVariableDefinition declares a variable. In a static context, no rep modifier must occur.

Although we really to place all checks in separate methods, we had to integrate some in existing
methods. The following classes and methods contain further checks:

• CTypeVariable#checkTypeUniverse ensures that upper bounds of class type variables do
not contain rep modifiers.

• CClassNameType#checkTypeArguments forces type arguments to respect their upper bounds.
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2.10.6 Testing

Test cases covering the new functionality have been integrated into MultiJava’s testing framework.
Being placed in org.multijava.mjc.testcase.universes.gut, they are automatically run when
make runtests is called. Test cases consist of at least one Java class with universe annotations and
mostly contain several test cases for one aspect, e.g. inheritance, arrays or viewpoint adaptation.
Each test case additionally has one file that contains the messages the compiler is supposed to
produce.

Apart from the new tests, there exist lots of tests for the Universe Type System. These had
to be updated due to the changed array semantics and updated error messages (to be found in
CUniverseMessages.msg).

Despite all these test cases and having run additional tests, we cannot give any guarantee
for the correctness of the implementation. The universe checks have been tested thoroughly, but
support for generic types was added recently to the MultiJava and thus occasionally contains bugs.
We have added the ones we found but did not fix to the MultiJava bugs database 11.

2.10.7 Usage

MultiJava [8] — which includes the MultiJava compiler mjc — is open source and can be down-
loaded from the project’s website. It has command line flags to turn on universe (-e) and generics
(-G) support. When installed properly, it is used as follows: java org.multijava.mjc.Main -e -
G <input files>, i.e. you run the main function of class Main in the package org.multijava.mjc
and pass it the two flags and the input files.

As soon as you start using classes from the Java API in your universe code, you will have to use
JML. Since these classes have no ownership annotations, defaulting is applied. If you wanted to call
method equals through an any reference, you will get an error saying that you must not call a non-
pure method through an any reference. To circumvent this, JML comes with and allows you you to
write specifications for classfiles, i.e. classes that are only available in byte code as .class files. In
the subdirectory specs of JML’s project folder, the package hierarchy is reproduced and searched
whenever an external class is loaded. If a specification file is available, these universe annotations
are taken instead of the defaults, e.g. the specification for Object’s equals method states that it
is pure. After a successful installation, it can be run by java org.jmlspecs.checker.Main -e
-G <input files>.

11http://sourceforge.net/tracker/?atid=511776&group_id=65658

http://sourceforge.net/tracker/?atid=511776&group_id=65658


Chapter 3

Raw Types and Wildcards

In this chapter, we will cover raw types and wildcards and their application to Generic Universe
Types. Section 3.1 explains erasure. In Section 3.2, we describe raw types in Java before we apply
them to Generic Universe Types in 3.3. Wildcards in Java are explained in Section 3.4. In Section
3.5, we show how wildcards can be used with Generic Universe Types. The chapter is concluded
by an application of the wildcard concept to ownership modifiers in Section 3.6.

3.1 Erasure

Before explaining what raw types are, we will take a look at the design of generics in Java 5.
Although generics look very similar in every object-oriented programming language, handling of
generic types varies considerably. The C++ template mechanism creates a new class for every
concrete parameterization. While offering great flexibility and high efficiency, it can lead to code
bloat. From that perspective, the C++ implementation can be seen as a kind of high-level macro.

For C#, Microsoft decided to provide full runtime support for generic type information with
version 2.0 of .NET, i.e. they changed the virtual machine to make parameterized types first-class
objects. Sun took a different route for Java: The Java virtual machine (JVM) does not know
about generics, i.e. they are a language-only construct. They are implemented in the compiler
and the generated classfiles contain generic signatures only in the form of metadata which allows
the compiler to compile new classes against them. The runtime has no knowledge of the generic
type system which meant that JVM implementations only needed minimal updates to handle the
new class format.

The advantage is that old and new code work together seamlessly1. This is especially important
in regard to the Java API. If old Java code were not compatible with new generic code, the JVM
would have to come with two versions of the API: a non-generic and a generic version. And both
these version would have to be maintained. Otherwise, all existing Java code — which is a lot —
would not run on computers with a newer version of the Java virtual machine since a compatible
version of the API classes was missing.

That is achieved by dropping all generic type information when source code gets compiled
into byte code. This mechanism is called erasure — denoted by | | — and maps generic types to
non-generic types as follows [14]:

• The erasure of a parameterized type G < T1, ..., Tn > is |G|.

• The erasure of a nested type T.C is |T |.C.

• The erasure of an array type T [] is |T |[].

• The erasure of a type variable is the erasure of its leftmost bound.
1A new version of the byte code format was introduced which forces you to update your JVM to run Java 5 byte

code.
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• The erasure of every other type is the type itself.

We show how erasure works by applying it to the following example:

Listing 3.1: An example for a simple generic class Container

1 class Container<T extends Data> {
2 T element;
3
4 T get() {
5 return element;
6 }
7
8 void set(T element) {
9 this.element = element;

10 }
11 }

Listing 3.2: Erased version of class Container presented in Listing 3.1

1 class Container {
2 Data element;
3
4 Data get() {
5 return element;
6 }
7
8 void set(Data element) {
9 this.element = element;

10 }
11 }

Listing 3.1 presents a simple generic class with a type variable T upper bounded by class Data.
The erased version of the same class is shown in Listing 3.2. You can see that in the erased version,
no generic information is left, i.e. the type variable disappeared and was replaced by its upper
bound. These two classes would look the same on the byte code level, apart from the generic meta
information that is stored in the classfile of the generic version.

Think about how you would have written the class Container if generics had not been avail-
able? The answer matches the erased version: Instead of using a type variable, we take the most
general type we want to allow.

Erasure not only affects the generic class, but also its clients. The type arguments of reference
types are dropped. Instead, casts are inserted where needed, i.e. the compiler inserts exactly the
same casts that were inserted by hand before generic types.

Listing 3.3: An example how Container can be used

1 class SampleClient {
2 void main() {
3 Container<ExtendedData> c = new Container<ExtendedData>();
4 c. set(new ExtendedData());
5 ExtendedData ed = c.get();
6 Data d = c.get();
7 }
8 }



3.2 Raw Types 37

Listing 3.4: Erased version of class Container presented in Listing 3.3

1 class SampleClient {
2 void main() {
3 Container c = new Container();
4 c. set(new ExtendedData());
5 ExtendedData ed = (ExtendedData) c.get();
6 Data d = (Data) c.get();
7 }
8 }

In Listing 3.3 a possible usage of class Container is shown. After creating a new instance of
a container holding ExtendedData, a new instance is set and then the element is retrieved twice.
First it is assigned to an instance of ExtendedData, second to a reference of Data.

Since all classes are erased at compile-time, Listing 3.4 presents the erased version of Sample-
Client. You can see that all type arguments are dropped. On lines 6 and 7, casts get inserted
by the compiler. Interestingly, it is exactly the casts you would have inserted if generics had not
existed. Note that the cast on line 6 is not necessary.

You can see from this example that in Java, generics are really language-only and the compiler
basically produces the code you have written before generics were introduced. Despite that, it still
offers full type-safety of generic types at compile-time.

At runtime, not all checks and casts can be performed safely. To explain this issue, we define
types that are fully supported at runtime — so called reifiable types — and types that are merely
supported at compile-time. Basically, types that do not lose information by applying erasure, are
reifiable. The following types do lose information and therefore are not reifiable:

• Type variables

• Parameterized types unless all actual type arguments to the type are unbounded wildcards2

• Array types whose component type is not reifiable

Casts and instanceof checks can only be partially checked for not reifiable types, i.e. only
the erased type is checked. In such cases an unchecked warning is issued at compile-time. For
example, o instanceof List<String> can only check that o is an instance of List, but it has
no information on the type argument.

Other drawbacks are that reflection is only possible for reifiable types, i.e. no reflection is
possible for generic types. Furthermore, only reifiable types can be instantiated, e.g. new T() is
illegal for type variable T.

3.2 Raw Types

A raw type is the name of a generic type declaration used without any accompanying actual type
arguments. For example, Container container declares a raw type since Container has a type
variable as you can see in Listing 3.1 but no type argument is provided for it. Therefore, all
declarations of types from the Java Collections API became raw types when they were run on
version 5 of the Java platform.

With erasure in mind, it becomes obvious how raw types work. For raw types, type checking is
performed against the erased version of the class, i.e. generic type information is ignored. This is
exactly as it was handled before generics were introduced, because the erased version of the class
equals its non-generic counterpart.

The use of raw types is strongly discouraged because there is no reason for not specifying
type arguments. They were only introduced to maintain backward compatibility to existing code
and to allow to move from non-generic code to generic code in multiple steps. Imagine you used

2Wildcards are discussed in Section 3.4.
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a framework to write your program, e.g. the Java Collections API. Thanks to raw types, you
could switch to the generic version of the framework as soon as it was released without having to
change your code. Then, you could step by step introduce type arguments and therefore make
your program statically safer.

3.3 Integrating Raw Types into Generic Universe Types

To discuss the application of raw types to Generic Universe Types, we will apply defaulting as
described in Section 2.9 to the example used to explain erasure. It will reveal why we need to
change defaulting for raw types in order to have them work properly with Generic Universe Types
for unannotated programs.

Listing 3.5: Erased version including ownership modifiers of class Container presented in Listing
3.1

1 class Container {
2 any Data element;
3
4 any Data get() {
5 return element;
6 }
7
8 void set(any Data element) {
9 this.element = element;

10 }
11 }

If class Container presented in Listing 3.1 is used with Generic Universe Types, defaulting is
applied as there are no ownership annotations given. All that gets annotated is the upper bound
of T which becomes any Data instead of just Data. When it gets compiled, erasure is applied and
the resulting class is presented in Listing 3.5. All occurrences of type variable T have been replaced
by its upper bound any Data as erasure is defined, i.e. method get’s return type is any Data.

To show a possible usage of Container as a raw type, we use an example similar to Listing
3.4 — the erased version of SampleClient from the erasure example.

Listing 3.6: An example using Container as a raw type

1 class RawTypeClient {
2 void main() {
3 Container c = new Container();
4 c. set(new ExtendedData());
5 ExtendedData ed = (peer ExtendedData) c.get();
6 Data d = c.get();
7 }
8 }

The difference of Listing 3.6 to Listing 3.4 is on line 6: Since the version presented in Listing
3.4 originated from a generic class by applying erasure, a cast was inserted even though it is not
necessary for type safety. The code from example was written by a programmer. He knows that
Container returns a reference of type Data. Therefore, he will not use a cast to assign it to a
reference of type Data. Let us now use this class with Generic Universe Types.

Listing 3.7: Example from Listing 3.6 with default ownership modifiers made explicit

1 class RawTypeClient {
2 void main() {
3 peer Container c = new peer Container();
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4 c. set(new peer ExtendedData());
5 peer ExtendedData ed = (peer ExtendedData) c.get();
6 peer Data d = c.get(); // illegal
7 }
8 }

Using class RawTypeClient with Generic Universe Types means applying defaulting. Listing
3.7 presents the example from Listing 3.6 after defaulting has been applied. You can see that
defaulting puts all objects in one context and inserts peer where an ownership modifier is required.
On line 3, a peer Container instance is created and on line 4, it is set to point to a new peer
instance of ExtendedData. On line 5, the cast’s main modifier defaults to peer which makes
the assignment valid because c.get() returns an object of type any Data. The assignment is
statically and dynamically correct. On line 6, not considering ownership, no cast is needed as
Data is the type c.get() returns. When taking ownership modifiers into account, this is not true
anymore: We are trying to assign a reference whose static type is any Data to a reference of type
peer Data.

This violation results from different defaulting for upper bounds of type variables. In the
combination with erasure, what would normally default to peer becomes any. The obvious solution
that comes to mind is to automatically insert casts where needed. Finding these situations where
such a cast is required might be difficult. Therefore, we will in the following present an alternative.

The alternative is to automatically convert all raw types to generic types. By adding type
arguments, the compiler no longer looks at the erased version of the class but compiles it against
the generic version which is correct with appropriate type arguments. With generic types, casts
are automatically inserted when erasure is applied. It then comes down to finding raw types
which is easier than finding situations where casts are required. As type argument, we take the
corresponding type variable’s upper bound and replace the ownership modifiers by peer. In the
example, c becomes of type peer Container<peer Data>. We can be sure that this instantiation
is valid as the only two legal ownership modifiers for upper bounds are peer and any.

3.4 Wildcards

In this section, we will discuss wildcards — another concept introduced in Java 5 that has to
do with generic types. In the subsequent section, we are going to show how this concept can be
applied to Generic Universe Types.

We have mentioned in Section 2.3 that subtyping with respect to type arguments is not covari-
ant in Java. Since it is not contravariant either, it is invariant. For example, although Extended-
Data is a subtype of Data, List<ExtendedData> is not a subtype of List<Data> (no covariance)
and List<Data> is not a subtype of List<ExtendedData> either (no contravariance). This is
unlike arrays which are covariant: ExtendedData[] is a subtype of Data[].

Listing 3.8: Example why covariance is not type-safe

1 class Covariance {
2 void main() {
3 LinkedList<Data> list = new LinkedList<ExtendedData>(); // illegal
4 list .add(new Data());
5
6 Data[] array = new ExtendedData[1];
7 array [0] = new Data(); // ArrayStoreException
8 }
9 }

In Listing 3.8 we give an example showing why generic types are invariant in Java. If the
assignment on line 3 were valid, we could insert an instance of Data into a list of ExtendedData.
In this example, we also show how Java deals with covariance of arrays: The assignment on line
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6 is valid, but as soon as we try to store an object of Data in the array of ExtendedData an
ArrayStoreException is thrown. Since it is an unchecked exception, it will most likely terminate
the program, unless we have some exception handling mechanism or expect this to happen and
catch it explicitly.

With this in mind, imagine you wanted to write a static method that takes an arbitrary list
and reverses it in place. What would the method signature look like? A first solution one might
come up with is static void reverse(List<Object> list). This works fine for lists of Object
but cannot be called with lists of other element types since they are not subtypes.

A more sophisticated approach uses a type variable to specify the list’s element type: static
<T> void reverse(List<T> list). Thanks to the inference algorithm for method type variables,
T can be any type which allows us to reverse lists of arbitrary element types. Although this solves
the problem, it could still be simplified.

The only reason we introduced a type variable is because we do not know of another way to
specify that we do not care about the type argument. This is what wildcards are for: They are
simplest way to express that the actual type argument is irrelevant to us. A wildcard is expressed
by the question mark ? and states that we do not care about the type argument at all. It can be any
type. The method signature for reverse then looks as follows: static void reverse(List<?>
list).

What we have presented so far are so-called unbounded wildcards. As with type variables,
wildcards can also have bounds. The syntax for upper bounded wildcards is straightforward, e.g.
List<? extends Number>. The upper bound gives us partial knowledge of the type, i.e. we know
it is a subtype of the bound and therefore, can assign it to a reference of type Number in this case.

Additionally, wildcards can also be used in conjunction with a lower bound. As the name sug-
gests, a lower bound expresses that the concrete invocation has to be a supertype, e.g. for List<?
super Number> the type argument has to be a supertype of Number. This form of restriction is
only supported by wildcards and not by type variables.

Although it is more rarely used than upper bounds, it provides us with even greater flexibility as
you can see from an example taken from the Java Collection API: static <M> void fill(List<?
super M> list, M object). This method replaces every element of the list by the given object.
These semantics are solely captured by lower bounded wildcards as object must be supertype of
the list’s element type.

3.4.1 Subtyping in the Presence of Wildcards

We have already explained why generic types in Java are invariant. Here, we will show the
subtyping rules with wildcards. To that end, we introduce a relationship between type arguments
called type containment. As defined in [14], a type argument A is said to contain another type
argument B, written B <= A, if the set of types denoted by B is a subset of the set of types
denoted by A. The type containment rules for concrete type arguments and wildcards are as
follows:

1. ? extends T <= ? extends S, if T is a subtype of S

2. ? super S <= ? super T , if T is a subtype of S

3. T <= T

4. T <= ? extends T

5. T <= ? super T

Following this definition, an instantiation of a generic type is a subtype of another instantiation
of the same generic type if and only if the former’s type arguments are pairwise contained in the
latter’s type arguments.

From first two rules, we can see that upper bounded wildcards are covariant with respect to
their bound whereas lower bounded wildcards are contravariant with respect to the bound. The
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thrid rule expresses what we have already known: In the absense of wildcards, the type arguments
have to be equal in order for two generic types to be in a subtype relationship. The last two rules
bridge between wildcards and concrete type arguments.

Figure 3.1: Subtyping among generic types with wildcards where Sub is a subtype of Super

In Figure 3.1 we find an example where the type containment operator is applied. We see that
the unbounded wildcard is at the top of the hierarchy as it is the least specific, i.e. it contains no
information at all about the type. This is also the reason why a wildcard type is reifiable as we
pointed out in Section 3.1. The left branch of the tree shows covariant suptyping with respect to
the upper bound and the right branch is contravariant with respect to the lower bound. Although
the subtype relationship is depicted as a tree, it actually is not: Concrete instantiations of a generic
type are a subtype of different instantiations with wildcards.

3.4.2 Capture Conversion

Wildcards by themselves are not real types. The set of types a wildcard covers also depends on
the corresponding type variable and its upper bounds. Likewise, a bounded wildcard represents
all types which fulfill the constraints imposed by both, the type variable’s upper bounds and
the wildcard’s upper or lower bound. This dependence on a concrete type variable is the reason
why wildcards can only be used as type arguments and their use as types of references would be
meaningless.

Listing 3.9: Example showing that wildcards also depend on the corresponding type variable

1 class Wildcard<X extends Data> {
2 X x;
3
4 public void method1(Wildcard<?> wc) {
5 Data d = wc.x;
6 // ...
7 }
8
9 public void method2(Wildcard<? super ExtendedData> wc) {

10 wc.x = new ExtendedData();
11 Data d = wc.x;
12 // ...
13 }
14 }

In Listing 3.9, we have a generic class Wildcard with one type variable X which is upper
bounded by some class Data. Remember that a type variable cannot have a lower bound. Our
class has a field x whose type is given by type variable X. On line 4, we see a method taking a
reference to a Wildcard object. The method does not care about the actual type argument for X,
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thus an unbounded wildcard is used. Yet, it is legal to assign wc’s field x to a reference of type
Data.

On line 9, we have another method taking a Wildcard object. Again, a wildcard is used for
the type argument. In this case though it is lower bounded by ExtendedData which we define
to be a subclass of Data. Thanks to the lower bound, we can now assign a new object of type
ExtendedData to wc’s field x. And, we are still allowed to read x’s value and to assign it to a Data
reference.

Why is all this valid? Every time a reference, whose type contains top-level wildcards, is read,
capture conversion is applied. Capture conversion substitutes all top-level wildcards by a special
kind of type variable that can have multiple upper bounds and at most one lower bound, i.e. it
takes all upper bounds of the corresponding type variable and the bound of the wildcard, if any,
and creates a new type variable with them. All other types are left untouched.

This has a few implications: For each substituted wildcard, a new type variable is created.
Therefore, each wildcard is a different type, i.e. if a method signature contains two wildcards,
these are completely independent. Furthermore, only wildcards of types being read — and not
wildcards of types being written — are substituted by type variables. This allows assignments to
types containing wildcards as long as the subtype relationship is respected. That is also true for
non-top-level wildcards of types that are read: Since they remain so-called unbound, they can be
assigned.

With this in mind, let us go back to the example: We have not explained yet why the assignment
on line 5 is valid. In order to read x, wc has to be read first. Before this happens, capture conversion
gets applied to wc’s type Wildcard<?>. The wildcard ? is substituted by a fresh type variable
with the upper bounds from the corresponding type parameter X extends Data and the wildcard’s
bound (none in this case). This results in Wildcard<T_01> where T_01 is a newly created type
variable with an arbitrary name and upper bounded by Data. Since x’s type is upper bounded by
Data it is safe to assign it to d.

Let us also consider the example on lines 10 and 11. In this case the wildcard is substituted by
a type variable that is lower bounded by ExtendedData — which makes line 10 a valid assignment
valid — and upper bounded by Data — which makes line 11 valid. Notice here that capture
conversion creates a type that cannot be expressed by the Java syntax, i.e. it is not possible to
define a type variable that has both, upper bounds and a lower bound.

3.5 Integrating Wildcards into Generic Universe Types

Now that you have an in-depth understanding of wildcards in Java, it is time to apply them to
Generic Universe Types. So far, we have had two kinds of types in Generic Universe Types: non-
variable types and type variables. With the addition of wildcards, we introduce a third kind of
types: wildcard types. In this section, we will show how they are integrated and show the rules.

3.5.1 Viewpoint Adaptation

If viewpoint adaptation has to be performed with wildcard types, we have to distinguish between
two cases. Wildcard types can either occur on the left side of the operator, or on the right side. A
possible third case where the types on both sides of the operator contain wildcard types, is covered
by combining the approaches for the first two cases.

For the case where the type on the right side contains wildcard types in its type arguments,
the viewpoint of the wildcard’s bound gets adapted by being combined with the left type. As
part of the viewpoint adaptation, we recursively check for rep modifiers in type arguments of
lower bounds and change the appropriate modifier to any if there occur rep modifiers. We do not
check upper bounds of occurring type variables, and therefore we do not check upper bounds of
wildcards either as they do not allow modifications. We do check lower bounds though because
such wildcards were designed for insertions which can violate the ownership structure.
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Now let us look at the situation when the left side of the operator is a wildcard type. By
combining two types, we adapt the second type from the viewpoint described by the first type to
the viewpoint this. What we need to know is how the ownership of the first type relates to this
which is described by the first type’s main modifier. For non-variable types, this is obvious. For
type variables, we take the main modifier of the first upper bound.

The left side of the operator is always the type whose member is accessed, i.e. it is read. Before
a wildcard type is read, capture conversion is applied and a new type variable is created for each
wildcard type and substitutes it. For normal type variables, we know to take the main modifier of
the first bound in order to adapt the second type’s viewpoint. Type variables created by capture
conversion can have multiple upper bounds and up to one lower bound. Their main modifiers
may be inconsistent which is why we take the most specific main modifier of all upper bounds, i.e.
either peer or rep if one of them occurs, otherwise any. Note that peer and rep must not occur
as main modifiers in bounds of the same type variable.

Note that wildcard capture requires viewpoint adaptation. The bound of the wildcard already
has the correct viewpoint this. The viewpoint of corresponding type variable’s bounds is the class
they are declared in. To adapt their viewpoint to this, we need to combine the current type with
each bound.

The following example shows applications of these rules:

Listing 3.10: An example to demonstrate viewpoint adaptation on wildcard types

1 class Container<T extends any Data> {
2 T element;
3
4 pure T get() {
5 return element;
6 }
7
8 void set(T element) {
9 this.element = element;

10 }
11 }
12
13 class ViewpointAdaptationWildcards {
14 peer Container<? super rep ExtendedData> container;
15 peer ViewpointAdaptationWildcards vaw;
16
17 void main() {
18 any Container<? super any ExtendedData> c = vaw.container;
19 any Object o = container.get().getData();
20 }
21 }

In Listing 3.10 we present several examples for viewpoint adaptation involving wildcard types.
We make use of class Container that is already well-known from previous examples.

The first access requiring viewpoint adaptation is found on line 18. The type on the right side
contains a wildcard: peer ViewpointAdaptationWildcards is combined with peer Container<?
super rep ExtendedData>. For the main modifier of the resulting type, we have to look at all type
arguments to see if no rep modifier occurs in non-variable types and lower bounds of wildcards.
The only lower bounded wildcard contains a rep modifier and therefore we have to set the main
modifier to any. Next, we combine the first type’s main modifier peer with the lower bound
resulting in any ExtendedData. The viewpoint adaptation yields any Container<? super any
ExtendedData>. You can see that if we had not changed the main modifier to any, it would have
been allowed to call method set on c and insert any ExtendedData.

On line 19, we need to apply viewpoint adaptation twice. First where method get is called
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on field container. Since container is read, capture conversion is applied to its type peer
Container<? extends rep ExtendedData>. The only top-level wildcard is replaced by a new
type variable — we call it T_01 — that is lower bounded by rep ExtendedData (no viewpoint
adaptation required) and upper bounded by any Data (result of combination of container’s
type peer Container<? super rep ExtendedData> with the T’s upper bound any Data). The
viewpoint adaptation of get’s return type T from viewpoint peer Container<T_01> to this yields
the newly created type variable T_01.

On the same line, getData is called requiring again viewpoint adaptation. Thereby the result
from the first combination, T_01, is combined with peer Object, the return type of getData. To
find the most specific main modifier of the first type, we look at all upper bounds of T_01 which
are only any Data. We take any and combine it with peer Object resulting in any Object.

3.5.2 Subtyping

Subtyping in Generic Universe Types with wildcard types comes down to applying the type con-
tainment operator as defined in Section 3.4.1 with the subtyping rules of Generic Universe Types.

Figure 3.2: Subtyping in Generic Universe Types with upper bounded wildcards where Sub is a
subtype of Super

Figure 3.2 gives an example for some types with upper bounded wildcards in Generic Universe
Types. As you can see, upper bounded wildcards are still covariant with respect to their upper
bound which includes the ownership modifier for Generic Universe Types. As an example, since
rep Sub is a subtype of any Sub in Generic Universe Types, ? extends rep Sub contains every
type that ? extends any Sub can adopt and therefore, we have a subtype relationship between
List<? extends rep Sub> and List<? extends any Sub>.

Figure 3.3 is the equivalent to the previous figure with lower bounded wildcards. As in Figure
3.2, we have omitted the main modifier as it might be distracting. Arbitrary ownership modifiers
can be used as main modifiers as long as there is the same subtype relationship between them.
Furthermore, it is to note that these figures do not show the entire hierarchy but just give some
examples.

Wildcards and limited covariance have in common that they both allow a subtype relationship
between generic types with different type arguments. We will use a simple example to illustrate the
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Figure 3.3: Subtyping in Generic Universe Types with lower bounded wildcards where Sub is a
subtype of Super

difference between limited covariance and wildcards. The two types peer List<rep Object> and
peer List<any Object> are in no subtype relationship because the type arguments are different
and limited covariance only applies if the supertype’s main modifier is any. On the other hand, if
we change the type arguments to wildcards, there is a subtype relationship: peer List<? extends
rep Object> is a subtype of peer List<? extends any Object> since rep Object is a subtype
of any Object. Therefore we have a type containment and the type parameters are compatible,
although they are different and the main modifiers are still peer. You can see that wildcards allow
greater flexibility as they are also applicable for types with main modifiers different from any.

Due to the application of the subtyping rules of Generic Universe Types for type containment,
we can also combine wildcards and limited covariance. If the wildcard’s bound is a generic type
with any as the main modifier, we can make use of limited covariance. Imagine you had the
type peer List<? extends any List<any Object>>, i.e. a list of lists. This can be assigned
an object of type peer List<peer List<rep Object>> due to limited covariance for the type
argument.

Lower bounded wildcards are a new construct to Generic Universe Types. When looking
into them, we thought we had to introduce a new ownership modifier. Imagine you had a lower
bounded wildcard and you only cared about the class but not the actual ownership modifier, e.g.
a list whose elements are a supertype of some type Data. In Java, the correct type is List<?
super Data>, but what is it in Generic Universe Types? If you used List<? super any Data>,
it would not be possible to assign a reference of type List<peer Data or List<rep Object> as
lower bounded wildcards are contravariant with respect to their bound.

The solution would be to introduce a new ownership modifier that is a subtype of all existing
ownership modifiers. But we did not do that as we think that this is a very rare case that does
not justify a new ownership modifier. If you think about it: A lower bound is always relative to
some other type because they are used to insert elements into a collection. Therefore, it is likely
that the lower bound is a type variable and for these, this problem does not exist as we will see in
the examples in Section 3.5.3. Furthermore, if you ever encounter a case where the lower bound
is not a type variable and you are in a static method, you can simply use peer as the ownership
modifier since rep is not allowed in static contexts and peer therefore is the lower bound in terms
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of ownership modifiers.

3.5.3 Examples

To illustrate the similarity between wildcards in Java and wildcards in Generic Universe Types,
we will in the following show how to annotate a few methods taken from the Java Collections API:

• static void reverse(List<?> list): The only annotation is the main modifier of list
which has to be peer since rep is not allowed in a static context and any would forbid
modifications to the list. The unbounded wildcard implies that the type argument can be
anything and therefore also the ownership modifier, as an unbounded wildcard is basically
upper bounded by any Object. Since no modifications are made to the list’s elements, this
is fine with Generic Universe Types. The resulting signature is static void reverse(peer
List<?> list).

• static <T> void copy(List<? super T> dest, List<? extends T> src): Here, two an-
notations are required for the main modifiers of both lists. For the same reason as above,
we choose them to be peer. Thanks to the way we treat static methods, the lists can reside
in any context. All that is required is that the two lists are in the same context, i.e. they
have the same owner. As the elements are not modified, this method works fine. Notice
that the elements cannot be modified because T has no upper bound that would allow it.
So, the signature is static <T> void copy(peer List<? super T> dest, peer List<?
extends T> src).

• static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super
T> c): This method has a complex signature but a very simple purpose: It looks for the
element key in the sorted list list by using the comparator c3. As you can imagine from
the method’s purpose, there is no need to modify any object. Thus, we choose all modifiers
to be any, i.e. the main modifier for list and c. Does this work? Yes. All that is done
is retrieving elements from the list and comparing them to the key using the comparator
which are both pure operations and can be called on any references. The method’s sig-
nature in Generic Universe Types is static <T> int binarySearch(any List<? extends
T> list, T key, any Comparator<? super T> c)4.

As you can see from the presented examples, annotating wildcard types is no big deal. Most
of it is already taken care of by the defaulting mechanism. We have looked through parts of the
Java API and have not found a method, that could not be annotated with ownership modifiers.

3.6 Universe Wildcards

Now that we have covered how the concept of wildcards can be used with Generic Universe Types,
we take it one step further and have a look at how wildcards can be applied to ownership modifiers.
The idea of what we call universe wildcards is to be able to express that we do not care about the
ownership modifier of a type.

Basically, that is already covered by the any modifier because it is a supertype of all the
ownership modifiers, but this does not work for type arguments. Let us assume you wanted a
list you can modify and whose elements are of type Data. In Java, this is easily expressible as
List<Data>, but how about Generic Universe Types? Since the list has to be modifiable, we can
take peer or rep as the main modifier. The modifier of the type argument can be any, peer or rep

3A comparator is a comparison function, which imposes a total ordering on some collection of objects. Other
than having elements of a type which extends Comparable<T>, you can have multiple comparators for the same list
and therefore multiple ways of putting them in order.

4We did not declare binarySearch to be pure because static methods have to be called in a specific context, i.e.
on a peer or rep reference.
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but none of them allows any flexibility because it has to be an exact match as limited covariance
only applies if the main modifier is any.

One approach to allow arbitrary ownership modifiers in the type argument is to use a wildcard.
The type peer List<? extends any Data> allows the ownership modifier of the type argument
to be any of the modifiers. Yet, this is only a partial solution as we restricted the main modifier
to peer which disallows lists we own and the element’s type is not limited to Data anymore but
to any subtype of it. So, this can rather be seen as the equivalent for List<? extends Data>.

A proper solution offer universe wildcards. Simply spoken, this means applying the concept
of wildcards to ownership modifiers instead of entire types. Unlike types, the set of ownership
modifiers is limited. Thus, we choose a simple syntax and basically introduce two new ownership
modifiers:

• readable rd can represent an arbitrary ownership modifier, be it any, peer or rep

• writable wr can represent one of the two ownership modifiers peer and rep

Having these two additional modifiers, the solution in the example above becomes obvious: wr
List<rd Data>. By using wr as the main modifier, we support both, peer and rep and allow
modifications to the list. The rd modifier for the type argument makes its ownership modifier
irrelevant but restricts it to instances of Data (and not a subtype).

Before going into detail, let us have a look at the practicality. First, for the readable modifier
rd. It can solely be used in type arguments as it makes no sense as a main modifier — any works
just as fine there. It is applied in situations where we need an exact type as a type argument such
as List<Data>. But how often do these situations occur? We are convinced that such cases are
rare. Hardly ever, we want to restrict the set of possible types to a particular one. We believe
that in the vast majority of these cases, the programmer actually meant to use a wildcard such
as List<? extends Data>, or List<? super Data>. The reason why it occurs so often in code
is because only experienced Java programmers are familiar with wildcards, or know that generic
types are invariant. We think in most cases a normal wildcard is preferred to a universe wildcard.

Furthermore, we are convinced that in every case a wr modifier would be useful, there is
something wrong with the ownership structure. A writable modifier means that we do not care
whether we own the object, or it is peer to the current object. We invested quite some time trying
to find a reasonable example where this would be useful, but we failed to come up with one. An
object we own has another purpose than one of our peers and therefore should be used differently.
Introducing a writable modifier supports bad practice which is very contradictory to the goal of
ownership.

If we were to implement universe wildcards, they would add enormous complexity to Generic
Universe Types. It would be necessary to apply an algorithm similar to capture conversion to
universe wildcards. Unlike the existing ownership modifiers where an any modifier is equal to
every other any modifier, the rules for universe wildcards were much more complex and we had to
distinguish between different universe wildcards.

Based on the presented reasons, we have come to the conclusion to not pursue the idea of the
writable modifier any further. For the readable modifier, we have found it to be useful for view-
point adaptation. For example, when rep is combined with peer List<rep Object>, viewpoint
adaptation yields any List<any Object>. The reason is that, although we know the context of
the list’s elements, we cannot express it with an ownership modifier — which is why we take any.
And since any is not the exact description, we have to change the main modifier to any to prevent
modifications to the list and preserve type safety.

If we extend the definition of the readable modifier to denote either a specific context — not
just peer or rep but arbitrary combinations of the two — or any context, we can change viewpoint
adaptation to yield rep List<rd Data> for the example above. That allows modifications to the
list such as deletions of objects or rearranging them, but not insertions. This idea is described by
Daniel Schregenberger in his Master’s thesis [24]. He calls the modifier unknown.

Question is why the presented viewpoint adaptation is correct. We compare it to wildcards.
Every time a type containing a wildcard is read, capture conversion is applied. This also happens to
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universe wildcards: When a universe wildcard occurs in a type that is read, the universe wildcard
gets bound and assignments to it are prohibited. Imagine we wanted to insert an element into the
list. We would call method put with signature void put(T e). Substituting the type variable by
its type argument yields void put(rd Data e). rd is already bound since the access happens on
the list and therefore, calling the method is impossible with an argument different from null.

The similarity of wildcards and the rd modifier is also true for subtyping and therefore for
assignability. There are two possible relationships: Either any is a subtype of rd, or vice versa.
In the first case, any is assignable to rd but rd is not assignable to any. This is wrong as any can
refer to every context. In the second case, rd is assignable to any but any is not assignable to rd.
This is wrong as well because rd stands for each of the modifiers and thus also for any.

By looking at rd as the wildcard version of any, we can describe the subtype relationship. We
compare it to types Data and ? extends Data. rd is assignable to any and so is a reference of
type ? extends Data to a reference of type Data5. Vice versa, any is assignable to an unbound
rd and so is type argument Data assignable to type argument ? extends Data.

5Although wildcards must only occur as type arguments, it is possible to get such types. For example, if we have
a List<? extends Data> and call method get, its return type then is a type variable created by capture conversion
from ? extends Data.



Chapter 4

Static Universe Type Inference

In this chapter, we give an overview of the inference process in Section 4.2. Based on the data
model described in Section 4.3, we present the algorithms for all kinds of constraints in Section
4.4. The existing tool and how to extend it are outlined in Section 4.5.

4.1 Introduction

Type inference is the ability to deduce automatically the type of a variable. It is often a characteris-
tic of functional programming languages, but it can also be applied to object-oriented programming
languages, e.g. it is planned for C# 3.0. The ability to infer types automatically makes many pro-
gramming tasks easier, leaving the programmer free to omit type annotations while maintaining
type safety.

Universe type inference refers to an automatic deduction of the ownership modifier of a type,
i.e. its goal is not to deduce the entire type of a variable but the ownership modifier. As opposed
to defaulting explained in Section 2.9 which simply puts all objects in the root context, universe
type inference takes a more sophisticated approach and tries to create a deep ownership structure.

There are two inherently different approaches to universe type inference:

• Runtime universe type inference

• Static universe type inference

Runtime universe type inference executes the Java program on the Java virtual machine with
a tracing agent attached to it. It then takes the trace file which contains runtime information
like object creations, field accesses and method calls and builds a data structure representing
this information. Based on that, the object store gets partitioned in context and valid ownership
annotations are determined. Finally, these annotations are written to an XML annotation file.

Static universe type inference looks at the static information, i.e. it makes use of the source
code to deduce ownership modifiers without executing the program. The source code is parsed
and constraints are generated from the abstract syntax tree. Based on these constraints, a solution
has to be found which is then written to an XML annotation file.

These two approaches are quite different and thus, have different qualities. The solution quality
of the runtime approach heavily depends on the current run and therefore the code coverage
whereas the static approach has a complete view of the program. Furthermore, the static inferrer
can annotate method bodies and takes existing annotations into account which is not possible for
the runtime inferrer because the interface through which it interacts with the Java virtual machine
is limited.

For the Universe Type System, a lot of work was done looking into universe type inference.
The projects of Frank Lyner [19] and Marco Bär [7] developed and applied the runtime approach
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whereas Nathalie Kellenberger [16] and Matthias Niklaus [21] developed tools for the static ap-
proach. Andreas Fürer [12] combined the two approaches by taking the best from each and packing
them in several Eclipse [5] plugins.

In this chapter, we will present how the static approach can be extended to cope with Generic
Universe Types and thus also deduce ownership modifiers for type arguments. We limit ourselves
to the core of Generic Universe Types as it is presented in [9], e.g. we will not deal with arrays
and wildcards. We will build on Matthias Niklaus’ project which has been integrated into Andreas
Fürer’s inference pack.

We decided to go with the static approach since there is no built-in support for generic types at
runtime in Java which makes the runtime approach not applicable. Once Mathias Ottiger’s work
on adding runtime support for Generic Universe Types [23] is done, dynamic inference is feasible
as well.

4.2 Inference Process

In this section, we are going to explain how the inference process works on a high level. The
description is based on the static universe inference tool developed by Mathias Niklaus [21]. Al-
though the tool is designed for the Universe Type System, the process will remain the same for
Generic Universe Types. We assume the tool already handles Generic Universe Types, i.e. this is
how the process will work once static universe inference has been extended to cope with Generic
Universe Types.

Once it has been decided to use Generic Universe Types for an existing project, it can be quite
time-consuming to annotate the code. The project is already valid universe code as defaulting
puts all objects in the root context. For ownership to add static guarantees, we have to create a
deep hierarchy. This can either be done by hand, or we use an universe inference tool that gives
us a first solution which can then be refined if necessary.

At the beginning, there is normal Java code such as the sample code presented in Listing
4.1. We will use this code throughout the section to show how the static universe inference tool
processes it. Additionally, it is also possible to pass partially annotated code, i.e. code containing
some modifiers. These are either treated as fixed, or as the preferred ownership modifier for the
corresponding position.

Listing 4.1: Normal Java code to be annotated by the static universe inference tool

1 class Container<T extends Data> {
2 T element;
3
4 T get() {
5 return element;
6 }
7
8 void set(T element) {
9 this.element = element;

10 }
11 }
12
13 class StaticInference {
14 Container<ExtendedData> container;
15
16 void main() {
17 container = new Container<ExtendedData>();
18 container. set(new ExtendedData());
19 }
20 }
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The inference process is started by passing the source code to the inference tool. Thanks to
Andreas Fürer’s inference pack [12], there now is an Eclipse plug-in that provides you with a
simple user interface where you can specify the code you would like to have inferred.

As a first step, the code is parsed and type checked by the JML tools [18] with universe checks
turned off, i.e. Java type rules are enforced and ownership modifiers are ignored. In order to allow
partially annotated programs, ownership modifiers are permitted in the syntax . This way, they
are stored in the abstract syntax tree and can be accessed afterwards.

Before byte code is written, the static inferrer intercepts. It takes over and traverses the entire
abstract syntax tree to determine all positions where an ownership modifier has to be placed and
therefore inferred. At each of these positions, it creates a new so-called variable that can represent
any of the three possible ownership modifiers peer, rep and any.

While traversing the abstract syntax tree, the inferrer also creates so-called constraints. The
idea is to create restrictions for variables that model the type rules of Generic Universe Types.
A valid solution is then an assignment of one ownership modifier to each variable that satisfy all
constraints. By satisfying all constraints, the type rules of Generic Universe Types are fulfilled
and we have found a valid ownership annotation for the given program.

Constraints are recorded in a data structure. They represent the core of the inference process
as they model exactly all rules of Generic Universe Types. For that purpose, there exist different
kinds of constraints which we will introduce in Section 4.4. In the example below, we present you
with a few examples to give you a basic idea how they look.

Listing 4.2: The code with the ownership modifiers to be inferred made explicit

1 class Container<T extends u1 Data> {
2 T element;
3
4 T get() {
5 return element;
6 }
7
8 void set(T element) {
9 this.element = element;

10 }
11 }
12
13 class StaticInference {
14 u2 Container<u3 ExtendedData> container;
15
16 void main() {
17 container = new u4 Container<u5 ExtendedData>();
18 container. set(new u6 ExtendedData());
19 }
20 }

In Listing 4.2, we have taken the input of the inference tool and placed a new variable at each
position where an ownership modifier has to be inferred. The inference tool does not place them
explicitly in the source code. We have numbered the variables and list them to be able to give
some examples of constraints that are built while traversing the abstract syntax tree1:

• We have learned that rep must not occur in upper bounds of class type variables. Therefore,
we introduce a constraint for u1 that it must not be rep. This kind of constraint is called a
declaration constraint.

1This list is not complete. There are more constraints.
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• Another declaration constraint can be found on line 18. There we call non-pure method set
on field container. For this call to be valid, the main modifier of container’s type must
not be any. We introduce this constraint for u2.

• On line 17, a new instance of Container is created and assigned to field Container. This as-
signment is only valid if the newly created object’s type, u4 Container<u5 ExtendedData>,
is a subtype of container’s type, u2 Container<u3 ExtendedData>. In this case, several
ownership modifiers are involved which makes it more complicated. On a higher level, we
can say that there is a subtype constraint between these two types.

After the abstract syntax tree has been traversed and all constraints have been stored in a data
structure, they have to be solved in order to find a solution. The existing static universe inference
tool uses a MAX-SAT solver for that purpose, i.e. being passed a number of clauses in conjunctive
normal form (CNF) it tries to find an assignment that satisfies as many clauses as possible.

To make use of a MAX-SAT solver, the constraints have to be translated into boolean formulas
in CNF first. Each variable is encoded with a fixed number of bits. Then, each constraint is mapped
to boolean formulas in CNF by pre-determined schemas which exist for each kind of constraint.
The output, i.e. the clauses, are written to a file and passed to the solver.

Based on the complexity of the satisfiability problem, it might take some time until the solver
comes back with a solution. The solution is read by the inference tool which converts it to an
assignment for the variables. This is then presented to the developer. Below you find a possible
ownership annotation for the example.

Listing 4.3: A possible solution to the example presented above

1 class Container<T extends any Data> {
2 T element;
3
4 T get() {
5 return element;
6 }
7
8 void set(T element) {
9 this.element = element;

10 }
11 }
12
13 class StaticInference {
14 rep Container<rep ExtendedData> container;
15
16 void main() {
17 container = new rep Container<rep ExtendedData>();
18 container. set(new rep ExtendedData());
19 }
20 }

As you can see from Listing 4.3, all constraints mentioned above are satisfied2: No rep occurs
in the upper bound of type variable T, container’s main modifier is not any and the assignment
on line 18 is correctly typed.

What we have just presented is not the only valid solution. Each rep modifier could as well
be replaced by peer and the annotation would still be valid. So, why was rep preferred to peer?
The inferrer tries to create a deep ownership structure. This is achieved by preferring rep to the
other two modifiers as the only way to create such an ownership structure is to have as many rep
modifiers as possible — especially in object instantiations.

2As there is no implementation of a static inferrer for Generic Universe Types yet, this solution has been created
by hand.
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The solver’s weighting feature is used to specify the distribution of the ownership modifiers.
This feature allows to specify a weight for every bit for which the solver has to find a boolean value.
We use it to prefer the bit setting the ownership modifier to rep. The developer can freely change
this default behavior. The tool allows to set a weight for every ownership modifier depending on
where it occurs, e.g. in a field or a local variable. Note that preferences are only taken into account
when more than one ownership modifier is applicable at a certain position. Otherwise, the only
option is taken in order to get a valid solution.

Another important aspect of the inference process is the developer’s influence. Once an initial
solution is presented, the developer can freely change any annotations and thereby give input.
The inferrer then tries to take the developer’s choices into account. It integrates the input into
the constraints and passes them again to the solver. That way, the annotation can be refined
step-by-step until the desired solution is reached.

The developer’s most important task when giving input is specifying pure methods. The
inferrer does not look at the methods and figure out which methods are pure and which are not.
It treats every method without pure annotation as non-pure.

As the inferrer’s last step, the final inferred annotation is written to an XML file. The annota-
tions XML file representing the solution presented in Listing 4.3 is given in Listing 4.4. The XML
file contains all necessary information to have a tool insert the annotations into the source code.
The tool doing this job was developed by Andreas Fürer [12]. It is also included in the inference
pack allowing a smooth integration of the ownership modifiers in the code.

Listing 4.4: The annotations XML file written by the static inferrer

1 <?xml version=”1.0”?>
2 <annotations>
3 <head>
4 <target>java</target>
5 <style>types</style>
6 <comment>Created by hand</comment>
7 </head>
8 <class name=”Container”>
9 <type variable index=”0” name=”T” line=”1”>

10 <upper bound index=”0” modifier=”any” class=”java.lang.Object”/>
11 </type−variable>
12 </class>
13 <class name=”StaticInference”>
14 <field name=”container” line=”14”>
15 <type modifier=”rep” class=”Container”>
16 <type argument index=”0” modifier=”rep” class=”ExtendedData”/>
17 </type>
18 </field>
19 <method name=”main” line=”16”>
20 <new index=”0” modifier=”rep” class=”Container”>
21 <type argument index=”0” modifier=”rep” class=”ExtendedData”/>
22 </new>
23 <new index=”1” modifier=”rep” class=”ExtendedData”/>
24 </method>
25 </class>
26 </annotations>
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4.3 Data Model

Before we will explain constraints in detail and how they are generated, we introduce the data
model used to represent types, variables and constraints. The algorithms for constraint generation
will work on this data model. An UML diagram can be found in Figure 4.1.

Unlike the Universe Type System where one type equals one ownership modifier, a type in
Generic Universe Types can have an arbitrary number of ownership modifiers. Thus, our data
model has two basic components: types and ownership modifiers.

A Variable — a term we adopted from [21] — stands for a single ownership modifier. It can
either be any, peer or rep. A new instance is created for every ownership modifier to be inferred.
Each Variable always belongs to a type.

A Type represents any kind of type, be it the type of a field, the return type of a method,
the type of an expression or a type variable, that are relevant to build constraints. We do not
model types like primitive types or null as they are not needed to model constraints. Type has
two subclasses as they are defined in [9]: the Non-variable Type and the Type Variable.

A Non-variable Type consists of three parts: an ownership modifier, a class and a list of type
arguments. The ownership modifier is a reference to a Variable, i.e. each Non-variable Type has
one Variable associated with it. The type arguments are a possibly empty list of Types.

A Type Variable is created for each type parameter of a generic class. It has an upper bound
which is a Type, i.e. its upper bound could again be a Type Variable. Whenever a reference to
the type variable is encountered in a type, the Type Variable is directly referenced in the data
structure.

When generating constraints, the Type Variable is substituted by its upper bound or its type
argument, whatever is appropriate. The Type Variable itself has no constraints since there is no
Variable associated with it and therefore no ownership modifier has to be inferred. Constraints
are associated with the upper bound or the type argument instead.

An instance of Class Information is created for each class encountered in the source code. It
basically stores all the types that exist once per class. This means it contains the list of all Type
Variables declared by this class and the type for this.

Figure 4.1: UML diagram of the data model

Listing 4.5: An example to demonstrate how the data model represents different types

1 class InferTypeRepresentation<X> {
2 X field ;
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3
4 void main() {
5 Object o = new LinkedList<Data>();
6 o = field ;
7 }
8 }

To illustrate how the presented data structure stores various types, we will explain it for three
examples shown in Listing 4.5. The generic class Container is already known from previous
examples.

Type LinkedList<Data> on line 5 is stored as a Non-variable Type. It has a new Variable, i.e.
an ownership modifier that has to be inferred, links to Class Information for LinkedList and has
one type argument in its list. The type argument is a Non-variable Type and has yet another new
Variable, links to Data and contains no type arguments.

The type for field on line 6 is represented by a Type Variable which got created when the
declaration of type variable X was parsed. The type variable, since it is unbounded, was assigned
a new Non-variable Type as its upper bound with a new Variable. It references Class Information
for Object and has no type arguments.

The data model presented so far allows us to represent all relevant type information and to
relate ownership modifiers to types. Yet, on a higher level, constraints are built from relationships
of types to each other which then, on a lower level, are mapped to variables relating to each other.
Examples for relationships of types are the combination of a type A with type B that results in a
type C or a type A has to be a subtype of B. Such relationships are stored in Type Constraints.

Each Non-variable Type has an instance of Type Constraints associated with it that maintains
all constraints encountered so far in the source code. Type variables do not have constraints as
they do not have any ownership modifiers. Their constraints are attached to the upper bound.
The different kinds of constraints presented in the following are all stored separately in Type
Constraints.

Note that we have only presented the core of the data model necessary to completely model
the constraints for Generic Universe Types. For example, a class dealing with methods, i.e. their
type variables, parameter types and return type, has to be added.

4.4 Constraints

As we have explained in Section 4.2, constraints are restrictions modeling the rules of Generic
Universe Types. On the level of the data model, we store the relationships between each Non-
variable Type and an arbitrary number of Types. These are then mapped to dependencies of
Variables which are eventually written to a file as boolean formulas.

You can see from this description, that there are basically two steps to generating constraints:
First, they are built in the data model. Then, in a second step, they are mapped to variables and
written to a file. We perform these steps in two separate passes:

1. While traversing the abstract syntax tree which was created by the compiler, we extract all
constraints and store them in Type Constraints. This includes creating Types, Variables,
and for each class, Class Information. This first phase is called constraint building.

2. Once this is done, we no longer need to look at the abstract syntax tree. We now have all
necessary information in our own data model which is tailored to our needs. Therefore, we
look at the Type Constraints of every Non-variable Type and map them to boolean formulas.
This second phase is called constraint writing.

In the following, we will introduce five kinds of constraints that allow us to model the type
rules of Generic Universe Types3. For each kind of constraint, we present two algorithms:

3For those familiar with [9], we include well-formedness in the type rules as far as it is not already covered by
the Java type rules. These have already been checked once we get to building constraints.
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• The constraint building algorithm decides if this kind of constraint is built for the given
input, i.e. we first list situations where a certain kind of constraint is applicable and the
algorithm then decides if it is necessary for the given Types. When the algorithm determines
that a constraint is to be built, the constraint gets stored in the appropriate instance of Type
Constraints.

• The constraint writing algorithm is executed for each constraint built, i.e. for each constraint
that has been stored in some instance of Type Constraints by the corresponding constraint
building algorithm. The constraint writing algorithm takes the relationships between Types
and maps them to boolean formulas creating relationships between Variables which are then
written to a file.

Note that we do not show the boolean formulas on a bit level. Instead, we use the Variables
and expressions like u = peer to state that u is peer. We refer to [21] for various ways to encode
ownership modifiers and therefore the Variables. In some cases, we introduce new literals, i.e.
bits, that are needed in the formulas. These can be mapped directly to the bit level.

4.4.1 Declaration Constraint

The declaration constraint disallows a certain ownership modifier. Unlike all other constraints, this
kind of constraint is not only applicable to a Non-variable Type but also to a Variable. Applying
it to a Non-variable Type means applying it to every Variable being part of the type, i.e. the given
ownership modifier must not occur in any type argument either.

The declaration constraint is also used to fix a Variable to a certain ownership modifier. In
that case, two declaration constraints are applied to prevent the other two ownership modifiers.
The remaining ownership modifier is then the only valid solution.

We apply the declaration constraint in the following cases:

• formal parameter types of pure methods must only contain the any modifier

• upper bounds of class type variables must not contain the rep modifier

• the main modifier of the receiver type of a non-pure method call must not be the any modifier

• the main modifier of the receiver type of a field update must not be the any modifier

• if a field update does not happen on this, the field’s declared type must not contain the rep
modifier

• if the receiver of a non-pure method is different from this, none of its formal parameter
types must contain the rep modifier

• the main modifier of an object instantiation must not be any

• the main modifier for boxing types such as Integer and String must be the any modifier

Building a Declaration Constraint

For all cases being listed above, declaration constraints have to be built. Compared to other kinds
of constraints we will present later in this section, keeping track of declaration constraints is easy:
It suffices to store for each ownership modifier whether it is allowed or not. This is done for
every Variable. At creation time of the Variable, all ownership modifiers are allowed. A certain
ownership modifier can then be prevented by applying a declaration constraint.
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Listing 4.6: Sample code to demonstrate how declaration constraints are built

1 class DeclarationConstraintBuilder<X extends u1 Data> {
2 u2 Container<u3 Data> container;
3
4 void main() {
5 container = new u4 Container<u5 Data>();
6 container. set(null);
7 }
8 }

In Listing 4.6 we have three cases requiring a declaration constraint:

• On line 1, X’s upper bound u1 Data must not contain the rep modifier. We apply a dec-
laration constraint to a Non-variable type which means applying it to every Variable being
part of it and disallow the rep modifier for all its Variables (here only u1).

• On line 5, we prohibit the any modifier for Variable u4 as new objects have to be in a specific
context. To this end, we use a declaration constraint for Variable u4. Since it does not apply
to the entire type, any is still a valid ownership modifier for u5.

• On line 6, non-pure method set is called on field container. This must not happen on any
references. Therefore, we use a declaration constraint on Variable u2 to prohibit the any
modifier.

Writing a Declaration Constraint

To write the declaration constraints, we use the following algorithm for each Variable:

Writing a Declaration Constraint

Input: A Variable u
Output: Up to two clauses in CNF representing the declaration

constraints of Variable u
Side-effect: -

1. If Variable u has a declaration constraint prohibiting ownership modifier peer, the
following clause is added: ¬u = peer

2. If Variable u has a declaration constraint prohibiting ownership modifier rep, the
following clause is added: ¬u = rep

3. If Variable u has a declaration constraint prohibiting ownership modifier any, the
following clause is added: ¬u = any

Note that at most two ownership modifiers must be forbidden. If all three are forbidden, we
issue an error.

We omit to give the clauses for the example as it is straightforward.
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4.4.2 Combination Constraint

A combination constraint expresses that the result of the combination of a Type A with a Type B
is Type C, i.e. adapting Type B to the viewpoint A results in Type C.

A combination constraint is needed where viewpoint adaption is required, which is in the
following cases:

• for object creations, the new object’s type has to be combined with each type variable’s
upper bound

• for method calls, the receiving object’s type has to be combined with each method parame-
ter’s type and each method type variable’s upper bound

• for expressions, all occurring fields and return types of methods have to be combined from
left to right

Internal Types

Whenever we combine two Types, a new third Type gets created whose ownership modifiers are
not visible to the outside, i.e. they will not annotate any type in the source code, but they are
needed internally to relate the two original Types to other types. Let us consider the following
example:

Listing 4.7: Sample code to show why internal types are required for constraints

1 class InternalTypes {
2 u1 InternalTypes field ;
3
4 void main() {
5 u2 InternalTypes iTypes = new u3 InternalTypes();
6 u4 InternalType result = iTypes.field ;
7 }
8 }

In Listing 4.7 on line 5, we create a new instance of InternalTypes and assign it to a variable
iTypes. We then access iTypes’s field and assign it to another variable result. There is no
immediate relationship between the types of field, iTypes and result, but line 6 imposes a
constraint: The combination of iTypes type with field’s type has to be assignable to result’s
type. In order to simplify this, we create an internal Type representing the combination of iTypes
Type with field’s Type which then has to be assignable to result4. To reduce complexity of the
resulting constraints, this Type is reused for each combination of these two Types.

4Assignability is ensured by a subtype constraint which is presented in section 4.4.3.
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Building a Combination Constraint

Building a combination constraint follows a process which we describe in the form of an algorithm.
The input of the algorithm consists of the left type of the combination for A and the right type of
the combination of B.

Building a Combination Constraint

Input: Two Types A and B
Output: A Type being the combination of Type A with Type B
Side-effect: A combination constraint is added if applicable

1. If A is a Type Variable, we take its upper bound instead. We do this until we reach
a Non-variable Type. This then becomes type A.

2. If B is a Type Variable, we return the type argument for it. The type argument
can be accessed through Non-variable Type A. No constraint is created. We are
done.

3. Otherwise, we check if A has already been combined with B before. We do a lookup
and if this combination already exists, we return that Type. We are done.

4. Otherwise, we look at Non-variable Type B. We create a new Non-variable Type
C with a new Variable. It links to the same Class Information as B. The type
arguments of the newly created Non-variable Type is a new list that is created by
applying the following to each of B’s type arguments:

• If the type argument is a Non-variable Type, we again create a new Non-
variable Type with a new Variable. It links to the same Class Information as
the original type argument and we recursively proceed with each of its type
arguments.

• If the type argument is a Type Variable, we take its type argument which can
be found as part of Non-variable Type A.

5. We add Non-variable Type C from the previous step as the result of the combination
of A with B as a pair consisting of B and C to A’s Type Constraints. We return
C.

As you can see, the newly created Non-variable Type C is a copy of B, except that it has new
Variables and all Type Variables are substituted by their type argument. It is an internal Type,
i.e. its Variables will not be visible in the program to be annotated. Instead, it is used in other
constraints.

There are cases when no combination constraint is built: When the constraint already exists
or when no viewpoint adaptation takes place since the type argument is returned. Furthermore,
if a type cannot be represented as an instance of Type, e.g. if it is a primitive type or this, then
no constraint is built either because no viewpoint adaptation is required.

The keyword this can have two meanings in our context: First, it indicates that the next
expression refers to a member of the current type. In this case, it is not relevant to us as no
viewpoint adaptation takes place and the compiler has already figured out which reference to use,
e.g. the field is hidden by a homonymous local variable. Second, it is a reference to the current
type with no following member in which case we pull the Type from the Class Information.

Listing 4.8: An example to explain the combination constraint algorithms

1 class Data {
2 u1 Object property;
3
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4 u2 Object getProperty() {
5 return property;
6 }
7
8 void setProperty(u3 Object property) {
9 this.property = property;

10 }
11 }
12
13 class ExtendedData extends Data {
14 }
15
16 class GenericHelper<X extends u4 Object, Y extends u5 Object> {
17 }
18
19 class CombinationConstraint<X extends u6 Data> {
20 X field ;
21 u7 GenericHelper<u8 Object, X> helper;
22
23 void main() {
24 u9 CombinationConstraint<u10 ExtendedData> constraint;
25
26 // initialization omitted
27
28 u11 Object o = field.getProperty();
29 o = constraint.helper;
30 }
31 }

We will use the example in Listing 4.8 to show you the application of the combination con-
straint. Class GenericHelper only has two type variables X and Y. Classes Data and ExtendedData
are listed explicitly in this example as we access a field for demonstration purposes which involves
their ownership modifiers in the constraints.

Let us have a look at line 28 first: field.getProperty() requires a combination constraint as
we need the resulting type to check assignability to local variable o. Input to the algorithm is Type
Variable X as Type A and Non-variable Type u2 Object (the return type of method getProperty)
as Type B. We will go through it, step-by-step:

1. Since Type A, X, is a Type Variable, we take its upper bound, u6 Data, as the new Type A.
This is a Non-variable Type, so we are fine.

2. Type B, u2 Object, is not a Type Variable. So, we are done with this step.

3. There has not been an occurrence of this combination before. We go on to the next step.

4. We create a new Non-variable Type which has a new Variable u12 and also links to Class
Information Object. There are no type arguments. This is Type C.

5. We add an entry to Type A’s (which is X’s upper bound u6 Data) Type Constraints that the
newly created type results from combining Type A with Type B. Type C is returned. It can
then be used to add a constraint that ensures its assignability to o’s Type.

It is important to see that, although the return type of method getProperty of class Data
and the local variable o of method main are both of type Object, as well as the newly created
type, they do not refer to the same Non-variable Type. Each occurrence of a type has a separate
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instance of a Non-variable Type and therefore a different Variable. Types referring to the same
class do share the same instance of Class Information which only exists once per class.

Let us now do the same for line 29. This time, Type A is Non-variable Type u9 Combina-
tionConstraint<u10 ExtendedData> and Type B is Non-variable Type u7 GenericHelper<u8
Object, X>.

1. Type A is not a type variable. Skip.

2. Type B is not a type variable. Skip.

3. These two Types have not been combined before. Skip.

4. We create a new Non-variable Type with a new Variable u13 which links to Class Information
GenericHelper. It has two type arguments: Another new Non-variable Type with a new
Variable u14 that links to Object. The other type argument is a Type Variable and we
therefore simply replace it by its type argument u10 ExtendedData. You can see here that
the type argument can be found in Type A and that no new Variable is created. The resulting
Type C is u13 GenericHelper<u14 Object, u10 ExtendedData>.

5. This newly created Type C is added as the result of the combination with u7 Gener-
icHelper<u8 Object, X> to the Type Constraints of Type u9 CombinationConstraint<u10
ExtendedData>.

Writing a Combination Constraint

For each combination constraint, we use the algorithm stated below taking three Non-variable
Types A, B and C to write the combination constraint. As input, we have for A the Non-variable
Type the Type Constraints belongs to, for B the Non-variable Type A is combined with, and for
C the resulting Non-variable Type from the combination constraint building algorithm.

Writing a Combination Constraint

Input: Three Non-variable Types A, B and C
Output: An arbitrary number of clauses in CNF representing the combination

constraint of Type A combined with Type B resulting in Type C
Side-effect: -

1. From A, take the main modifier. We call it u.

2. From B, take the main modifier. We call it u′. Furthermore, take all ownership
modifiers occurring in the transitive closure B’s type arguments. We call them u1

. . .un.

3. From C, take the modifier corresponding to u′. We call it v.

4. Write the following clauses:

u = any → v = any ∧
u′ = any → v = any ∧
u′ = rep → v = any ∧
u = peer ∧ u′ = peer → v = peer ∨ r ∧
u = rep ∧ u′ = peer → v = rep ∨ r ∧
r → v = any ∧
r ↔ u1 = rep ∨ ... ∨ un = rep

5. Repeat steps 2 - 5 (recursively) for each of B’s type arguments. Thereby, replace
B by the current type argument. If the type argument is a Type Variable, nothing
has to be done.
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Simply spoken, A’s main modifier is combined with each modifier of B. The result of each of
these combinations is assigned to C’s corresponding modifier. We know that C is a copy of B.
The clauses written in step 4 model the type combinator as follows:

• If any occurs, the result is again any (clauses 1 and 2)

• If the second modifier is rep, the result is any5 (clause 3)

• peer (rep) combined with peer is again peer (rep) unless one of the type arguments contains
rep (clauses 4 and 5)

• If rep occurs in the type arguments, the result is any (clause 6)

• r states if rep is contained in the transitive closure of the second Type’s type arguments
(clause 7)

r is a new bit that is introduced every time step 4 is executed, i.e. multiple new bits could
be created during the execution of the algorithm. It tells us if we have to change the ownership
modifier to any. If we have no Variables in the type arguments or no type arguments, r is false
by default.

We go back to the example in Listing 4.8 and take this one step further by writing the clauses.
We will use the combination on line 29. There we combined u9 CombinationConstraint<u10
ExtendedData> with u7 GenericHelper<u8 Object, X>. We have already created the resulting
Non-variable Type which is u13 GenericHelper<u14 Object, u10 ExtendedData>.

With the help of our algorithm, we will relate the Variables. The input for our algorithm is
u9 CombinationConstraint<u10 ExtendedData> for A, u7 GenericHelper<u8 Object, X> for
B and u13 GenericHelper<u14 Object, u10 ExtendedData> for C.

1. u = u9

2. u′ = u7, u1 = u8

3. v = u13

4. The following clauses are written:
u9= any →u13= any ∧
u7= any →u13= any ∧
u7= rep →u13= any ∧
u9= peer∧u7= peer →u13= peer ∨ r1 ∧
u9= rep∧u7= peer →u13= rep ∨ r1 ∧
r1 →u13= any ∧
r1 ↔ u8= rep

5. We repeat steps 2 - 5 for B’s type arguments u8 Object and X. Note that there is nothing
to be done for X as it is a Type Variable.

2. We now replace Non-variable Type B by the current type argument. This is u8 Object. u′

= u8 and no ui.

3. The corresponding v to u7 is u13.

4. These clauses are written:
u9= any →u14= any ∧
u8= any →u14= any ∧
u8= rep →u14= any ∧
u9= peer∧u8= peer →u14= peer ∧
u9= rep∧u8= peer →u14= rep

As you can see, the clauses become simpler as there is no r to consider.
5Note that the this modifier is not modeled.
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5. There are no type arguments.

4.4.3 Subtype Constraint

When Non-variable Type B is added to the list of subtype constraints of Non-variable Type A, it
means that B has to be a subtype of A.

The subtype constraint is applied in the following cases:

• for assignments, the right hand side has to be a subtype of the left hand side

• for a method call, each argument’s type has to be a subtype of the corresponding viewpoint
adapted formal parameter’s type

• for return statements, their type has to be a subtype of the method’s return type

• for instantiations of type variables, their type arguments have to be a subtype of the corre-
sponding upper bound

Building a Subtype Constraint

To enforce the subtype relationship, we can build on Java’s subtyping rules because the entire
program has already been type checked by a Java compiler before we start building the constraints.
Thus, we do not have to care about whether classes are subtypes of each other but we only have
to look at the ownership modifiers.

The following algorithm builds a constraint for two Types A and B where B has to be a subtype
of A:

Building a Subtype Constraint

Input: Two Types A and B
Output: -
Side-effect: A subtype constraint is added if applicable

1. If A is a Type Variable, we are done. No constraint is added.

2. Otherwise, if B is a Type Variable, we take its upper bound until we get a Non-
variable Type. This type then becomes Type B.

3. We check if A’s Type Constraints already contains B as a subtype. If that is the
case, we are done.

4. Otherwise, we add Non-variable Type B to the list of subtype constraints of Non-
variable Type A.

If the subtyping rules of Generic Universe Types for Types A and B are stricter than in Java,
we build a constraint. No constraint is required if A is Type Variable because then B is a Type
Variable as well due to Java’s subtyping rules. Or if B were null, for which we build no constraint
either.

We will illustrate the algorithm by an example:

Listing 4.9: An example to explain the subtype constraint algorithms

1 class BaseClass<T extends u1 Data, U extends u2 Object> {
2 }
3
4 class SimpleClass<X extends u3 Object> extends BaseClass<u4 ExtendedData, X> {
5 }
6
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7
8 class SubtypeConstraint<X extends u5 SimpleClass<u6 Data>, Y extends X> {
9 X fieldX;

10 Y fieldY;
11
12 void m(u7 BaseClass<u8 ExtendedData, u9 Data> b) {
13 }
14
15 void main() {
16 fieldX = fieldY;
17 m(fieldY);
18 }
19 }

In Listing 4.9 we give two examples requiring a subtype constraint. On line 16, an assignment
is made: A reference of Type Y is assigned a reference of Type X. We have to ensure that the
expression’s type of the right hand side of the equal sign is a subtype of the left hand side.
Therefore, the two Types function as input to the subtype constraint building algorithm: Type
Variable X for A and Type Variable Y for B:

1. We are done since A is a Type variable.

The other occasion where a subtype constraint is applied is found on line 17: In case of a method
call, the actual parameter’s type has to be a subtype of the type of the method’s formal parameter.
We apply our algorithm with the formal parameter’s Non-variable Type u7 Container<u8 Data>
for A and the actual parameter’s Type Variable Y for B:

1. Skip since A is not a Type Variable.

2. We take Y’s upper bound, X. Since it is again a Type Variable, we repeat this step and take
X’s upper bound, Non-variable Type u5 Container<u6 Data>. This becomes B.

3. This constraint does not yet exist.

4. We add a subtype constraint to Non-variable Type A’s list: Non-variable Type u5 Con-
tainer<u6 Data> indirectly representing the upper bound of Type Variable Y has to be
a subtype of Non-variable Type u7 BaseClass<u8 ExtendedData, u9 Data> representing
the formal method parameter b’s type.

Writing a Subtype Constraint

Writing a subtype constraint comes down to relating the corresponding Variables of the two Non-
variable Types. Basically, the two main modifiers have to be subtypes and the remaining modifiers,
which occur in the type arguments, have to be equal. Additionally, limited covariance has to be
taken into account.
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For the algorithm below, the Non-variable Type to which the instance of Type Constraints
belongs is A and the Non-variable Type retrieved from Type Constraints is B.

Writing a Subtype Constraint

Input: Two Non-variable Types A and B
Output: An arbitrary number of clauses in CNF representing the subtype

constraint making B a subtype of A
Side-effect: -

1. If the Class Information of A and B refer to different classes, walk up B’s supertype
hierarchy and substitute the type arguments until A and B refer to the same
class. This then becomes the new Non-variable Type B. It might be necessary to
backtrack as there can be multiple supertypes due to interfaces.

2. From A, take the main modifier. We call it u0.

3. From B, take the main modifier. We call it u′.

4. Write the following constraints:

u′ = any → u0 = any ∧
u0 = peer → u′ = peer ∧
u0 = rep → u′ = rep

5. For each type argument of A: If the type argument is a Type Variable, go to the
next type argument. Otherwise, if it is a Non-variable Type, take its ownership
modifier and call it ui where i is the current nesting level. Take the corresponding
modifier of B and call it u′. Then write the following clauses:

u′ = any → ui = any ∧
ui = peer → u′ = peer ∧
ui = rep → u′ = rep ∧
ui = any → u′ = any ∨ a ∧
u′ = peer → ui = peer ∨ a ∧
u′ = rep → ui = rep ∨ a ∧
a ↔ u0 = any ∧ ... ∧ ui−1 = any

This is done recursively for nested type arguments, i.e. continue with nested type
arguments before moving to the next type argument on the same nesting level.
Thereby, A is replaced by the current type argument.

This algorithm needs some explanation. Before we can look at the Variables, we have to have
A and B refer to the same class. This is done in the first step by taking the subtype B, recursively
traversing its supertype hierarchy and thereby substituting its type arguments. Using a depth first
or breadth first search, B will eventually be a type of the same class as A.

In step 4, we create three clauses that ensure the subtype relationship of both main modifiers.
If the subtype’s modifier is any, the supertype’s modifier has to be any as well (clause 1). If the
supertype’s modifier is peer (rep), the subtype’s modifier also needs to be peer (rep) (clauses 2
and 3).

Since A and B refer to the same class due to step 1, they have the same number of type
arguments. This is also true for nested type arguments due to Java’s invariance for generic types. In
step 5, we enforce equality of all corresponding Variables occurring in A and B. Where applicable,
we allow limited covariance which is expressed by the a bit. It expresses if all outer modifiers are
any which loosens the equality and only enforces a subtype relationship between the two Variables.
This is done recursively for nested type arguments. We name the outer Variables of A ui where i
is the level of nesting.
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To give an example, we continue on the one presented in Listing 4.9. We have already built a
subtype constraint and apply the subtype constraint writing algorithm to write the clauses. The
input to the algorithm is the supertype u7 BaseClass<u8 ExtendedData, u9 Data> for A and
the subtype u5 SimpleClass<u6 Data> for B.

1. A refers to BaseClass whereas B refers to SimpleClass. Therefore, we have to traverse
SimpleClass’s supertype hierarchy. Its only supertype is BaseClass<u4 ExtendedData,
X> where we substitute X by its argument u6 Data. So, we get for B u7 BaseClass<u4
ExtendedData, u6 Data>.

2. u0 = u7

3. u′ = u5

4. The following constraints are written:

u5= any →u7= any ∧
u7= peer →u5= peer ∧
u7= rep →u5= rep

5. We take A’s first type argument u8 ExtendedData. u1 = u8 and correspondingly u′ = u4.
The following clauses are written:

u4= any →u8= any ∧
u8= peer →u4= peer ∧
u8= rep →u4= rep ∧
u8= any →u4= any ∨ a ∧
u4= peer →u8= peer ∨ a ∧
u4= rep →u8= rep ∨ a ∧
a ↔u7= any

Since u8 ExtendedData has no nested type arguments, we continue with the next argument
on level i = 1 which is u9 Data. u1 = u9 and correspondingly u′ = u6. The following clauses
are written:
u6= any →u9= any ∧
u9= peer →u6= peer ∧
u9= rep →u6= rep ∧
u9= any →u6= any ∨ a ∧
u6= peer →u9= peer ∨ a ∧
u6= rep →u9= rep ∨ a ∧
a ↔u7= any

Since u9 Data has no nested type arguments and there are no more type arguments on the
same level, we are done.

4.4.4 Convertible Constraint

In order to understand the convertible constraint, we have to consider the equality operators ==
and ! = which indicate if two references point to the same object. For that two references can refer
to the same object, their main modifiers have to be in a subtype relationship. Thereby it does
not matter which of the two ownership modifiers is the subtype and which is the supertype. It is
enough if one can be converted — casted — to the other. This is represented by the convertible
constraint.

Building a Convertible Constraint

For equality operators == and ! =, we take the Type to the left of the operator as input for Type
A and the Type to the right for Type B for the following algorithm:



4.4 Constraints 67

Building a Convertible Constraint

Input: Two Types A and B
Output: -
Side-effect: A convertible constraint is added if applicable

1. If A is a Type Variable, take its upper bound until a Non-variable Type is reached.
This then becomes A. Do the same for B.

2. We check if A’s Type Constraints already contains B in the list of convertible
constraints, or if B’s Type Constraints already contains A in the list of convertible
constraints. If either of them is the case, we are done.

3. Otherwise, we add Non-variable Type B to the list of convertible constraints of
Non-variable Type A.

The algorithm is straightforward: In the first step, we substitute Type Variables by their upper
bounds for the same reason we do it in the other algorithms. Then, we check if a convertible
constraint already exists for the two given Types. Due to its symmetric property, we have ensure
that it does not exist in either of the Type Constraints. If this is not the case, the constraint is
added.

Listing 4.10: An example to explain the convertible constraint algorithms

1 class GenericBase<T> {
2 }
3
4 class GenericExtension<X, Y> extends GenericBase<X> {
5 }
6
7 class ConvertibleConstraint {
8 u1 GenericBase<u2 Data> obj1;
9 u3 GenericExtension<u4 Data, u5 Object> obj2;

10
11 void main() {
12 // initialization omitted
13
14 if (obj1 == obj2) {
15 }
16 }

We will show the application of the convertible constraint building algorithm with the help of
the example given in Listing 4.10 where we present three classes. For the first two, GenericBase
and GenericExtension, we have omitted the upper bounds of the Type Variables, and thereby
their Variables. A possible convertible constraint is on line 14 where u1 GenericBase<u2 Data>
is the input for A and u3 GenericExtension<u4 Data, u5 Object> for B. Let us apply the
algorithm step-by-step:

1. Neither A nor B are Type Variables. Skip.

2. This convertible constraint does not exist in either of the Type Constraints’.

3. u3 GenericExtension<u4 Data, u5 Object> gets added as a convertible constraint to u1
GenericBase<u2 Data>’s Type Constraints.
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Writing a Convertible Constraint

Writing the constraint is done by the algorithm below. The Non-variable Type to which the in-
stance of Type Constraints belongs is A and the Non-variable Type retrieved from Type Constraints
is B.

Writing a Convertible Constraint

Input: Two Non-variable Types A and B
Output: An arbitrary number of clauses in CNF representing the convertible

constraint of A and B
Side-effect: -

1. From A, take the main modifier. We call it u0.

2. From B, take the main modifier. We call it u′0.

3. Write the following constraints:

u′0 = any → u0 = any ∨ s ∧
u0 = peer → u′0 = peer ∨ s ∧
u0 = rep → u′0 = rep ∨ s ∧
u0 = any → u′0 = any ∨ ¬s ∧
u′0 = peer → u0 = peer ∨ ¬s ∧
u′0 = rep → u0 = rep ∨ ¬s

4. If A is not a subtype of B and B is not a subtype of A either, both based on Java?s
subtyping rules, we are done.

5. Otherwise, if the Class Information of A and B refer to different classes, determine
which of A and B is the subtype and which is the supertype with respect to Java’s
subtyping. Walk up the subtype’s supertype hierarchy and substitute the type
arguments until subtype and supertype refer to the same class. This then becomes
A or B depending on what it was originally. It might be necessary to backtrack as
there can be multiple supertypes due to interfaces.

6. For each type argument of A: If the type argument is a Type Variable, go to the
next type argument. Otherwise, it is a Non-variable Type, take A’s ownership
modifier and call it ui where i is the current nesting level. Take the corresponding
modifier of B and call it u′i. Then write the following clauses:

ui = any → u′i = any ∨ a ∧
u′i = peer → ui = peer ∨ a ∧
u′i = rep → ui = rep ∨ a ∧
a ↔ u0 = any ∧ ... ∧ ui−1 = any ∧ ¬s ∧
u′i = any → ui = any ∨ a′ ∧
ui = peer → u′i = peer ∨ a′ ∧
ui = rep → u′i = rep ∨ a′ ∧
a′ ↔ u′0 = any ∧ ... ∧ u′i−1 = any ∧ s

This is done recursively for nested type arguments, i.e. continue with nested type
arguments before moving to the next type argument on the same nesting level.
Thereby, A is replaced by the current type argument.

The algorithm is similar to the subtype constraint writing algorithm. Each time the algorithm
is executed, a new literal s is introduced. The literal indicates which subtype relationship between
the main modifiers of the two Non-variable Types is enforced: s being false means that B’s main
modifier has to be a subtype of A’s main modifier — s being true means that A’s main modifier
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has to be a subtype of B’s main modifier. That way it is up to the solver to assign s a boolean
value and satisfy the remaining clauses. What remains to be fulfilled after s has been assigned a
boolean value are the exact same clauses that would have been created by the subtype constraint
for the main modifiers.

For the convertible constraint, we detach the subtype relationship of ownership modifiers from
the subtype relationship of classes in Java. Reason being that one Type can be more specific on
the object’s class whereas the other Type is more specific what the universe is concerned. For
example peer Data and any ExtendedData can refer to the same object although there is no
subtype relationship between them in Generic Universe Types.

Step 4 terminates the algorithm if there is no subtype relationship between the two Types in
Java. Such a situation can arise if at least one of the Types describes an interface. Due to multiple
inheritance for interfaces in Java, the dynamic type of an object can be a subtype of two Types
that are in no subtype relationship. In this case, there is no constraints to be created for the type
arguments.

If we have a subtype relationship between the two Types but they are not equal what the class
is concerned, we take the subtype and traverse its supertype hierarchy until the two Types refer
to the same class.

In step 6, we continue to enforce the subtype relationship between the ownership modifiers for
each type argument. For each type argument being a Non-variable Type, two new new literals
are introduced: a indicates if limited covariance were allowed for A’s main modifier being the
supertype — a′ indicates it for B’s main modifier being the supertype. Note that the literal that
does not belong to the supertype is always false.

We illustrate the algorithm by continuing the example from Listing 4.10. From there we have
u1 GenericBase<u2 Data> as input for A and u3 GenericExtension<u4 Data, u5 Object> for
B:

1. u0 = u1

2. u′0 = u3

3. The following constraints are written:

u3= any →u1= any ∨ s ∧
u1= peer →u3= peer ∨ s ∧
u1= rep →u3= rep ∨ s ∧
u1= any →u3= any ∨ ¬s ∧
u3= peer →u1= peer ∨ ¬s ∧
u3= rep →u1= rep ∨ ¬s

4. B, GenericExtension, is a subtype of A, GenericBase. Skip.

5. From the previous step, we know that B is the subtype. We therefore walk up in the su-
pertype hierarchy to its direct parent, GenericBase<X>, and substitute the type arguments.
The resulting type is u3 GenericBase<u4 Data>. We assign it to B.

6. We take A’s first type argument u2 Data. u1 = u2 and correspondingly u′1 = u4. The
following clauses are written:

u3= any →u5= any ∨ a ∧
u5= peer →u3= peer ∨ a ∧
u5= rep →u3= rep ∨ a ∧
a ↔u2= any ∧ ¬s ∧
u5= any →u3= any ∨ a′ ∧
u3= peer →u5= peer ∨ a′ ∧
u3= rep →u5= rep ∨ a′ ∧
a′ ↔u4= any ∧ s
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Since u2 Data has no nested type arguments and there are no more type arguments on the
same level, we are done. Note that no constraint involves u5, the ownership modifier of B’s
second type argument u5 Object. This makes sense as u5 can be any of the three modifiers
and B would always be convertible to A.

4.4.5 Cast Constraint

Although casts compromise the static type safety and therefore have to be avoided wherever
possible, there are cases in Java where casts are almost inevitable, i.e. avoiding them implied
unreasonably additional effort. We are minimizing the impact of casts on the static type safety of
Generic Universe Types by defining a special kind of constraint: the cast constraint.

The goal is to constrain the Variables of casts such that they have no influence on the ownership
modifiers, i.e. although the class of a type changes, the ownership modifier remains the same. This
is not always possible, as we will show.

Building a Cast Constraint

The following algorithm builds a cast constraint for two Types A and B where A is cast to B, i.e.
(B) a, a of Type A:

Building a Cast Constraint

Input: Two Types A and B
Output: -
Side-effect: A cast constraint is added if applicable

1. If B is a Type Variable, build a convertible constraint using the convertible con-
straint building algorithm with input A and B. We are done.

2. If A is a Type Variable, take its upper bound until a Non-variable Type is reached.
This then becomes A.

3. Check if A’s Type Constraints already contains B in the list of cast constraints. If
this is the case, we are done.

4. Otherwise, add Non-variable Type B to the list of cast constraints of Non-variable
Type A.

If B is a Type Variable, we do not know which Type we are casting to. All we know is that
it is some subtype of the upper bound. By building a convertible constraint, we ensure that A
and B have a common subset of types for which the cast succeeds. If we wanted to build stronger
constraints, we would have to look at the type arguments and perform data flow analysis which
required a lot of effort for a rare case.

Listing 4.11: An example to explain the cast constraint algorithms

1 class GenericBase<T> {
2 }
3
4 class GenericExtension<X, Y> extends GenericBase<X> {
5 }
6
7 class CastConstraint {
8 u1 GenericBase<u2 Data> base;
9 u3 GenericExtension<u4 Data, u5 Object> extension;

10
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11 void main() {
12 // initialization omitted
13
14 extension = (u6 GenericExtension<u7 Data, u8 Object>) base;
15 }
16 }

In Listing 4.11 reuse the classes from the convertible constraint example. We apply the just
presented algorithm to the cast on line 14. The Type to be cast, u1 GenericBase<u2 Data>,
serves as input for A and the target Type, u6 GenericExtension<u7 Data, u8 Object>, for B.

1. B is a Non-variable Types. Skip.

2. A is a Non-variable Types. Skip.

3. Such a cast constraint does not yet exist.

4. We add u6 GenericExtension<u7 Data, u8 Object> to the list of cast constraints in u1
GenericBase<u2 Data>’s Type Constraints.

Writing a Cast Constraint

The following algorithm writes a cast constraint. The Non-variable Type the instance of Type
Constraints belongs to is A and the Non-variable Type retrieved from Type Constraints is B.

Writing a Cast Constraint

Input: Two Non-variable Types A and B
Output: An arbitrary number of clauses in CNF representing the cast

constraint of A being cast to B
Side-effect: -

1. If the Class Information of A and B refer to different classes, determine which of A
and B is the subtype and which is the supertype with respect to Java’s subtyping.
Walk up the subtype’s supertype hierarchy and substitute the type arguments
until subtype and supertype refer to the same class. This then becomes A or B
depending on what it was originally. It might be necessary to backtrack as there
can be multiple supertypes due to interfaces.

2. For each Variable u of Type A, take their counterpart u′ of Type B. Write the
following constraint:

u = peer ↔ u′ = peer ∧
u = rep ↔ u′ = rep ∧
u = any ↔ u′ = any

As in the subtype constraint, we first make sure that both Types refer to the same class.
We then create clauses that equate the corresponding Variables of the two Types. Alternatively,
instead of forcing these pairs of Variables to be equal, we could also use the same Variable in both
Types.

The idea is to only change the class and to not touch the ownership modifiers. That way, the
cast has no impact on ownership, i.e. it is statically safe what the owner-as-modifier property is
concerned. Yet, this is not true for all casts: If B contains type arguments that do not directly
relate to one of A’s type arguments, it will not be constrained by the cast constraint. Again, we
would need data flow analysis to cope with such casts. So far, we expect that there will be other
constraints like a subtype constraint built for the assignment that constrains these Variables.
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We will illustrate the algorithm by going back to the example before. There we built a cast
constraint with u1 GenericBase<u2 Data> as input for A, and u6 GenericExtension<u7 Data,
u8 Object> as input for B. We now use the same input to write the constraints:

1. We take the base class of B which is GenericBase<X> and then substitute the type variable
by its type argument u7 Data. This results in B being u6 GenericBase<u7 Data>.

2. A has two Variables: u1 and u2. Their counterparts in B are u6 and u7. We therefore create
clauses for these two:
u1= peer ↔u6= peer ∧
u1= rep ↔u6= rep ∧
u1= any ↔u6= any ∧
u3= peer ↔u7= peer ∧
u3= rep ↔u7= rep ∧
u3= any ↔u7= any

The example shows that no clause involving Variable u8 is created. By considering only the cast
constraint, it can adopt any of the three ownership modifiers. But this is not the only constraint
dealing with the cast’s target Type: the assignment to field extension creates a subtype constraint
which includes clauses for Variable u8 and ties it to u5. Depending on the later use of the second
type argument, the solver finds an appropriate ownership modifier for u5. This then also has an
impact on u8.

Universe Casts

By handling casts as we have presented them, we minimize the influence of casts on ownership and
therefore are able to give strong static guarantees even in the presence of casts. We are convinced
that programs can be annotated without casts — some might need refactoring or restructuring.
This forces to reconsider the class and ownership structure and results in cleaner code.

In [21], Matthias Niklaus presents alternative ways to handle casts for the Universe Type
System where casts were inevitable for bigger programs. He uses additional ownership modifiers
to represent the any (readonly) modifier. These additional states record if the any modifier has
just been assigned a peer or rep reference and therefore can safely be cast to peer or rep. To
that end, he introduces several type systems that offer different levels of static safety. In return for
the loss of static safety, more casts are allowed which increases the number of programs that can
possibly be annotated. He also introduces universe casts — casts that do not change the class but
only change the ownership modifier, e.g. from any to peer to allow calling a non-pure method.
He presents in detail where universe casts are potentially useful.

Dealing with casts is always a trade-off between static type safety and flexibility. We have
decided to reduce flexibility for the sake of static correctness and static type safety. We believe
that developers who use our tools think in a similar way and that they are not satisfied with
Java’s static type safety. However, these alternative ways to annotate casts are certainly ideas to
consider for the future.

4.5 Implementation

Due to time constraints we were not able to implement what we have presented in this chapter.
In this section, we will give you an overview of the architecture of the existing tool, and explain
how to extend it.

4.5.1 Architecture of the Existing Tool

The existing static universe inference tool was developed for the Universe Type System by Matthias
Niklaus and integrated into Eclipse [5] by Andreas Fürer. It is written in Java. We will give an
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overview of the architecture. A detailed description can be found in [21] and [12]. Basically, the
tool can be divided into three parts: the front-end, the UTI Interface, and the back-end.

The UTI Interface — UTI stands for Universe Type Inference — is a series of Java interfaces
that decouple the front-end from the back-end. It allows to combine arbitrary front-ends with any
back-end. Thereby the front-end makes use of the functionality offered by the interface whereas
the back-end implements the interface. The most important interfaces are:

• UtiController lets the front-end control the back-end. For example, the front-end can tell
the back-end to solve the current constraints and then have it return the found solution.

• UtiConstraintBuilder uses the builder pattern [13] to build the back-end’s internal data
model by telling it the structure of the program to be inferred, e.g. the methods it contains
and how they are called.

• UtiVariable is the representative of an ownership modifier in the UTI interface. After a
solution is found, it can be asked for its annotation.

• UtiSolutionDescription contains the annotation to the program. It can be queried to get
all ownership modifiers.

The front-end — referred to as client in [21] — is responsible for handling the user interaction
and controlling the back-end through the UTI interface. This part was changed by Andreas Fürer
who integrated it smoothly into Eclipse and thereby made the tool a lot easier to use. The following
components are key to the front-end:

• The JML compiler [18] parses the input and builds the abstract syntax tree which is used
to extract the program structure from.

• Class UniverseJmlVisitor is a visitor for the abstract syntax tree which it traverses. While
traversing the abstract syntax tree, it makes use of the UtiConstraintBuilder to pass the
relevant parts to the back-end.

• Class JmlToUtiMapper contains several maps that maintain a mapping from elements of the
abstract syntax tree to UTI objects. Every time an element of the abstract syntax tree is
visited, a lookup is done in this mapping to reuse existing UTI objects.

• Class UTAnnotationView presents the found annotation to the developer in an Eclipse work-
bench view.

The back-end — called inferrer in [21] — implements the Uti interface, maintains an internal
data model to store the program structure, creates constraints and solves them. The following
components are most important:

• PBS [6] — a pseudo-boolean and MAX-SAT solver — solves the clauses being passed in
CNF. Its proprietary file format is written by class PbsCnfPbWriter.

• Package pbs_uti contains implementations for all UTI interfaces. This includes various
type systems to handle casts, and each type system has several ways to encode ownership
modifiers on the bit level.

• Class PbsCbNoCasts implements UtiConstraintBuilder and builds the internal data model
and constraints, without inserting universe casts. Its counterpart PbsCbWithCasts inserts
universe casts at all places they can help to find a valid annotation.

• Class PbsConstraints maintains all constraints built for a variable.
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4.5.2 Integrating Generic Universe Types

Integrating Generic Universe Types into the static universe inference tool requires changes to all
three parts, i.e. the UTI interface, the front-end and the back-end. In the Universe Type System,
there used to be a one-to-one relationship between types and ownership modifiers, i.e. each type
had one ownership modifier. This is why the current implementation does not know of types but
just of variables, represented by UtiVariable. For Generic Universe Types, the notion of types
has to be integrated in the data model, e.g. by using the one we have presented in Figure 4.1.

Once there is a way to represent types — let us call it UtiType — many changes are focused
around this class. In the UTI interface, most occurrences of UtiVariable have to be replaced by
UtiType. The front-end then has to pass UtiTypes instead of UtiVariables to the back-end, and
the back-end has to store constraints for UtiTypes, and no longer for UtiVariables.

As a next step, the existing constraints have to be replaced by the ones we have presented in
Section 4.4. Since constraints are implemented for each type system separately, we suggest to start
with the static universe type system implemented in PbsBrStaticUniverse. It corresponds to the
one we have used for the constraints in Section 4.4 which makes the implementation straightfor-
ward. There is no need change the encoding of the ownership modifiers as they remain the same.
Apart from the constraints, additional weights have to be introduced, e.g. for upper bounds of
type variables, we would like to prefer any.

Eventually, the user interface has to be adapted to cope with multiple ownership modifiers
for one type. Thereto, a reasonable way to display types has to be found. The XML annotation
schema that stores the found annotations has to be updated as well and then the annotation tool
has to be changed to insert the annotations.

We have created a proposal for the XML annotation schema. Apart from allowing multiple
ownership modifiers for one type, we have added definitions of type variables for classes and meth-
ods and the superclass and implemented interfaces as they can now contain ownership modifiers.
Furthermore, method calls are included since we have to explicitly specify the type arguments for
method type variables. The example presented in Listing 4.4 is based on this proposal.
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Conclusion and Future Work

5.1 Conclusion

We have presented an extended version of Generic Universe Types that can cope with most of
Java’s commonly used features. To that end, we have added static members, arrays and exceptions
and extended defaulting to handle them in unannotated code. We have implemented all this in
the MultiJava compiler which makes it also availabe to the JML tools.

We invite you to give Generic Universe Types a shot. It sure is a good way to structure the
heap hierarchically. It makes you think more about the program you are writing and gives you a
better understanding of its structure.

Futhermore, we have looked into raw types and how they can be dealt with in Generic Uni-
verse Types. We have explained wildcards and their application to Generic Universe Types. For
universe wildcards, we have come to the conclusion that they might be useful to resolve the issue
of combinations of ownership modifiers that cannot be exactly represented by the three current
ownership modifiers. We have not implemented any of these concepts.

As the extension to this Master’s thesis, we have convered static universe type inference and
how to apply it to Generic Universe Types. We have presented the core of the data model and
extended the existing constraints to handle generic types. We have also given a brief description
how to implement it.

5.2 Future Work

5.2.1 MultiJava and JML

Support for generic types in MultiJava — and therefore JML — still lacks stability. Adding test
cases helps revealing bugs and increasing reliability. Implementing raw types and wildcards as we
have presented should be straightforward and doable with little effort.

MultiJava has a bug when it comes to reading classfiles that inherit from a generic class or
interface. This renders most of the Java collection API unusable. Fixing that would greatly
increase usability.

Implementing the inference algorithm for method type variables and extending it to Generic
Universe Types would be of great benefit for the developer as it reduces the unnecessary overhead.

Inner classes are a concept of Java that we have not discussed. We do not expect it to be
diffucult to add to Generic Universe Types.

Due to a misunderstanding, we did not look into storing ownership modifiers for generic types
in classfiles. This forces MultiJava and JML to read and compile the source code of each imported
class everytime. Including ownerhsip modifiers in classfiles would speed up the compilation process.

75
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5.2.2 Raw Types and Wildcards

We have presented an informal description of the application of raw types and wildcards to Generic
Universe Types. Formalizing and implementing the concepts has not been done yet.

Another idea that looks promising is the readable modifier introduced in Section 3.6. The
wildcard approach can be combined the ideas presented by Daniel Schregenberger in his Master’s
thesis [24].

5.2.3 Static Universe Type Inference

Based on the presented data model and constraints, implementing static universe type inference
should be a straightforward task. Yet, it would take a lot of time as there are changes and
improvements necessary all over the code and cover several tools.

This area offers room for further research as to where to put universe casts and other approaches
as to how to deal with casts in general. Furthermore, we have not covered the various features of
Java discussed in Sections 2 and 3.
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