
Applying the Universe type system to an industrial application

Case Study

Thomas Hächler

Master Project Report

Software Component Technology Group

Departement of Computer Science

Swiss Federal Institute of Technology Zurich

September 2004 - March 2005

Supervising Assistant: Dipl.-Ing. Werner M. Dietl

Supervising Professor: Prof. Dr. Peter Müller

http://sct.inf.ethz.ch

Software Component Technology Group

http://sct.inf.ethz.ch

Abstract

The Software Component Technology Group has developed the Universe type system to control aliasing

in object-oriented programming languages. The goal of this masters thesis is to get realistic experience

in applying this type system to an industrial application.

The analyzed application is presented in chapter 1. In chapter 2 we give a short introduction to the

Universe type system.

In addition to the application, some Java API has been annotated with universe types. Some examples

and encountered problems are presented in chapter 3. To enable static fields and application wide

resources, a global universe has been used as an extension of the Universe type system.

The results of this case study are structured in three parts: (1) In chapter 4 we present how the Universe

type system has been applied to the application and what parts had to be refactored. (2) Problems

that have been encountered and workarounds that have been used while annotating the application are

documented in chapter 5. (3) In chapter 6 we present a few approaches to extend the Universe type

system. The focus of these extensions is on usage in real world applications.

Acknowledgements

I would like to thank Werner Dietl. He has spent a lot of time to support me and to review this report

extensively.

Furthermore I thank Prof. Peter Müller, who gave me the opportunity to accomplish my master thesis

as a case study on an industrial application.

Special thanks to Lukas Eppler, leader of the software development team at Cinerent Open Air AG. He

made it possible to realize this case study on the Yoshi software.

Without the personal support of Mr. Hans Dubach, administrative issues would have been much harder.

I want to thank him for his commitment.

Last but not least, I would like to thank Janine Plüss and my family for encouragement and support.

Contents

1 Application Overview 1

1.1 Background . 1

1.2 Software Components . 2

1.2.1 Data Structure . 2

1.2.2 XML Download . 6

1.2.3 Checkpoint . 6

1.2.4 Communication . 6

1.2.5 Other components . 6

1.3 Selection of components . 7

2 The Universe type system 9

2.1 Concepts of the Universe type system . 9

2.1.1 Encapsulation . 9

2.1.2 Read-write and read-only references . 9

2.1.3 Annotations . 10

2.1.4 Type System . 10

2.1.5 Downcasts . 11

2.1.6 Pure methods . 11

2.2 Notation and example . 11

2.2.1 Ownership diagram . 11

2.3 Introduction of a global universe . 12

2.4 Type combinator . 14

3 Annotation of Java API 15

3.1 Some examples of the annotated API . 15

3.2 Encountered Problems . 16

3.2.1 Clone . 16

3.2.2 Iterators . 16

3.2.3 Need for a writable parameter type . 18

4 Annotation of an application 21

4.1 Annotation Strategies . 21

4.1.1 One-step approach . 21

4.1.2 Incremental approach . 22

4.1.3 Combination of the two approaches . 23

4.2 Annotation of the Data Structure . 23

4.2.1 Definition of the data universe . 23

vi CONTENTS

4.2.2 Index as instance field . 24

4.2.3 Root node as a rep field of YoshiDataStructure 25

4.2.4 Data structure in field of the main controller 25

4.2.5 Deeply nested Data Structure . 26

4.3 Annotation of the XML Download . 27

4.3.1 Communicator thread . 30

4.4 Annotation guide . 31

4.4.1 Annotation strategy . 31

4.4.2 Superfluous Java access modifiers . 31

4.4.3 Flat versus nested data structures . 31

4.4.4 Top level universes . 31

4.4.5 Singleton Pattern . 31

4.4.6 Global universe . 32

4.4.7 Library object structures . 32

4.4.8 Result handling . 32

4.4.9 Annotated API . 32

5 Problems, Patterns and Workarounds 33

5.1 Additional methods to cross universe boundaries . 33

5.2 Singleton Pattern . 33

5.3 Method needed twice . 34

5.4 Iterators . 35

5.4.1 A generic iterator . 35

5.4.2 Iterators in pure context . 36

5.5 Copy as a workaround for the universe-transfer-problem 39

5.6 “ambiguous” error message . 40

6 Ideas and Proposals 43

6.1 Implizit readonly . 43

6.2 Local universes . 44

6.2.1 Problem . 44

6.2.2 Proposed solution . 44

6.2.3 Example . 44

6.2.4 Type combinator . 44

6.2.5 Runtime checks . 46

6.2.6 Future work . 46

6.3 A general read-write paramater type . 46

6.3.1 Motivation . 46

6.3.2 Approach with an abstract universe type . 46

6.3.3 Approach with a template mechanism . 48

7 Conclusion 53

7.1 Annotation of an application . 53

7.2 Annotation of Java API . 54

7.3 Ideas and Proposals . 54

A Some Details 57

A.1 Listing of the class GenericIterator . 57

CONTENTS vii

B Interim Reports 61

B.1 The selected subset of the application . 61

B.2 Summary of the subset of the application . 71

B.3 Necessary Stubs . 72

B.4 Java API to annotate . 74

B.5 MultiJava, JML-specs and eclipse . 76

B.5.1 Motivation . 76

B.5.2 Howto . 76

C About this Masters Thesis 79

C.1 Mission Statement . 79

C.1.1 Possible Extensions . 79

C.2 Schedule . 80

C.3 Slides of the presentation . 81

List of Figures

1.1 “Yoshi”: The device on which the analyzed application runs. 2

1.2 Yoshi Software Components and their relations. 3

1.3 An example runtime object structure of the Data Structure component. allInstances

is a static field in the class TicketingData and represents the index over all components

in the tree; references of this index are drawn with grey arrows. 4

1.4 Class diagram of the data structure classes. These classes implement the composite

pattern. 5

2.1 peer T and rep T as subtypes of readonly T. There is such a triple for each standard

Java type T. 11

2.3 Ownership diagram for the LinkedList-example. 13

2.4 The global universe is outside of all previous universes. References to that universes

and newly instantiated objects in that universe have to be declared as global. 13

3.2 Collection and according iterator, like provided by the Java API. 17

3.4 Writable as abstract universe type: direct subtype of readonly. 19

4.1 Writable as abstract universe type: direct subtype of readonly. 24

4.4 Writable as abstract universe type: direct subtype of readonly. 26

4.6 An example runtime structure of the XML Download before any universe annotations.

It shows the object structure of a download of an XML, where a show is added to an

existing event. Bold arrows mark references added to the Data Structure by parsing the

XML. 28

4.7 The ownership diagram of the annotated component XML Download. 29

4.8 The Communicator thread is an initiator of the XML download. It maintains a global

list of components that have to be downloaded. 30

5.6 An example runtime object structure with a UTSIterator. 37

5.12 Read-write universe types have two different direct supertypes: (1) the according read-

only type and (2) the corresponding read-write supertype in the class hierarchy of java.

. 41

C.1 Slide 0: Welcome . 81

C.2 Slide 1: Yoshi . 81

C.3 Slide 2: Outline . 82

C.4 Slide 3: Universe type system . 82

C.5 Slide 4: Universe type system with global extension 82

x LIST OF FIGURES

C.6 Slide 5: Components of the application . 83

C.7 Slide 6: Data Structure before Universe type system 83

C.8 Slide 7: Data Structure ownership diagram . 84

C.9 Slide 8: Deeply nested Data Structure . 84

C.10 Slide 9: XML Download before this case study . 85

C.11 Slide 10: XML Download using the Universe type system 86

C.12 Slide 11: Annotation of Java API . 86

C.13 Slide 12: Annotation of Java API . 86

C.14 Slide 13: Problem with java.util.Iterator . 87

C.15 Slide 14: Iterator on read-only Collection . 87

C.16 Slide 15: Motivation of writable universe type . 88

C.17 Slide 16: Example: method with a writable parameter 88

C.18 Slide 17: Idea of a writable universe type . 88

C.19 Slide 18: Other work . 89

C.20 Slide 19: Conclusion . 89

List of Tables

2.1 Type combinator, including the global universe type 14

6.1 Type combinator, including the local universe type 44

6.2 Type combinator, including the writable universe type 48

B.1 Classes of the selected subset of the application and their dependencies. 61

B.2 Subset of the application; grouped by packages. 71

B.3 Stubs to be implemented; grouped by packages. 72

B.4 Classes of the used Java API to be annotated; grouped by packages. 74

List of Listings

2.2 Source code of a linked list with its node and iterator. 12

3.1 Parts of the interfaces of java.util.Vector and java.util.Iterator. 17

3.3 Part of the file InputStream.refines-java as an example. The two methods read(..)

could be annotated more generally with writable parameter byte[] b. 18

4.2 Static initializer part of the index in the Data Structure as it was before. 24

4.3 Before applying the Universe type system to the software, the YoshiDataStructure

has been implemented with the singleton pattern. 25

4.5 In a nested universe structure: Method that inserts a component at the right place in a

tree (according to the reference to its parent). 27

5.1 An alternative implementation of the Singleton Pattern: the initializer controls read-

write references to the singleton object, while everyone is enabled to get readonly

access. 34

5.2 Method parent() before universe annotations. 34

5.3 Implementation of parent() as non-pure method with peer return value. 35

5.4 pure implementation of the method parent(). 35

5.5 The interface of an iterator over a readonly collection. 36

5.7 Simple implementation of UTSIterator. 38

5.8 The interface Copyable marks classes that implement the sheep-copy function. . . . 39

5.9 A possible implementation of the Copyable interface; including the recommended con-

structor that takes an object of the same type. 40

5.10 Compiling this class with the JML checker produces the “ambiguous” error message. 40

5.11 The example with the “ambiguous” error mitigated by a cast (line 4). 40

6.1 An example class C that uses a local iterator in a pure method to make an aggregation

over a readonly collection. 45

6.2 An iterator on a readonly collection as described in section 5.4. 45

6.3 A method which takes any read-write PrintStream as parameter, writes a message on

it and returns. 47

6.4 A map collects information about this, grouped by the category of this. 49

6.5 The method of listing 6.4 is translated by the compiler to these three methods: one for

each read-write universe type; in the body writable is replaced accordingly. 49

6.6 Th example presented in listing 6.4 with the parameterized syntax. 50

6.7 The source code (lines 2 - 4) written by the programmer, is translated by the compiler

into a dispatcher method (lines 12ff) and universe specific methods (lines 7 - 9). . . . 51

A.1 Implementation of a generic iterator, working on a readonly collection. 57

B.1 MjcTest.java: A TestCase for the MJ compiler, using the JUnit Framework. 77

Chapter 1

Application Overview

This chapter is an introduction to the application analyzed in this case study. We start with a short

historical background and point out a few business details (section 1.1). In section 1.2 the software

components of the application are introduced. At the end of this chapter we select the components

that will be analyzed in chapter chapter 4.

1.1 Background

For better understanding of this case study we give an overview over the business context the analyzed

application is used in. We introduce the brand “starticket” and the basic ideas of its ticketing system.

Most of the details in this section are based on the document “Projektbeschrieb: Entwicklung von

Barcode basierten Eingangskontrollen” [EG02].

Print at home R© tickets

In the year 2002 Cinerent Open Air AG started with a barcode-based ticketing system called “starticket”

[Cin]. They have been one among the first companies selling tickets with a unique barcode over the

Internet. By buying a Ticket, a customer receives a number encoded in a barcode. This number equals

an authorization to enter a specific show. The customer may print the barcode, together with other

ticket information, to paper. The developer of this system thought about security aspects, such that

(1) tickets that are copied (illegally) are valid only once and (2) no barcode can be guessed. This

allows clients to print their tickets at home. An organizers of an event saves expensive ticket paper and

therefore a lot of money.

The Yoshi device

The software we are going to analyze reads the home-printed barcodes of these tickets and checks

whether the ticket-holder is allowed to enter the show or not.

The devices this software is running on are designed and built by Cinerent Open Air AG itself. The (orig-

inally internal) name of these devices is “Yoshi”. Probably because of its sweet design (see figure 1.1 for

a picture of a Yoshi device), this name has established itself and therefore it now appears in official de-

scriptions, software documentation and even class names of the software (e.g. YoshiDataStructure).

These electronic ticket control systems will be used at different kinds of events. Therefore the devices

have two requirements to fulfill: (1) The physical requirements, e.g. they have to be fast, easy to use

and provide acoustic and visual feedback to the users, and they have to be weather resistant. (2) The

2 Chapter 1. Application Overview

Figure 1.1: “Yoshi”: The device on which the analyzed application runs.

software part: They have to load data from a web-server. This provides a base for making the right

decision when a ticket is read. Changes of the data on the server have to be updated within a few

minutes. Locally produced data have to be propagated to other Yoshis, running at the same event, and

later on be uploaded to the web-server for statistics. When the device is going to be shut down, all data

have to be saved and restored on the next startup. Last but not least, a Yoshi has to be configured

and managed through a user interface, which should be easy to handle and provide as much flexibility

as possible.

1.2 Software Components

In this section the specific software components are introduced. The first one is the Data Structure

(section 1.2.1), it is the core of the whole application. Other components, like the XML Download (sec-

tion 1.2.2) or the Checkpoint (section 1.2.3) work on these data. For an overview over all components

and their relations, have a look at figure 1.2.

For improved clearness component names are written with initial capital letters (e.g. Data

Structure).

1.2.1 Data Structure

The data structure of the Yoshi is basically a tree organized as a composite pattern [GHJV95] with

an index over all components. In the next paragraph all classes involved in the data structure tree are

introduced. The variety of the elements in the tree comes from the business meaning represented by

these classes.

In figure 1.3 the runtime structure of an example data tree is drawn. (The syntax ‘: Type’ means ‘an

object of type Type’.)

A single object of type YoshiDataStructure provides a facade of the data structure. It allows access

to the data and provides an interface for the common operations on the data structure, like addition and

1.2. Software Components 3

MainController

initialize

Yoshi Data Structure

XML Master
(download)

insert
JXTA

(communication)

synchronize with
other yoshisEvent

Show Show Show

TCode

TCode
TCode

TCode

Log
Log

User
Interaction /

Menu

configure /
manage

visualize

Checkpoint
insert Logs

read data

Autosaver

save / load
(serialize)

initialize

start

Figure 1.2: Yoshi Software Components and their relations.

retreival of data. Unfortunately, it does not fully encapsulate the data structure, since other components

can perform operations on the entries directly.

The YoshiDataStructure object initializes the root of the data tree, which is of type TicketingData.

The root of the tree contains all Event objects. An Event represents a happening like e.g. a festival

and has several Shows. A Show takes place at a defined time and location. Tickets can be bought for

Shows. A Ticket contains at most one valid TCode that defines what will be encoded in the barcode

on the ticket. If a ticket is not yet sold or has been canceled, it does not contain a valid TCode. At

runtime, the Checkpoint inserts Logs as children of a TCode. A log may have the meaning ‘entered’,

‘left (exit)’ or ‘access denied’.

Additionally to the tree representation of the data, there is an index over all elements of the tree. It is

stored in a static field allInstances of the class TicketingData and allows quick access to all data

stored in the Data Structure. In figure 1.3 the index references are visualized as grey arrows.

All classes from the data tree extend the abstract class TicketingComponent.

They have a TicketingUniqueKey, which is composed by a unique ID per instance of a class (field

componentId) and a static ID of the class (field staticClassId). Furthermore they contain a reference

to their parent and are referenced from an index, which allows one to get quick access to all data stored

in the Data Structure. The class diagram of the described classes (figure 1.4) visualizes the composite

pattern.

The relations of the Data Structure to other components is visualized in Figure 1.2.

4 Chapter 1. Application Overview

allInstances : TreeMap

childs : TreeMap

childs : TreeMap

childs : TreeMap

: Log

: Barcode

: YoshiDataStructure

: MainController

: TicketingData

childs : TreeMap

: Event

childs : TreeMap

: Event

childs : TreeMap

: Show

: Show childs : TreeMap

: Ticket

: Ticket

childs : TreeMap

: Log

: Barcode: TCode

childs : TreeMap

: TCode

: Log

: Log

static

Figure 1.3: An example runtime object structure of the Data Structure component. allInstances

is a static field in the class TicketingData and represents the index over all components in the tree;

references of this index are drawn with grey arrows.

1.2. Software Components 5

TicketingComponent
int componentId, rev
TicketingUniqueKey parentKey
getStaticClassId()
TicketingUniqueKey getUniqueKey()
TicketingComposite parent()

TicketingComposite
TreeMap childs
add(TicketingComponent)
remove(TicketingComponent)
Iterator childIterator()

TicketingLeaf

TicketingData
the root of the data

structure tree
TreeMap indexOfAllTCs

Event

Show

Ticket TCode
Barcode bc

Barcode
long code

Log

contains

contains contains
contains

contains

contains

TicketingUniqueKey
int classId, componentId

contains all

Figure 1.4: Class diagram of the data structure classes. These classes implement the composite pattern.

6 Chapter 1. Application Overview

1.2.2 XML Download

Data import to the Data Structure is done by downloading an XML-file from an application server.

The XML is parsed using the org.xml.sax.* parser. The application specific part of the parser

instantiates TicketingComponents. These are merged into the existing tree in the data structure

using the according methods in the class YoshiDataStructure. While merging, some criteria, like

revision number of the TicketingComponents, are used to decide whether it is updated in the data

structure tree or not.

A drawing of an example runtime object structure is presented later on in figure 4.6

1.2.3 Checkpoint

Concerning ticket checks, the Checkpoint component implements the main functionality. It waits for a

barcode, read in by the according hardware, and produces two sorts of outputs: (1) The result of the

check appears as output to the hardware-periphery, namely a message on the display and a light and

sound effect. (2) The result has to be stored in the Data Structure (section 1.2.1), from where it will

be propagated to other devices.

1.2.4 Communication

Several Yoshi-devices can be run at the same event. This enables greater throughput of people at the

ticket control station. Additionally it gives more flexibility for the number of entries.

The Yoshis have to communicate with each other to ensure that they have the same information. For

having more flexibility and to avoid a single point of failure, the programmer of the software decided

to set up a peer-to-peer-network. As software library they used JXTA [Sunc], which promises to set up

connections, so called pipes, through whatever the underlying physical connection is (Ethernet, WLAN,

modem, GPRS).

At startup each peer sets up a broadcast pipe to talk to all Yoshis at once and an individual pipe to

ensure other Yoshis can send messages to it. Normally all messages are sent over the broadcast pipe,

except for commands that are to be executed only on one machine (e.g. a request to resend some

messages of a remote peer).

As already mentioned, all peers contain all data. Therefore, in the case of a broken network connection,

each device is still able to decide whether a ticket is valid or not. In this case, newly created data

is only stored locally. When the network connection is restored the information will be synchronized

again. This will be done by a resend-request of the missing messages.

1.2.5 Other components

The Main Controller is the first program started at runtime. It initializes other components like the

Properties, the Data Structure (section 1.2.1) or the Checkpoint (section 1.2.3).

The Autosaver is used to serialize data to store on the disk and to recover them. Saving is done at

shutdown of the software and loaded on startup. At runtime the autonomous Autosaver-thread stores

data to disk every few minutes to avoid loss of data in case of a hardware machine stop, like a power

outage.

There are some other components of the software like User Interface, XML Upload or Hardware Con-

trolling. We will not analyze them in detail and therefore they are not presented in this application

description.

1.3. Selection of components 7

1.3 Selection of components

Since the whole application has more than 50’000 lines of codea, we want to annotate only the classes

of a few components. Therefore we have to select these components and define the contained classes

as our working set. For each class in the working set we are going to annotate the whole source code.

The surrounding of the working set consists of direct dependencies of the working set, namely other

classes, library- and framework-dependencies. For this surrounding we have to provide a stub, containing

Universe annotations, but without implementation of the whole source code. Because we are working

with the JML-tools [JML], we can write a *.refines-spec file for each class of the surrounding of the

working set.

The Data Structure (section 1.2.1) is the most important part of the software and therefore I will focus

on the package com.cinerent.beans.* where all the concerned classes are in.

Additionally, we are interested in components directly interacting with the data structure, namely we

have chosen to analyze the XML Download (section 1.2.2). The sax-framework for XML is used in this

component, but only its interface will have to be annotated.

Next, it would be interesting to analyze the Checkpoint (section 1.2.3), which is the part of the

application which actively generates data. Investigations of this component will be done if there is

enough time left.

The working set generates a big list of dependencies which can be reviewed in the table in appendix

B.1.

All dependencies of the working set are mentioned in the list of necessary stubs (appendix B.3). De-

pendencies to the Java API are found in the list “Java API to annotate” (appendix B.4).

aincluding all empty lines, comments and some CVS logs that are included in the *.java source files

Chapter 2

The Universe type system

In object-oriented programming languages, having a reference to an object normally implies to have full

read-write access to that object. This makes flexible data structures possible and supports architectures

with complex control flow. But it makes it difficult to control all references to an object.

If there is more than one reference to an object, the object is called aliased. Aliasing is a direct

consequence of object identity and appears in three origins: (1) An object can be shared among several

objects, (2) an object passed to a data structure and stored there is called captured and (3) an escaped

objects occurs when a reference to an object of a data structure, which is supposed to be internal, is

passed outside [Mül04, lecture 6: Aliasing].

2.1 Concepts of the Universe type system

2.1.1 Encapsulation

The Universe type system is a technique to control aliasing [MPH01]. It introduces universes that

hierarchically structure the object store of a runtime environment. Each object belongs to exactly one

universe, namely the universe of its owner. Additionally, it defines its own universe. When an object

is instantiated (keyword new) an additional keyword defines the ownership relation: (1) either the new

objects belongs to the same owner and universe as the instantiator is in (peer) or (2) it is owned by

the instantiator and belongs to its universe (rep). For the second case (rep) we can say that the new

object belongs to the internal representation and therefore is encapsulated from the outside.

Alias control is enforced with the following rule:

Rule 2.1 Unrestricted access from an instance method of an object u to another object v is only

allowed if (1) u is the owner of v or (2) u and v are in the same universe.

In contrast to conventional Java, where encapsulation is done on class level, universes provide encap-

sulation on object level.

2.1.2 Read-write and read-only references

Since rule 2.1 is too restrictive for many applications, the Universe type system introduces read-only

references, which may refer to objects in any universe.

Access to read-only references is restricted. As the name implies, only operations are allowed that do

not modify the internal state of the referenced object.

10 Chapter 2. The Universe type system

Since read-only references are less capable then read-write references, we can formulate the following

rule:

Rule 2.2 Read-write references can always be assigned to read-only references; but not vice versa.

Since we want to forbid read-write access on any object through read-only references, we define

readonly to be transitive:

Rule 2.3 Read-only is transitive.

Because read-write references are either peer (in the same universe) or rep (point into the own universe)

we can formulate the following rule of thumb (we call this rule rule of thumb because introducing the

global extension introduces exceptions to this rule):

Rule 2.4 (Rule of thumb) References that cross universe boundaries are read-only.

2.1.3 Annotations

In the source code, the universe relations have to be annotated. References that point to objects in

the own universe, the so-called internal representation, are annotated with rep; references to objects

in the same universe are peer; and read-only references are readonly.

E.g. a public field of a object belonging to the internal representation is declared as follows:

pub l i c rep Object o ;

To instantiate an object, the universe in which the new object has to be created, has to be given. It is

not allowed to use readonly, since a respective universe cannot be determined.

The following example declares an instantiation of an object in the same universe as this is:

new peer Object () ;

2.1.4 Type System

The properties of read-write and read-only references can be formulated as a type system: As standard

Java types, we take the set of declared type identifiers of a given Java program. Each standard Java

type combined with each universe annotation (peer, rep and readonly) yields in new universe types

that are used.

Read-only as supertype of all universe types Corresponding to the rule 2.2 we can formulate:

Rule 2.5 The read-only types R = readonly × V is the supertype of all corresponding read-write

types U = { peer, rep } × V, ∀ V ∈ standard Java types.

E.g. readonly Integer is a supertype of the type peer Integer.

For each standard Java type T exists a subtype relation like drawn in figure 2.1.

No runtime overhead The Universe type system and the according rules that are introduced so far

can all statically be checked. Therefore runtime errors can be avoided as well as any runtime overhead.

2.2. Notation and example 11

readonly T

peer T rep T

Figure 2.1: peer T and rep T as subtypes of readonly T. There is such a triple for each standard Java

type T.

2.1.5 Downcasts

Due to the supertype relation of read-only types to the other universe types, we can provide downcasts

from read-only references to read-write references respectively. If a read-only reference points into an

universe U, only the owner of U and objects belonging to U can downcast the read-only reference into

a read-write reference. Like downcasts of standard Java types, these universe downcasts need runtime

checks and cannot be type checked at compile time.

2.1.6 Pure methods

Methods that do neither modify the objects internal state nor the one of any referenced object are

called pure methods. Pure methods can be called on read-only references; they have to be annotated

with the keyword pure.

A method that overrides a pure method has to be implemented as a pure method as well. We call this

inheritance of purity.

Instance fields and method parameters are treated as read-only references in pure methods. Since

casts from a read-only type to a read-write type are forbidden in pure methods, purity can be checked

statically.

2.2 Notation and example

To demonstrate the universe notation of this report we present an example from [MPH01].

Example of a linked list and an iterator In listing 2.2, the class Node is used to compose a

LinkedList. Additionally, the LinkedList provides an iterartor Iter to access all elements from the

list consecutively.

2.2.1 Ownership diagram

Objects and references of a program at runtime can be visualized in an ownership diagram.

A square is used to represent an object, where the type of the object is written as :Type. Ovals

represent universes. References are drawn as arrows: read-only references are arrows with dotted lines,

while read-write references are arrows with continuous lines.

In figure 2.3, the ownership diagram of one possible run of the LinkedList-example is drawn, according

to listing 2.2.

12 Chapter 2. The Universe type system

1 c l a s s Node {
2 peer Node prev , nex t ;
3 readon ly Object elem ;
4 }
5 c l a s s L i n k e d L i s t {
6 rep Node f i r s t , l a s t ;
7 vo id add (readon ly Object o) { /∗ . . . ∗/ }
8 peer I t e r g e t I t e r () { re tu rn new peer I t e r (t h i s) ; }
9 }

10 c l a s s I t e r {
11 peer L i n k e d L i s t l i s t ;
12 readon ly Node p o s i t i o n ;
13 I t e r (peer L i n k e d L i s t l) {
14 l i s t = l ;
15 p o s i t i o n = ((readon ly L i s t) l) . f i r s t ;
16 }
17 readon ly Object nex t () {
18 readon ly Object r e s u l t = p o s i t i o n . elem ;
19 p o s i t i o n = p o s i t i o n . nex t ;
20 re tu rn r e s u l t ;
21 }
22 }

Listing 2.2: Source code of a linked list with its node and iterator.

2.3 Introduction of a global universe

This case study is about a real world application. This is why we expect to meet static fields and

program parts that are not assignable to a universe, as described in the previous sections. An approach

to face these problems is presented in [Häc04]. It introduces a global universe outside of all previous

universes (see figure 2.4).

Objects in the global universe have to be instantiated with the universe keyword global. Read-write

references to objects in the global universe have to be annotated as global as well. The global

universe type is a subtype of readonly like all other read-write universe types.

The global universe can be used for system resources (e.g. System.out), logging or singleton patterns

[GHJV95].

As an example, in figure 2.4, each instance of the class MyObject has a global reference to a

Singleton object s. A field of s points to another instance globalO of MyObject.

2.3. Introduction of a global universe 13

readonly

: Object: Object : Object

: LinkedList

: Node : Node: Node: Node

: Iter

position

list

Figure 2.3: Ownership diagram for the LinkedList-example.

global

readonly

universe A

globalObject

: MyObject

global

readonlyO

peer MyObject

: Singleton

globalObject

: MyObject

Figure 2.4: The global universe is outside of all previous universes. References to that universes and

newly instantiated objects in that universe have to be declared as global.

14 Chapter 2. The Universe type system

2.4 Type combinator

The type combinator of the Universe type system describes, how universe types of two objects have to

be treated in case of a method call or field access. (In the following enumeration type means universe

type.)

(1) The actual type of the return value of a method call or field access v.f is calculated by combining

the type of the target v with the formal type of the return value of f.

(2) The actual type of a method parameter must be a subtype of the combination of the type of the

target with the formal parameter type.

The result type is defined by the rules 2.1, 2.3 and 2.5 of section 2.1.

peer rep readonly global

peer peer
readonly (rep if

called on this)
readonly global

rep rep readonly readonly global

readonly readonly readonly readonly readonly

global global readonly readonly global

Table 2.1: Type combinator, including the global universe type

In table 2.1, the type combinator is presented including the global-extension. Some special cases are

pointed out in the following:

Case readonly on at least one side Due to rule 2.3 the result type must be readonly.

Case rep on the right hand side If the first argument is this, the result is rep. In all other cases

the result reference crosses the universe boundary of the first argument and therefore must be readonly

(rule of thumb 2.4).

Case peer on the right hand side The result reference points into the same universe as the first

argument (peer of the first argument).

Chapter 3

Annotation of Java API

We have annotated some Java API, listed in Table B.4. Additionally, we needed to annotate some

classes from the log4j [Apa] and XML-SAX [SAX] libraries.

After a few technical notes, we will present some cases as examples, how the java API has been annotated

(section 3.1). Some problems, that have been encountered will be presented and categorized in the next

sections: (1) cloning in subsection 3.2.1, (2) iterators and readonly-collections in subsection 3.2.2 and

(3) a need for a read-write parameter type subsection 3.2.3.

Some technial notes The SourceForge project JML-specs [JML] has been used and therefore only

the signatures had to be annotated. The implemented or extended files can be inserted in the directory

specs of the JML2 project. A script to generate a patch (makeSpecsPatch.sh) is included with the

sources; the patch (specsPatchXtom.tgz) can be extracted in the root directory of the JML2 project,

or even be added to the version control of the project.

3.1 Some examples of the annotated API

java.lang.Object In the class Object, we defined the compare method equals(Object o) to be

pure and therefore, the parameter o is readonly.

Since objects of the class String are immutable, the method toString() returns a readonly String

(see also section 6.1). This method could even be pure, but because of benevolent side effects, that

often are implemented in overriding methods, we decided to leave toString() non-pure. (A possible

benevolent side effect could be caching of the returned string.) We recommend that classes that

override toString() without side effect make it pure.

The method clone() could not be annotated satisfyingly. See subsection 3.2.1.

java.lang.Exception Exceptions generally are easy to annotate, because they are always handled

as readonly references [DM04] and in general have pure methods only.

java.lang.System To be accessible from all universes, we decided that system properties, system

in-, out- and error-streams and other system resources are in the global universe.

Collections of java.util According to the well-known linked list example from [MPH01] collections

operate on readonly keys and values. This implies a lot of casts everywhere in applications these

collections are used. We recommend to state a comment on declarations of collections, if the owner

16 Chapter 3. Annotation of Java API

of all elements in the declared collection is invariant. As an example, a comment of a declaration of a

field from the class TicketingV2HandlerImpl:

/* UTSCONVENTION: all objects in this Stack are rep. (they are parsed from the XML.) */

The method iterator() cannot be pure since we want it to return a read-write Iterator (see

subsection 3.2.2).

java.util.Iterator is treated in subsection 3.2.2.

org.apache.log4j.Logger Logging is done from everywhere in the code. So every object should be

able to get a read-write reference to a logger. Therefore we decided, that all loggers are in the global

universe. This is leading to the following signature of the loggers factory method:

pub l i c s t a t i c g l oba l Logger ge tLogge r (readon ly C l a s s c) ;

Nevertheless it is not possible to log from pure methods (because the log methods debug(..),

info(..), etc. are non-pure).

3.2 Encountered Problems

3.2.1 Clone

Consider two objects u and v in two different universes A and B.

Object u has a readonly reference f to v.

The question now is: Called from a method in u, in which universe will f.clone() be?

From a programmers point of view it probably would be nice to get the clone into ‘his’ universe A,

meaning the same universe the calling object is in, because this is a simple way to get a read-write

reference to a copy of v.

But this cannot be achieved, because u is not allowed to instantiate objects in the universe B.

Another possibility is to create the clone in the same universe as the origin is. This would end up in a

signature of clone() like that:

peer Object c l o n e () ;

In this case it is only possible to get a read-write reference to the clone if we already had a read-write

reference to the origin.

To enable universe transfer copying, the clone concept, as implemented in Java is not feasible. In

section 5.5 we present a workaround with a copy mechanism of a read-only object structure to grant

full access to the copy of the given object.

3.2.2 Iterators

Iterators are used to run over a collection and perform some operation on each element. Intuitively

we could say if we have a read-write reference to such a collection, we should be allowed to do any

operation on it and if we have a read-only reference, we are only allowed to invoke pure methods on

the objects of the collection.

The remaining question is, how to get an iterator, we are allowed to work on. Especially, if the reference

to a given collection is read-only.

First problem is that the method iterator() is not pure. Therefore it is not possible to get an iterator

on a read-only collection.

3.2. Encountered Problems 17

1 c l a s s Vector extends C o l l e c t i o n {
2 peer I t e r a t o r i t e r a t o r () ;
3 peer Enumerat ion e l ement s () ;
4 synchron ized pure readon ly readon ly Object [] t oAr ray () ;
5 }
6

7 i n t e r f a c e I t e r a t o r {
8 boolean hasNext () ;
9 readon ly Object nex t () ;

10 vo id remove () ;
11 }

Listing 3.1: Parts of the interfaces of java.util.Vector and java.util.Iterator.

readonly: Object: Object : Object

position

collection

: java.util.Iterator

: Node : Node: Node: Node

peer Iterator iterator()

: java.util.Collection

creates

universe A

client universe

ClientProgram

Figure 3.2: Collection and according iterator, like provided by the Java API.

If we found a way to call the method iterator(), regardless of its non-purity, the returned iterator

would still be in the same universe as the originating collection. Therefore we still only had readonly

access to the iterator; this situation is illustrated in figure 3.2.

A readonly iterator is useless, because the method next() has to be non-pure, since it has to modify

the iterators internal state (e.g. store the actual position of iterating). Therefore a client needs a

read-write reference to an iterator to operate on it (see subsection 3.2.2).

We can see, that the concept of iterators, how it is implemented in java.util.*, is not feasible in

conjunction with the Universe type system. To work on read-only collections, we have to implement

our own iterator classes. An according solution is presented in section 5.4.

There are similar complications with enumerations and all other collection classes.

18 Chapter 3. Annotation of Java API

3.2.3 Need for a writable parameter type

Some methods could have been annotated more generally, if we had an universe type, that is assignable

for all read-write universe types (rep, peer and global). The universe type readonly, as supertype

of all read-write universe types, does not fulfill this need, since it is not a read-write type.

In listing 3.3 two such methods are presented. The parameter byte[] b is used to write the read in

bytes from the input stream. From the point of view of an InputStream, the parameter byte[] b

could be either rep, peer or global. But since this class is part of a library, at programming time it

is not yet known, which of the three types will be used.

1 package j a v a . i o ;
2

3 /∗ ∗ JML ’ s s p e c i f i c a t i o n o f InputSt ream .
4 ∗ @author David Cok
5 ∗ (f o l l o w i n g Leaven ’ s spec o f OutputStream)
6 ∗/
7 pub l i c abs t rac t c l a s s I nputSt ream {
8

9 /∗ ∗ XTOM: param shou ld be w r i t a b l e . pee r assumed . ∗/
10 pub l i c i n t r ead (peer byte [] b) throws IOExcept i on ;
11

12 /∗ ∗ XTOM: param shou ld be w r i t a b l e . pee r assumed . ∗/
13 pub l i c i n t r ead (peer byte [] b , i n t i , i n t j) throws IOExcept i on ;
14

15 // . . .
16 }

Listing 3.3: Part of the file InputStream.refines-java as an example. The two methods read(..) could be

annotated more generally with writable parameter byte[] b.

In the annotated API, we used the comment of the following form to mark such situationsa:

/* param should be writable. peer assumed. */

aTo find these situations use the following grep command in the JML-specs directory: grep -ri "param should be"

.

3.2. Encountered Problems 19

A first approach

One approach to such a more general type is to introduce a new abstract universe type writable. Like

drawn in figure 3.4 writable is supertype of all read-write types and subtype of readonly.

writable

peer rep global

readonly

Figure 3.4: Writable as abstract universe type: direct subtype of readonly.

Problems are caused by static type checking of such an abstract universe type writable and its type

combinator. Therefore we do not immediately propose writable to be introduced as new universe type,

like presented in figure 3.4. More proposals facing this problem are presented in section 6.3.

Anyway, in the following we take the liberty of using writable to express situations related to the

introduced problem in this section.

Chapter 4

Annotation of an application

In this chapter we first present approaches of annotation strategies (section 4.1). In section 4.2 and

section 4.3 we describe, how we applied the Universe type system the selected software components.

Section 4.4 is an annotation guide, where some indications for later application of the universe types

system to existing code are presented.

4.1 Annotation Strategies

We developed two annotation strategies: (1) One of them looks at the whole application at once. It

suggests an ownership diagram as first step, which has to be applied to the source code in some further

steps. (2) The other strategy is an incremental approach. Changes are made at one place in the code

and then dependent code is adapted.

4.1.1 One-step approach

This approach provides a strategy that allows one to assign universes to a whole application at once.

It assumes a good knowledge of the application and its processes. Especially it is important to know

which objects act on which other objects and what the meaning of the important references in the code

is. References are important, if they are part of a data structure or if they connect several components

of an application. (Unimportant references are those of type String or Number, and references that

are only used within the same component, but are not essential for its internal structure). As a rule of

thumb: important references are drawn in step A) of this strategy.

The strategy has four steps, but the first one is the most important one:

A) Draw the ownership diagram. Take the important objects of all components and make a picture,

where for each object a unique owner is declared. By definition of the Universe type system, all objects

with the same owner belong to the same universe. Draw the universe boundaries. The ownership

diagram should clarify who is the owner of a whole component, if there are some.

Now try to map the ownership relations to the owning classes: State which fields and references (e.g.

parameters of methods) have to be read-write and where readonly-references are sufficient.

(Ownership diagram is introduced in subsection 2.2.1.)

B) Declare universe types of the fields. Based on the ownership diagram, for each field of each

class, the universe type can be determined. If the instance of the class is the owner of the object

22 Chapter 4. Annotation of an application

referenced in the field, declare the field as rep. If the field is a reference to an object in the same

universe, declare it as peer. References outside the same universe, even to the owner, have to be

declared as readonly.

C) Annotate the methods. All types of the methods parameters and return values have to be

annotated next. Make methods pure if they do not modify anything. (Consider the purity rules from

the Universe type system, section 2.1.6; especially inheritance of purity.)

Additional methods might have to be provided, to perform operations across universe boundaries (e.g.

operations on objects that are in the universe of a peer object u have to be called through a wrapping

method on that peer object u; see workaround in section 5.1). Some additional methods might have

to be introduced to allow operations to be executed on references that are readonly (see workaround

in section 5.3).

D) Local variables and implementations. Finally the implementations of the methods and the

according local variables have to be annotated. Auxiliary methods, introduced in step C, have to be

called respectively. If the formal type of a return value of a called method is readonly, but you know

it must be a read-write universe type, you have to use downcasts.

If all steps A) - C) have been executed carefully, step D) should be easy to implement.

Characteristics This approach is analytical. That is after having arranged the ownership diagram,

universe annotations are defined for all classes. When all classes are annotated according to the own-

ership diagram, the application is fully annotated. The big disadvantage is that a lot of universe

boundaries are introduced at once. So it easily could happen that the according restrictions imply a lot

of workaround to implement. This may end up in a complex implementation session.

According to modern programming techniques, like extreme programming XP [Bec] or

refactoring [Fow03], complex implementation sessions should be avoided.

4.1.2 Incremental approach

While the one-step approach is analytical and plenty of work is to be done at once, we now present an

incremental approach. Incremental in the sense of having an intact system, making a little step, and

then reestablishing an intact system.

The first step seems simple, but may imply a bunch of side effects: Compile the application with

the universe compiler and ensure there are no errors. Side effects that may complicate this step are

depending on library classes, that provide readonly-references.

After having eliminated all compile errors, declare a universe annotation at one place in the code (e.g.

make a field of a class rep). This change implies some other changes at the application. Implement

these changes to reestablish an intact and compiling system. Then continue by choosing any restriction

in the application you would like to introduce, make the change and reestablish the compiling system.

Characteristics Because small steps are taken and the system is kept intact, the incremental approach

is easy to use for the programmer.

A big picture of the annotated system is missing (like the ownership diagram in the one-step approach).

Therefore it might happen that a restriction is introduced which disables some other restriction that

might have been useful. We made no further investigations about the likelihood of such a mischance.

4.2. Annotation of the Data Structure 23

4.1.3 Combination of the two approaches

If we combine the two approaches, we get a strategy, suitable for practice.

1) Preparation step. It seems useful to start with a compiling system. Therefore we first have to

ensure that all library dependencies are fulfilled.

2) Draw the ownership diagram. An ownership diagram will help us to decide in the further steps.

According to step A) from the one-step approach, draw a map with all important objects and compo-

nents of the application. Define the owner for each object and draw the universe boundaries.

3) Annotate one unit. Choose a class (or a useful part of a class) and annotate it with the universe

annotations, according to the ownership diagram, drawn in step 2). To simplify the process, you can

apply steps B) to D) from the one-step approach to the chosen unit.

4) Clean all dependencies. According to the idea of the incremental approach, annotate all depen-

dencies of the unit chosen in step 3), such that there are no compile errors left.

5) Iterate steps 3) and 4). Repeat steps 3) and 4) until you have annotated all classes. Orientate

yourself at the ownership diagram drawn in step 2). Redraw 2) if there are better design ideas.

Characteristics The combination of the one-step approach and the incremental approach tries to get

the advantages of both. Due to the drawn ownership diagram, we have an analytical approach, that

declares an objective to achieve. The iteration steps of limited size prevent big implementation sessions.

Further, they allow to estimate the upcoming effort.

4.2 Annotation of the Data Structure

In this section, we describe, how the Data Structure (section 1.2.1) has been annotated with the

Universe type system.

4.2.1 Definition of the data universe

The Data Structure has two main parts (as described in 1.2.1): (1) The tree of all data components

and (2) an index over all components stored in the tree for fast access.

The whole Data Structure has to be encapsulated; all changes should be done through the facade class

YoshiDataStructure. Therefore the universe of the single instance of this class has been defined

as the data universe (see figure 4.1). We introduced the following invariant for objects in the Data

Structure:

Whatever is stored in the Data Structure is in the universe of the YoshiDataStructure.

To use one single universe for the whole Data Structure is not very restrictive, but two arguments made

us use this approach: (1) There are two representations of the data, a tree and an index. Methods

in the Data Structure component use both of them to access the data. As long as we can use the

invariant a lot of downcasts to peer-references are justifiable. (2) If we tried to introduce a universe

for every layer, a lot of syntax- and runtime-overhead had would be produced (as an example see the

prototype implementation of the method insertInChild(...) in section 4.2.5).

24 Chapter 4. Annotation of an application

childs : TreeMap

indexOfAllTCs

indexOfAllTCs
 : TreeMap

childs : TreeMap

childs : TreeMap

: Log

: Barcode

root
: TicketingData

childs : TreeMap

: Event

childs : TreeMap

: Event

childs : TreeMap

: Show

: Show childs : TreeMap

: Ticket

: Ticket

childs : TreeMap

: Log

: Barcode: TCode

childs : TreeMap

: TCode

: Log

: Log

rep

root

: YoshiDataStructure
yoshiDataStructure

: MainController

Figure 4.1: Writable as abstract universe type: direct subtype of readonly.

The introduction of the data universe gains the improvement that the usage of the class YoshiDataStructure

as facade class is enforced, since no other write access to the data is allowed. Furthermore, the in-

dex in the class TicketingData had to be changed from a static field to an instance field (see next

subsection).

4.2.2 Index as instance field

The index that links all components that are stored in the Data Structure has been stored in a static

field of the class TicketingData, as you can see in Listing 4.2. To declare in what universe the index

is to be initiated, the field has been changed to an instance field and instantiated in the data universe.

The according methods have to be changed to instance methods and calls to these methods have to

take place on the root object of the data tree, which is of type TicketingData.

1 /∗∗
2 ∗ Hold a l l v a l i d i n s t a n c e s o f { @ l i n k Ticket ingComponent } .
3 ∗/
4 p r i v a t e s t a t i c SortedMap a l l I n s t a n c e s = C o l l e c t i o n s . synchron i zedSor tedMap (

new TreeMap ()) ;

Listing 4.2: Static initializer part of the index in the Data Structure as it was before.

4.2. Annotation of the Data Structure 25

4.2.3 Root node as a rep field of YoshiDataStructure

The root of the data tree in the Data Structure has been implemented using the singleton pattern

for the class TicketingData. To ensure the root object to be in the data universe, we moved its

instantiation to a well-defined place in the initialization phase in the class YoshiDataStructure.

It seems to be a good approach to replace singleton patterns, by defining an explicit object

to be the owner of the singleton object. The singleton instance is stored in an instance

field of the owner. If there is no suitable structure in the program to put this field in (and

ensure, the referenced object is the sole instance), one can still use the main program as a

unique owner. (see section 5.2)

4.2.4 Data structure in field of the main controller

1 pub l i c c l a s s Yosh iDa taS t ru c tu r e {
2

3 p r i v a t e s t a t i c Yosh iDa taS t ru c tu r e i n s t a n c e = new Yosh iDa taS t ru c tu r e () ;
4

5 /∗∗
6 ∗ c o n s t r u c t o r .
7 ∗/
8 p r i v a t e Yosh iDa taS t ru c tu r e () {
9 // en su r e tha t a t r e e r oo t node e x i s t s .

10 da t aS t r u c tu r eRoo t () ;
11 }
12

13 /∗∗
14 ∗ imp l ement ing a mu l t i t h r e a d ed s i n g l e t o n .
15 ∗/
16 pub l i c s t a t i c Yosh iDa taS t ru c tu r e g e t I n s t a n c e () {
17 re tu rn i n s t a n c e ;
18 }
19 }

Listing 4.3: Before applying the Universe type system to the software, the YoshiDataStructure has been

implemented with the singleton pattern.

So far, the whole Data Structure component has been based on a singleton object of the class

YoshiDataStructure (see listing 4.3). The single instance has been stored in a static field of the

class YoshiDataStructure. This implies problems, since it is not defined, which universe this instance

belongs to. Because we want full read-write control of the Data Structure, we decided to make the

single instance of YoshiDataStructure a field of the MainController.

26 Chapter 4. Annotation of an application

root

indexOfAllTCs
 : TreeMap

childs : TreeMap

: Show

: YoshiDataStructure
yoshiDataStructure

: MainController

childs : TreeMap

indexOfAllTCs

: TicketingData

childs : TreeMap

: Ticket

: Log

: Barcode

childs : TreeMap

: TCode

: Log

: Barcode

: Log

: Log
childs : TreeMap

: TCode

childs : TreeMap

: Ticketchilds : TreeMap

: Show

childs : TreeMap

: Event

childs : TreeMap

: Event

Figure 4.4: Writable as abstract universe type: direct subtype of readonly.

4.2.5 Deeply nested Data Structure

Instead of making one single data universe, like presented in subsection 4.2.1, a separate universe

could be introduced for each node in the data tree. All children would be stored in the own universe

respectively. See figure 4.4 for a ownership diagram. This approach implies a lot of restructuring and

runtime overhead, since new, recursive methods are needed.

In listing 4.5 a method to insert a component in the structure is presented as example. On every

level of the tree the path to the parent of the new component has to be searched (lines 2 to 6 in

listing 4.5). This is implemented, by following the parent() reference of the new component (line 5).

After the while-loop the child, in which the new component has to be inserted, is stored in roParent.

Since roParent is a child of this, the cast to rep is allowed (in line 8). If the found component

repParent is the direct parent of the new component, we can insert it directly; otherwise, we have to

call insertInChild() recursively on repParent.

Such a method is needed for all operations on elements of the data tree, which are a lot of lines of

code. Additionally, all the recursive searches are a lot of runtime overhead.

4.3. Annotation of the XML Download 27

1 vo id i n s e r t I n C h i l d (readon ly Component comp) throws Excep t i on {
2 readon ly Composite roPa ren t = comp . pa r en t () ;
3 whi le (! t h i s . e q u a l s (r oPa ren t . pa r en t ())) {
4 i f (r oPa r en t == nu l l) throw new Excep t i on (” pa r en t o f ” + comp + ”

not found . ”) ;
5 r oPa r en t = roPa ren t . pa r en t () ;
6 }
7 // c a s t r oPa ren t to rep .
8 rep Composite r epPa r en t = (rep Composite) r oPa ren t ;
9 i f (r epPa r en t . e qu a l s (comp . pa r en t ())) {

10 r epPa r en t . i n s e r t (comp) ;
11 } e l s e {
12 r epPa r en t . i n s e r t I n C h i l d (comp) ;
13 }
14 }
15

16 /∗ ∗ r e p l a c e s a p o s s i b l e o l d e n t r y w i th same key ∗/
17 vo id i n s e r t (readon ly Component roComp) {
18 // Component implements Copyab le
19 // c h i l d r e n : f i e l d o f type j a v a . u t i l .Map
20 t h i s . c h i l d r e n . put (roComp . getKey () , new rep Component (roComp)) ;
21 }

Listing 4.5: In a nested universe structure: Method that inserts a component at the right place in a tree

(according to the reference to its parent).

4.3 Annotation of the XML Download

In the last section (4.2), we basically used the one-step approach to annotate the Data Structure. To

annotate the XML Download (section 1.2.2), we used the combination of the two annotation strategies

(see subsection 4.1.3).

The runtime structure of the XML Download before any changes looked like figure 4.6.

The XML Download is used from several other components (e.g. a command that loads an XML

immediately or a timer-job that loads the data). This other user-component is marked in figure 4.6 as

“Initiator of the XML download”. The objects, instantiated by parsing the XML, are marked with green

color in the figure. Some of these objects are captured by the Data Structure; the inserted references

are drawn with bold arrows.

In figure 4.7, the ownership diagram of the same XML download is drawn as in figure 4.6, but after

restructuring of the XML Download component. We introduced three universes: (1) The outermost

universe declares, that the whole download can be encapsulated, since it can be run in the universe of

any initiator of an XML download. (2) The universe of the XMLMaster. In this universe are all objects

located, that are needed by the org.xml.sax.* library. (3) The inner universe contains the parsed data,

which are collected in a list parsedObjects. This result list is returned by a read-only reference to

the initiator of the XML download, which can insert the new data into the Data Structure. In this

figure, the Data Structure is drawn as one condensed universe; this emphasis that the data structure is

encapsulated.

On the left hand side of the figure 4.7, we can see an instance of a UserTalkback is drawn in the

global universe. The UserTalkback implements a callback mechanism, with the aid of which the user

of the software can be informed about some events, e.g. that a XML download has failed or succeeded.

Since the instance of such a UserTalkback can either be the display of the device or a wrapper to the

logger, we decided to make it global.

28 Chapter 4. Annotation of an application

: Show

: Ticket

openObjects :
Stack

: Event

: Show

: Ticket

: TicketingV2Parser

: InputStream

: File

: TicketingV2HandlerImpl

: DTDResolver

: XMLMaster : ShutdownableThread: UserTalkback

Initiator of the
XML download

: Log

: YoshiDataStructure

: TicketingData

: Event

: Event

: Show

: Show

: Ticket

: Ticket

: Log
: TCode

: TCode

: Log
: Log

Parsed by XML

Previous data structure

Caption:
: TCode: TCode

Figure 4.6: An example runtime structure of the XML Download before any universe annotations. It

shows the object structure of a download of an XML, where a show is added to an existing event. Bold

arrows mark references added to the Data Structure by parsing the XML.

4.3. Annotation of the XML Download 29

: Event

: Show

: Ticket

: TCode

parsedObjects :
List

openObjects :
Stack

: Event

: Show

: Ticket

: TCode

: TicketingV2Parser

: InputStream

: File

: TicketingV2HandlerImpl

: DTDResolver

: XMLMaster : ShutdownableThread

result to insert in
YoshiDataStructure

: UserTalkback

global

: YoshiDataStructure initiator of the
XML download

result to insert in
YoshiDataStructure

readonly

Parsed by XML

Previous data structure

Caption:

Figure 4.7: The ownership diagram of the annotated component XML Download.

30 Chapter 4. Annotation of an application

4.3.1 Communicator thread

The Communicator is a thread that, among other things, schedules the download tasks. It uses a list

of TicketingComponents that have to be downloaded; all entries of that list implement the interface

XMLDownloadable. Other components can register XMLDownloadables that are desired to be loaded.

To download one of these entries, the Communicator instantiates a XMLMaster and passes control over

the XMLDownloadable to it.

Because other components should have the ability to add entries to the list, we decided to put the

list into the global universe. The communicator, which is implemented as singleton pattern, provides

a globalreference to that list; therefore even if access to the communicator was read-only, another

component can downcast this reference to global and insert some XMLDownloadables. An according

ownership diagram can be reviewed in figure 4.8.

: YoshiDataStructure

: XMLDownloadable

: XMLMaster

parsedObjects :
List

: ShutdownableThread

downloadableList
: FiFoList

global

Communicator result to insert in
YoshiDataStructure

readonly

- get Communictor

- get downloadableList

- cast to global

- add XMLDownloadable to downloadableList

another Component

Figure 4.8: The Communicator thread is an initiator of the XML download. It maintains a global list

of components that have to be downloaded.

4.4. Annotation guide 31

4.4 Annotation guide

In this section we describe some guidelines, how to annotate an existing application with universe types.

The predications are based on the experience we made by annotating parts of an industrial application,

like described in the previous sections of this chapter.

4.4.1 Annotation strategy

In section 4.1 we described several approaches for annotation strategies. Regardless of which strategy

is used, it seems to be important to have an ownership diagram. If the main part of the application is

drawn on such a ownership diagram, this helps to keep track of the annotation process.

4.4.2 Superfluous Java access modifiers

Since the Universe type system provides proper alias control on object level (see subsection 2.1.1), we

do not have to manually take care about aliasing anymore. Meaning, Java access modifiers to instance

fields can be less restrictive.

Especially read-write access to rep fields can only be granted on this; all other objects can get a

readonly access to the referenced objects at most. Therefore they do not have to be private or

protected any more.

4.4.3 Flat versus nested data structures

Universes can be used to model data structures that represent the business logic of an application.

A disadvantage of building nested universe structures is, that for each non-pure method there has to be

an additional facade method in the owner object of the universe. These additional methods may even

be recursive (see subsection 4.2.5). This implies runtime overhead for the respective method calls.

If we can trust the objects in the data structure, it might be a better approach to introduce one single

data universe (like we decided to do it in subsection 4.2.1).

Which one of these two approaches should be used, can be indicated by the following rule: The more

complex methods of a class are, the more it should try to have its dependent objects in its own universe.

In other words: If the data objects do not implement business dependent operations, it is sufficient to

have one single data universe.

4.4.4 Top level universes

Read-write interaction between objects can only be performed, if the objects are in the same universe

(or one object is the owner of the others). Therefore all components in a system that have to interact

with each other have to be at the same universe level.

We recommend to give a particular attention to the top level universes, where the main components

of the application communicate with each other. Interfaces and responsibilities should be determined

clearly.

4.4.5 Singleton Pattern

There are two approaches to treat singletons: (1) avoid them, e.g. by refactoring or (2) make the single

instance global.

32 Chapter 4. Annotation of an application

The second approach is easy to implement and no refactoring is needed: The single instance is in the

global universe and therefore can be accessed by every other object. Consequences, like described in

[GHJV95], are all supported by this approach. Nevertheless, alias control is not possible.

Sometimes it is useful, that not all objects have access to a single instance of a class, but only the

objects of a certain component. Conventionally, this is often implemented as a singleton pattern for

simplicity. We recommend to make it an instance field of the universe provider instead. As examples,

you can have a look at the root node of the Data Structure in subsection 4.2.3. (See section 5.2 as

well.)

4.4.6 Global universe

Additionally to singletons, we recommend the following things to be in the global universe:

Properties are typically a singleton, which can be instantiated in the global universe.

Logging As already mentioned in 3.1, we decided to instantiate all loggers in the global universe, to

be able to log from everywhere in the application.

4.4.7 Library object structures

In section 4.3 we used a library to parse an XML. As drawn in figure 4.7, we used two universes to

deal with the according library object structures: (1) the universe of the XMLMaster in which all library

objects are located and (2) the inner universe, where all generated, application-specific objects are

stored.

A similar universe structure with two levels might be a good approach, if other library objects structures

are used.

4.4.8 Result handling

Consider a component that builds a result object, or even object structure, in an inner universe. (E.g.

like the parsed elements in figure 4.7.)

The result cannot be returned as read-write reference, since the result reference points in the inner

universe. We recommend to return a read-only reference to the result objects. If desired, the client

is still able to copy the whole result into its own universe, to get full read-write access to the result.

Unfortunately, object identity is lost, since the objects are copied.

4.4.9 Annotated API

When an application is started to be annotated with universe types, there will be a few sticking points

to pass: Since the used API is already annotated with universe types, there might be a lot of compile

errors at the first compile time.

The reasons are (enumeration is not complete):

• Return types of library methods are readonly types, which cannot be assigned to the default

peer type of references in the application.

This case is especially for the collection framework of java.util.*. The situation will be enhanced,

by support for Java generics [Suna].

• As soon as there are readonly references in a system, there will be errors for calls of non-pure

methods on them.

• As soon as some methods are declared as pure, they will fail to compile, since almost all references

in pure methods are treated read-only.

Chapter 5

Problems, Patterns and Workarounds

While applying the Universe type system to an existing application I had to use some workarounds to

achieve that the universe constraints are fulfilled. These workarounds and accoring generalized solutions

are presented in this chapter.

5.1 Additional methods to cross universe boundaries

Consider a situation like the following: An object client has to call a non-pure method m() on an

object inner, which is in the universe of another object outer. Without universes such a situation is

no problem iff client has a reference to inner; in other words, iff inner is aliased. Since the Universe

type system introduces alias control, this is not possible anymore.

A suitable solution is that the owner outer provides a facade method fm(), that delegates the call

to the according object in its universe. A standard way to implement this approach is to introduce a

readonly parameter p in fm(), on which a reference to inner can be given. In fm() the parameter p

can be casted to rep and then m() can be called on it.

5.2 Singleton Pattern

As already mentioned in subsection 4.2.3 and subsection 4.4.5 there are two ways of treating singletons:

(1) The singleton object is created in the global universe or (2) a well-defined object is defined as the

provider of the single instance of the desired class.

(1) has the advantage that all obligations of a Singleton Pattern, like described in [GHJV95] are

fulfilled. The constructor can be made private and all access is done through a single point (method

getInstance()). Nevertheless, there is no chance of any alias control. (2) allows to provide a singleton

to be used from only a certain software component. The single instance is then stored in an instance

field of the provider object. This is the same way, as singletons are simulated in Eiffel [AB04].

More flexibility can be achieved by combining the two approaches. A reference to the singleton object

is stored twice: In a static read-only field of the singleton class and in an instance field of the provider

object. It is even recommended to store it in a rep instance field of the provider object. In listing 5.1

such an alternative implementation is shown.

34 Chapter 5. Problems, Patterns and Workarounds

1 c l a s s S i n g l e t o n {
2 p r i v a t e s t a t i c readon ly S i n g l e t o n i n s t a n c e = nu l l ;
3 /∗ ∗ may r e t u r n n u l l ∗/
4 pub l i c s t a t i c readon ly S i n g l e t o n g e t I n s t a n c e () { re tu rn i n s t a n c e ; }
5 pub l i c s t a t i c peer S i n g l e t o n i n i t i a l i z e () {
6 i f (i n s t a n c e != nu l l) throw new Runt imeExcept ion (” a l r e a d y

i n i t i a l i z e d ”) ;
7 re tu rn peer S i n g l e t o n () ;
8 }
9 p r i v a t e S i n g l e t o n () { i n s t a n c e = t h i s ; }

10 }

Listing 5.1: An alternative implementation of the Singleton Pattern: the initializer controls read-write references

to the singleton object, while everyone is enabled to get readonly access.

5.3 Method needed twice

Sometimes a method is needed in a pure form as well as with a peer return value. As an example

consider the method parent() in listing 5.2: It returns the parent node in a Tree-Data-Structure.

The nodes in the tree all have an unique key object. Additionally, they store the unique key of the

parent, to give the ability to restore the tree after having been serialized node by node. The original

implementation of the method parent() (listing 5.2) checks whether a reference to the parent already

exists, and if not, it sets the field parent to the according reference. This is a special case of caching

(called lazy initialization).

Because the field parent is going to be set, this method cannot be declared as pure and because we

know in this case the return value has to be in the same universe, we can return a peer reference.

Because we need a read-write reference to call this method, we renamed it to parentPeer() (see

listing 5.3).

To provide a pure method to access the parent node, I changed the default parent()-method to

Listing 5.4. In this implementation writing to instance fields is avoided. Therefore we have no caching

of the parent reference, but can provide the functionality with a pure method.

1 /∗∗
2 ∗ The Parent Method r e t u r n s the Parent Ticket ingComponent .
3 ∗ This i s an e s s e n t i a l Part o f the T i c k e t i n g Data S t r u c t u r e .
4 ∗/
5 pub l i c Ticket ingComponent pa r en t () {
6 i f (pa r en t == nu l l) {
7 i f (parentUniqueKey != nu l l) {
8 pa r en t = Yosh iDa taS t ruc tu r e . g e t I n s t a n c e () . ge t (parentUniqueKey) ;
9 }

10 }
11 re tu rn pa r en t ;
12 }

Listing 5.2: Method parent() before universe annotations.

5.4. Iterators 35

1 pub l i c peer Ticket ingComponent pa r en tPee r () {
2 i f (pa r en t == nu l l) {
3 i f (parentUniqueKey != nu l l) {
4 readon ly Ticket ingComponent p = Yosh iDa taS t ruc tu r e . g e t I n s t a n c e ()

. ge t (parentUniqueKey) ;
5 i f (p i n s t anceo f peer Ticke t i ngCompos i t e)
6 pa r en t = (peer Ticke t i ngCompos i t e) p ;
7 // e l s e pa r en t r ema ins n u l l .
8 // cannot r e t u r n p , because i s from anothe r u n i v e r s e .
9 }

10 }
11 re tu rn pa r en t ;
12 }

Listing 5.3: Implementation of parent() as non-pure method with peer return value.

1 pub l i c pure readon ly Ticket ingComponent pa r en t () {
2 i f (pa r en t != nu l l) re tu rn pa r en t ;
3 i f (parentUniqueKey == nu l l) re tu rn n u l l ;
4 e l s e re tu rn Yosh iDa taS t ru c tu r e . g e t I n s t a n c e () . ge t (parentUniqueKey) ;
5 }

Listing 5.4: pure implementation of the method parent().

5.4 Iterators

Iterators are used to visit a collection of objects. E.g. from another software module or to collect some

information about a whole data collection. We often want to iterate over read-only collection, meaning

over a collection, where we have only a read-only reference to.

As already stated in subsection 3.2.2, the first problem is that the method iterator() is not pure.

And even if we could call iterator(), the returned iterator would be in the same universe than the

collection is. But we do not have read-write access to that collection.

The first approach to face this problem is to not use the iterator defined by the the abstract method

java.util.Collection.iterator(). Instead a generic iterator has to be used, which is able operate

on a readonly-collection. To get read-write access to such an iterator, it has to be instantiated in

the universe of the client (see section 5.4.1).

Another problem are methods that provide operations on the whole collection, using an iterator. For

example search- or count-methods. From an operational point of view, one could think it should be

easy to execute such a method in a pure environment, but because of the instantiation of the iterator

within the pure context, it is not possible. I developed a workaround which is presented in section

5.4.2.

5.4.1 A generic iterator

To enable an iterator to operate on a readonly collection, we extended the java.util.Iterator to

an UTSIterator (see Listing 5.5). This interface UTSIterator is basically a marker interface, telling

the programmer, that the underlying java.util.Collection is readonly.

A first implementation of the interface UTSIterator is the class SimpleIterator, listed in Listing 5.7

(on page 38). In the constructor it takes the readonly Collection, gets an array of its elements

and stores them in the instance field readonly readonly Object[] array. In another field int

36 Chapter 5. Problems, Patterns and Workarounds

1 import j a v a . u t i l . I t e r a t o r ;
2 /∗∗
3 ∗ The b a s i c i d e a i s to p r o v i d e an I t e r a t o r ove r a r e adon l y c o l l e c t i o n .
4 ∗ So an imp l ementa t i on o f t h i s i n t e r f a c e shou ld p r o v i d e a c o n s t r u c t o r w i th
5 ∗ a paramete r o f type <code>r e a don l y { @ l i n k j a v a . u t i l . C o l l e c t i o n }</code >.
6 ∗/
7 pub l i c i n t e r f a c e UTSI t e r a to r extends I t e r a t o r {
8

9 pure boolean hasNext () ;
10

11 readon ly Object nex t () ;
12

13 /∗∗
14 ∗ An imp l ementa t i on o f t h i s method no rma l l y throws an { @ l i n k

Unsuppo r t edOpe ra t i onExcep t i on }
15 ∗ because the u n d e r l y i n g c o l l e c t i o n i s <code>r eadon l y </code>
16 ∗ (and t h e r f o r e cannot be mod i f i ed , l i k e { @ l i n k #remove () } would do i t)

.
17 ∗/
18 vo id remove () throws Unsuppo r t edOpe ra t i onExcep t i on ;
19 }

Listing 5.5: The interface of an iterator over a readonly collection.

position the index of the element that will be returned when the method next() is called the next

time is stored. See figure 5.6 for an example runtime object structure.

In this implementation I do not care about changes in the underlying collection. Another implementation

GenericIteratora checks on every call of the method next() whether the index of the returned

element and its precursor in the local array are still the same as in the original collection. If this

constraint is violated, a java.util.ConcurrentModificationException is thrown.

5.4.2 Iterators in pure context

We encountered some methods provided by a data structure or one of its components, that allowed

users from outside to perform some operation on the data;

e.g. recursive search functions (TicketingComposite.containsRecursively()) or functions that

collect some data about the whole structure (TicketingComposite.countRecursively()).

There are two reasons, why they cannot be provided as pure methods. The main reason is that the

method next() of the class Iterator cannot be called from a pure method; unfortunately not even

if the iterator is instantiated locally. That is due to the method next() cannot be pure since it has

to modify the internal state of the iterator. The other reason is, if there are some result- or callback-

objects, handed to the method by reference-parameter, that obviously should be read-write . (e.g. an

OutputStream to write results to or a java.util.Map to collect data in.)

If there are no side-effects to the data itself, the following refactoring pattern can be used to transform

the method into a static one which therefore can be executed in the clients universe.

Refactoring Algorithms

1. Without refactoring tools of Eclipse

1. Make the method static.

aListing A.1 in the appendix.

5.4. Iterators 37

readonly: Object: Object : Object

int position

array
collection

: UTSIterator

: Node : Node: Node: Node

ro ro Object[] toArray()

: java.util.Collection
provides

universe A

client universe

ClientProgram

: Object[]

Figure 5.6: An example runtime object structure with a UTSIterator.

2. Add the old this as readonly parameter.

3. Change all accesses to this (including implicit this) to accesses to the introduced parameter.

4. Change callers according to new parameters.

2. With the aid of refactoring tools of Eclipse

1. Write a new static method (e.g. by copying and adapting the existing one and adding the

readonly parameter).

2. Call the new static method from the original instance-method, use this as parameter.

3. Inlineb the instance method, so the new static method is called directly. (replacement of the

parameter this is done by the tool.)

This approach is a workaround that works for some specific cases. In section 6.2 we present an proposal

that allows the usage of iterators in pure methods.

bTo inline is a refactoring operation provided by the Eclipse refactoring tools [Fow03, Ecl].

38 Chapter 5. Problems, Patterns and Workarounds

1 import j a v a . u t i l . C o l l e c t i o n ;
2 /∗∗
3 ∗ This imp l ementa t i on o f { @ l i n k org . mu l t i j a v a . u t s . UTS I t e r a to r }
4 ∗ s t o r e s a l l e l ement s t ha t w i l l be r e t u r n e d i n an a r r a y .
5 ∗ I t i s p r e t t y s imp l e and does not ca r e about changes on the
6 ∗ u nd e r l y i n g { @ l i n k j a v a . u t i l . C o l l e c t i o n } . The r e f o r e no
7 ∗ { @ l i n k j a v a . u t i l . C on cu r r e n tMod i f i c a t i o nEx c ep t i o n } w i l l be thrown .
8 ∗
9 ∗ @author Thomas Haech l e r

10 ∗/
11 pub l i c c l a s s S i m p l e I t e r a t o r implements UTSI t e r a to r {
12

13 protected readon ly readon ly Object [] a r r a y ;
14

15 /∗ ∗ INV : p o s i t i o n = the i ndex o f the e l ement tha t w i l l be r e t u r n e d when
{ @ l i n k #next () } i s c a l l e d the next t ime . ∗ ∗/

16 protected i n t p o s i t i o n = 0 ;
17

18 /∗ ∗ Con s t r u c t o r .
19 ∗ @param c o l l the u n d e r l y i n g r e adon l y C o l l e c t i o n .
20 ∗/
21 pub l i c S i m p l e I t e r a t o r (readon ly C o l l e c t i o n c o l l) {
22 a r r a y = c o l l . t oAr ray () ;
23 }
24

25 pub l i c pure boolean hasNext () {
26 re tu rn p o s i t i o n < a r r a y . l e n g t h ;
27 }
28

29 /∗∗
30 ∗ @throws IndexOutOfBoundsExcept ion i f t h e r e i s no e l ement l e f t .
31 ∗/
32 pub l i c synchron ized readon ly Object nex t () {
33 readon ly Object r e tVa l u e = a r r a y [p o s i t i o n] ;
34 p o s i t i o n ++;
35 re tu rn r e tVa l u e ;
36 }
37

38 /∗∗
39 ∗ not suppo r t ed .
40 ∗ @throws Unsuppo r t edOpe ra t i onExcep t i on a lways . because we have

r e adon l y a c c e s s to the u n d e r l y i n g C o l l e c t i o n .
41 ∗/
42 pub l i c vo id remove () throws Unsuppo r t edOpe ra t i onExcep t i on {
43 throw new Unsuppo r t edOpe ra t i onExcep t i on (” because ” + t h i s + ” has

r e adon l y a c c e s s to the u n d e r l y i n g C o l l e c t i o n . ”) ;
44 }
45 }

Listing 5.7: Simple implementation of UTSIterator.

5.5. Copy as a workaround for the universe-transfer-problem 39

5.5 Copy as a workaround for the universe-transfer-problem

In the Universe type system it is not possible to move an object from one universe to another. But in

certain cases we want to enable such a transfer; e.g. a component generates an object in its universe

and, after having called some modifying methods on it, wants to hand it over to another component.

Because a transfer is not allowed, a first idea has been to make a clone into the desired universe. But

clone is a method executed in the context of the given object and therefore cannot instantiate its clone

in another universe. Even if this would be allowed by any reason, the newly cloned object could not be

handed over to the caller. Unless he has had a read-write reference to the primary object, but in this

case its not a general universe transfer.

The sole possibility to get an object in a specific universe is to instantiate it in that universe. To have

an equivalent object, we have to copy the fields from the originating object to the newly created one.

Approach A class, of which the instances have to be transferable from one universe to another, has

to provide a copy-method. This method takes as parameter a readonly-reference to an object of the

same type and copies all instance-fields according to the following rules:

• readonly-fields are copied by reference

• read-write references are copied recursively into the target universe. If there are such read-write

fields, the types of these fields have to implement the Copyable interface as well.

These two rules describe a combination of shallow and deep copy; sometimes named as “sheep” copy.

Implementation An interface Copyable marks all classes that implement the sheep copy method.

Listing 5.8 shows the source code of that interface.

1 /∗∗
2 ∗ I t i s recommended to implement a c o n s t r u c t o r o f the f o l l o w i n g form :
3 ∗ <code>MyClass (MyClass o) { copyFrom (o) ; }</ code >

∗/
4 pub l i c i n t e r f a c e Copyab le {
5 /∗∗
6 ∗ This method t ak e s ano the r Object o f the same type
7 ∗ and c o p i e s i t s i n t e r n a l s t a t e to t h i s .
8 ∗
9 ∗ imp l emenat ion o f sheep−copy i s recommended :

10 ∗ − new Ob jec t s f o r rep − and peer−r e f e r e n c e s (sheep−copy as w e l l)
.

11 ∗ − copy the r eadon l y −r e f e r e n c e s and the v a l u e s .
∗/

12 vo id copyFrom (readon ly Copyab le o) throws C l a s sCa s tEx c ep t i o n ;
13 }

Listing 5.8: The interface Copyable marks classes that implement the sheep-copy function.

The method copyFrom(..) is called on the new object, of which all fields are assigned according to

the fields from the originating object, given in parameter Copyable o. A ClassCastException is

thrown, if the object, given by parameter o is of another type than the new object itself.

It is recommended for classes that implement the Copyable interface to provide a constructor like an

example can be reviewed in listing 5.9.

40 Chapter 5. Problems, Patterns and Workarounds

1 c l a s s MyClass implements Copyab le {
2 /∗ ∗ recommended c o n s t r u c t o r ∗/
3 MyClass (readon ly MyClass o) { copyFrom (o) ; }
4 vo id copyFrom (readon ly Copyab le o) {
5 // no th i ng to do i n the ca se o f no i n s t a n c e f i e l d s .
6 }
7 }

Listing 5.9: A possible implementation of the Copyable interface; including the recommended constructor that

takes an object of the same type.

5.6 “ambiguous” error message

We had some troubles with a sort of compile error of the same nature like the following one:

File ‘‘AmbiguousExc.java’’, line 4, character 63 error: Call of method is ambiguous between (at

least) java.lang.Exception<init>(readonly java.lang.String) and java.lang.Exception.<init>(

readonly java.lang.Throwable). [JLS 15.11]

When a method with at least one readonly parameter is called, this error message occurs if the actual

parameter of the called method is (1) not readonly and (2) of a java-subtype of the formal parameter.

E.g. see the call of the constructor of an exception in listing 5.10.

1 pub l i c c l a s s AmbiguousExc {
2 vo id m() throws Excep t i on {
3 peer Object t c = new peer I n t e g e r (7) ;
4 throw new Excep t i on (t c + ” i s pee r Object / t h i s i s : ” + t h i s) ;
5 }
6 }

Listing 5.10: Compiling this class with the JML checker produces the “ambiguous” error message.

Workaround The error message can be avoided by casting the actual parameter to readonly. The

example from above including this cast can be considered in listing 5.11.

1 pub l i c c l a s s AmbiguousExc {
2 vo id m() throws Excep t i on {
3 peer Object t c = new peer I n t e g e r (7) ;
4 throw new Excep t i on ((readon ly S t r i n g) (t c + ” i s pee r Object / t h i s

i s : ” + t h i s)) ;
5 }
6 }

Listing 5.11: The example with the “ambiguous” error mitigated by a cast (line 4).

Problem localization We have tried to put the above example (listing 5.10) to the MultiJava project

as unit test. But unfortunately the unit test does not fail.

By further investigations, it has turned out that the MultiJava compiler accepts code like in listing 5.10,

while the JML-tools checker fails (main class: org.jmlspecs.checker.Main).

We assume the ambiguity of parsing these code snippets is based on the two different direct supertypes

of the actual parameter. For visualization see figure 5.12.

5.6. “ambiguous” error message 41

readonly Superclass

readonly Subclass

peer Superclass

peer Subclass

rep Superclass

rep Subclass

Figure 5.12: Read-write universe types have two different direct supertypes: (1) the according read-only

type and (2) the corresponding read-write supertype in the class hierarchy of java.

As direct supertypes we consider instantiable types only; especially interfaces have been ignored.

No further investigations have been made. So this section is mainly a bug report, with an

approach for the problem localization.

Chapter 6

Ideas and Proposals

In this chapter we present a few ideas, how the Universe type system could be extended.

The first approach (section 6.1) presents, how some references could be typed implicitly as read-only.

This is just to make the life of the programmer easier.

In section 6.2 we propose to introduce method-local universes, to gain more flexibility for pure methods.

Two ideas of a general read-write parameter type are presented in section 6.3.

6.1 Implizit readonly

In programs we often get readonly references. There are two ways to handle them: (1) we know in

what universe the referenced object is, so we can make a downcast to the according universe or (2) a

readonly reference is enough for the purpose we need it.

This proposal is about the second case: If a class has only pure and readonly features that are

frequently used, references to objects of this class can be treated as readonly references by default.

Concerned classes are String, Integer, other numbers and all kinds of exceptions. Strings and

numbers are immutable classes, while exceptions are propagated as readonly (according to [DM04]).

Approach The compiler treats all declarations of fields, parameters and local variables of immutable

types and exceptions, that have no universe modifier declared, implicitly as readonly. Implicitly means

that if there is another annotation, this one will be considered. But only iff there is no annotation for

a reference, the compiler treats it as readonly.

Immutable types can be (1) a list of types, the compiler knows about or (2) all classes with the JML-

annotation immutable. (1) has the disadvantage that only library types can be considered; references

to user-defined classes cannot be declared to be implicitly treated as readonly. (2) is depending on

JML [JML].

44 Chapter 6. Ideas and Proposals

6.2 Local universes

6.2.1 Problem

In pure methods it is forbidden to invoke any non-pure methods, even on newly created objects. This

is because the non-pure method could downcast a read-only reference and modify the object store.

6.2.2 Proposed solution

We introduce new method-local universes. Read-write access to these local universes is allowed during

one method execution only.

A new type annotation local is used for that. local is a subtype of readonly, but not of anything

else.

The annotation can only be used for local variables of a reference type.

Local references are read-write references; full access is allowed. We can even call non-pure methods

on local references.

For arrays we allow:

l o c a l peer T [] ;

l o c a l readon ly T [] ;

l o c a l l o c a l T []

We can create new objects and arrays with a local annotation.

The only way a new local object could escape the method scope is if the object is returned through a

read-only reference.

This new type will be most useful for pure methods, but it can also be used in non-pure methods to

express that the objects created in the method should not escape it. It can be used in static methods

and constructors.

6.2.3 Example

In listing 6.1 we present a class C that uses a local iterator (listing 6.2). Using the local iterator, it

aggregates some information from a read-only Collection c.

6.2.4 Type combinator

peer rep readonly local global

peer peer
readonly (rep if

called on this)
readonly not possible global

rep rep readonly readonly not possible global

readonly readonly readonly readonly not possible readonly

local local
readonly (accord.

to rep * rep)
readonly not possible global

global global readonly readonly not possible global

Table 6.1: Type combinator, including the local universe type

6.2. Local universes 45

1 c l a s s C {
2 readon ly C o l l e c t i o n c ;
3

4 pure i n t s om eS t a t i s t i c () {
5 // the c o n s t r u c t o r a c t u a l paramete r must
6 // be l o c a l ∗ r e a don l y = r e adon l y
7 l o c a l I t e r a t o r i t = new l o c a l ROI t e r a t o r (c) ;
8

9 i n t count ;
10 count = 0 ;
11

12 whi le (i t . hasNext ()) {
13 // the r e s u l t t ype i s
14 // l o c a l ∗ r e a don l y = r e adon l y
15 readon ly Object o = i t . nex t () ;
16 count += o . aPure () ; // aPure () i s a pure method .
17 }
18

19 re tu rn count ;
20 }
21 }

Listing 6.1: An example class C that uses a local iterator in a pure method to make an aggregation over a

readonly collection.

1 c l a s s ROI t e r a t o r implements UTSI t e r a to r {
2 ROI t e r a t o r (readon ly C o l l e c t i o n c) { . . }
3 pure boolean hasNext () { . . }
4 readon ly Object nex t () { . . }
5 }

Listing 6.2: An iterator on a readonly collection as described in section 5.4.

In Table 6.1 we present the type combinator for the introduced local universe type. Only combinations

with local on the left hand side are possible. Local can not be on the right hand side, because we only

allow it for local variables.

So the new combinations are:

• local * peer, which should be local again.

• local * rep: according to rep * rep this returns readonly.

• local * readonly, which must be readonly again.

• local * global: according to rep * global, can be global.

Example of how a local reference can escape its method: In the listing 6.2, take as implementation

of ROIterator.next():

readon ly Object nex t () { re tu rn t h i s ; }

Then in the method someStatistics() of class C (listing 6.1) we could have

// l o c a l ∗ r e a don l y => r e a don l y

re tu rn i t . nex t () ;

which returns a readonly Object, which is actually a reference to the newly created local object.

46 Chapter 6. Ideas and Proposals

6.2.5 Runtime checks

Local objects are created in a new method-universe. Usually this Universe must only exist during the

execution of a method, but local objects could escape through readonly references. For each method

invocation we propose to use a different Universe.

We can call non-pure methods on local references. These non-pure methods could include downcasts

of a readonly reference to peer or rep. But because the local objects are created in a separate Universe

we can be sure that those downcasts would fail at runtime.

Statically we can not guarantee that a pure method with local variables has no side-effects. But at

runtime all downcasts of non-local references will fail.

Unlike previous owners, the owner of local objects is not an object anymore. Since for each invocation

of a method, another local universe is used, we recommend to use another owner for each invocation

respectively.

6.2.6 Future work

Approach to enhance static checks We can restrict the method that are allowed to be called on

local objects to semipure methods.

A method is semipure if it is pure or (1) it calls semipure methods only and (2) it contains no casts of

parameters to read-write types.

Since these two properties can be checked statically, semipure methods can automatically determined

by the compiler.

6.3 A general read-write paramater type

6.3.1 Motivation

Problem A As described in subsection 3.2.3, in some methods it is desired to have parameters of

type read-write, but it is not important whether it is peer, rep or global. E.g. a method void

sayHello(PrintStream out) takes an argument to write a “hello” message. If we want that this

method can be called with either global System.out or our own peer PrintStream p as parameter,

it is not possible to annotate the parameter with a universe type.

6.3.2 Approach with an abstract universe type

In subsection 3.2.3 we presented a first approach to face these problems. We introduced a new abstract

universe type writable as direct subtype of readonly and supertype of all read-write universe types

(rep, peer and global). writable, as the name suggests, is a read-write universe type as well. Like

readonly types, writable types cannot be instantiated directly, therefore we call it abstract. The

type hierarchy is drawn in figure 3.4.

In this section we adapt this approach a bit. But the main idea stays the same: Introduce a new

read-write universe type, which is compatible with all existing read-write universe types.

The syntax of this approach is similar to Java generics [Suna]. If we want to allow a method to declare

writable parameters, universe parameters have to be marked in front of a method declaration with the

following notation: <writable X>, where X is the variable for the universe. The keyword writable

reminds of the requirement of the parameter: the parameterized universe has to be read-write in both:

the client and the method itself. At compile time the universe relations are assigned and type checked.

6.3. A general read-write paramater type 47

1 c l a s s C {
2 <wr i t ab l e U> vo id wr i teTo (U Pr in tS t r eam p) {
3 p . w r i t e l n (” h e l l o u n i v e r s e ! ”) ;
4 }
5 }
6

7 // c l i e n t w i th pee r r e f e r e n c e c to i n s t a n c e o f C :
8 peer C c = new peer C() ;
9 c . wr i teTo (System . out) ; // U i s r e s o l v e d to be g l o b a l .

10 c . wr i teTo (new peer Pr in tS t r eam (
11 new peer F i l eOutputSt r eam (” p e e r f i l e ”)
12)) ; // U i s r e s o l v e d to be pee r .
13 c . wr i teTo (new rep Pr in tS t r eam (
14 new rep F i l eOutputSt r eam (” r e p f i l e ”)
15)) ; // U i s r e s o l v e d to be r e adon l y
16 // => i n c ompa t i b l e => comp i l e t ime e r r o r .

Listing 6.3: A method which takes any read-write PrintStream as parameter, writes a message on it and

returns.

Example to problem A In listing 6.3 we present a method that writes something on a given

PrintStream, like described in Problem A. A client of this method tries to call it with parameters

in different universes: global, peer and rep. The last call will fail, since c has no read-write permis-

sion in the rep universe of the client.

Let us have a closer look to the method writeTo(..): Instead of defining the parameter p as peer,

rep or global explicitly, the compiler can assign the universe, by resolving the parameters. If we

wanted to provide this functionality with the upcoming Universe type system, we had to implement

three versions of the method writeTo(..).

As written in lines 9 and 12 of listing 6.3, the compiler is able to resolve the universe type of the

parameter of the signature in line 2 correctly. In line 15 is stated, that the third call of c.writeTo(..)

is typed wrong: the actual parameter is, due to the conventional type combinator, peer * rep ⇒
readonly, which is not assignable to the formal parameter writable.

Type rule

The proposed type rule is:

Rule 6.1 A formal parameter can be declared as writable iff the referenced object can be in any

universe, where read-write access of the callee is allowed.

The second part of this rule is checked at compile time by assigning a concrete universe to each

writable keyword. To perform these checks the following type combinator can be used.

Type combinator

In Table 6.2 we present the type combinator belonging to the proposed introduction of writable.

We omit writable on the right hand side because it cannot be reasonably typed for all cases.

Consider the case rep * writable: If we assume writable as the set of {peer, rep, global} then the

resulting set should be {rep * peer, rep * rep, rep * global} = {rep, readonly, global}. And

this resulting set is not equivalent to the assumed set for writable.

For the case writable * writable, the situation is getting even worse.

48 Chapter 6. Ideas and Proposals

peer rep readonly global

peer peer
readonly (rep if

called on this)
readonly global

rep rep readonly readonly global

readonly readonly readonly readonly readonly

writable writable readonly readonly global

global global readonly readonly global

Table 6.2: Type combinator, including the writable universe type

Return type If the return type of a method is writable, at compile time the actual universe is

resolved and the call is treated using this universe information.

Conclusion

This approach introduces a writable universe type for methods only. It is useful as long as there is only

one call to a method with writable parameters. But since it is not allowed to pass writable variables as

actual parameters to other methods (right hand side of the type combinator), the area of application

of this approach is very thin.

6.3.3 Approach with a template mechanism

Without introducing new concepts or keywords, we could simply introduce several methods, one for

each read-write universe type respectively.

For the example, described in problem A (6.3.1), the solution would look like this:

vo id wr i teTo (peer Pr in tS t r eam p) { . . }
vo id wr i teTo (rep Pr in tS t r eam p) { . . }
vo id wr i teTo (g l oba l Pr in tS t r eam p) { . . }

So for every read-write universe type, we have its own method declaration. Due to method overloading,

the right method is chosen for execution.

But we do not want to declare each method once for each read-write universe type. To avoid duplicate

code, we would like to declare the writeTo(..) method in a way like this:

vo id wr i teTo ({ peer , rep , g l oba l } Pr in tS t r eam p) {
p . w r i t e l n (” h e l l o u n i v e r s e ! ”) ;

}

{peer, rep, global} means that there are three overloaded methods, each with one of the three

universe types respectively.

The following problems have to be treated: (1) In the method body of the example above, we do

not know what universe type p has. (2) {peer, rep, global} is ugly syntax without similarities to

existing Java concepts. (3) The example above is not backward compatible with conventional Java,

since it introduces several methods with the same signature, if universe types have been omitted.a

aE.g. a class has been compiled with MJ/JML and then the byte code is executed with a standard VM.

6.3. A general read-write paramater type 49

writable as a place holder

We introduce writable as a place holder for one universe type out of {peer, rep, global}. In each

method, in which writable is used, it has to appear in the signature. The compiler replaces it for each

read-write universe type and generates a separate method. If writable appears in the method body,

it is replaced with the same read-write universe type as in the signature respectively.

1 /∗ ∗ @param m Map and a l l E n t r i e s i n same u n i v e r s e (by conven t i on) . ∗/
2 vo id c o l l e c t I n f o r m a t i o n (wr i t ab l e Map m) {
3 // en su r e t h e r e i s a I n f oOb j e c t f o r my ca t e go r y i n m.
4 i f (m. ge t (t h i s . c a t e go r y ()) == nu l l) {
5 wr i t ab l e I n f oOb j e c t i o = new wr i t ab l e I n f oOb j e c t () ;
6 m. put (t h i s . c a t e go r y () , i o) ;
7 }
8 m. get (t h i s . c a t e go r y ()) . i n c r ement (t h i s) ; // param o f i nc r ement r e a don l y
9 }

Listing 6.4: A map collects information about this, grouped by the category of this.

As an example in listing 6.4 we have a method that allows to collect information in a given Map. The

information is stored in instances of a class InfoObject and grouped by a category which implements

the Comparable interface. The compiler generates the three methods, like presented in listing 6.5.

1 vo id c o l l e c t I n f o r m a t i o n (peer Map m) {
2 // en su r e t h e r e i s a I n f oOb j e c t f o r my ca t e go r y i n m.
3 i f (m. ge t (t h i s . c a t e go r y ()) == nu l l) {
4 peer I n f oOb j e c t i o = new peer I n f oOb j e c t () ;
5 m. put (t h i s . c a t e go r y () , i o) ;
6 }
7 m. get (t h i s . c a t e go r y ()) . i n c r ement (t h i s) ; // param o f i nc r ement ro
8 }
9 vo id c o l l e c t I n f o r m a t i o n (rep Map m) {

10 // en su r e t h e r e i s a I n f oOb j e c t f o r my ca t e go r y i n m.
11 i f (m. ge t (t h i s . c a t e go r y ()) == nu l l) {
12 rep I n f oOb j e c t i o = new rep I n f oOb j e c t () ;
13 m. put (t h i s . c a t e go r y () , i o) ;
14 }
15 m. get (t h i s . c a t e go r y ()) . i n c r ement (t h i s) ; // param o f i nc r ement ro
16 }
17 vo id c o l l e c t I n f o r m a t i o n (g l oba l Map m) {
18 // en su r e t h e r e i s a I n f oOb j e c t f o r my ca t e go r y i n m.
19 i f (m. ge t (t h i s . c a t e go r y ()) == nu l l) {
20 g l oba l I n f oOb j e c t i o = new g loba l I n f oOb j e c t () ;
21 m. put (t h i s . c a t e go r y () , i o) ;
22 }
23 m. get (t h i s . c a t e go r y ()) . i n c r ement (t h i s) ; // param o f i nc r ement ro
24 }

Listing 6.5: The method of listing 6.4 is translated by the compiler to these three methods: one for each

read-write universe type; in the body writable is replaced accordingly.

With the presented mechanism we have solved the two problems (1) and (2): Introducing the keyword

writable, we have a nicer syntax and because of the replacement of writable by the compiler, we

can even use the place holder writable in the whole method.

We are still not backward compatible (problem (3)) and we have introduced a new restriction: All

writable of one method are interpreted as the same universe (problem (4)).

50 Chapter 6. Ideas and Proposals

Parameterization of writable

To face problem (4), that only one writable type can be used per method, we can parameterize

writable. The example in listing 6.4 now looks like presented in listing 6.6.

1 /∗ ∗ @param m Map and a l l E n t r i e s i n same u n i v e r s e (by conven t i on) . ∗/
2 <wr i t ab l e U> vo id c o l l e c t I n f o r m a t i o n (U Map m) {
3 // en su r e t h e r e i s a I n f oOb j e c t f o r my ca t e go r y i n m.
4 i f (m. ge t (t h i s . c a t e go r y ()) == nu l l) {
5 U In f oOb j e c t i o = new U In f oOb j e c t () ;
6 m. put (t h i s . c a t e go r y () , i o) ;
7 }
8 m. get (t h i s . c a t e go r y ()) . i n c r ement (t h i s) ; // param o f i nc r ement r e a don l y
9 }

Listing 6.6: Th example presented in listing 6.4 with the parameterized syntax.

Now we can have several writable parameter types, which can even be used in the method body as

well. Following, a syntax example for two writable parameter types is presented:

<wr i t ab l e U, wr i t ab l e V> U Object method (U Object param1 , V Object param2)

{ . . }

The compiler has to generated the according methods in several steps, for each writable declaration

once. In the first step the following method declarations are generated:

<wr i t ab l e V> peer Object method (peer Object param1 , V Object param2)

{ . . /∗ [U / pee r] ∗/ }
<wr i t ab l e V> rep Object method (rep Object param1 , V Object param2)

{ . . /∗ [U / rep] ∗/ }
<wr i t ab l e V> g l oba l Object method (g l oba l Object param1 , V Object param2)

{ . . /∗ [U / g l o b a l] ∗/ }

The notation

/* [U / peer] */

means that all occurrences of U in the method body are replaced by peer.

For the <writable V> the same replacement is done; so we end up with nine implicit method decla-

rations (assumed there are three read-write universe types).

Backward compatibility

As already mentioned as problem (3), this approach is not backward compatible with conventional Java,

so far. If a class that uses writable parameters is compiled with the MJ/JML compiler, and then the

byte code is used with a java version that does not support universe byte code, there are ambiguous

method declarations of the concerned methods.

To face this problem, we simulate overloading by introducing a dispatcher method, which calls a specific

generated method according to the universe type. The following method renaming and generation steps

are done by the compiler:

• All methods generated by the replacement (as described above), are renamed to the method

name, concatenated with the universe type. (e.g. methodPeer(..)).

• In the originating method all writable parameters are changed to readonly. Its body is changed

to a dispatcher method: An instanceof checks the actual type of the parameter; then the proper

method (generated in the first step) is called with the parameter casted to the actual type.

6.3. A general read-write paramater type 51

As an example, the generated code of the problem A is presented in listing 6.7.

1 /∗ s ou r c e code w r i t t e n by programmer ∗/
2 <wr i t ab l e U> vo id wr i teTo (U Pr in tS t r eam p) {
3 p . w r i t e l n (” h e l l o u n i v e r s e ! ”) ;
4 }
5

6 /∗ code gene r a t ed by the comp i l e r ∗/
7 vo id wr i t eToPeer (peer Pr in tS t r eam) { . . /∗ [U / pee r] ∗/ }
8 vo id writeToRep (rep Pr in tS t r eam) { . . /∗ [U / rep] ∗/ }
9 vo id wr i t eToPeer (g l oba l Pr in tS t r eam) { . . /∗ [U / g l o b a l] ∗/ }

10

11 /∗ the d i s p a t c h method (gene r a t ed by the comp i l e r) ∗/
12 vo id wr i teTo (readon ly Pr in tS t r eam p) {
13 i f (p i n s t anceo f peer Pr in tS t r eam) {
14 wr i t eToPeer ((peer Pr in tS t r eam) p) ; re tu rn ; }
15 i f (p i n s t anceo f rep Pr in tS t r eam) {
16 writeToRep ((rep Pr in tS t r eam) p) ; re tu rn ; }
17 i f (p i n s t anceo f g l oba l Pr in tS t r eam) {
18 wr i t eToG loba l ((g l oba l Pr in tS t r eam) p) ; re tu rn ; }
19 throw new C l a s sCa s tEx c ep t i o n (”p i s not w r i t a b l e ”) ;
20 }

Listing 6.7: The source code (lines 2 - 4) written by the programmer, is translated by the compiler into a

dispatcher method (lines 12ff) and universe specific methods (lines 7 - 9).

The ClassCastException in line 19 is thrown only if the given parameter is not of a read-write type

for the callee. This runtime exception occurs only with this last extension of backward compatibility. In

the prior version, we checked read-write access of the callee with the standard universe type combinator

and overloading of the method.

To prevent the ClassCastException in the dispatcher method, the compiler could remember for

parameters of the dispatcher method, that they have been writable before and check for each call

of that method, whether the callee has read-write access to the actual parameters. This check can be

performed with the standard type combinator presented in section 2.4.

Conclusion

The approach with a template mechanism provides a suitable solution to the problem, like described in

subsection 6.3.1. This approach reduces everything that is introduced to previously known concepts;

and this reduction is performed by the compiler.

Chapter 7

Conclusion

We applied the Universe type system [MPH01] to an industrial application. Our main result is that it

is possible to apply the Universe type system to an application of reasonable size.

We achieved this goal by annotating Java API classes (chapter 3) as well as the part of the application

that we have researched (chapter 4). The Universe type system controls aliasing, meaning access to

certain references is restricted. Due to these restrictions, we had to do some restructuring of the

application and parts of the Java API.

7.1 Annotation of an application

An advantage of the restructuring process is that the structure of the application is improved: The

number of objects that may modify another object is limited to the objects in the same universe

(and its owner). This yields that a facade pattern can be enforced or whole object structures can be

encapsulated. We get a cleaner distribution of responsibilities between several components.

Nevertheless, a disadvantage is, that more methods are needed: For each non-pure method that is

allowed to be called from outside, there has to be a facade method in the owner object of this universe.

These additional methods may even be recursive (see subsection 4.2.5). This implies runtime overhead

for the respective method calls.

Ownership diagram To annotate one or several components with universe type, we recommend to

draw an ownership diagram. This helps to keep track of the annotation process, independent of the

annotation strategy that is used. (Some approaches to such annotation strategies are presented in

section 4.1.)

Singleton Pattern In section 5.2 we describe two versions of how to treat singletons in existing

applications: (1) with a global singleton object and (2) avoiding them. A combination of the two

approaches yields a flexible solution and enables alias control.

Copying So far it is not possible in the Universe type system to transfer objects from one universe to

another. In some situations it is suitable to copy these objects. The disadvantage is that object identity

is lost. In section 5.5 we present an implementation of a copy mechanism.

54 Chapter 7. Conclusion

Iterators Since the analyzed application makes versatile use of the java.util.* collection framework,

we encountered two needs of iterators, that are not fulfilled by the existing framework. (1) Iteration

over read-only collections and (2) the usage of iterators in pure methods. For both of these problems

we present a workaround in subsection 5.4.1 and subsection 5.4.2. A generic iterator, like presented in

subsection 5.4.1, combined with the proposal of a target universe type yields a reasonable solution for

even the combination of (1) and (2).

Global universe Based on the experience of this case study, we can state that a global universe is

needed to annotate a real world application. We used the concept of a global universe, like presented

in [Häc04].

7.2 Annotation of Java API

We used the MultiJava/JML compiler [MJ, JML]. Using the JML *.refines-spec file format, we

had to annotate the signatures for the desired Java API only.

Since the Universe type system introduces read-only references and restricts access to object in foreign

universes, some Java API needs to be restructured.

In subsection 5.4.1 we introduce an UTSIterator, which is able to iterate over read-only collections.

This is an example implementation of a Java API concept that has to be adapted for use together with

the Universe type system.

7.3 Ideas and Proposals

In chapter 6 we present a few approaches to make life easier.

In section 6.2 we introduce a local universe type with a scope of only the actual method execution. In

pure methods, this enables full access to objects, that are instantiated in the local universe. With this

approach, among other things, we enable the usage of iterators in pure methods.

We present several approaches in section 6.3, to enable method parameters with read-write access for

the callee. The approach with a template mechanism (subsection 6.3.3) seems to be the most suitable,

since it uses conventional universe types and rules, and most of the work is done by the compiler. It is

even possible to use method overloading, to avoid runtime overhead.

Last but not least, in subsection 6.3.3 we present an approach to instantiate objects inside any given

universe.

Bibliography

[AB04] Karine Arnout and Eric Bezault. How to get a singleton in eiffel? Journal of Object

Technology, 3(4):75–95, April 2004. Available from http://www.jot.fm/issues/issue_

2004_04/article5. 33

[Apa] Apache Software Foundation. log4j. http://logging.apache.org/log4j/docs/. 15

[Bec] Kent Beck. Extreme programming XP. http://www.extremeprogramming.org/. 22

[Cin] Cinerent Open Air AG. starticket. https://www.starticket.ch/. 1

[DM04] W. Dietl and P. Müller. Exceptions in ownership type systems. In E. Poll, editor, Formal

Techniques for Java-like Programs, pages 49–54, 2004. 15, 43

[Ecl] The Eclipse Foundation. The eclipse project. http://www.eclipse.org/, I used eclipse

Version 3.0.1. 37, 76

[EG02] L. Eppler and T. Gresch. Projektbeschrieb: Entwicklung von barcode basierten ein-

gangskontrollen. Firma Cinerent Open Air AG, CH-8702 Zollikon, Starticket https:

//www.starticket.ch, 2002. 1

[Fow03] Martin Fowler. Refactoring - Improving the Design of Existing Code. Addison-Wesley,

September 2003. 22, 37, 76

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-

Wesley, 1995. 2, 12, 32, 33

[Häc04] Thomas Hächler. Statische Felder im Universe Type System. 2004. 12, 54

[JML] The JML-specs project. http://www.jmlspecs.org/. 7, 15, 43, 54, 76

[Mas04] Vincent Massol. JUnit in Action. Manning, 2004. 76

[MJ] The MultiJava project. http://multijava.sourceforge.net/. 54, 76

[MPH01] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency

control. Technical Report 279, Fernuniversität Hagen, 2001. 9, 11, 15, 53

[Mül04] Peter Müller. Konzepte objektorientierter Programmierung, 2004. http://sct.ethz.ch/

teaching/ws2004/koop/. 9

[SAX] SAX, Public Domain, SourceForge. Simple api for xml. http://www.saxproject.org/.

15

http://www.jot.fm/issues/issue_2004_04/article5
http://www.jot.fm/issues/issue_2004_04/article5
http://logging.apache.org/log4j/docs/
http://www.extremeprogramming.org/
https://www.starticket.ch/
http://www.eclipse.org/
https://www.starticket.ch
https://www.starticket.ch
http://www.jmlspecs.org/
http://multijava.sourceforge.net/
http://sct.ethz.ch/teaching/ws2004/koop/
http://sct.ethz.ch/teaching/ws2004/koop/
http://www.saxproject.org/

56 BIBLIOGRAPHY

[Suna] Sun Microsystems, Inc. Generics in the java programming language (J2SE 1.5). http:

//java.sun.com/j2se/1.5.0/docs/guide/language/generics.html. 32, 46

[Sunb] Sun Microsystems, Inc. Java. http://java.sun.com/. 76

[Sunc] Sun Microsystems, Inc. Jxta. http://www.jxta.org/. 6

http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://java.sun.com/
http://www.jxta.org/

Appendix A

Some Details

A.1 Listing of the class GenericIterator

Listing A.1: Implementation of a generic iterator, working on a readonly collection.

1 /∗
2 ∗ $ Id : G e n e r i c I t e r a t o r . j ava , v 1 . 1 2 0 05/01/18 11 : 4 0 : 0 4 xtom Exp $
3 ∗
4 ∗ Copy r i gh t (C) 2004 Sw i s s F ed e r a l I n s t i t u t o f Technology Zu r i ch
5 ∗
6 ∗ This f i l e i s p a r t o f the Mu l t i Java p r o j e c t . More i n f o rma t i o n i s
7 ∗ a v a i l a b l e from www. mu l t i j a v a . org .
8 ∗
9 ∗ This program i s f r e e s o f twa r e ; you can r e d i s t r i b u t e i t and/ or modi fy

10 ∗ i t under the terms o f the GNU Gene ra l Pub l i c L i c e n s e as p ub l i s h e d by
11 ∗ the Free So f tware Foundat ion ; e i t h e r v e r s i o n 2 o f the L i c en s e , o r
12 ∗ (a t your op t i on) any l a t e r v e r s i o n .
13 ∗
14 ∗ This program i s d i s t r i b u t e d i n the hope tha t i t w i l l be u s e f u l ,
15 ∗ but WITHOUT ANY WARRANTY; w i thout even the imp l i e d war ran ty o f
16 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
17 ∗ GNU Gene ra l Pub l i c L i c e n s e f o r more d e t a i l s .
18 ∗
19 ∗ You shou ld have r e c e i v e d a copy o f the GNU Gene ra l Pub l i c L i c e n s e
20 ∗ a long wi th t h i s program ; i f not , w r i t e to the Free So f tware
21 ∗ Foundat ion , I n c . , 5 9 Temple Place , S u i t e 3 30 , Boston , MA 02111 −1307 USA
22 ∗
23 ∗ Created on 20 . 1 2 . 2 004
24 ∗/
25 package org . mu l t i j a v a . u t s ;
26

27 import j a v a . u t i l . C o l l e c t i o n ;
28 import j a v a . u t i l . C on cu r r e n tMod i f i c a t i o nEx c ep t i o n ;
29

30 /∗∗
31 ∗ This imp l ementa t i on o f { @ l i n k org . mu l t i j a v a . u t s . UTS I t e r a to r }
32 ∗ s t o r e s a l l e l ement s t ha t w i l l be r e t u r n e d i n an a r r a y .
33 ∗ I t check whether an e l ement r e t u r n e d by { @ l i n k #next () } and the e l ement

b e f o r e a r e
34 ∗ s t i l l a t the same p o s i t i o n as i n the u n d e r l y i n g { @ l i n k j a v a . u t i l .

C o l l e c t i o n } .
35 ∗ I f t h e s e c o n d i t i o n s a r e not f u l f i l l e d , { @ l i n k j a v a . u t i l .

C on cu r r e n tMod i f i c a t i o nEx c ep t i o n } w i l l be thrown .
36 ∗

58 Chapter A. Some Details

37 ∗ @author Thomas Haech l e r
38 ∗/
39 pub l i c c l a s s G e n e r i c I t e r a t o r extends S i m p l e I t e r a t o r implements UTSI t e r a to r {
40

41 /∗ CONSTANTS ∗/
42

43 /∗ ∗ s h a l l c o n cu r r e n t mod i f i c a t i o n checks be done ? ∗/
44 s t a t i c f i n a l boolean DO CONCURRENT MODIFICATION CHECKS = t rue ;
45

46 /∗ FIELDS ∗/
47

48 /∗ ∗ ho ld the u n d e r l y i n g C o l l e c t i o n ∗/
49 p r i v a t e /∗@ \ r e a don l y @∗/ C o l l e c t i o n c o l l e c t i o n ;
50

51 /∗ ∗ has a { @ l i n k j a v a . u t i l . C on cu r r e n tMod i f i c a t i o nEx c ep t i o n } a l r e a d y
been thrown ? ∗/

52 p r i v a t e boolean concModExpHasBeenThrown = f a l s e ;
53

54 /∗ CONSTRUCTOR ∗/
55

56 /∗∗
57 ∗ @param c o l l
58 ∗/
59 pub l i c G e n e r i c I t e r a t o r (/∗@ \ r e a don l y @∗/ C o l l e c t i o n c o l l) {
60 super (c o l l) ;
61 c o l l e c t i o n = c o l l ;
62 }
63

64 /∗∗
65 ∗ @see j a v a . u t i l . I t e r a t o r#next ()
66 ∗/
67 /∗@ p r i v a t e no rma l b eha v i o r
68 @ a s s i g n a b l e concModExpHasBeenThrown ;
69 @∗/
70 pub l i c synchron ized /∗@ \ r e a don l y @∗/ Object nex t ()
71 throws IndexOutOfBoundsExcept ion , Con cu r r e n tMod i f i c a t i o nEx c e p t i o n {
72 i f (concModExpHasBeenThrown) c o n c u r r e n tMod i f i c a t i o n () ;
73 /∗@ \ r e a don l y @∗/ Object r e tVa l u e = super . nex t () ;
74 ch e c kConcu r r e n tMod i f i c a t i o n (r e tVa l u e) ;
75 re tu rn r e tVa l u e ;
76 }
77

78 /∗∗
79 ∗ @param nex tRetu rnVa lue
80 ∗ @throws Con cu r r e n tMod i f i c a t i o nEx c ep t i o n
81 ∗/
82 /∗@ p r i v a t e no rma l b eha v i o r
83 @ a s s i g n a b l e concModExpHasBeenThrown ;
84 @∗/
85 p r i v a t e vo id ch e c kConcu r r e n tMod i f i c a t i o n (/∗@ \ r e a don l y @∗/ Object

nex tRe tu rnVa lue)
86 throws Concu r r e n tMod i f i c a t i o nEx c ep t i o n {
87 i f (! DO CONCURRENT MODIFICATION CHECKS) re tu rn ;
88 i n t pos = p o s i t i o n − 1;
89 /∗@ \ r e a don l y \ r e a don l y @∗/ Object [] a c t u a l C o l l e c t i o n =

c o l l e c t i o n . t oAr ray () ;
90 i f (a c t u a l C o l l e c t i o n [pos] != nex tRetu rnVa lue)
91 c o n c u r r e n tMod i f i c a t i o n () ;
92 i f ((pos > 0) && (a c t u a l C o l l e c t i o n [pos −1] != a r r a y [pos −1]))
93 c o n c u r r e n tMod i f i c a t i o n () ;
94 }
95

96 /∗∗

A.1. Listing of the class GenericIterator 59

97 ∗ @see j a v a . u t i l . I t e r a t o r#hasNext ()
98 ∗/
99 pub l i c synchron ized /∗@ pure @∗/ boolean hasNext () {

100 re tu rn ! concModExpHasBeenThrown && super . hasNext () ;
101 }
102

103 /∗∗
104 ∗ @throws Con cu r r e n tMod i f i c a t i o nEx c ep t i o n
105 ∗/
106 /∗@ p r i v a t e no rma l b ehav i o r
107 @ a s s i g n a b l e concModExpHasBeenThrown ;
108 @∗/
109 p r i v a t e vo id c o n c u r r e n tMod i f i c a t i o n () throws

Concu r r e n tMod i f i c a t i o nEx c ep t i o n {
110 concModExpHasBeenThrown = t rue ;
111 throw new Concu r r e n tMod i f i c a t i o nEx c ep t i o n (” u n d e r l y i n g

C o l l e c t i o n has changed s i n c e i n s t a n t i a t i o n o f t h i s (”+
t h i s+”) . ”) ;

112 }
113 }
114

115 /∗
116 ∗ CVS Log E n t r i e s f o r t h i s f i l e :
117 ∗
118 ∗ $Log : G e n e r i c I t e r a t o r . j ava , v $
119 ∗ Re v i s i o n 1 . 1 2005/01/18 11 :40 : 04 xtom
120 ∗ added sou r c e o f G e n e r i c I t e r a t o r to append ix .
121 ∗
122 ∗ Re v i s i o n 1 . 2 2004/12/22 12 :31 : 50 xtom
123 ∗ added j avadoc .
124 ∗
125 ∗/

Appendix B

Interim Reports

B.1 The selected subset of the application

...and its dependencies.

In the package com.cinerent.xml I chose the classes belonging to XML download only, but not XML

writing or upload.

A summarization of the following table (B.1) can be found in table B.2.

Table B.1: Classes of the selected subset of the application and their

dependencies.

class depends on remarks

com.cinerent.beans.

YoshiDataStructure

java.util.Set

org.apache.log4j.Logger

com.cinerent.jxta.BagMessageSender

com.cinerent.jxta.YoshiGroup

continued on next page

62 Chapter B. Interim Reports

class depends on remarks

com.cinerent.beans.

TicketingComponent

java.lang.Object java.lang.* is listed only once.

java.lang.Serializable java.lang.* is listed only once.

java.lang.Comparable java.lang.* is listed only once.

java.lang.NullPointerException java.lang.* is listed only once.

java.lang.String java.lang.* is listed only once.

java.lang.StringBuffer java.lang.* is listed only once.

java.io.Serializable

java.util.Collection

java.util.Iterator

java.util.LinkedList

java.util.Map

java.util.Set

java.util.TreeMap

net.jxta.id.ID JXTA: stub only.

org.apache.log4j.Logger

com.cinerent.jxta.IBagable

com.cinerent.util.SystemProperties

com.cinerent.xml.XmlException

com.cinerent.beans.

TicketingComposite

java.lang.Integer java.lang.* is listed only once.

java.lang.ClassNotFoundException java.lang.* is listed only once.

java.io.IOException

java.io.ObjectInputStream

java.io.ObjectOutputStream

java.io.PrintStream

java.util.Collection

java.util.Collections

java.util.Iterator

java.util.LinkedList

java.util.Map

java.util.SortedMap

java.util.TreeMap

com.cinerent.xml.XmlException

com.cinerent.beans.

TicketingLeaf

java.util.LinkedList

java.util.Map

continued on next page

B.1. The selected subset of the application 63

class depends on remarks

com.cinerent.beans.

TicketingData

java.io.PrintStream

java.util.Collections

java.util.Iterator

java.util.SortedMap

java.util.TreeMap

org.apache.log4j.Logger

com.cinerent.controller.AutoSaver

com.cinerent.xml.XMLDownloadData

com.cinerent.xml.XMLDownloadable

com.cinerent.beans.

Event

java.io.IOException

java.io.ObjectInputStream

java.io.Serializable

java.util.Calendar

java.util.Date

java.util.Iterator

java.util.LinkedList

org.apache.log4j.Logger

com.cinerent.util.InstanceIsInvalidException

com.cinerent.util.Saveable

com.cinerent.util.StatisticData

com.cinerent.util.YoshiProperties

com.cinerent.xml.XMLDownloadData

com.cinerent.xml.XMLDownloadable

com.cinerent.beans.

Show

java.io.IOException

java.io.PrintStream

java.text.FieldPosition

java.text.SimpleDateFormat

java.util.Calendar

java.util.Date

java.util.Iterator

javax.xml.parsers.DocumentBuilderFactory

javax.xml.parsers.ParserConfigurationException

org.apache.log4j.Logger

org.w3c.dom.Document

org.w3c.dom.Element

com.cinerent.command.CommandHandler

com.cinerent.controller.MainController

com.cinerent.jxta.BagMessageSender

com.cinerent.util.YoshiProperties

com.cinerent.xml.XMLDownloadData

com.cinerent.xml.XMLDownloadable

continued on next page

64 Chapter B. Interim Reports

class depends on remarks

com.cinerent.beans.

Ticket

java.util.Date

java.util.Iterator

java.util.Set

org.apache.log4j.Logger

com.cinerent.controller.MainController

com.cinerent.jxta.BagMessageSender

com.cinerent.beans.

TCode

java.util.Calendar

java.util.Collection

java.util.Collections

java.util.Date

java.util.Iterator

java.util.Set

java.util.StringTokenizer

java.util.Vector

org.apache.log4j.Logger

org.w3c.dom.Document

org.w3c.dom.Element

com.cinerent.controller.MainController

com.cinerent.jxta.BagMessageSender

com.cinerent.util.TimeComparator

com.cinerent.xml.XmlException

com.cinerent.beans.

Log

java.text.SimpleDateFormat

java.util.Collection

java.util.Date

java.util.Iterator

java.util.LinkedList

java.util.TreeMap

org.apache.log4j.Logger

com.cinerent.util.YoshiProperties

com.cinerent.beans.

PrintTag

java.util.Collection

com.cinerent.controller.MainController

com.cinerent.beans.

Concession

java.util.Collection

com.cinerent.beans.

TicketingUniqueKey

java.io.Serializable

java.lang.Comparable

com.cinerent.beans.

Barcode

java.io.Serializable

java.util.Set

com.cinerent.util.TreeMapOfSet

com.cinerent.beans.

BarcodeContainer

java.io.Serializable

continued on next page

B.1. The selected subset of the application 65

class depends on remarks

com.cinerent.beans.

EventController

java.io.IOException

java.io.ObjectInputStream

java.io.Serializable

java.util.Iterator

java.util.LinkedList

java.util.Set

java.util.TreeSet

org.apache.log4j.Logger

com.cinerent.command.CommandHandler

com.cinerent.command.ShowStateCommand

com.cinerent.controller.AutoSaver

com.cinerent.controller.MainController

com.cinerent.controller.UserTalkback

com.cinerent.display.PopUp

com.cinerent.jxta.Communicator

com.cinerent.util.InstanceIsInvalidException

com.cinerent.util.MessageIsNullException

com.cinerent.util.Saveable

com.cinerent.util.YoshiProperties

com.cinerent.beans.

LogObserver

(no dependencies)

com.cinerent.beans.

UniqueIdObserver

(no dependencies)

com.cinerent.beans.

TicketingException

java.lang.Exception java.lang.* is listed only once.

com.cinerent.YoshiException

com.cinerent.beans.

BarcodeNotValidException

(no dependencies)

com.cinerent.beans.

AdminEventException

(no dependencies)

continued on next page

66 Chapter B. Interim Reports

class depends on remarks

com.cinerent.xml.

XMLMaster

java.io.BufferedReader

java.io.IOException

java.io.InputStreamReader

java.net.MalformedURLException

java.net.URL

java.util.NoSuchElementException

java.util.StringTokenizer

javax.xml.parsers.ParserConfigurationException

org.apache.log4j.Logger

org.xml.sax.InputSource

org.xml.sax.SAXException

com.cinerent.YoshiException

com.cinerent.beans.Event

com.cinerent.beans.Show

com.cinerent.beans.TicketingUniqueKey

com.cinerent.beans.YoshiDataStructure

com.cinerent.command.XMLStateCommand

com.cinerent.controller.MainController

com.cinerent.controller.UserTalkback

com.cinerent.devices.FileGetter

com.cinerent.jxta.Communicator

com.cinerent.jxta.YoshiGroup

com.cinerent.util.Shutdownable

com.cinerent.util.SingletonException

com.cinerent.util.TooEarlyException

com.cinerent.util.YoshiProperties

com.cinerent.xml.

XMLMasterFile

java.io.BufferedInputStream

java.io.FileInputStream

java.io.FileNotFoundException

java.io.InputStreamReader

java.io.UnsupportedEncodingException

org.apache.log4j.Logger

com.cinerent.YoshiException

com.cinerent.controller.UserTalkback

com.cinerent.util.YoshiProperties

continued on next page

B.1. The selected subset of the application 67

class depends on remarks

com.cinerent.xml.

XMLMasterURL

java.io.BufferedInputStream

java.io.BufferedOutputStream

java.io.File

java.io.FileInputStream

java.io.FileOutputStream

java.io.IOException

java.io.InputStreamReader

java.net.HttpURLConnection

java.net.MalformedURLException

java.net.URL

org.apache.log4j.Logger

com.cinerent.YoshiException

com.cinerent.controller.UserTalkback

com.cinerent.util.TimeoutObserver

com.cinerent.util.TimeoutSubject

com.cinerent.util.TooEarlyException

com.cinerent.util.YoshiProperties

com.cinerent.xml.

XMLDownloadable

java.io.Serializable

com.cinerent.xml.

XMLDownloadData

java.io.Serializable

com.cinerent.util.YoshiProperties

com.cinerent.xml.

TicketingV2Handler

org.xml.sax.Attributes

org.xml.sax.ContentHandler

org.xml.sax.SAXException

continued on next page

68 Chapter B. Interim Reports

class depends on remarks

com.cinerent.xml.

TicketingV2HandlerImpl

java.text.ParseException

java.text.SimpleDateFormat

java.util.Date

java.util.Iterator

java.util.Stack

java.util.TreeMap

org.apache.log4j.Logger

org.xml.sax.Attributes

org.xml.sax.SAXException

com.cinerent.beans.Barcode

com.cinerent.beans.BarcodeNotValidException

com.cinerent.beans.Concession

com.cinerent.beans.Event

com.cinerent.beans.Log

com.cinerent.beans.PrintTag

com.cinerent.beans.Show

com.cinerent.beans.TCode

com.cinerent.beans.Ticket

com.cinerent.beans.TicketingComponent

com.cinerent.beans.TicketingComposite

com.cinerent.beans.TicketingData

com.cinerent.beans.TicketingException

com.cinerent.beans.TicketingUniqueKey

com.cinerent.beans.YoshiDataStructure

com.cinerent.controller.MainController

com.cinerent.jxta.BagMessageSender

com.cinerent.jxta.YoshiGroup

com.cinerent.util.YoshiProperties

com.cinerent.xml.

TicketingV2Parser

org.xml.sax.Attributes TicketingV2Parser

org.xml.sax.ContentHandler may probably be implemented

org.xml.sax.EntityResolver as stub.

org.xml.sax.ErrorHandler

org.xml.sax.InputSource

org.xml.sax.Locator

org.xml.sax.SAXException

org.xml.sax.SAXParseException

org.xml.sax.XMLReader

continued on next page

B.1. The selected subset of the application 69

class depends on remarks

com.cinerent.xml.

DTDResolver

java.io.BufferedReader

java.io.IOException

java.net.URL

org.apache.log4j.Logger

org.xml.sax.EntityResolver

org.xml.sax.InputSource

org.xml.sax.SAXException

com.cinerent.devices.FileGetter

com.cinerent.xml.

XmlException

com.cinerent.YoshiException

com.cinerent.controller.

UserTalkback

com.cinerent.display.PopUpReceiver

com.cinerent.util.

YoshiProperties

java.io.File

java.io.FileInputStream

java.io.FileNotFoundException

java.io.FileOutputStream

java.io.IOException

java.io.InputStream

java.util.Enumeration

java.util.Iterator

java.util.Properties

java.util.TreeMap

org.apache.log4j.Logger

com.cinerent.util.

SystemProperties

java.io.FileInputStream

java.io.FileNotFoundException

java.io.IOException

java.util.Properties

org.apache.log4j.Logger

com.cinerent.util.

Saveable

java.io.Serializable

com.cinerent.util.

StatisticData

(no dependencies)

com.cinerent.util.

TreeMapOfSet

java.util.Collection

java.util.Collections

java.util.Iterator

java.util.Map

java.util.Set

java.util.SortedMap

java.util.TreeMap

java.util.TreeSet

com.cinerent.util.

Shutdownable

com.cinerent.YoshiException

continued on next page

70 Chapter B. Interim Reports

class depends on remarks

com.cinerent.util.

TimeComparator

java.util.Comparator

com.cinerent.beans.Log

com.cinerent.util.

TimeoutObserver

org.apache.log4j.Logger

com.cinerent.YoshiException

com.cinerent.util.

TimeoutSubject

(no dependencies)

com.cinerent.util.

SingletonException

com.cinerent.YoshiException

com.cinerent.util.

TooEarlyException

com.cinerent.YoshiException

com.cinerent.util.

InstanceIsInvalidException

com.cinerent.YoshiException

com.cinerent.util.

MessageIsNullException

com.cinerent.YoshiException

com.cinerent.

YoshiException

java.lang.Exception

B.2. Summary of the subset of the application 71

B.2 Summary of the subset of the application

Table B.2: Subset of the application; grouped by packages.

package class to annotate remarks

com.cinerent.beans com.cinerent.beans.YoshiDataStructure

com.cinerent.beans.TicketingComponent

com.cinerent.beans.TicketingComposite

com.cinerent.beans.TicketingLeaf

com.cinerent.beans.TicketingData

com.cinerent.beans.Event

com.cinerent.beans.Show

com.cinerent.beans.Ticket

com.cinerent.beans.TCode

com.cinerent.beans.Log

com.cinerent.beans.PrintTag

com.cinerent.beans.Concession

com.cinerent.beans.TicketingUniqueKey

com.cinerent.beans.Barcode

com.cinerent.beans.BarcodeContainer

com.cinerent.beans.EventController

com.cinerent.beans.LogObserver

com.cinerent.beans.UniqueIdObserver

com.cinerent.beans.TicketingException

com.cinerent.beans.BarcodeNotValidException

com.cinerent.beans.AdminEventException

com.cinerent.xml com.cinerent.xml.XMLMaster

com.cinerent.xml.XMLMasterFile

com.cinerent.xml.XMLMasterURL

com.cinerent.xml.XMLDownloadable

com.cinerent.xml.XMLDownloadData

com.cinerent.xml.TicketingV2Handler

com.cinerent.xml.TicketingV2HandlerImpl

com.cinerent.xml.TicketingV2Parser

com.cinerent.xml.DTDResolver

com.cinerent.xml.XmlException

com.cinerent.controller com.cinerent.controller.UserTalkback

continued on next page

72 Chapter B. Interim Reports

package class to annotate remarks

com.cinerent.util com.cinerent.util.YoshiProperties

com.cinerent.util.SystemProperties

com.cinerent.util.Saveable

com.cinerent.util.StatisticData

com.cinerent.util.TreeMapOfSet

com.cinerent.util.Shutdownable

com.cinerent.util.TimeComparator

com.cinerent.util.TimeoutObserver

com.cinerent.util.TimeoutSubject

com.cinerent.util.SingletonException

com.cinerent.util.TooEarlyException

com.cinerent.util.InstanceIsInvalidException

com.cinerent.util.MessageIsNullException

com.cinerent com.cinerent.YoshiException

B.3 Necessary Stubs

Table B.3: Stubs to be implemented; grouped by packages.

package stubs to implement remarks

com.cinerent.controller com.cinerent.controller.AutoSaver

com.cinerent.controller.MainController

com.cinerent.command com.cinerent.command.CommandHandler

com.cinerent.command.ShowStateCommand

com.cinerent.command.XMLStateCommand

com.cinerent.jxta com.cinerent.jxta.BagMessageSender

com.cinerent.jxta.IBagable

com.cinerent.jxta.Communicator

com.cinerent.jxta.YoshiGroup

com.cinerent.display com.cinerent.display.PopUp

com.cinerent.display.PopUpReceiver

com.cinerent.devices com.cinerent.devices.FileGetter

java.net java.net.URL

java.net.HttpURLConnection

java.net.MalformedURLException

org.apache.log4j org.apache.log4j.Logger

net.jxta.id net.jxta.id.ID

continued on next page

B.3. Necessary Stubs 73

package stubs to implement remarks

javax.xml.parsers javax.xml.parsers.DocumentBuilderFactory

javax.xml.parsers.ParserConfigurationException

org.xml.sax org.xml.sax.InputSource

org.xml.sax.Attributes

org.xml.sax.XMLReader

org.xml.sax.ContentHandler

org.xml.sax.EntityResolver

org.xml.sax.ErrorHandler

org.xml.sax.InputSource

org.xml.sax.Locator

org.xml.sax.SAXException

org.xml.sax.SAXParseException

org.w3c.dom org.w3c.dom.Document

org.w3c.dom.Element

74 Chapter B. Interim Reports

B.4 Java API to annotate

Table B.4: Classes of the used Java API to be annotated; grouped by

packages.

package class to annotate remarks

java.lang java.lang.Object

java.lang.Comparable

java.lang.StringBuffer

java.lang.String

java.lang.Integer

java.lang.Exception

java.lang.ClassNotFoundException

java.lang.RuntimeException

java.lang.NullPointerException

java.util java.util.Comparator

java.util.Enumeration

java.util.Iterator

java.util.LinkedList

java.util.Set

java.util.Map

java.util.SortedMap

java.util.TreeMap

java.util.TreeSet

java.util.Collection

java.util.Collections

java.util.Stack

java.util.Calendar

java.util.Date

java.util.StringTokenizer

java.util.Vector

java.util.Properties

java.util.NoSuchElementException

continued on next page

B.4. Java API to annotate 75

package class to annotate remarks

java.io java.io.Serializable

java.io.IOException

java.io.ObjectInputStream

java.io.ObjectOutputStream

java.io.PrintStream

java.io.BufferedReader

java.io.InputStream

java.io.InputStreamReader

java.io.BufferedInputStream

java.io.BufferedOutputStream

java.io.FileNotFoundException

java.io.UnsupportedEncodingException

java.io.File

java.io.FileInputStream

java.io.FileOutputStream

java.text java.text.FieldPosition

java.text.SimpleDateFormat

java.text.ParseException

76 Chapter B. Interim Reports

B.5 MultiJava, JML-specs and eclipse

B.5.1 Motivation

I’ve been looking for an automated way to compile with the MultiJava compiler [MJ]. To provide

source code compatibility with other java-compilers (like [Sunb]) I additionally used the JML-specs

project [JML] which allowes to annotate the source code in /*@...@*/-style.

Eclipse [Ecl] is an integrated development environment providing features like source code browsing,

refactoring [Fow03], JUnit integration [Mas04] and diverse plugins. The JUnit framework allows one

to run a java program and do some assertions on success or failure.

Compiling a program with the MultiJava compiler is in fact invoking the according compile()-method

as a java program. My approach is to run the MJ compiler as a JUnit Test and assert the return value

of the compile()-method as true, meaning compiling with the MultiJava compiler was successful.

Problem of eclipse integration One cannot directly checkout MultiJava or JML-specs to an eclipse

project, because compiling it is not possible without further complications. There are several steps to

build these projects, organized with a Makefile. This is why I checked out the project into another

directory, compiled there and then added the compiled project as an external library to the eclipse

project.

B.5.2 Howto

Description how to setup MultiJava and JML-specs as JUnit-Test in Eclipse.

• Checkout the projects multijava and jmlspecs from the CVS location

pserver:anonymous@cvs.sourceforge.net:/cvsroot/. . . to a separate cvs-location (i.e.

∼/cvs/. . .).

• Build multijava using make all. (You need to set a few environment variables)

• Build jmlspecs using make all. (Don’t forget to set MJ RELATIVE ROOT).

• Make a new project in eclipse (if you have not already done).

• Go to the Properties-Dialogue for the project (right-click on the project: properties). In the

submenu ‘Java Build Path / Libraries‘: You have to add two folders using ‘Add Class Folder’.

Here you have to create a new folder: give a name (i.e. 1. MJ / 2. JMLspecs) choose advanced

mode and link to the according folder in the file system (i.e. 1. ∼/cvs/MJ / 2. ∼/cvs/JML2)

• In the same Properties-Dialogue you have to add all used *.jar-Archives for MultiJava and JML-

specs. Add them as External JARs.

Now we are ready to write a JUnit-Test [Mas04]. In short, a JUnit-Test must have the following two

properties: It extends and therefore is subclass of junit.framework.TestCase and has at least one method

named test...() (i.e. void testCompile()).

As a possible implementation we can see in the method testCompile() in Listing B.1 that we have first

to compose the arguments string containing the commandline option -e and then all classes we want to

compile. At the end of the method we assert, the return value of the org.jmlspecs.checker.Main.compile(...)-

method is true.

In contrast, we want the compiler to fail in the test method testCompileWithoutSources() of List-

ing B.1. Because we assert the compilation to fail, the execution of the test makes the compilert to

print an error message(error: No input files given) while our test succeeds.

B.5. MultiJava, JML-specs and eclipse 77

1 /∗
2 ∗ MjcTest . j a v a
3 ∗ Created by Thomas Haech l e r on 18 . 1 0 . 2 004
4 ∗/
5

6 import j u n i t . f ramework . TestCase ;
7 import org . jm l s p e c s . che cke r . Main ;
8

9 /∗∗
10 ∗ This i s a JUn i t { @ l i n k j u n i t . f ramework . TestCase } t ha t w i th the method {

@ l i n k #te s tComp i l e () }
11 ∗ t r i e s to comp i l e the c l a s s e s { @ l i n k L i n k e d L i s t } and { @ l i n k Node } with the

Mu l t i Java comp i l e r
12 ∗ u s i n g d i r e c t l y { @ l i n k org . jm l s p e c s . che cke r . Main#comp i l e (j a v a . l ang . S t r i n g

[]) } .
13 ∗/
14 pub l i c c l a s s MjcTest extends TestCase {
15 pub l i c vo id t e s tComp i l e () {
16 S t r i n g [] a r g s = {”−e” , // enab l e Un i v e r s e s i n the c omp i l e r .
17 ” s r c /”+Node . c l a s s . getName ()+” . j a v a ” ,
18 ” s r c /”+L i n k e d L i s t . c l a s s . getName ()+” . j a v a ” } ;
19 System . out . p r i n t (”Arguments : ”) ;
20 f o r (i n t i =0; i<a r g s . l e n g t h ; i++) { System . out . p r i n t (a r g s [i] + ” ”)

; }
21 System . out . p r i n t l n () ;
22 /∗ c a l l the c omp i l e r ∗/
23 boolean s u c c e s s = Main . comp i l e (a r g s) ;
24 a s s e r tT r u e (s u c c e s s) ;
25 }
26 pub l i c vo id t e s tComp i l eWi thou tSou r c e s () {
27 S t r i n g [] a r g s = {”−e” } ; // enab l e Un i v e r s e s i n the c omp i l e r .
28 System . out . p r i n t (”Arguments : ”) ;
29 f o r (i n t i =0; i<a r g s . l e n g t h ; i++) { System . out . p r i n t (a r g s [i] + ” ”)

; }
30 System . out . p r i n t l n () ;
31 /∗ c a l l the c omp i l e r ∗/
32 boolean s u c c e s s = Main . comp i l e (a r g s) ;
33 a s s e r t F a l s e (s u c c e s s) ;
34 }
35 }

Listing B.1: MjcTest.java: A TestCase for the MJ compiler, using the JUnit Framework.

Appendix C

About this Masters Thesis

C.1 Mission Statement

The Software Component Technology Group has developed the Universe type system to control aliasing

in object-oriented programming languages.

While a compiler for Java with the Universe-Extensions and some test programs have been implemented,

only a few classes of standard Java API have been annotated with the extended type information and

experience with large programs is still missing.

The mission of this masters thesis is to get realistic experience in applying the Universe type

system to a real-world application.

Focussing on a delimited amount of classes (about 40 to 50) is preferred rather than typing the whole

application. Therefore some stubs of other application classes have to be implemented and used by the

observed component(s). Additionally, the used Java API classes will be identified and annotated with

the Universe Types.

Based on the experience made while applying the Universe type system to the application the following

topics are expected to be documented:

• Patterns that occured several times in the application.

• Problems occuring while applying the Universe type system to the application.

• If casts were necessary to be used, description of the situations and explanations why these casts

work at runtime were needed.

• Relationship of upcoming problems with the Universe type system to the ownership model.

• Applicability of other type systems.

C.1.1 Possible Extensions

Type System Modifications Proposals how to modify the Universe type system such that encoun-

tered problems can be solved.

Invariants How can ownership-based invariants be introduced?

More APIs or components To advance the usability of the Universe type system for software de-

velopers, more APIs are needed to be annotated with the Universe Types. Some of those may be

implemented and provided by library archives.

More components of the observed application may be annotated with Universe Types to get more

experience with it.

80 Chapter C. About this Masters Thesis

C.2 Schedule

Date Description Deliverables

30.9.4

1. Milestone Project plan Chart

One page description of the topic Mission

Identification of separate subcomponents

of the application

Picture about the architecture of the ap-

plication

Identification of the used Java API classes

5.11.4

2. Milestone Annotation of the used Java API classes tar-Archive of the used library classes

Define working set boundary Description of the working set boundary

incl. list of classes, where i have to pro-

vide a stub

30.11.4

3. Milestone Annotation of Subcomponents and con-

sequential Redesign

Status Report

Introduction to the architecture of the ap-

plication

Software Description

22.12.4

4. Milestone Annotation of Subcomponents and con-

sequential Redesign

Annotated Classes

Report of experience with programming

with the Universe type system

Collection of encountered problems

First Results like Annotation Guide, Pat-

terns or Problem Classifications

31.1.5

5. Milestone Analysis Documentation of the analysis (Redesign,

Patterns, Casts, Problems)

Consider other type systems Comparison

28.2.5

6. Milestone Extensions Report of Extensions

16.3.5 Last beautifications Final version

C.3. Slides of the presentation 81

C.3 Slides of the presentation

Welcome 0

Applying the Universe type system to an industrial application

Case Study

Thomas Hächler

Master Project

September 2004 - March 2005

Supervising Assistant: Dipl.-Ing. Werner M. Dietl

Supervising Professor: Prof. Dr. Peter Müller

http://sct.inf.ethz.ch

Software Component Technology Group

Figure C.1: Slide 0: Welcome

Yoshi 1

Barcode based ticketing system.

Runs on device called “Yoshi”.

Checks print at home R© tickets bought on www.starticket.ch.

Figure C.2: Slide 1: Yoshi

http://sct.inf.ethz.ch
www.starticket.ch

82 Chapter C. About this Masters Thesis

Outline 2

• Introduction to the Universe type system

• Introduction to the application

• Real-world experiences

• Applying the Universe type system to Java API

• Proposals to face encountered problems

• Conclusion

Figure C.3: Slide 2: Outline

Universe type system 3

The Universe type system structures the object store.

• Ownership relations that define the universes.

• rep, peer and readonly references

• A type system guarantees the defined properties at compile time.

• Extension needed: global universe

Figure C.4: Slide 3: Universe type system

Universe type system with global extension 4

global

readonly

universe A

globalObject

: MyObject

global

readonlyO

peer MyObject

: Singleton

globalObject

: MyObject

: Object
: Object

: LinkedList

: Node : Node: Node: Node

Figure C.5: Slide 4: Universe type system with global extension

C.3. Slides of the presentation 83

Components of the application 5

MainController

initialize

Yoshi Data Structure

XML Master
(download)

insert
JXTA

(communication)

synchronize with
other yoshisEvent

Show Show Show

TCode

TCode
TCode

TCode

Log
Log

User
Interaction /

Menu

configure /
manage

visualize

Checkpoint
insert Logs

read data

Autosaver

save / load
(serialize)

initialize

start

Figure C.6: Slide 5: Components of the application

Data Structure before Universe type system 6

allInstances : TreeMap

childs : TreeMap

childs : TreeMap

childs : TreeMap

: Log

: Barcode

: YoshiDataStructure

: MainController

: TicketingData

childs : TreeMap

: Event

childs : TreeMap

: Event

childs : TreeMap

: Show

: Show childs : TreeMap

: Ticket

: Ticket

childs : TreeMap

: Log

: Barcode: TCode

childs : TreeMap

: TCode

: Log

: Log

static

Figure C.7: Slide 6: Data Structure before Universe type system

84 Chapter C. About this Masters Thesis

Data Structure ownership diagram 7

childs : TreeMap

indexOfAllTCs

indexOfAllTCs
 : TreeMap

childs : TreeMap

childs : TreeMap

: Log

: Barcode

root
: TicketingData

childs : TreeMap

: Event

childs : TreeMap

: Event

childs : TreeMap

: Show

: Show childs : TreeMap

: Ticket

: Ticket

childs : TreeMap

: Log

: Barcode: TCode

childs : TreeMap

: TCode

: Log

: Log

rep

root

: YoshiDataStructure
yoshiDataStructure

: MainController

Figure C.8: Slide 7: Data Structure ownership diagram

Deeply nested Data Structure 8

indexOfAllTCs
: TreeMap

childs : TreeMap

: Show

yoshiDataStructure

: MainController

childs : TreeMap

indexOfAllTCs

: TicketingData

childs : TreeMap

: Ticket

: Log

: Barcode

childs : TreeMap

: TCode

: Log

: Barcode

: Log

: Log
childs : TreeMap

: TCode

childs : TreeMap

: Ticketchilds : TreeMap

: Show

childs : TreeMap

: Event

childs : TreeMap

: Event

root

: YoshiDataStructure

Figure C.9: Slide 8: Deeply nested Data Structure

C.3. Slides of the presentation 85

XML Download before this case study 9

: Show

: Ticket

openObjects :
Stack

: Event

: Show

: Ticket

: TicketingV2Parser

: InputStream

: File

: TicketingV2HandlerImpl

: DTDResolver

: XMLMaster : ShutdownableThread: UserTalkback

Initiator of the
XML download

: Log

: YoshiDataStructure

: TicketingData

: Event

: Event

: Show

: Show

: Ticket

: Ticket

: Log
: TCode

: TCode

: Log
: Log

Parsed by XML

Previous data structure

Caption:
: TCode: TCode

Figure C.10: Slide 9: XML Download before this case study

86 Chapter C. About this Masters Thesis

XML Download using the Universe type system 10

: Event

: Show

: Ticket

: TCode

parsedObjects :
List

openObjects :
Stack

: Event

: Show

: Ticket

: TCode

readonly

: TicketingV2Parser

: InputStream

: File

: TicketingV2HandlerImpl

: DTDResolver

: XMLMaster : ShutdownableThread

result to insert in
YoshiDataStructure

: YoshiDataStructure initiator of the
XML download

result to insert in
YoshiDataStructure

Figure C.11: Slide 10: XML Download using the Universe type system

Annotation of Java API 11

• In which universe should System.out be?

• Should it be possible to iterate over a readonly collection?

• How should the parameter b in InputStream.read(byte[] b) be annotated?

Figure C.12: Slide 11: Annotation of Java API

Annotation of Java API 12

• In which universe should System.out be?

pub l i c s t a t i c g l oba l Pr in tS t r eam out ;

Figure C.13: Slide 12: Annotation of Java API

C.3. Slides of the presentation 87

Problem with java.util.Iterator 13

readonly: Object: Object : Object

position

collection

: java.util.Iterator

: Node : Node: Node: Node

peer Iterator iterator()

: java.util.Collection

creates

universe A

client universe

ClientProgram

Figure C.14: Slide 13: Problem with java.util.Iterator

Iterator on read-only Collection 14

readonly: Object: Object : Object

int position

array
collection

: UTSIterator

: Node : Node: Node: Node

ro ro Object[] toArray()

: java.util.Collection
provides

universe A

client universe

ClientProgram

: Object[]

Figure C.15: Slide 14: Iterator on read-only Collection

88 Chapter C. About this Masters Thesis

Motivation of writable universe type 15

in InputStream (and other java.io.*):

I nputSt ream . read (peer byte [] b) ;

InputSt ream . read (rep byte [] b) ;

InputSt ream . read (g l oba l byte [] b) ;

in StringBuffer:

vo id ge tChar s (i n t s r cBeg in , i n t srcEnd , peer char [] dst , i n t ds tBeg in) ;

vo id ge tChar s (i n t s r cBeg in , i n t srcEnd , rep char [] dst , i n t ds tBeg in) ;

vo id ge tChar s (i n t s r cBeg in , i n t srcEnd , g l oba l char [] dst , i n t ds tBeg in) ;

in a composite pattern:

abs t rac t vo id c o l l e c t I n f o r m a t i o n (peer Map m) ;

abs t rac t vo id c o l l e c t I n f o r m a t i o n (rep Map m) ;

abs t rac t vo id c o l l e c t I n f o r m a t i o n (g l oba l Map m) ;

Figure C.16: Slide 15: Motivation of writable universe type

Example: method with a writable parameter 16

c l a s s C {
<wr i t ab l e U> vo id wr i teTo (U Pr in tS t r eam p) {

p . w r i t e l n (” h e l l o u n i v e r s e ! ”) ;

}
}

// c l i e n t w i th pee r r e f e r e n c e c to i n s t a n c e o f C :

peer C c = new peer C() ;

c . wr i teTo (System . out) ; // U i s r e s o l v e d to be g l o b a l .

c . wr i teTo (new peer Pr in tS t r eam (. .)) ; // U i s r e s o l v e d to be pee r .

c . wr i teTo (new rep Pr in tS t r eam (. .)) ; // U i s r e s o l v e d to be r e adon l y

// => i n c ompa t i b l e => comp i l e t ime

e r r o r .

Figure C.17: Slide 16: Example: method with a writable parameter

Idea of a writable universe type 17

• writable stands for
{
peer, rep, global

}
• writable allowed for formal parameters, local variables and return values only

• Not allowed for fields – Restrictions for actual parameters

• Compiler checks whether the actual parameter is read-write for the callee

Figure C.18: Slide 17: Idea of a writable universe type

C.3. Slides of the presentation 89

Other work 18

• Lot of work until application compiled with MJ/JML

• Bug reports for MJ/JML compiler

• Copyable – an interface to copy objects crossing universe boundaries

• Proposal for implicit readonly annotation

• Proposal for method-local universes

• Workarounds for programming patterns

Figure C.19: Slide 18: Other work

Conclusion 19

• Universe type system works

• Universe type system implies better structures

• Restructuring required – runtime overhead possible

• global universe needed in real world (logging, properties, singletons)

• Restructuring of API needed

• Some ideas to make life easier

Figure C.20: Slide 19: Conclusion

	1 Application Overview
	1.1 Background
	1.2 Software Components
	1.2.1 Data Structure
	1.2.2 XML Download
	1.2.3 Checkpoint
	1.2.4 Communication
	1.2.5 Other components

	1.3 Selection of components

	2 The Universe type system
	2.1 Concepts of the Universe type system
	2.1.1 Encapsulation
	2.1.2 Read-write and read-only references
	2.1.3 Annotations
	2.1.4 Type System
	2.1.5 Downcasts
	2.1.6 Pure methods

	2.2 Notation and example
	2.2.1 Ownership diagram

	2.3 Introduction of a global universe
	2.4 Type combinator

	3 Annotation of Java API
	3.1 Some examples of the annotated API
	3.2 Encountered Problems
	3.2.1 Clone
	3.2.2 Iterators
	3.2.3 Need for a writable parameter type

	4 Annotation of an application
	4.1 Annotation Strategies
	4.1.1 One-step approach
	4.1.2 Incremental approach
	4.1.3 Combination of the two approaches

	4.2 Annotation of the Data Structure
	4.2.1 Definition of the data universe
	4.2.2 Index as instance field
	4.2.3 Root node as a rep field of YoshiDataStructure
	4.2.4 Data structure in field of the main controller
	4.2.5 Deeply nested Data Structure

	4.3 Annotation of the XML Download
	4.3.1 Communicator thread

	4.4 Annotation guide
	4.4.1 Annotation strategy
	4.4.2 Superfluous Java access modifiers
	4.4.3 Flat versus nested data structures
	4.4.4 Top level universes
	4.4.5 Singleton Pattern
	4.4.6 Global universe
	4.4.7 Library object structures
	4.4.8 Result handling
	4.4.9 Annotated API

	5 Problems, Patterns and Workarounds
	5.1 Additional methods to cross universe boundaries
	5.2 Singleton Pattern
	5.3 Method needed twice
	5.4 Iterators
	5.4.1 A generic iterator
	5.4.2 Iterators in pure context

	5.5 Copy as a workaround for the universe-transfer-problem
	5.6 ``ambiguous'' error message

	6 Ideas and Proposals
	6.1 Implizit readonly
	6.2 Local universes
	6.2.1 Problem
	6.2.2 Proposed solution
	6.2.3 Example
	6.2.4 Type combinator
	6.2.5 Runtime checks
	6.2.6 Future work

	6.3 A general read-write paramater type
	6.3.1 Motivation
	6.3.2 Approach with an abstract universe type
	6.3.3 Approach with a template mechanism

	7 Conclusion
	7.1 Annotation of an application
	7.2 Annotation of Java API
	7.3 Ideas and Proposals

	A Some Details
	A.1 Listing of the class GenericIterator

	B Interim Reports
	B.1 The selected subset of the application
	B.2 Summary of the subset of the application
	B.3 Necessary Stubs
	B.4 Java API to annotate
	B.5 MultiJava, JML-specs and eclipse
	B.5.1 Motivation
	B.5.2 Howto

	C About this Masters Thesis
	C.1 Mission Statement
	C.1.1 Possible Extensions

	C.2 Schedule
	C.3 Slides of the presentation

