
Software Testing, Quality Assurance,

and Maintenance (STQAM)
ECE 653

Lecture 1: Tuesday, 07.05.2019

Werner Dietl
https://ece.uwaterloo.ca/~wdietl/

2 2

Instructor and TA

Instructor

Prof. Werner Dietl wdietl@

Teaching Assistants

None so far

Course Web Page

LEARN: https://learn.uwaterloo.ca

3 3

Course Time and Location

Date: Tuesday Time: 11:30 – 14:20

Location: E7 5353

No tutorials

Office hours will be by appointment

Begin all email subjects with [ECE653]

Identify yourself

Originated from your uwaterloo email address, or

Signed with your full name and student ID

4 4

Grading

Assignments: 30%

Quizzes: 20%

Final Exam: 50%

Grades may be curved or adjusted at the Instructor’s
discretion

1 + 3 Assignments

• Pen and paper exercises, and

• Programming assignments

–mostly in Python

5 5

Textbook and Lecture Notes

No required text book. Lecture slides and notes will be provided.

• LEARN: https://learn.uwaterloo.ca

6 6

Course Website & LEARN

LEARN is the definitive source

•When in doubt, consult LEARN

• Check syllabus for final grade computation

YOUR responsibility to check for updates!

• LEARN (http://learn.uwaterloo.ca)

7 7

GitHub

We will use GitHub for managing and submitting
assignments

•This requires a free GitHub account

•Follow the link in Assignment 0 to get started

•Let me know if there are any problems!!!

•GitHub Tutorial: https://try.github.io

8 8

Independent Work

All work turned in must be of that individual
student unless stated otherwise.

Violations will result in zero credit to all
students concerned. University of Waterloo
Policy 71 will be followed for any discovered
cases of plagiarism.

9 9

Policy on Late Assignments

You have 2 days of lateness for assignments that you can
use throughout the term

• These are TWO days for the term. Not for each
assignment!

Each day the assignment is late consumes one day of
lateness

For example,

• You can be 2 days late on assignment A1, or

• One day late on A1, and one day late on A3, or

• You can hand all of the assignments on time 

10 10

Missed Quiz

If you miss a quiz, you will receive 0 for it. If you
have a legitimate reason (at the discretion of the
instructor) for not taking the quiz and obtain a
permission from the instructor a week in advance,
the percentage for the quiz will be shifted to the
final.

See syllabus for more details.

11 11

Is this course for me?

Not a TESTING course!

• Foundations of Testing / Coverage

• Foundations of Symbolic Execution and Symbolic Reasoning

• Foundations of Deductive Program Verification

• (Possibly) Foundations of Automated Verification

Enough background?

• Can you code? (Python?) https://docs.python.org/2.7/tutorial/

• Have you used a Unix/Linux machine before?

– command line, shell, editor…

• Do you know Logic / Automated Reasoning?

– Propositional logic: AND, OR, NOT, Boolean SATisfiability

• Do you have basic understanding of Compilers?

– Control Flow Graphs, Operational Semantics, Intermediate Representation

• Have you used a SAT / Theorem Prover / Constriant Solver / SMT ?

ECE 654 Spring 2019 - Werner Dietl

My Background

Since 10/2013:

Assistant Prof. at uWaterloo, Canada

Post-Doc at U of Washington in Seattle, USA

Dr. sc. at ETH Zurich, Switzerland

Dipl.-Ing. from Salzburg, Austria

Worked at a Startup in California, USA

MSc from somewhere in Ohio, USA

Born in Austria

Practicality

Guarantees

Code

Reviews
Formal

Verification

Testing

Type

Systems

Java's type system is too weak

Type checking prevents many errors

int i = “hello”; // error

Type checking doesn't prevent enough errors

System.console().readLine();
Collections.emptyList().add(“one”);
dbStatement.executeQuery(userData);

Static types: not expressive enough

Null pointer exceptions

String op(Data in) {

return “transform: ” + in.getF();

}

...

String s = op(null);

Many other properties can't be expressed

Prevent null pointer exceptions

Type system that statically guarantees that the

program only dereferences known

non-null references

Types of data

@NonNull reference is never null

@Nullable reference may be null

Practicality

Guarantees

Testing

Code

Reviews
Formal

Verification

Type

Systems

Type

Systems

Type

Systems

More

Expressive

More

Practical

Java 8 extends annotation syntax

Annotations on all occurrences of types:

@Untainted String query;
List<@NonNull String> strings;
myGraph = (@Immutable Graph) tmp;
class UnmodifiableList<T>
implements @Readonly List<T> {}

Stored in classfile

Handled by javac, javap, javadoc, …

The Checker Framework

A framework for pluggable type checkers

“Plugs” into the OpenJDK compiler

javac -processor MyChecker …

Eclipse plug-in, Ant and Maven integration

Practicality

Guarantees

Testing

Formal

Verification

Allow reliable and secure

programming in practice

Code

Reviews

Type

Systems

Type

Systems

ECE 654 Spring 2019 - Werner Dietl

ECE 654 Spring 2019 - Werner Dietl

SPARTA: Static Program Analysis

for Reliable Trusted Apps

Security type system for Android apps

Guarantees no leakage of private information

ECE 654 Spring 2019 - Werner Dietl

Crowd-sourced verification

Make software verification easy and fun

Make the game accessible to everyone

Harness the power of the crowd

Goal: Verify software while waiting

http://verigames.com/

ECE 654 Spring 2019 - Werner Dietl

MUSE: Mining and Understanding

Software Enclaves

Software Testing, Quality Assurance,

and Maintenance (STQAM)
ECE 653

Lecture 1: Tuesday, 07.05.2019

Werner Dietl
https://ece.uwaterloo.ca/~wdietl/

Introduction: Software Testing and

Quality Assurance
based on slides by Profs. Arie Gurfinkel and others

26 26

Software is Everywhere

27 27

Software is Everywhere

“Software easily rates as the most poorly

constructed, unreliable, and least maintainable

technological artifacts invented by man”

Paul Strassman, former CIO of Xerox

28 28

Infamous Software Disasters

Between 1985 and 1987, Therac-25 gave patients massive overdoses
of radiation, approximately 100 times the intended dose. Three patients
died as a direct consequence.

On February 25, 1991, during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabia, failed to track and intercept an
incoming Iraqi Scud missile. The Scud struck an American Army
barracks, killing 28 soldiers and injuring around 100 other people.

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency exploded forty seconds after lift-off. The rocket
was on its first voyage, after a decade of development costing $7 billion.
The destroyed rocket and its cargo were valued at $500 million.

http://www5.in.tum.de/~huckle/bugse.html

29 29

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

30 30

Software Engineering is very complex

• Complicated algorithms

• Many interconnected components

• Legacy systems

• Huge programming APIs

• …

Software Engineers need better tools to deal with this complexity!

Why so many bugs?

31 31

What Software Engineers Need Are …

Tools that give better confidence than ad-hoc testing while remaining
easy to use

And at the same time, are

• … fully automatic

• … (reasonably) easy to use

• … provide (measurable) guarantees

• … come with guidelines and methodologies to apply effectively

• … apply to real software systems

32 32

Testing

Software validation the “old-fashioned” way:

•Create a test suite (set of test cases)

•Run the test suite

•Fix the software if test suite fails

•Ship the software if test suite passes

33 33

“Program testing can be a very effective way to show the
presence of bugs, but is hopelessly inadequate for showing
their absence.”

Edsger W. Dijkstra

Very hard to test the portion inside the “if" statement!

x = read();
if (hash(x) == 10) {

...
}

Hypothetical program

34 34

“Beware of bugs in the above code; I have only proved it correct, not
tried it.”

Donald Knuth

You can only verify what you have specified.

Testing is still important, but can we make it less impromptu?

35 35

Verification / Quality Assurance

Verification: formally prove that a computing system
satisfies its specifications

• Rigor: well established mathematical foundations

• Exhaustiveness: considers all possible behaviors of the system, i.e.,
finds all errors

• Automation: uses computers to build reliable computers

Formal Methods: general area of research related to
program specification and verification

36 36

Ultimate Goal: Static Program Verification

Reasoning statically about behavior of a program without executing it

• compile-time analysis

• exhaustive, considers all possible executions under all possible environments
and inputs

The algorithmic discovery of properties of program by inspection of the
source text

Manna and Pnueli

Also known as static analysis, program verification, formal methods, etc.

Automated

Analysis

Correct

Incorrect

Program

Specification

37 37

Turing, 1936: “undecidable”

38 38

Undecidability

A problem is undecidable if there does not exist a Turing machine that
can solve it

• i.e., not solvable by a computer program

The halting problem

• does a program P terminate on input I

• proved undecidable by Alan Turing in 1936

• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem

• for any non-trivial property of partial functions, no general and effective
method can decide whether an algorithm computes a partial function with that
property

• in practice, this means that there is no machine that can always decide
whether the language of a given Turing machine has a particular nontrivial
property

• https://en.wikipedia.org/wiki/Rice%27s_theorem

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Rice%27s_theorem

39 39

LEGO Turing Machine

by Soonho Kong. See http://www.cs.cmu.edu/~soonhok for building instructions.

BEGIN:
READ
CJUMP0 CASE_0

CASE_1:
WRITE 0
MOVE R
JUMP BEGIN

CASE_0:
WRITE 1
MOVE R
JUMP BEGIN

http://www.cs.cmu.edu/~soonhok

40 40

Living with Undecidability

“Algorithms” that occasionally diverge

Limit programs that can be analyzed

• finite-state, loop-free

Partial (unsound) verification

• analyze only some executions up-to a fixed number of steps

Incomplete verification / Abstraction

• analyze a superset of program executions

Programmer Assistance

• annotations, pre-, post-conditions, inductive invariants

Testing

Automated

Verification

Sym Exec

Deductive Verification

41 41

J. McCarthy, “A basis for mathematical theory of computation”,

1963.

C.A.R Hoare, “An axiomatic basis for computer programming”,

1969.

R. W. Floyd, “Assigning meaning to programs”, 1967.

P. Naur, “Proof of algorithms by general snapshots”, 1966.

E. W. Dijkstra: “Guarded Commands, Nondeterminacy and Formal

derivation ”, 1975.

Formal Software Analysis

42 42

(User) Effort vs (Verification) Assurance
A

s
s
u

ra
n
c
e
/C

o
v
e

ra
g
e

Effort

Testing

Automated

Verification

Symbolic

Execution

Deductive

Verification

Automated Test-

Case Generation

43 43

Why are Testing and Verification Necessary

Why Test?

Why Verify?

What is Verification? How is it different from Testing?

44 44
44

Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949

45 45

46 46

method factorial (n: int) returns (v:int)

{
v := 1;
if (n == 1) { return v; }
var i := 2;
while (i <= n)

{
v := i * v;
i := i + 1;

}
return v;

}

47 47

method factorial (n: int) returns (v:int)
requires n >= 0;
ensures v = fact(n);

{
v := 1;
if (n <= 1) { return v; }
var i := 2;
while (i <= n)

invariant i <= n + 1
invariant v = fact(i - 1)

{
v := i * v;
i := i + 1;

}
return v;

}

Specification

Inductive

Invariant

48 48

Proving inductive invariants

The main step is to show that the invariant is preserved by one
execution of the loop

assume(i <= n + 1);

assume(v == fact(i - 1));

assume(i <= n);

v := i * v;

i := i + 1;

assert(i <= n + 1);

assert(v == fact(i - 1));

Correctness of a loop-free program can (often) be decided by a
Theorem Prover or a Satisfiability Modulo Theory (SMT) solver.

49 49

Proving inductive invariants

The main step is to show that the invariant is preserved by one
execution of the loop

(i0 <= n0+1) &&

(v0 == (i0-1)!) &&

(i0 <= n0) &&

(v1 = i0 * v0) &&

(i1 = i0 + 1)



((i1 <= n0+1) &&

(v1 == (i1-1)!))

Correctness of a loop-free program can (often) be decided by a
Theorem Prover or a Satisfiability Modulo Theory (SMT) solver.

assume(i <= n+1);

assume(v == fact(i-1));

assume(i <= n);

v := i*v;

i := i+1;

assert(i<=n+1);

assert(v == fact(i-1));

50 50

Automated Verification

Deductive Verification

• A user provides a program and a verification certificate

– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate

– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification

• A user provides a program and a desired specification

– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification

– and generates a verification certificate if the program is correct

– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”

51 51

Available Tools

Testing

• many tools actively used in industry. We will use Python unittest

Symbolic Execution / Automated Test-Case Generation

• mostly academic tools with emerging industrial applications

• KLEE, S2E, jDART, Pex (now Microsoft IntelliTest)

Automated Verification

• built into compilers, many lightweight static analyzers

– clang analyzer, Facebook Infer, Coverity, …

• academic pushing the coverage/automation boundary

– SeaHorn (my tool), JayHorn, CPAChecker, SMACK, T2, …

(Automated) Deductive Verification

• academic, still rather hard to use, we’ll experience in class 

• Dafny/Boogie (Microsoft), Viper, Why3, KeY, ...

52 52

Key Challenges

Testing

• Coverage

Symbolic Execution and Automated Verification

• Scalability

Deductive Verification

• Usability

Common Challenge

• Specification / Oracle

53 53

Calendar Description

Software Testing, Quality Assurance

and Maintenance

Introduces students to systematic

testing of software systems. Software

verification, reviews, metrics, quality

assurance, and prediction of software

reliability and availability. Related

management issues.

54 54

Topics Covered in the Course

Foundations

• syntax, semantics, abstract syntax trees, visitors, control flow graphs

Testing

• coverage: structural, dataflow, and logic

Symbolic Execution / Automated Test-Case Generation

• using SMT solvers, constraints, path conditions, exploration strategies

• building a (toy) symbolic execution engine

Deductive Verification

• Hoare Logic, weakest pre-condition calculus, verification condition generation

• verifying algorithm using Dafny, building a small verification engine

Automated Verification

• (basics of) software model checking

55 55

Frequently Asked Questions

Is this course practical?

Is this course easy / hard?

What knowledge from the course is applicable to a developer?

Is it a compilers course?

Is it a logic course?

Do I have to attend the lectures?

What are most useful skills learned in the course?
• Foundations of testing and verification

• State-of-the-art tools and technique to automate testing and reasoning

• Understanding the difference between wishful thinking (I hope it works) and a
strong argument (I know it works, here is why…)

Software Testing, Quality Assurance,

and Maintenance (STQAM)
ECE 653

Lecture 1: Tuesday, 07.05.2019

Werner Dietl
https://ece.uwaterloo.ca/~wdietl/

Fault, Error, and Failure
based on slides by Profs. Arie Gurfinkel, Lin Tan, and others

57 57

Terminology, IEEE 610.12-1990

Fault -- often referred to as Bug [Avizienis’00]

–A static defect in software (incorrect lines of code)

Error

–An incorrect internal state (unobserved)

Failure

–External, incorrect behaviour with respect to the
expected behaviour (observed)

Not used consistently in literature!

58 58

What is this?

A failure?

An error?

A fault?

We need to describe specified

and desired behaviour first!

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

59 59

Erroneous State (“Error”)

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

60 60

Design Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

61 61

Mechanical Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

62 62

Example: Fault, Error, Failure
public static int numZero (int[] x) {

//Effects: if x==null throw NullPointerException

// else return the number of occurrences of 0 in x

int count = 0;

for (int i = 1; i <x.length; i++) {

if (x[i]==0) {

count++;

}

}

return count;

x = [2,7,0], fault executed, error, no failure

x = [0,7,2], fault executed, error, failure

State of the program: x, i, count, PC

Error State:
x = [2,7,0]
i =1
count =0
PC=first iteration for

Expected State:
x = [2,7,0]
i =0
count =0
PC=first iteration for

Fix: for(int i=0; i<x.length; i++)

63 63

Exercise: The Program

/* Effect: if x==null throw NullPointerException.
Otherwise, return the index of the last element
in the array ‘x’ that equals integer ’y’.
Return -1 if no such element exists. */

public int findLast (int[] x, int y) {
for (int i=x.length-1; i>0; i--) {

if (x[i] == y) { return i; }
}
return -1;

}

/* test 1: x=[2,3,5], y=2;
expect: findLast(x,y) == 0
test 2: x=[2,3,5,2], y=2;
expect: findLast(x,y) == 3 */

64 64

Exercise: The Problem

Read this faulty program, which includes a test case that
results in failure. Answer the following questions.

• (a) Identify the fault, and fix the fault.

• (b) If possible, identify a test case that does not execute the fault.

• (c) If possible, identify a test case that executes the fault, but does not
result in an error state.

• (d) If possible identify a test case that results in an error, but not a
failure. Hint: Don't forget about the program counter.

• (e) For the given test case ‘test1’, identify the first error state. Be sure
to describe the complete state.

65 65

States

State 0:

• x = [2,3,5]

• y = 2

• i = undefined

• PC = findLast(...)

66 66

States

67 67

States

Incorrect Program

Correct Program

68 68

Exercise: Solutions (1/2)

(a) The for-loop should include the 0 index:

• for (int i=x.length-1; i >= 0; i--)

(b) The null value for x will result in a NullPointerException before the loop test is
evaluated, hence no execution of the fault.

• Input: x = null; y = 3

• Expected Output: NullPointerException

• Actual Output: NullPointerException

(c) For any input where y appears in a position that is not position 0, there is no
error. Also, if x is empty, there is no error.

• Input: x = [2, 3, 5]; y = 3;

• Expected Output: 1

• Actual Output: 1

69 69

Exercise: Solutions (2/2)

(d) For an input where y is not in x, the missing path (i.e. an incorrect PC on the final
loop that is not taken, normally i = 2, 1, 0, but this one has only i = 2, 1,) is an error,
but there is no failure.

• Input: x = [2, 3, 5]; y = 7;

• Expected Output: -1

• Actual Output: -1

(e) Note that the key aspect of the error state is that the PC is outside the loop
(following the false evaluation of the 0>0 test. In a correct program, the PC should
be at the if-test, with index i==0.

• Input: x = [2, 3, 5]; y = 2;

• Expected Output: 0

• Actual Output: -1

• First Error State:

– x = [2, 3, 5]

– y = 2;

– i = 0 (or undefined);

– PC = return -1;

70 70

RIP Model

Three conditions must be present for an error to
be observed (i.e., failure to happen):

•Reachability: the location or locations in the program
that contain the fault must be reached.

• Infection: After executing the location, the state of the
program must be incorrect.

•Propagation: The infected state must propagate to
cause some output of the program to be incorrect.

71 71

HOW DO WE DEAL WITH
FAULTS, ERRORS, AND
FAILURES?

72 72

Addressing Faults at Different Stages

Fault

Avoidance

Fault

Tolerance

Fault

Detection

Better Design,

Better PL, ...

Testing,

Debugging, ...

Redundancy,

Isolation, ...

73 73

Declaring the Bug
as a Feature

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

74 74

Modular Redundancy: Fault Tolerance

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

75 75

Patching: Fixing the Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

76 76

Testing: Fault Detection

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

77 77

Testing vs. Debugging

Testing: Evaluating software by observing its
execution

Debugging: The process of finding a fault given a
failure

Testing is hard:

• Often, only specific inputs will trigger the fault into creating a
failure.

Debugging is hard:

• Given a failure, it is often difficult to know the fault.

78 78

Testing is hard

Only input x=100 & y=100 triggers the crash

If x and y are 32-bit integers, what is the
probability of a crash?

•1 / 264

if (x - 100 <= 0)
if (y - 100 <= 0)

if (x + y - 200 == 0)
crash();

79 79

Exercise: The Problem

a) What is the fault in this program

b) Identify a test case that does not execute the fault

c) Identify a test case that results in an error but does not cause failure

d) Identify a test case that causes a failure but no error

e) For the test case x = [-10, -9, 0, 99, 100] the expected
output is 1. Identify the first error state

