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Abstract—Modern Internet-scale storage systems often
provide weak consistency in exchange for better perfor-
mance and resilience. An important weak consistency prop-
erty is k-atomicity, which bounds the staleness of values
returned by read operations. The k-atomicity-verification
problem (or k-AV for short) is the problem of deciding
whether a given history of operations is k-atomic. The 1-AV
problem is equivalent to verifying atomicity/linearizability,
a well-known and solved problem. However, for k ≥ 2, no
polynomial-time k-AV algorithm is known.

This paper makes the following contributions towards
solving the k-AV problem. First, we present a simple 2-
AV algorithm called LBT, which is likely to be efficient
(quasilinear) for histories that arise in practice, although
it is less efficient (quadratic) in the worst case. Second,
we present a more involved 2-AV algorithm called FZF,
which runs efficiently (quasilinear) even in the worst case.
To our knowledge, these are the first algorithms that solve
the 2-AV problem fully. Third, we show that the weighted
k-AV problem, a natural extension of the k-AV problem,
is NP-complete.

I. INTRODUCTION

Data consistency is an important consideration in
storage systems. Modern Internet-scale storage systems
often provide weak (rather than strong) consistency
in exchange for better performance and resilience. An
important weak consistency property is k-atomicity [1].
A history of operations is called k-atomic iff there
exists a valid total order on the operations (i.e., one that
conforms to the partial order imposed by the operation
time intervals) such that every read obtains one of the k
freshest values with respect to that total order. By this
definition, the well-known atomicity/linearizability [11],
[14], [15] is equivalent to 1-atomicity.

The k-atomicity property is well-suited to describing
the behavior of replicated storage systems that employ
non-strict (i.e., “sloppy”) quorums [1], such as Amazon’s
Dynamo. In such systems, reads may return stale values
because read and write quorums are not guaranteed to
overlap. Classic consistency properties such as safety
and regularity [14] fail to capture this behavior, and
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instead require that reads return the freshest value, except
in the special case when they overlap with a write.
Furthermore, many modern applications can tolerate k-
atomicity very well. For example, in a social network, a
user may still be satisfied that, although the data retrieved
is not the latest, it is at most a few updates behind.

Verifying that a storage system satisfies a certain con-
sistency property serves two purposes. First, we would
like to know whether a system delivers what it promises
in terms of consistency, as theoretically correct storage
protocols can have buggy implementations. Second, we
would like to know whether a system provides more
consistency than is needed for a particular application,
making it possible to turn back certain “tuning knobs”
(e.g., quorum size) and reduce operational costs.

The k-atomicity-verification problem (or k-AV for
short) is to decide whether a given history is k-atomic.
The 1-AV problem (also called verifying linearizability)
is well-known and solved [2], [9], [15]. However, for
k > 1, no polynomial-time k-AV algorithm is known,
except that Golab, Li, and Shah [10] solved the case
k = 2 for a restricted class of histories.

This paper makes the following contributions towards
solving the k-AV problem. First, we present a sim-
ple 2-AV algorithm called LBT for arbitrary histories
(Section III). LBT’s simplicity makes it attractive for
implementation. Although it is quadratic in the worst
case, it is likely to be quasilinear for the common cases
that arise in practice. Second, we present a more involved
2-AV algorithm called FZF for arbitrary histories (Sec-
tion IV). FZF is more efficient in the worst case as it
always runs in quasilinear time. To our knowledge, LBT
and FZF are the first algorithms that fully solve the 2-
AV problem. Third, we prove that the weighted k-AV
problem, a natural generalization of the k-AV problem,
is NP-complete (Section V).

II. MODEL

A. Terminology and notations

We consider a storage system that supports read and
write operations, where each operation runs for some
finite amount of time. Operations on different storage



locations are independent of each other, and so we can
model the storage system as a collection of read/write
registers [14], [15]. A history is a collection of oper-
ations on the same register, where each operation has
a start time, finish time, type (read or write), and value
(retrieved or stored). Let the start time and finish time of
an operation op be op.s and op.f respectively. We say
that op1 precedes op2 (and op2 succeeds op1), denoted
op1 < op2, iff op1.f < op2.s. If neither op1 < op2 nor
op2 < op1, then op1 and op2 are concurrent with each
other. For a read, its dictating write is the unique write
whose value the read obtains. For a write, the reads that
obtain its value are called the dictated reads of the write.
A write can have zero or more dictated reads.

The “precedes” relation defines a partial order. A total
order of the operations is called valid if it conforms
to this partial order. Equivalently, a total order is valid
iff there exists a distinct point within the time interval
of each operation, called the commit point (where the
operation appears to take effect), such that the order
of the commit points determines the total order [11]. A
valid total order is called k-atomic iff, in this total order,
every read follows its dictating write and is separated
from this write by at most k− 1 other writes. A history
is called k-atomic iff it has a valid k-atomic total order.

B. Problem statement

Given a history, we would like to decide whether the
history is k-atomic, where k is a given value of interest
(typically a small constant). We call this problem the k-
atomicity-verification problem (or k-AV for short). Given
a solution to k-AV for arbitrary k, we can use binary
search to compute the smallest k for which a history is
k-atomic. Note that like atomicity, k-atomicity is a local
property [11], and so we can solve k-AV by reasoning
independently about each register accessed in a history.

C. Assumptions

We assume that each write assigns a distinct value,
for two reasons. First, in our particular practical appli-
cation (storage systems), all writes can be tagged with
a globally unique identifier, for example consisting of
the local time of a machine issuing the write followed
by the machine’s identifier. Therefore, this assumption
does not incur any loss of generality. Second, if the
values written are not unique, then the decision problem
of verifying consistency properties is NP-complete for
several well-known properties, in particular 1-atomicity
and sequential consistency [3], [9], [18]. We further
assume that all start times and finish times are unique.

We assume also that the values written/retrieved are
integers and that the start and finish of each operation

can be timestamped accurately. Recent work in systems
has made it feasible for timestamps to closely reflect
real time, even in a highly distributed environment. For
example, the TrueTime API in Spanner provides highly
accurate estimates of real time [5]. The operations under
consideration in this paper typically last for tens or
hundreds of milliseconds, whereas a clock can be read in
approximately 100 microseconds. Therefore, we ignore
the potential overhead of reading clock values.

By the definition of k-atomicity, a history may contain
anomalies that immediately prevent it from being k-
atomic. These anomalies are: a read without a dictating
write, or a read that precedes its dictating write. Detec-
tion of such anomalies is straightforward and we assume
that the given history does not contain them.

Lastly, we assume that a write ends before any of its
dictated reads. If a given history does not satisfy this
assumption, we can enforce it by shortening writes so
that their finish time is slightly smaller than the minimum
finish time of their dictated reads. We do so without
loss of generality because a write’s commit point cannot
occur after one of its dictated reads has finished.

III. THE LBT ALGORITHM

In this section, we present the first 2-AV algorithm
LBT, which uses a technique called limited backtrack-
ing [6]; hence the name. It is exceedingly simple and is
likely to run in nearly linear time in practice.

A. The algorithm

Conceptually, LBT attempts to construct a 2-atomic
total order. It examines operations in the given history
from back to front and places them into a sequence of
write slots and read containers, where each write slot
holds exactly one write and each read container holds
zero or more reads. The resulting total order is defined by
the order of the write slots and read containers. The order
of the reads in the same read container is unimportant
(and as such, left unspecified) as long as they conform
to the “precedes” partial order. See Figure 1 for an
illustration of write slots and read containers.

LBT runs in epochs. At the beginning of each epoch,
it tentatively puts a candidate in the latest unfilled write
slot, say ws[i]. This first placement determines the reads
to be placed into the adjacent read container RC [i], and
what goes into RC [i] then determines what goes into
ws[i − 1]. This then determines RC [i − 1], and so on.
An epoch ends when a read container placement does not
constrain the subsequent write slot placement. If during
the run of an epoch, some placement cannot be satisfied,
LBT aborts the current epoch and considers a different
candidate as the first write in this epoch. LBT outputs
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Fig. 1. Placing operations into write slots and read containers.

1 H := original history; W := all the writes in H;
2 while (H 6= ∅) {
3 C := all the writes in W that do not

precede any other writes in W ;
4 foreach (w ∈ C) {
5 success := RunEpoch(w, H , W );
6 if (success) break;
7 revert H and W to before RunEpoch; }
8 if (not success) output NO; }
9 output YES;

// all parameters are in/out parameters
10 bool RunEpoch(w, H , W ) {
11 while (true) {
12 w′ := ⊥;
13 foreach (op ∈ H where w.f < op.s) {
14 if (op is write) return false;
15 if (op’s dictating write 6= w and 6= w′) {
16 if (w′ 6= ⊥) return false;
17 w′ := op’s dictating write; }
18 H := H \ {op}; }
19 R := remaining dictated reads of w in H;
20 H := H \R \ {w}; W := W \ {w};
21 if (w′ is ⊥) return true;
22 w := w′; } }

Fig. 2. The LBT algorithm.

NO if all candidates are exhausted. Figure 2 presents the
LBT algorithm. Although the code in Figure 2 does not
explicitly maintain the write slots and read containers,
it is not hard to see that lines 18 and 20 correspond to
placing the operations into them.

It is important to note that, once the first write of an
epoch is placed, the rest of the writes in the epoch as well
as their order are uniquely determined: no further search
is necessary in this epoch. Furthermore, backtracking is
limited to the start of an epoch. These two properties
ensure the efficiency of the algorithm.

B. Correctness

The main intuition behind the correctness of LBT is
that (1) LBT tries all possible candidates at each epoch,

and (2) once an epoch succeeds, the remaining history
is 2-atomic iff the original history is.

Theorem 3.1: LBT outputs YES iff H is 2-atomic.
Proof: We first show that if LBT outputs YES,

then the original history is 2-atomic. Given a YES
execution of LBT, consider the total order induced by
the operations placed into write slots (line 20) and read
containers (lines 18 and 20). To see that this total order
always conforms to the “precedes” partial order, consider
two operations op1 and op2 where op1 < op2. Suppose
op1 is a write. If op2 is a write, then op2 cannot be one
of the operations in line 13 when w = op1, otherwise
line 14 would have rejected the epoch. If op2 is a read,
then because op1 < op2, line 18 ensures that op2 is
placed before op1. Now suppose op1 is a read. One way
that op1 can be placed into a read container is on line
18, in which case op2 would have to be placed into the
same or earlier read container due to the condition on
line 13. Another way is on line 20. Since we assume
that w.f < op1.f (i.e., a write’s finish time is less than
any of its dictated read’s; see Section II-C), we have
w.f < op2.s because op1 < op2, implying that op2 is
placed no later than op1 due to the condition on line 13.

In the total order constructed, for each read, either w is
the dictating write, resulting in no intervening writes, or
w′ is set to the dictating write (line 17), resulting in one
intervening write. Therefore, the total order is 2-atomic,
and so is the original history.

It remains to show that if the original history is 2-
atomic, then LBT outputs YES. Note that, if the original
history is 2-atomic and if RunEpoch succeeds, then the
remaining history is 2-atomic. This is because adding
more operations to a non-2-atomic history only keeps it
so. Since LBT tries all possible candidates in each epoch,
it will find a proper candidate that makes RunEpoch
succeed, and we can repeat the above argument for the
remaining history, which is again 2-atomic.

C. Time complexity

Let n be the total number of operations in the original
history and let c be the maximum number of concurrent
writes at any time. We do not assume that the operations
in the original history are sorted.

Theorem 3.2: LBT can be implemented to run in
O(n log n + c · n) time.

Proof: We maintain H as a doubly linked list sorted
by start time, and W as a doubly linked list sorted by
finish time. For each write w, we maintain a doubly
linked list of all of w’s dictated reads; for each of these
reads, we add a pointer to point to its counterpart in H .
In H , we add two pointers from a read to its dictating
write in H and W . In W , we add a pointer from a write

3



to its list of dictated reads. Clearly, all the pre-processing
above takes O(n log n) time.

Since W is sorted by finish time, identifying the writes
in C on line 3 takes O(c) time as they form a suffix
of W . In the search for a successful candidate for an
epoch, we have to try O(c) candidates. If implemented
as described in Figure 2, we may run into the situation
where a successful candidate is examined late, while
early candidates take a long time to fail.

We can use the technique of iterative deepening [13]
with the search depth doubled in each iteration to make
the examination of candidates run faster. In each iteration
i, for all the candidates in C, we execute RunEpoch
to length 2i. As soon as one candidate returns true,
we declare this epoch successful and discard all other
candidates. Executed this way, the execution of lines 4–7
takes total running time O(c·t), where t is the time taken
to find the shortest successful candidate if there is one,
or t is the time needed for the last surviving candidate
to return false if there is no successful candidate.

Because of the data structures outlined at the begin-
ning of this proof, identifying all the operations on line
13 takes O(c) time, removing an op from H on line
18 takes constant time, identifying R on line 19 takes
constant time, removing R from H on line 20 takes
|R| time, and removing w from W takes constant time.
Therefore, t is proportional to the number of operations
removed from H . Since |H| = n, the running time of
LBT (after pre-processing) is O(c · n).

Theoretically, c can be as high as n, so LBT’s worst-
case running time is O(n2). However, in practice, most
applications only have a small number of concurrent
writes at any time. Therefore, we believe that, helped
by its simplicity, LBT will run very well in practice.

IV. THE FZF ALGORITHM

In this section we present another 2-AV algorithm
called Forward Zones First (FZF). Before we describe
the algorithm and explain its name, we first review some
terminology introduced by Gibbons and Korach [9].
A cluster is a subset of operations in a history that
comprises a write and its dictated reads. The zone Z
for a cluster is the time interval between the minimum
finish time of any operation in the cluster, denoted by
Z.f , and the maximum start time of any such operation
in the cluster, denoted by Z.s̄. A zone Z is called a
forward zone if Z.f < Z.s̄, otherwise it is called a
backward zone. The low endpoint of Z, denoted by Z.l,
is min(Z.f, Z.s̄). The high endpoint of Z, denoted by
Z.h, is max(Z.f, Z.s̄). Using these definitions, Gibbons
and Korach [9] show that a history is 1-atomic if and

only if: (1) no two forward zones overlap, and (2) no
backward zone is contained entirely in a forward zone.

As its name suggests, algorithm FZF processes the
input history by considering forward zones before back-
ward zones. Note that in describing FZF, we will discuss
clusters and zones interchangeably, for example by re-
ferring to forward and backward clusters.

A. The algorithm

It is natural to ask whether the 2-AV problem can
be solved using an approach that, like Gibbons and
Korach’s 1-AV algorithm, considers only the set of
forward and backward zones corresponding to a history.
The answer to this question is negative as it is possible
to construct two histories, one 2-atomic and the other
not, that have identical sets of zones [10]. Consequently,
a 2-AV algorithm must analyze the history at a deeper
level than by looking at zones alone.

FZF is a three-stage algorithm that breaks up an input
history into smaller chunks in Stage 1, and then analyzes
each chunk separately in Stage 2. In Stage 1, chunks are
chosen on the basis of zones only. Stage 2 then considers
additional details of the history while analyzing each
chunk. For each chunk, the algorithm attempts to con-
struct a 2-atomic total order over its operations by first
ordering the dictating writes corresponding to forward
zones, and then dealing with backward zones. Finally,
in Stage 3 the input history is deemed 2-atomic if and
only if each chunk considered in Stage 2 is 2-atomic.
As we explain later on in Section IV-B, FZF is correct
under the assumptions stated in Section II.

In this section we first describe the algorithm infor-
mally, and then present pseudo-code in Figure 4.

Stage 1
In order to define Stage 1 precisely, we first introduce
some additional terminology and notation. A chunk of
the input history H is a set of clusters in H such that:

1) the union of forward zones for these clusters is a
continuous and non-empty time interval, and

2) the union of backward zones corresponding to
these clusters is a subset of the former interval.

The projection of H onto a chunk K, denoted H|K, is
the subhistory H that contains all the operations for clus-
ters in K. A chunk is called maximal if adding another
cluster to it breaks one of the above two properties. Next,
we define the chunk set of H , denoted CS(H), as the set
of maximal chunks of H such that every forward cluster
in H belongs to some chunk in the set. Finally, we call
a cluster dangling if it does not belong to any chunk in
CS(H). It follows directly from the definition of CS(H)
that every dangling cluster is a backward cluster.
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Fig. 3. Example illustrating Stage 1 of FZF.
The algorithm identifies three maximal chunks:
{FZ 1,BZ 1}, {FZ 2,FZ 3,FZ 4,BZ 3,BZ 4}, and
{FZ 5,FZ 6,FZ 7,FZ 8,BZ 6}. There are also three dangling
clusters, corresponding to BZ 2, BZ 5 and BZ 7.

Stage 1 of FZF simply computes CS(H) from H ,
thus breaking the input into smaller pieces similarly to a
divide-and-conquer algorithm. (Note, however, that FZF
does not divide the pieces recursively.) For example,
given a history that yields the zone structure shown in
Figure 3, Stage 1 identifies three maximal chunks and
three dangling clusters, as explained in the caption.

Stage 2
The goal of Stage 2 is to decide for each maximal
chunk K ∈ CS(H) whether or not H|K is 2-atomic by
testing carefully chosen orderings over dictating writes
of K. Given a subset S of such dictating writes, and
a candidate total order TS over them, FZF uses a
subroutine to verify that TS is viable, meaning that there
exists a valid 2-atomic total order over the writes in S
and their dictated reads. If S contains all of the dictating
writes in K, then the existence of a viable total order TS

over S implies that H|K is 2-atomic. As we explain later
on in Section IV-C, a subroutine that checks whether TS

is viable can be implemented using a simplified version
of the LBT algorithm from Section III.

To find a viable total order on all the dictating writes
of K, FZF first considers the subset of writes in forward
clusters (hence the algorithm’s name). Two such total or-
ders are considered: TF , which orders writes in increas-
ing order of the low endpoints of their forward zones;
and T ′

F , which is constructed from TF by swapping
the first two writes. (If TF has only one element then
TF = T ′

F .) We prove in Section IV-B (see Lemma 4.2)
that it suffices to consider only these two orders.

Next, the algorithm incorporates the dictating writes
of backward clusters. As we show in Section IV-B (see
proof of Lemma 4.3), if K contains three or more
backward clusters then H|K is not 2-atomic, hence FZF
outputs NO and terminates. Otherwise, FZF considers
extensions of TF and T ′

F where the dictating writes of
backward clusters are either appended or pre-pended, at
most one write at either end. For example, if the dictating
writes of backward zones are w1 and w2, then the
algorithm considers w1TFw2, w2TFw1, w1T

′
Fw2, and

w2T
′
Fw1. As we show in Section IV-B (see Lemma 4.3),

// input: history H
// output: YES if H is 2-atomic, NO otherwise
// Stage 1
compute chunk set CS(H);
// Stage 2
foreach (chunk K ∈ CS(H)) {
TF := sequence of writes in K, in increasing order

of the low endpoints of their forward zones;
T ′
F := TF with first two elements interchanged

(T ′
F := TF if TF only has one element);

B := number of backward clusters in K;
if (B = 0) {
S := {TF , T

′
F };

} else if (B = 1) {
w := dictating write of the backward cluster;
S := {wTF , TFw,wT

′
F , T

′
Fw};

} else if (B = 2) {
w1, w2 = dictating writes of the backward clusters;
S := {w1TFw2, w2TFw1, w1T

′
Fw2, w2T

′
Fw1};

} else if (B ≥ 3) {
S := ∅; // H is definitely not 2-atomic
}
foreach (total order T ∈ S) {

use subroutine to check if T is viable; }
if (S = ∅ or none of the total orders in S is viable) {

output NO and terminate; } }
// Stage 3
output YES; // H is 2-atomic

Fig. 4. The FZF algorithm.

it suffices to consider only these four orders to decide
whether H|K is 2-atomic. Similarly, up to four total
orders are considered if K contains only one backward
cluster, and up to two (i.e., TF and T ′

F themselves) if K
has no backward clusters. For each total order chosen,
FZF invokes the subroutine described earlier to decide
if the total order is viable. If none of the total orders is
viable, FZF outputs NO and terminates.

Stage 3
If the algorithm reaches Stage 3, then each chunk con-
sidered in Stage 2 was deemed 2-atomic. As we show in
Section IV-B (see Lemma 4.1), this implies that H is 2-
atomic, hence the algorithm outputs YES and terminates.

B. Correctness

It follows easily that FZF terminates, and so it suffices
to show that the algorithm outputs YES if and only if the
given history H is 2-atomic. We reach this goal through a
sequence of technical lemmas. The first lemma captures
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the rationale behind dividing the input into maximal
chunks in Stage 1:

Lemma 4.1: For every history H , H is 2-atomic if
and only if for every chunk K ∈ CS(H), H|K is 2-
atomic.

Proof: Suppose that H is 2-atomic, and let T be a
valid 2-atomic total order on the operations in H . For any
K ∈ CS(H), let T |K be the total order over operations
in H|K such that T extends T |K. Then T |K is a valid
2-atomic total order on the operations in H|K.

Conversely, suppose that for every chunk K ∈
CS(H), H|K is 2-atomic. We will show how to con-
struct a valid 2-atomic total order on the operations in
H . For each K ∈ CS(H), let K.l denote the minimum
Z.l for any zone Z corresponding to a cluster in K, and
let K.h denote the maximum Z.h for any such Z. Next,
for each K ∈ CS(H), let TK denote a valid 2-atomic
total order on the operations in H|K. Similarly, for each
dangling cluster Dj in H , define a valid 2-atomic total
order TDj over operations in Dj . (The existence of TDj

follows from assumptions stated in Section II.) Also let
D.l and D.h denote Z.l and Z.h, respectively, where Z
is the zone corresponding to cluster D.

Now define the relation ≤H over chunks and dangling
clusters as follows: given elements X,Y , each either a
chunk in CS(H) or a dangling cluster of H , X ≤H Y
denotes that X.h < Y.l. It follows easily that ≤H is a
partial order. Furthermore, since all chunks in CS(H)
are maximal, it follows that all such chunks are totally
ordered by ≤H . Finally, choose any total order that
extends ≤H , and let T denote the concatenation in that
order of all TKi

and TDj
for each chunk Ki ∈ CS(H)

and each dangling cluster Dj of H .
It follows easily that T is a 2-atomic total order on all

the operations in H . It remains to show that T is valid
(i.e., extends the “precedes” relation over operations
in H). Suppose for contradiction that T is not valid.
Then there exist distinct operations Op,Op′ as well as
two elements X,Y , each either a chunk in CS(H) or
a dangling cluster of H , such that Op belongs in X ,
Op′ belongs in Y , TX precedes TY in T , and yet Op′

precedes Op in H . (In this context, “belongs” means that
an operation is either part of a cluster in some maximal
chunk, or is part of some dangling cluster.)
Case 1: X and Y are both chunks. Since TX precedes
TY in T and since T totally orders all chunks in CS(H),
it follows that X ≤H Y holds, and hence X.h < Y.l.
Next, note that Op starts no later than X.h, otherwise the
zone for some cluster in X would extend to after X.h,
and similarly Op′ finishes no earlier than Y.l, otherwise
the zone for some cluster in Y would extend to before

Y.l. Since X.h < Y.l, this implies that Op starts before
Op′ finishes. But that contradicts Op′ preceding Op.
Case 2: X and Y are both dangling clusters. Since TX

precedes TY in T , Y ≤H X is false, and so Y.h ≥ X.l.
Next, note that since X and Y are both backward
clusters, X.l is a point inside Op and Y.h is a point inside
Op′. Since Y.h ≥ X.l, this implies that Op′ finishes no
earlier than Op starts. But that contradicts Op′ preceding
Op in H .
Case 3: X is a chunk and Y is a dangling cluster, and
TX precedes TY in T . Since TX precedes TY in T ,
Y ≤H X is false, and so Y.h ≥ X.l. Furthermore, since
Y is a dangling cluster, Y is not part of chunk X , and
so Y.h > X.h. Next, note that Op starts no later than
X.h, otherwise the zone for some cluster in X would
extend to after X.h. Also, since Y is a backward cluster,
Y.h is a point inside Op′. Since Y.h > X.h, this implies
that Op′ finishes after Op starts. But that contradicts Op′

preceding Op in H .
Case 4: X is a dangling cluster and Y is a chunk, and
TX precedes TY in T . The proof is analogous to Case 3.
We show that Y.l > X.l, hence Op′ finishes after Op
starts, which contradicts Op′ preceding Op in H .

Next, we show the correctness of Stage 2 of FZF. To
simplify presentation, we introduce a definition: letting
T denote a valid total order on a subset S of the writes
in H , we say that the separation of a write w ∈ S in T
is the minimum number of writes that separate w from
any of its dictated reads (not including w itself) in any
valid total order T ′ that extends T to both the writes in
S and their dictated reads. It follows that if T is viable,
then the separation of every w ∈ S in T is less than two.

Lemma 4.2: For any chunk K ∈ CS(H), if an iter-
ation of the outer for loop occurs in Stage 2 for K,
then any viable total order T over the writes of forward
clusters in K is an element of {TF , T

′
F }, where TF and

T ′
F are computed at the beginning of the iteration.

Proof: Suppose that T does exist, and note that the
pattern of forward zones in K cannot have the following
property, denoted P in the remainder of the proof: three
zones overlap at one point, or one zone overlaps more
than two others. (If K has property P then one can
show that in any valid total order T ′ over the writes in
K, the dictating write for one of the forward zones has
separation at least two in T ′, and hence T ′ is not viable.)
As a result, each forward zone overlaps at most two
others, forming a “chain” of forward zones resembling
one of the three shown in Figure 3. Note that since K is
a maximal chunk, this chain has no “breaks” in it, and so
all but two of the zones overlap exactly two others. We
proceed by induction on the number of forward clusters
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in K, denoted f in this proof. If f ≤ 2 then the set
{TF , T

′
F } contains all the possible total orders under

consideration, and so the lemma holds. Now suppose
that the lemma holds for some f ≥ 2, and consider a
chunk with f + 1 forward clusters. Label the forward
zones of these clusters as A,B,C, . . . in increasing
order of their low endpoints, and let wA, wB , wC , . . .
denote the corresponding dictating writes. Note that
TF = wA, wB , wC , . . . and T ′

F = wB , wA, wC , . . ..

Case 1: A ends before B ends. Since K does not have
property P , the chain of zones in this case initially
resembles the middle chunk in Figure 3, with A = FZ 2,
B = FZ 3, and C = FZ 4. Next, note that if cluster
A were removed from chunk K, then by the induction
hypothesis any viable total order on wB , wC , . . . would
be either T ′′

F = wB , wC , . . . or T ′′′
F = wC , wB , . . .. For

chunk K, this implies that T must order the writes for
B,C, . . . in the same manner as either T ′′

F or T ′′′
F . Now

consider the possible positions of wA in T . For each
case, we must either show that T is identical to TF or
T ′
F , or else derive a contradiction by showing that T is

not viable.
Subcase 1a: wA is the second or later element in T .
Then T = wB , . . . , wA, . . . (if T extends T ′′

F ) or T =
wC , . . . , wA, . . . (if T extends T ′′′

F ). In the first case,
since wA and wC both precede some dictated read of
wB in H , wB has separation at least two in T , and so
T is not viable. In the second case, since wA and wB

both precede some dictated read of wC in H , wC has
separation at least two in T , and so T is not viable.
Subcase 1b: wA is the first element in T . Then
T = wA, wB , wC , . . . (if T extends T ′′

F ) or T =
wA, wC , wB , . . . (if T extends T ′′′

F ). In the first case, T
is identical to TF . In the second case, since wB precedes
some dictated read of wA in H , wA has separation at
least two in T , and so T is not viable.

Case 2: A ends after B ends. Since K does not have
property P , the chain of zones in this case initially re-
sembles the rightmost chunk in Figure 3, with A = FZ 5,
B = FZ 6, and C = FZ 7. We proceed as in Case 1, but
invoke the induction hypothesis on A,C, . . . instead of
B,C, . . .. We deduce that T must order the writes for
A,C, . . . in the same manner as either T ′′

F = wA, wC , . . .
or T ′′′

F = wC , wA, . . .. Next, we consider the possible
positions of wB in T .
Subcase 2a: wB is the second or later element in T .
Then T = wA, . . . , wB , . . . (if T extends T ′′

F ) or T =
wC , . . . , wB , . . . (if T extends T ′′′

F ). In the first case,
since wB and wC both precede some dictated read of
wA in H , wA has separation at least two in T , and so
T is not viable. In the second case, since wA and wB

both precede some dictated read of wC in H , wC has
separation at least two in T , and so T is not viable.
Subcase 2b: wB is the first element in T . Then
T = wB , wA, wC , . . . (if T extends T ′′

F ) or T =
wB , wC , wA, . . . (if T extends T ′′′

F ). In the first case, T
is identical to T ′

F . In the second case, since wA precedes
some dictated read of wB in H , wB has separation at
least two in T , and so T is not viable.

Lemma 4.3: For any chunk K ∈ CS(H), if an itera-
tion of the outer for loop occurs in Stage 2 for K, then
any viable total order T over all the writes of K is an
element of the set S computed in this iteration.

Proof: Suppose that T exists. It follows from
Lemma 4.2 that T must order the writes in K con-
sistently with either TF or T ′

F , which are computed at
the beginning of the iteration, otherwise T is not viable.
Next, note that in both TF and T ′

F , each write except
the last one has separation one, otherwise either T is
not viable (if separation is higher than one) or K is
not a maximal chunk (if separation is zero). Since T
extends either TF and T ′

F , this implies that the dictating
writes of any backward zones in K cannot be placed in T
between two dictating writes of forward zones, otherwise
the separation of one of the latter writes becomes greater
than one, and hence T is no longer viable. In other
words, the dictating writes of backward zones must be
placed in T either before or after all the writes of forward
zones. We use this observation in the case analysis below.

Let B denote number of backward clusters in K.
Case 1: B = 0. Then T must be either TF or T ′

F , and
indeed the algorithm includes both orders in S.
Case 2: B = 1. Let w denote the dictating write of the
backward cluster, as in the algorithm. Then T must be
either append or pre-pend w to either TF or T ′

F . Indeed
the algorithm includes all four possible orders in S.
Case 3: B = 2. Let w1, w2 denote the dictating writes
of the backward clusters, as in the algorithm, and let
B1, B2 denote the corresponding backward zones. Then
in T , w1 must either precede or follow all the writes of
forward clusters, and similarly for w2.

We show first that w1 and w2 in T cannot both
precede all the writes of forward clusters. Let wf be
the dictating write of the forward cluster in K whose
forward zone has the earliest low endpoint, and let F
denote this zone. Suppose for contradiction that T places
w1 and w2 before wf , in that order (without loss of
generality). Since K is a maximal chunk, B1.l > F.l
holds, which means that some operation in B1 starts
after some operation in F ends. As a result, any valid
2-atomic total order T ′ over H|K that extends T places
some operation of B1 after wf . (T ′ exists because we
assume that T is viable and exists.) Since we assume that
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T places w1 before wf , T ′ must place some dictated read
r1 of w1 after wf . In that case w1 is separated from r1
by both w2 and wf . Thus, w1 has separation at least two
in T , which contradicts T being viable.

Next, we show that w1 and w2 in T cannot both
succeed all the writes of forward clusters. Let wf be
the dictating write of the forward cluster in K whose
forward zone has the largest high endpoint, and let F
denote this forward zone. Suppose for contradiction that
T places w1 and w2 after wf , in that order (without loss
of generality). Since k is a maximal cluster, B1.h < F.h
holds, which means that some operation in B1 ends
before some dictated read rf in F begins. (Recall that
every forward cluster has at least one dictated read.) As
a result, any valid 2-atomic total order T ′ over H|K
that extends T places some operation of B1 before rf .
(Again, T ′ exists because we assume that T is viable
and exists.) Since T ′ is valid and 2-atomic, this implies
that T ′ places w1 before rf . By an analogous argument,
T ′ places w2 before rf . Since w1 and w2 both follow
wf in T , this implies that wf has separation at least two
in T , which contradicts T being viable.

Thus, T can only be one of four possible total orders:
w1TFw2, w2TFw1, w1T

′
Fw2, and w2T

′
Fw1. Indeed the

algorithm includes all four of these in S.
Case 4: B ≥ 3. Let w1, w2, w3, . . . denote the dictating
writes of the backward clusters. Then in T , each of these
writes must either precede or follow all the writes of
forward clusters. This contradicts our observation from
Case 3 that at most one of w1, w2, w3, . . . can precede,
and at most one can follow, all the writes of forward
clusters.

Lemma 4.4: For any chunk K ∈ CS(H), if an itera-
tion of the outer for loop occurs in Stage 2 for K, and
this iteration outputs NO, then H|K is not 2-atomic.
Conversely, if the iteration for chunk K occurs and does
not output NO, then H|K is 2-atomic.

Proof: Suppose that an iteration of the outer for loop
occurs in Stage 2 for K, computes the set S, and outputs
NO. Since the algorithm outputs NO, none of the total
orders in S are viable, and hence by Lemma 4.3 there
is no viable total order T over the writes of all clusters
in K. This implies that H|K is not 2-atomic.

Conversely, suppose that the iteration for chunk K
occurs and does not output NO. Then some total order
T ∈ S is viable. Furthermore, it follows from the
algorithm for Stage 2 that T is a total order over the
writes of all clusters in K. Since T is viable, this implies
that H|K is 2-atomic.

Finally, the following theorem asserts the overall cor-
rectness of FZF:

Theorem 4.5: For any input history H , if H is 2-

atomic then algorithm FZF outputs YES, otherwise it
outputs NO.

Proof: Suppose first that FZF outputs YES. Then
the outer for loop iterates over all the chunks in Stage 2
without outputting NO, and so by Lemma 4.4, H|K
is 2-atomic for each maximal chunk K ∈ CS(H).
Then by Lemma 4.1, H itself is 2-atomic, as wanted.
Otherwise, suppose that FZF outputs NO. Then this
occurs in Stage 2, and so by Lemma 4.4 there is some
chunk K ∈ CS(H) such that H|K is not 2-atomic. This
implies that H is not 2-atomic either, as wanted.

C. Time complexity

Let n denote the number of operations in H .
Theorem 4.6: Algorithm FZF can be implemented to

run in O(n log n) time.
Proof: Suppose that H is given as a sequence of

events in arbitrary order. The algorithm can perform
the following pre-processing in O(n log n) steps before
Stage 1: create a mapping M from values to clusters
using a balanced tree data structure, and represent each
cluster as a linked list of operations; then for each cluster
identify its zone; and for each zone record the value
assigned by its dictating write, its low and high endpoint,
and its type (i.e., forward or backward).

In Stage 1 the algorithm can compute CS(H) by
iterating over the clusters in M , inserting zones into an
interval tree sorted by the low zone endpoint, and finally
iterating over the zones to identify maximal chunks.
Chunk K can be represented as a list LK of dictating
writes of clusters in K. To simplify Stage 2, the writes
in K can be sorted in the same order as their zones in
the interval tree, and also tagged with the corresponding
zone type. Finally, CS(H) can be represented as a
linked list of pointers to chunks. Thus, Stage 1 can be
performed in O(n log n) steps: O(n log n) to build M ,
O(n log n) to traverse the balanced tree underlying M
and build the interval tree representing zones, O(n) to
traverse the interval tree and compute maximal chunks,
and finally O(n) to record CS(H).

In Stage 2, the outer for loop iterates over each
maximal chunk K by walking a linked list represen-
tation of CS(H). This list traversal takes O(n) steps,
and furthermore the algorithm performs work for each
chunk K ∈ CS(H). Now let nK denote the number
of operations in chunk K. Aside from the inner for
loop, the body of the outer for loop for chunk K
computes TF , which is obtained easily in O(nK) steps
from the representation of K described earlier. T ′

F can
then be obtained in O(nK) steps from TF . Similarly, the
dictating writes of backward zones can be identified from
the representation of K and counted in O(nK) steps.
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The algorithm then computes up to four total orders by
pre-pending or appending up to two dictating writes of
backward zones to TF and T ′

F , which takes O(nK) steps.
Finally, consider the inner for loop, which iterates over

up to four total orders over the writes of all clusters in
chunk K, and tests whether each order is viable. To test
whether such an order T is viable, it suffices to first
check if T is valid, which takes O(nK) steps since T
has length O(nK), and then call a subroutine to test
whether T can be extended to a valid 2-atomic total
order T ′ over all the operations in H|K. The latter test
can be carried out using a simplified LBT algorithm (see
Section III) that accepts T and H|K as part of its input,
where a list of operations in H|K can be obtained from
M in O(nK log n) time. The simplified LBT algorithm
attempts to find T ′ by processing writes in reverse order
of T , without back-tracking, and for each write deciding
which read operations must follow it. Using a simplified
version of the analysis from Section III-C, it follows
that this takes O(nK log nK) steps. Thus, in Stage 2 of
algorithm FZF, the iteration of the outer for loop for
chunk K runs in O(nK log n) steps.

Since Stage 3 merely outputs YES, it follows that
algorithm FZF can be implemented as described above
to run in O(n log n) steps in total.

V. THE WEIGHTED k-AV PROBLEM (k-WAV)

In this section, we show that a natural extension of the
k-AV problem, called the weighted k-AV problem (or k-
WAV for short), is NP-complete. The k-WAV problem
is defined similarly to the k-AV problem, except that
each write comes with an positive integer weight, and
the k-atomicity requirement is that the total weight of
the writes separating any dictating write from any of its
dictated reads (including the dictating write itself) is at
most k. By this definition, the k-AV problem is a special
case of the k-WAV problem where each write has weight
equal to 1. The k-WAV problem captures the notion of
“important” writes, which can have a higher weight than
“unimportant” writes: a read can be intervened from its
dictating write by a larger number of unimportant writes,
but only a smaller number of important writes. A storage
system can potentially mark certain write operations to
be important and require that they not be separated from
their dictated reads by too many other important writes.

Theorem 5.1: The k-WAV problem is NP-complete.
Proof: It is straightforward to see that k-WAV is in NP.
To prove that k-WAV is NP-hard, we reduce from the
well-known bin-packing problem [8]. In the bin-packing
problem, we are given a set of n items, each with a size
si that is a positive integer for 1 ≤ i ≤ n, a bin capacity
B, and m bins. We are asked whether there is a partition

of these n items into m disjoint sets such that the sum
of the sizes of the items in each subset is at most B, the
bin capacity.

Given an instance of the bin-packing problem, we
construct an instance of the k-WAV problem as shown
in Figure 5. In the figure, it is understood that all end
points are slightly different to follow our assumption
that all end points have a distinct timestamp. In the
figure, the n “long writes” have weights equal to the
sizes of the n given items in the bin-packing problem
instance. The m “short writes” each have weight 1.
The intervals are constructed in such a way that the
short writes and their dictated reads are totally ordered,
that is, w(1)w(2)r(1)w(3)r(2)w(4)r(3) . . . w(m)r(m−
1)w(m + 1)r(m). Thus, solving the k-WAV instance
is tantamount to deciding the commit points of the
long writes, which have to occur after w(1) and before
w(m + 1). The total weight of the long writes placed
between w(i) and r(i) is bounded by B. In other words,
we are setting k = B + 2 for the k-WAV problem.
We note that the long writes do not have dictated reads
and so they can be placed anywhere between w(1) and
w(m + 1) provided that they observe the bin capacity
limit between w(i) and r(i) for 1 ≤ i ≤ m. The short
write w(m+ 1) is a “dummy” write so as to ensure that
bin m (from w(m) to r(m)) has available capacity B
(but not B + 1) for the long writes.

We now prove that the bin-packing problem instance
has a solution iff the k-WAV problem has a solution. If
the bin-packing problem instance has a solution, then for
those items that go into bin 1 we place the corresponding
long writes between w(1) and w(2). For those items
that go into bin i, where 2 ≤ i ≤ n, we place the
corresponding long writes between r(i−1) and w(i+1).
This placement satisfies both the validity requirement
and the (B + 2)-atomicity requirement of the k-WAV
problem.

On the other hand, if the k-WAV problem instance
has a solution, then we can construct a solution for the
bin-packing problem as follows. We first observe that in
the solution for the k-WAV problem, if there is a long
write that is placed between w(i) and r(i − 1) where
2 ≤ i ≤ m, then we can always re-place this long write
to between r(i− 1) and w(i + 1) and the new solution
is still a valid solution for the k-WAV problem instance.
This is because placing a long write in the former manner
increases the “load” on two bins: i − 1 (from w(i − 1)
to r(i−1)) and i (from w(i) to r(i)). Yet placing a long
write in the latter manner only increases the load on bin
i. Therefore, we can always transform a solution for the
k-WAV problem instance so that no long write places

9



. . . . . .

w(m+1)

w(m+2)

w(m+3)

w(m+n+1)

bin 1

r(m)w(1) w(2) r(1) w(3) r(2) w(4) r(3)

bin 2
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bin 3 bin m

Fig. 5. Construction for the NP-completeness of k-WAV.

load on multiple bins. Then we can straightforwardly
convert the solution to the k-WAV problem instance to
a solution for the bin-packing problem instance.

VI. RELATED WORK

Our 2-AV algorithms are inspired by several prior
results. The k-AV problem for k = 1 has been solved
in prior work on specifying and verifying shared mem-
ories [9], [15]. A partial solution to the 2-AV problem
appears in [10]. The technique of limited backtracking
used in our LBT algorithm (Section III) was used
previously by Even et al. [6] for scheduling algorithms.

At a high level, the k-AV problem is similar to, but
not the same as, the graph bandwidth problem (GBW),
which is defined as follows. Given a graph G and a
positive integer k, decide whether it is possible to arrange
the vertices of G on a line such that any two adjacent
vertices in G are separated by at most k− 1 vertices on
the line. For arbitrary k, where k can change with the
problem size, GBW is NP-complete [16] and remains so
even for special kinds of graphs [7]. For fixed k, Garey
et al. [7] show that it is in P for k = 2 and Saxe [17]
shows that it is still in P for k ≥ 3. Saxe’s algorithm
runs in time O(nk+1). Unfortunately, the special insight
exploited by Saxe [17] does not hold for the k-AV
problem. When restricted to interval graphs, however,
GBW can be solved efficiently in both n and k. Kleitman
and Vohra [12] present an algorithm that runs in time
O(n log n) time, where n is the number of vertices in the
graph. GBW is one variation of graph layout problems.
Cohen et al. [4] show that, if the metric is to minimize
the sum (not the maximum) of the differences between
the positions of two adjacent vertices, then the problem,
called optimal linear arrangement (OLA), is NP-hard
even on interval graphs. Furthermore, GBW is fixed-
constant tractable, but otherwise NP-complete.

VII. CONCLUDING REMARKS

In this paper, we made considerable progress towards
resolving the k-AV problem. The primary open question
that remains is to solve the k-AV problem for a fixed
constant k ≥ 3, or else show that it is NP-complete.
Secondly, it would be interesting to test whether existing

storage systems provide 2-atomicity in practice, and
understand when and why they might fail to do so.
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