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Abstract—NoSQL storage systems are used extensively by
web applications and provide an attractive alternative to
conventional databases when the need for scalability outweighs
the need for transactions. Several of these systems, notably
Amazon’s Dynamo and its open-source derivatives, provide
quorum-based replication and present the application devel-
oper with a choice of multiple client-side “consistency levels”
that determine the number of replicas accessed by reads and
writes. This setting, in turn, affects both the latency and the
consistency observed by the client application. Since using a
fixed combination of read and write consistency levels for a
given application provides only a limited number of discrete
options for tuning the consistency-latency trade-off, we inves-
tigate techniques that allow more fine-grained tuning as may
be required to support consistency guarantees through service
level agreements (SLAs). We consider two such techniques, a
novel technique that assigns the consistency level on a per-
operation basis by choosing randomly between two options
(e.g., weak vs. strong consistency) with a tunable probability,
and a known technique that uses weak consistency and injects
delays into storage operations artificially. We compare and
contrast these two techniques experimentally against each other
and against combinations of fixed consistency levels using
Apache Cassandra deployed in Amazon’s EC2 environment.

I. INTRODUCTION

NoSQL storage systems are used extensively by online
applications and provide an attractive alternative to conven-
tional databases when the need for scalability outweighs
the need for transactions. Several of these systems, most
notably Cassandra [1], Voldemort and Riak, are derivatives
of Amazon’s Dynamo [2], and share a common quorum-
based replication model that enables different behaviors
with respect to consistency. For example, in the context of
Brewer’s CAP principle, the storage system can be config-
ured to provide either consistency or availability during a
network partition [3]. Application developers who use such
systems face a choice of multiple client-side “consistency
levels” that determine the size of a partial quorum for reads
and writes, which is the number of replicas that must respond
to a read or write request. This parameter directly affects the
latency of read and write operations, and indirectly affects
the consistency observed by client applications. For example,

strict (e.g., majority) quorums provide so-called “strong con-
sistency,” meaning that reads always return the latest value
of a data object, whereas non-overlapping partial quorums
provide eventual consistency whereby reads may return stale
values for some period of time after an update while the
replicas of a data object converge to a common state. Terry
et al. describe the behavior of eventual consistency more
precisely in the context of Bayou: the system “guarantees
that all servers eventually receive all Writes ... and that two
servers holding the same set of Writes will have the same
data contents” [4].

In the absence of a fine-grained consistency-latency tuning
mechanism, application developers are challenged in two
ways. First, using conventional client-side consistency set-
tings they are often restricted to extremes, such as eventual
versus strong consistency, and have no means to strike a
flexible compromise. This is especially problematic when
the latencies for strongly and weakly consistent operations
differ by orders of magnitude, as in geo-replicated systems,
and the latency requirements for a given application lie
somewhere in-between. Second, although standard tools and
benchmarks (e.g., [5]) can be used to measure latency, tools
for quantifying the actual consistency observed by client
applications are only starting to emerge from research (e.g.,
[6]). As a result, an application developer who is concerned
about consistency may be compelled to adopt quorum op-
erations, unaware that with a weaker client-side consistency
setting the consistency actually observed in practice may be
quite strong and well within the application’s requirements.
For example, this might occur when the workload is light
in terms of throughput and is spread out over a large data
set, which minimizes the likelihood that a data item is read
during the window of inconsistency following an update to
that item.

In this paper we investigate the possibility of tuning the
consistency-latency trade-off in a more fine-grained manner
than is possible using conventional client-side consistency
levels. Specifically, we focus on techniques that enable such
tuning using a parameter with a continuous range of values,
as opposed to selecting consistency levels from a short
menu of discrete options (e.g., read one, read majority,



read all). Attaining fine-grained control over consistency
and latency is an important step on the path to supporting
service level agreements (SLAs) that allow applications to
request a diverse range of requirements with respect to
these quantities. For example, such an SLA might allow
a client application to specify either an average latency
or a 95th %-ile latency of at most L milliseconds, and a
proportion of inconsistent operations (defined more precisely
in Section II) of at most C%. In this framework a latency-
favoring application such as a shopping cart may specify
a lower L and higher C, whereas a consistency-favoring
application such as a personal cloud file system may opt
for a higher L and lower C. Naturally, such SLAs can also
specify guarantees on throughput.

Our main technical contribution in this paper is the
empirical evaluation of two techniques for fine-grained
consistency-latency tuning. The first, a novel technique we
call continuous partial quorums (CPQ), entails making a
random choice between multiple discrete consistency levels
on a per-operation basis. For example, the application may
choose consistency level one with probability p and ma-
jority quorums with probability 1 − p. In this case p itself
becomes a continuous tunable parameter. In contrast, using
fixed consistency levels for reads and writes and a repli-
cation factor of three, there are only three possible partial
quorums—one, two/quorum, and three/all—and hence only
nine discrete combinations. Furthermore, only four of these
combinations, namely those using the one and two/quorum
consistency levels, provide availability in the presence of a
single server failure. The second technique, called artificial
delays (AD) uses a weak client-side consistency level and
boosts consistency by injecting a tunable delay into each
storage operation. Intuitively, longer delays allow more
time for updates to propagate through the system, which
decreases the likelihood of consistency anomalies at the cost
of increasing latency. Our experimental evaluation considers
both single data center and geo-replicated deployments of
Apache Cassandra in Amazon’s EC2 environment, and leads
to different conclusions in these two cases: CPQ provides
better average latencies than AD when nodes are connected
using a fast data center network and processing delays
dominate operation latencies, whereas AD provides more
predictable latencies and a slightly better consistency-latency
trade-off when nodes communicate over a high-latency wide
area network.

II. METHODOLOGY

In this section we describe in detail the techniques,
performance metrics, storage system, and benchmark used
in our experiments.

A. Techniques

We implement CPQ and AD at clients, and compare
them against fixed consistency levels, which is our baseline.

CPQ generates for each operation a pseudo-random number
and selects between two discrete client-side consistency
levels with a tunable probability p. The choice is between
consistency level one and majority quorums (2 out of 3
replicas), and is made independently for each operation.
AD always uses consistency level one for all operations,
and boosts consistency by injecting a tunable artificial delay
immediately before a read as well as immediately after a
write. For simplicity the same delay is used for all opera-
tions, although in practice the delays could be determined
independently for reads and writes.

B. Performance Metrics

Our experiments measure two quantities: latency and
consistency. Latency is measured easily on a per-operation
basis, but consistency is more difficult to quantify because it
pertains to the interaction of multiple operations. Our precise
notion of consistency is inspired by Lamport’s atomic regis-
ter [7], which in our context represents a key-value pair ac-
cessed using read and write operations. Informally speaking,
Lamport’s atomicity property states that all operations must
appear to take effect instantaneously at some point in time
between their start and finish. This ensures, for example,
that when a write terminates from the point of view of the
client, any read started later by any client will obtain either
the value assigned by this write or a later value. Atomicity is
a property of a trace of operations that records the start and
finish times of each operation as well as its arguments and
responses, and refers to the consistency actually observed
by clients rather than the state of affairs in the back-end
implementation of a storage system, where discrepancies
among replicas may exist and yet go unnoticed by clients.
We believe this is the right paradigm for discussing consis-
tency in the context of SLAs because it separates cleanly the
behavior observed by client applications from the storage
system’s implementation details, which makes it possible
to specify application requirements in a system-independent
manner.

Lamport’s atomicity property alone is not sufficient for
our purposes because it can only classify a given trace as
either consistent (i.e., atomic) or not, and does not provide
a continuous measurable quantity. Instead we adopt the
technique of Golab, Li and Shah, which quantifies how
far a given trace deviates from atomicity by computing
the proportion of operations in a trace that are involved in
consistency anomalies [8]. This proportion is zero if the trace
is atomic to begin with, and positive otherwise, with higher
values indicating more frequent consistency anomalies. In
the remainder of the paper we will refer to the metric as the
proportion of inconsistent operations.

An example of a trace is shown in Figure 1, where each
operation is denoted by an interval of time and labeled as
follows: W (v) denotes a write of value v and R(v) denotes
a read that returns v. All of the operations shown are applied
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Figure 1. Example trace used for computing the proportion of inconsistent
operations.

to the same object, and in general traces for different objects
are analyzed separately. The trace is not atomic for several
reasons including the following: W (b) must take effect be-
fore W (a), which must take effect before R(b). We can view
this consistency anomaly as either R(b) returning a stale
value, such as when weak client-side consistency settings are
used, or the two writes taking effect out of order with respect
to their positions in the trace, such as when the storage
system internally orders writes using timestamps obtained
from loosely synchronized clocks on different hosts. The
trace can be made atomic by removing all operations that
access value b, namely W (b) and R(b), which allows us to
interpret the remaining operations as taking effect in the fol-
lowing order: W (e),W (a), R(a),W (c), R(c),W (d), R(d).
Since this transformation removes two out of nine operations
in the trace, the proportion of inconsistent operations is
calculated as 2/9, with both W (b) and R(b) viewed as
contributing to the consistency anomaly.

The use of larger partial quorums and artificial delays
tends to improve (i.e., lower) the value of the proportion
metric in the following sense: as the interval from the start
time to the finish time of each operation lengthens due
to either the additional protocol messages or the artificial
delay, the time intervals for pairs of operations tend to
overlap and the constraints imposed by Lamport’s atomicity
property on the order in which operations take effect become
less stringent. For example, in Figure 1 extending the time
intervals for W (b) and W (a) to the right while extending
the interval of R(b) to the left causes all three intervals to
overlap eventually, and removes the constraint that W (a)
must take effect after W (b) and before R(b). This, in turn,
mitigates the consistency anomaly explained earlier.

Computing the proportion of inconsistent operations for
an arbitrary trace of operations is an NP-hard problem
because it generalizes the NP-complete problem of deciding
whether a trace is atomic [9]. However, the proportion
can be computed efficiently using a dynamic programming
algorithm under the assumption that two writes on the same
object always assign distinct values [8].

C. Storage System

Our experimental evaluation uses Apache Cassan-
dra 2.0.10—a popular open-source implementation of a
Dynamo-style distributed storage system [1]. The data set
is organized internally as a set keyspaces, each of which
contains a set of column families that resemble tables in a
conventional database. Replication is configured at keyspace
level, and determines the number of server failures that a
Cassandra cluster can tolerate without losing data. Clients
can execute read and write operations using any node in
the cluster, which acts as a coordinator and routes protocol
messages to the relevant replicas. The client-side consis-
tency level setting specified by an application determines
how many replicas must acknowledge an operation, which
affects both the consistency and latency observed by clients.
That said, the coordinator in general attempts to access all
replicas: for writes it sends updates to all replicas, and for
reads it retrieves either the value of a data item, using a
direct request, or its digest, using a digest request to detect
discrepancies among replicas. Updates are timestamped,
which allows the coordinator to resolve the most recent value
of a data item in the event that a discrepancy is detected. The
process of detecting and fixing discrepancies in the course
of a read operation is called read repair.

D. Benchmark

The workload is generated using the Yahoo Cloud Serving
Benchmark (YCSB) [5], with a modified Cassandra client
connector to support the CPQ and AD techniques. YCSB
collects precise measurements of throughput and latency, and
the modified client connector records a trace of operations at
each host for off-line consistency calculations. Traces from
all hosts are merged at the end of each experiment and the
result forms the input to the algorithm that computes our
chosen consistency metric.

Each experiment comprises a YCSB load phase starting
with an empty keyspace, followed by a 180-second YCSB
work phase. Each host runs a single YCSB process with 128
client threads that connect to the local Cassandra server.
We use a mixture of 80% read and 20% write operations
that access 128-byte values. Keys are generated using one
of two YCSB probability distributions: “latest” and zipfian,
both with a key space of 1000. Read-dominated workloads
with skewed distributions are generally representative of
online applications, such as social networking, where users
spend most of their time reading data, and some data items
are much more popular than others. We use small key
spaces similarly to [10] because they tend to illicit more
frequent consistency anomalies. The replication factor is set
to three and a majority quorum is two out of three replicas.
Throughput is kept constant using YCSB, as described in
more detail in Section III.



III. EXPERIMENTS

A. Hardware and software environment

The experiments are staged in Amazon’s EC2 environ-
ment. For simplicity we deploy a small cluster comprising
three m3.xlarge on-demand instances, each equipped with
four Intel Xeon E5-2670 2.50GHz cores, 16 GB RAM, 2x40
GB SSD local storage. The software environment includes
an Ubuntu 14.04 x86 64 image with Linux kernel version
3.13.0 in HVM (Hardware Virtual Machine) mode, Oracle
Java 1.7.0 72, Apache Cassandra 2.0.10 and YCSB 0.1.4
modified as explained in Section II. Cassandra is configured
with default settings and its internal state (data file, commit
log, and cache directories) is placed on one of the SSDs. The
second SSD is left unused. Each host runs a single YCSB
process with 128 client threads that connect to the Cassandra
server on the same host.

For experiments that use a single data center all three
instances are deployed in the us-west-2 region (Oregon),
with an RTT generally in the range 150-200 µs. For ex-
periments that use geo-replication we deploy the instances
in three different regions: us-west-1 (N. California), us-east-
1 (N. Virginia), and sa-east-1 (Sao Paulo, Brazil). The RTT
is approximately 35-40ms between the us-west and us-east
data centers, and 70-80ms between the us-based regions and
sa-east.

Clock synchronization, which is very important for our
chosen method of measuring consistency, is achieved using
NTP. In the single data center case we set up one host as the
NTP server and the other two as clients, which is sufficient
to synchronize clocks to within 0.05ms or better. The same
approach is not possible in the geo-replicated case due to
much higher network latencies and latency variations, and
so we use the default external NTP servers. This enables
synchronization to within 5-10ms.

B. Visualizations

We present several types of graphs in this section. Part (a)
of Figures 2–7 presents the proportion of inconsistent opera-
tions, which was defined in Section II. The error bars shown
on the graphs represent one standard error calculated as√
p̂(1 − p̂)/n where p̂ is the calculated sample proportion.

In general we found that variations in the consistency metric
between runs of the same experiment were higher than
indicated by the error bars, likely due to small differences in
clock synchronization as well as weak performance isolation
in EC2. Using single-tenancy instances did not remedy the
problem.

Parts (b) and (c) of Figures 2–7 present the 95%-ile
and average latency for each experiment, with separate bars
for read and write operations. Error bars on these graphs
represent one standard deviation of the sample of three
measurements corresponding to the three YCSB clients used,
one per host.

(a) consistency vs. consistency level

(b) 95th %-ile latency vs. consistency level

(c) average latency vs. consistency level

Figure 2. Consistency and latency vs. client-side consistency level (e.g.,
ONE-QUO means read one, write majority quorum).

C. Single data center results

In the first series of experiments, presented in Figures 2–
4, all hosts are placed in the same EC2 region and the same
availability zone. The maximum throughput for our chosen
workloads in this deployment is 3-10kops/s depending on
the case. The throughput is limited by the number of YCSB
threads in experiments that involve delays, and by other



(a) consistency vs. probability of quorum level

(b) 95th %-ile latency vs. probability of quorum level

(c) average latency vs. probability of quorum level

Figure 3. Consistency and latency versus probability of client-side
consistency level quorum vs. one.

factors (CPU and network) in other cases. In the interest
of a controlled experiment we fixed the throughput in
YCSB using a target of 3kops/s. Actual throughput during
experiments is within 1% of the target. The network RTT
is less than 1ms and, as shown by Fan et al., consistency
is affected substantially by processing delays, particularly
the stop-the-world behavior of the Java garbage collector

(a) consistency vs. artificial delay (ms)

(b) 95th %-ile latency vs. artificial delay (ms)

(c) average latency vs. artificial delay (ms)

Figure 4. Consistency and latency versus artificial delay (ms).

[11]. The stop-the-world pause can delay the processing of
updates for up to tens or even hundreds of ms, causing stale
reads.

Figure 2 illustrates the consistency-latency envelope of
fixed client-side consistency levels, our baseline technique.
We focus specifically on different combinations of one and
majority quorum consistency levels, which provide availabil-
ity in the presence of one failed server given the replication



factor of three. The x-axis labels are of the form R-W where
R and W indicate the client-side consistency levels for reads
and writes, respectively. The proportion of inconsistent oper-
ations is mostly under 0.03, and is exactly zero for quorum
operations, indicating that Cassandra produced an atomic
trace. Quorum consistency does not, however, guarantee
atomicity in general, as explained in [10].

The latency numbers range from a few ms to near 30ms at
the 95th %-ile, and under 10ms for average latency. In many
cases the latencies are much higher than the network RTT
of 0.15-0.2ms, indicating substantial processing delays. As
expected, we observe higher latencies for quorum operations
than for operations with consistency level one, especially for
reads. Curiously, write latencies are slightly higher when
reads with consistency level one are used than with quorum
reads. We do not have an explanation for this behavior but
we found that it was reproducible.

The second set of results, presented in Figure 3, demon-
strates continuous partial quorums in action. In this exper-
iment the client chooses majority quorum consistency with
probability p, shown on the x-axis, and one consistency
with probability 1 − p. The same policy is used for both
read and writes. As p increases from 0 to 1 we observe
that both the consistency and latency gradually morph from
values corresponding to the ONE-ONE case in Figure 2
to values corresponding to the QUO-QUO case. Thus,
CPQ successfully attains points in the two-dimensional
consistency-latency spectrum that lie in-between the discrete
points attained using fixed client-side consistency levels. In
particular, for 0 < p < 1 the consistency-latency trade-offs
achieve a different balance of read and write latencies than
the ONE-QUO and QUO-ONE cases in Figure 2, which are
biased toward either reads or writes. Overall CPQ appears
most effective at trading off consistency against 95th %-ile
latency for reads, which comprise 80% of the workload, with
write latencies showing less variation in general.

The last set of results, presented in Figure 4, demonstrate
the behavior of artificial delays. The length of the artificial
delay in milliseconds is shown on the x-axis, and contributes
directly to the latency of read operations. As a result, both
95th %-ile latency and average latency increase gradually
from under 10ms to over 40ms as the delay is increased from
0 to 40ms. The consistency, shown in part (a), also varies
with the length of the artificial delay, and approaches levels
observed with quorum operations in Figure 2 when the delay
is 30ms or more. However, in those cases the average latency
is about an order of magnitude worse than with quorum
operations, and the 95th %-ile latency is also substantially
higher. On a positive note, 95th %-ile latencies are slightly
more predictable compared to when using fixed consistency
levels, and more uniform across probability distributions as
well as between reads and writes.

Compared to CPQ we see that artificial delays lead to
substantially higher average latencies at the same value of

the consistency metric. For example, the average latency for
CPQ with probability p = 0.8 is under 5ms in Figure 3 (c),
whereas an artificial delay of 20ms achieves worse con-
sistency and average latencies of 20-25ms in Figure 4 (c).
Similarly, the 95th %-ile latencies in this case are 5-25ms for
CPQ and 22-25ms for artificial delays. Overall we conclude
that compared to CPQ, artificial delays achieve an inferior
trade-off between consistency and latency in the single data
center experiments. The predictability of the latencies when
artificial delays are used is attractive, but also demonstrates
the main weakness of this technique: all operations are
delayed uniformly whereas quorum operations in Figures 2
and 3 exhibit latencies that more faithfully reflect the actual
processing delays, which vary with time (e.g., garbage
collector running versus not) and with the workload (e.g.,
reads vs. writes).

D. Geo-replication results

In the second series of experiments, presented in Fig-
ures 5–7, we consider geo-replication. The maximum
throughput for our workloads that can be sustained in all
experimental cases is 1-2kops/s, and so we fix the target
throughput in YCSB at 1kops/s, which the workload gener-
ator meets to within 1%. The network RTT is generally in
the tens of ms, and so we expect network delays to affect
consistency more substantially than in a single data center.

Figure 5 shows a pattern similar to Figure 2, but with
sharper differences in latency between different combina-
tions of client-side consistency settings. The proportion of
inconsistent operations is also generally higher than in the
single data center case, exceeding 0.25 in the ONE-ONE
case. This is expected since updates take much longer to
propagate from the coordinator to the replicas.

Figure 6 also shows some similarity to Figure 3. In
parts (a) and (c) the numbers gradually transition from levels
corresponding to fixed ONE-ONE consistency to levels cor-
responding to QUO-QUO consistency. Part (b), on the other
hand, shows an interesting contrast. Whereas in Figure 3 the
95th %-ile latency does not show much variation, in Figure 6
there is an abrupt increase only from p = 0 to p = 0.2,
and after that the values stabilize. In general as soon as p
exceeds 0.05, the 95th %-ile latency is dominated by the
subset of operations that use quorum consistency. However,
in this particular case the difference in latency between
consistency level one and majority quorums is much higher
than in Figure 3, where processing delays (e.g., garbage
collection and compaction) appear to dominate. Thus, CPQ
successfully attains a continuous range of points in the
two-dimensional consistency-latency spectrum but only with
respect to average latency.

Artificial delays work much more effectively in the geo-
replicated case than in a single data center, as shown in
Figure 7. The delay, which now ranges from 0 to 100ms to
compensate for the larger RTT, has the desired effect on the



(a) consistency vs. consistency level

(b) 95th %-ile latency vs. consistency level

(c) average latency vs. consistency level

Figure 5. Consistency and latency vs. client-side consistency level (e.g.,
ONE-QUO means read one, write majority quorum).

consistency metric, although once again it is not necessarily
able to remove all consistency anomalies at its maximum
value. The latency also varies gradually, increasing from a
few ms to approximately 100ms, and generally corresponds
to the latency of a ONE-ONE operation plus the length of
the artificial delay. This holds for both average and 95th %-
ile latency, in contrast to CPQ in Figure 6 (b). In fact, the

(a) consistency vs. probability of quorum level

(b) 95th %-ile latency vs. probability of quorum level

(c) average latency vs. probability of quorum level

Figure 6. Consistency and latency versus probability of client-side
consistency level quorum vs. one.

latencies with a 100ms delay are somewhat better than using
fixed consistency level QUO-QUO in Figure 5, especially at
the 95th %-ile, but with only slightly worse consistency. At
50ms the consistency with artificial delays is better than for
CPQ with p = 0.8, and the latency is much better, once
again especially at the 95th %-ile. Thus, artificial delays
demonstrate measurable advantages over CPQ.



(a) consistency vs. artificial delay (ms)

(b) 95th %-ile latency vs. artificial delay (ms)

(c) average latency vs. artificial delay (ms)

Figure 7. Consistency and latency versus artificial delay (ms).

IV. RELATED WORK

Recent research in the area of consistency has addressed
the classification of consistency models, consistency mea-
surement, and the design of storage systems that provide
precise consistency guarantees. This body of work is influ-
enced profoundly by the CAP principle, which states that
a distributed storage system must make a trade-off between

consistency (C) and availability (A) in the presence of a
network partition (P) [3]. The PACELC formulation builds
on CAP by considering two separate cases: during a network
partition it reduces directly to CAP, but during failure-
free operation it dictates a trade-off between latency and
consistency [12].

Distributed storage systems use a variety of designs that
achieve different trade-offs with respect to CAP. Amazon’s
Dynamo and its derivatives (Cassandra, Voldemort and Riak)
use a quorum-based replication scheme that can operate
either in CP (i.e., strongly consistent but sacrificing availabil-
ity) or AP (i.e., highly available but eventually consistent)
mode depending on the size of the partial quorum used to
execute read and writes [1], [2]. The techniques discussed
in this paper–CPQ and AD—are targeted specifically at this
family of systems. Since they are implemented at clients
these techniques can be used with any quorum-replicated
system that supports tunable partial quorums.

Many alternative designs have been proposed for sup-
porting stronger notions of consistency in storage systems.
Bigtable provides atomic access to individual rows, and is
eventually consistent when deployed across multiple data
centers [13]. PNUTS provides per-record timeline consis-
tency, which ensures that replicas of a record apply updates
in the same order [14]. COPS provides causal consistency
with convergent conflict handling and read-only transactions,
and is designed for wide-area deployments [15]. Causal
consistency is in some sense the strongest property that can
be guaranteed in the presence of network partitions, which
makes COPS an AP system in the context of CAP [16]. Bolt-
on causal consistency is a shim layer that provides causal
consistency on top of eventual consistency [17]. Spanner is a
geo-replicated transactional database that provides external
consistency, which is similar in spirit to Lamport’s atomicity
property (see Section II) [18]. The replication and trans-
action commitment protocols in these systems are geared
toward specific notions of stronger-than-eventual consistency
and do not expose a client-side consistency level setting that
could be used with our CPQ technique.

Several systems consider the problem of providing contin-
uously tunable consistency guarantees. TACT is a middle-
ware layer that uses three metrics to express consistency
requirements with respect to read and write operations:
numerical error, order error, and staleness [19]. TACT relies
on a consistency manager that pushes updates synchronously
to other replicas. Pileus allows client applications to declare
consistency and latency requirements in the form of SLAs
[20]. These SLAs include latency and staleness bounds
but do not support the types of probabilistic guarantees
discussed in Section I. Internally, Pileus enforces the SLAs
by choosing which replica to access in an SLA-aware man-
ner, whereas Dynamo-style systems tend to always access
the closest replicas. Tuba supports consistency SLAs by
automatically reconfiguring the locations of its replicas in



response to the client’s location and request rates [21].
AQuA is middleware layer that allows the client application
to specify latency and consistency requirements similarly to
Pileus, but with a focus on time-sensitive applications [22].
It provides probabilistic timeliness guarantees by selecting
replicas dynamically using probabilistic models.

We are aware of only two systems that use artificial
delays for consistency-latency tuning. Golab and Wylie
propose consistency amplification—a framework for sup-
porting consistency-based SLAs by injecting client-side or
server-side delays whose duration is determined adaptively
using measurements of the consistency actually observed by
clients [23]. Rahman et al. present a similar system called
PCAP, where delays are injected only at clients and their
duration is determined using a feedback control mechanism
[24]. PCAP also varies the read repair rate, which is shown
to be a far less effective tuning knob. The evaluation of the
system considers the proportion of operations that satisfy
particular consistency and latency requirements, and does
not investigate the optimality of this trade-off with respect
to fixed client-side consistency levels such as majority
quorums. The argument given against strict quorums is that
they may cause storage operations to block in the event of
a network partition. However, the consistency calculations
used to tune artificial delays in PCAP are themselves block-
ing because they are based upon operation logs collected
from multiple servers. Furthermore, in practice even quorum
operations can be made non-blocking by using read and
write timeouts, which are configurable in recent versions of
Cassandra. Timeouts ensure that every operation eventually
either completes successfully, or fails and allows the client
to retry the operation using a smaller partial quorum.

The use of server-side artificial delays is explored in
[11] as a technique for reducing the severity of consistency
anomalies in Cassandra when client-side consistency level
ONE is used. The delays are injected judiciously following
the garbage collection stop-the-world pause, which improves
consistency drastically with negligible impact on latency. In
contrast, the artificial delays used in PCAP and explored in
our own experiments incur a latency penalty for every single
read operation, which increases average latency directly.

In the pursuit of an empirical understanding of CAP-
related trade-offs several papers have explored techniques
for measuring consistency [10], [25], [26], [27]. Measuring
consistency in a precise way is subtly difficult because
consistency anomalies such as stale reads are the result
of interplay between multiple storage operations. As a
result, some of the contributions in this space consider
simplified techniques that measure the convergence time of
the replication protocol rather than the consistency actually
observed by client applications (e.g., [25], [26]) or quantify
the consistency observed in terms of quantities that do not
translate directly into staleness measures expressed naturally
in units of time (e.g., counting cycles in a dependency

graph [27]). Probabilistically bounded staleness (PBS) is a
mathematical model of partial quorums that overcomes these
limitations but is based upon the simplifying assumption
that writes do not execute concurrently with other operations
[6]. The theory underlying probabilistic quorum systems was
originally developed by Malkhi, Reiter, and Wright [28].

V. DISCUSSION AND CONCLUSION

Our experiments using Cassandra in Amazon’s EC2 en-
vironment show that the consistency-latency trade-off can
be tuned in a continuous manner using mechanisms that
operate on top of a handful of discrete client-side consistency
levels. We demonstrate this point using a novel technique
called continuous partial quorums (CPQ), which chooses
randomly between two discrete consistency levels according
to a tunable probability parameter, as well as the known
technique of injecting artificial delays (AD). In a single data
center environment CPQ is able to effectively bridge the
gap between a pair of fixed client-side consistency levels,
and generally achieves a more attractive consistency-latency
trade-off than AD, which delays all operations uniformly
without regard to variations in processing delays. This
aspect of our results confirms informal claims regarding the
potentially detrimental effect of injecting artificial delays
(e.g., see [6]), albeit only in the single data center case. On
the other hand in a geo-replicated environment AD produces
latencies that are both more predictable and slightly lower
than CPQ for the same degree of consistency. That said,
AD cannot guarantee strong consistency unless the length
of the delay can be guaranteed to exceed both network and
processing delays.

Although we evaluate CPQ and AD specifically in the
context of Apache Cassandra, both techniques are applicable
to any system that supports a set of discrete client-side
consistency options. In future work we plan to implement
and evaluate these techniques on top of other storage systems
and develop techniques for automating the choice of values
for their corresponding tuning knobs.
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(a) severity vs. consistency level

(b) severity vs. probability of quorum level in CPQ

(c) severity vs. artificial delay

Figure 8. Severity of consistency violations—single data center.

APPENDIX
ADDITIONAL EXPERIMENTS

In this section we present additional results corresponding
to the experiments discussed earlier Section III. Specifically,
we consider the severity of consistency anomalies quantified
using the Γ metric [10]. Figure 8 presents box plots of the Γ
scores (min / 25% / 75% / max) corresponding to the single
data center results from Figures 2–4. Similarly, Figure 9
presents box plots of the Γ scores corresponding to the geo-
replication results from Figures 5–7. Note that the box plots
represent only the positive Γ scores, and so large 25%-ile and
75%-ile values do not necessarily indicate that the proportion
of inconsistent operations was high.

For the single data center experiments we see in Figure 8
that when ONE-ONE client-side consistency levels are used,
most of the Γ scores are in the hundreds of ms. Given
the low RTT on the network we conclude that these are
caused by processing delays, such as garbage collection
in Java [11]. On the other hand, for the geo-replication
experiments we see in Figure 9 that the Γ scores are mostly
below 100ms. This suggests that most of the consistency
anomalies are due to network latency between data centers.
Although it may appear counter-intuitive that the Γ scores
are higher when the network latency is lower, we remind
the reader that only positive Γ scores are shown in the
box plots. Note also that the target throughput in the geo-
replication experiments was lower (1kops/s) than in the
single data center experiments (3kops/s), which implies that
processing delays are potentially lower with geo-replication.
The maximum Γ scores are around 3000ms in Figure 8 and
in excess of 10000ms in Figure 9.

The distribution of Γ scores observed in the ONE-ONE
case of Figure 8 helps us understand why the CPQ tech-
nique outperforms artificial delays for consistency-latency
fine-tuning. Although artificial delays successfully reduce
the magnitude of the consistency anomalies, as shown in
Figure 8 (c), delays of up to 40ms cannot mitigate the most
severe anomalies for which the Γ scores are in the hundreds
of ms. Larger delays could reduce the Γ scores to nearly
zero, but in that case the blow-up in latency would make
artificial delays even less competitive with respect to quorum
operations. In contrast, in Figure 9 most of the anomalies
are smaller, and hence more easily mitigated using artificial
delays. Delays of up to 100ms maintain latency at levels
competitive with quorum operations, and in some cases are
able to remove so many of the small consistency anomalies
that the 75%-ile Γ score actually increases. For example,
compare the 0ms and 50ms runs in Figure 9 (c).



(a) severity vs. consistency level

(b) severity vs. probability of quorum level in CPQ

(c) severity vs. artificial delay

Figure 9. Severity of consistency violations—geo-replication.


