
Client-centric Benchmarking of Eventual
Consistency for Cloud Storage Systems

Wojciech Golab∗, Muntasir Raihan Rahman†, Alvin AuYoung‡, Kimberly Keeton‡, Indranil Gupta†
∗University of Waterloo, †University of Illinois at Urbana-Champaign, ‡HP Labs

Abstract—Eventually-consistent key-value storage systems
sacrifice the ACID semantics of conventional databases to achieve
superior latency and availability. However, this means that client
applications, and hence end-users, can be exposed to stale data.
The degree of staleness observed depends on various tuning knobs
set by application developers (customers of key-value stores)
and system administrators (providers of key-value stores). Both
parties must be cognizant of how these tuning knobs affect the
consistency observed by client applications in the interest of both
providing the best end-user experience and maximizing revenues
for storage providers. Quantifying consistency in a meaningful
way is a critical step toward both understanding what clients
actually observe, and supporting consistency-aware service level
agreements (SLAs) in next generation storage systems.

This paper proposes a novel consistency metric called Γ
(Gamma) that captures client-observed consistency. This metric
provides quantitative answers to questions regarding observed
consistency anomalies, such as how often they occur and how bad
they are when they do occur. We argue that Γ is more useful and
accurate than existing metrics. We also apply Γ to benchmark the
popular Cassandra key-value store. Our experiments demonstrate
that Γ is sensitive to both the workload and client-level tuning
knobs, and is preferable to existing techniques which focus on
worst-case behavior.

I. INTRODUCTION

Many cloud products and services such as Web search,
e-commerce, and social networking, have to deal with big
data. In order to scale with growing amounts of data and
numbers of users, the design of these systems has moved
away from using conventional ACID databases, toward a new
generation of scalable storage systems called key-value stores
(often categorized more broadly as NoSQL storage systems).
Many of these key-value storage systems offer a weak notion
of consistency called eventual consistency [1], [2]. This stems
from Brewer’s CAP principle [3], which dictates that a storage
system choose between either (strong) consistency or avail-
ability during failures that partition the network connecting
the storage nodes. Even when the network is reliable, weak
consistency is often chosen voluntarily to reduce the latency
of storage operations [4].

However, parting with strong consistency exposes client
applications to consistency anomalies such as stale reads,
which can frustrate end-users. Making client applications
robust against such anomalies is difficult in general, but in
many cases the anomalies are tolerable, especially if they are
minor and infrequent. Thus, balancing latency with consistency
is critical to producing a satisfying end-user experience. To

This work was supported by the NSERC Discovery Grants Program,
Hewlett-Packard Labs, AFOSR/AFRL grant FA8750-11-2-0084, and NSF
grant CCF 0964471.

strike the right balance, application developers and system
administrators need appropriate tools to determine what effect
various configuration parameters and tuning knobs have on
the consistency observed by client applications. This requires
a way to quantify consistency anomalies.

Several techniques have been proposed in the literature
for measuring eventual consistency. These suffer from two
shortcomings. First, many of them are system-centric, i.e., they
measure consistency anomalies that reflect the internal state of
the storage system more than what a client application might
observe. Specifically, several known techniques (e.g., [5], [6],
[7]) measure the time between the write of a value and the
synchronization of the write among its replicas. However, as
we demonstrate in this paper, this system-centric approach
paints quite a pessimistic picture of what a client application
might observe.

Second, existing techniques do not account for the error
inherent in measuring consistency from several vantage points,
such as a collection of storage servers and clients. In practice,
simple get and put (read and write) operations are not instan-
taneous – instead they execute over intervals of time whose
length depends on configuration parameters such as the number
of replicas accessed, and situational factors such as network
latency or server load. Thus, time differences between pairs of
storage operations are inherently difficult to quantify. Clock
skew across machines makes this problem worse.

This paper proposes a new client-centric metric for bench-
marking consistency. Our metric, called Γ (Gamma), can be
used to quantify both the frequency of client-observed consis-
tency anomalies, as well as their severity. This, in turn, helps
answer questions such as “how stale are the data received by
client reads”? Thus, our approach enables empirical evaluation
of eventual consistency in arbitrary systems, under arbitrary
workloads. We compare and contrast Γ against system-centric
consistency metrics.

Concretely, the technical contributions of this paper are:

• We define a novel deterministic client-centric consistency
metric called Γ (Gamma). Our metric is inspired by the
∆ (Delta) metric [8], [9]. The advantage of Γ over ∆
is two-fold: it yields less noisy values, and it makes
fewer assumptions than ∆. The latter point, which we
explain in Section III, makes Γ more robust against
clock skew. Furthermore, Γ enables more comprehensive
benchmarking of eventual consistency than existing work
on metrics [10], [11], [12], [13] and measurements [5],
[6], [7].

• We apply Γ to perform an offline analysis of Cassandra,
a popular open-source key-value store [14]. Using Γ,

we demonstrate how parameters of the configuration
and workload affect the actual consistency observed by
storage clients. In particular, using Γ, we quantify the
impact on observed consistency due to (i) critical Cas-
sandra parameters like the replication factor and client-
side read/write consistency levels, and (ii) client workload
parameters like key distribution, read/write ratio and
throughput (operations/s).

• We demonstrate that a client-centric metric yields more
meaningful results than a system-centric metric. Specifi-
cally, our experiments reveal that the actual consistency
faced by clients can be very different from what system-
centric metrics predict. For instance, while replicas may
take hundreds of milliseconds to synchronize, in some
of our experiments we did not observe any consistency
anomalies beyond the margin of error due to clock skew
(≈10ms).

II. BACKGROUND AND RELATED WORK

The term consistency refers to the notion that different
clients accessing a storage system agree in some way on the
state of data, for example the latest state or the set of transitions
giving rise to that state. Ensuring consistency is inherently
difficult for two reasons: First, storage systems tend to maintain
multiple replicas of data for fault tolerance and performance.
Second, storage operations may involve multiple data items or
objects. As a result, many systems provide weak consistency,
which is difficult to reason about. A number of techniques have
been proposed in different contexts for specifying, verifying,
measuring and predicting weak consistency. In this section we
give an overview of such techniques, drawing on prior work in
distributed computing theory, storage systems, and databases.

a) Specification: Distributed computing theory offers
a number of concepts to describe the consistency of shared
memory. Lamport proposed the notions of safe, regular and
atomic registers—shared objects that support read and write
operations [15]. The term atomic or atomicity in this context
means that operations applied to a register can be totally
ordered so that: (1) the total order extends the “happens before”
partial order (i.e., if operation A ends before operation B
begins, then A precedes B in the total order); and (2) each read
returns the value assigned by the latest write in the total order.
Herlihy and Wing later generalized this property to arbitrary
object types by defining the linearizability property [16].

Recent research has considered weaker forms of atomicity
that parameterize the degree of re-ordering among operations.
Aiyer et al. defined k-atomicity, which generalizes Lamport’s
atomicity by allowing a bounded degree of version-based
staleness: each read may return the value assigned by one of
the k most recent writes [10]. In contrast, the ∆-atomicity
property allows a bounded degree of time-based staleness [8].
More precisely, ∆-atomicity allows a read to return a value
that was considered current up to ∆ time units before the
read began. Lamport’s atomicity property is equivalent to k-
atomicity with k = 1, and to ∆-atomicity with ∆ = 0.

In databases, transaction isolation properties are the moral
equivalent of the consistency properties discussed herein. The
most widely studied isolation level is serializability [17], which
requires that transactions appear to execute in some serial

order but (in principle) allows queries to return stale data
[17]. Strict serializability [18] further requires that this serial
order extend the “happens before” partial order, similarly to
linearizability. Google’s Spanner database provides external
consistency, which is similar to strict serializability [19]. Pileus
supports a spectrum of consistency properties specified using
consistency-based service level agreements (SLAs) [20].

Many storage systems provide eventual consistency (e.g.,
[1], [14], [21]), which guarantees that “if no new writes
are made to the object, eventually all accesses will return
the last written value” [2]. This property is weak enough
to be attainable in highly-available partition-tolerant systems
that (according to Brewer’s “CAP” principle) preclude strong
consistency properties such as linearizability [3], [22]. Formal
definitions of eventual consistency for general systems appear
in [12], [13]. Shapiro et al. present a formal treatment of
eventual consistency in the case when operations on shared
objects are commutative and hence avoid “conflicts” by design
[23], [24]. Conventional key-value storage systems (e.g., [14],
[21]) fall outside this category because they support write
operations, which are inherently conflict-prone. That is, the
latest value of an object depends on the order of writes applied.

Yu and Vahdat propose TACT (Tunable Availability and
Consistency Tradeoffs), a middleware layer that supports
application-dependent consistency semantics expressed as a
vector of metrics defined over a logical consistency unit or
conit [25]. Inconsistencies in the observed value of a conit are
bounded using three metrics: numerical error, order error, and
staleness. For example, a conit can represent messages posted
in a social networking site, and its numerical value can be the
number of messages posted. In that case, numerical error and
order error bound the difference in the number and order of
messages received by a given replica versus messages applied
globally, and staleness bounds the age of the oldest message
that has been applied globally but not seen by a given replica.
The ∆ metric of Golab, Li and Shah [8] can be regarded as
a formal interpretation of Yu and Vahdat’s staleness metric in
the special case when a conit is a single key-value pair.

b) Verification: Given a specification of a consistency
property, it is natural to ask whether a system provides this
property. This question can be cast as a formal decision
problem whose input is an execution trace of a system that
records the start and finish times (e.g., measured at clients), the
arguments and the response of every operation applied to the
system. Gibbons and Korach showed that this problem is NP-
complete for sequential consistency and linearizability [26].
However, in the special case when any two write operations
on the same object always assign distinct values, linearizability
and ∆-atomicity can be verified in polynomial time [26], [8].

c) Measurement: In the traditional sense, a consistency
property (e.g., linearizability) is something that a system either
provides or fails to provide. Thus, the property can be verified,
but not measured. However, eventual consistency is so loosely
specified that several attempts have been made to quantify how
far it deviates from the gold standard of atomicity. This ques-
tion can be posed with respect to client-centric consistency,
which captures what client applications observe directly, or
system-centric consistency, which captures the convergence of
the storage system’s replication protocol.

Measuring eventual consistency usually entails quantifying
the staleness of data returned by reads, relative to the latest
or freshest data. Wada et al. [7] measure time-based staleness
in key-value storage platforms by actively writing timestamps
to a key from one client, and reading the same key repeatedly
from another. The time difference between the reader’s local
time and the writer’s timestamp answers the question “how
eventual?” Bermbach et al. [6] and Patil et al. [5] apply
similar techniques. This general methodology stress-tests the
replication protocol of the storage system by applying reads
back-to-back with writes at different replicas, and for that
reason we consider it system-centric.

A passive methodology for benchmarking eventual consis-
tency has also been proposed, in which staleness is computed
off-line from an execution trace recorded by clients [9]. Rather
than stress-testing the storage system, this approach aims to
quantify the actual staleness observed by clients under natural
conditions. Thus, the technique is client-centric. Given an
arbitrary execution trace, staleness is calculated by finding the
minimum number ∆ such that the trace is ∆-atomic [8]. The
computation entails evaluating a score function, which can be
used to visualize fluctuations in staleness over time. We also
use a client-centric passive methodology in this paper, but
with a novel consistency metric Γ that improves upon ∆ in
environments with loosely synchronized clocks. Furthermore,
we provide an extensive sensitivity analysis of Γ to a variety of
configuration and workload parameters, whereas only a single
trace is analyzed using the ∆ metric in [9].

Calculations based upon an execution trace can also be
used to quantify the number of consistency anomalies ob-
served. Golab, Li and Shah [8] use dynamic programming to
count the number of values involved in such anomalies. Zellag
and Kemme [27] instead analyze cycles in dependency graphs,
similar to graphs that are used to characterize serializability.

d) Prediction: Bailis et al. [11] provide a probabilisti-
cally bounded staleness (PBS) model, which predicts staleness
using an abstract model of the storage system. This model is
parameterized with details such as the distribution of latencies
at various processing stages, and used to estimate a function
that maps the read-after-write time to the probability of the
read returning the latest value. The problem of deducing the
read-after-write time, for example from the workload, is left
open. PBS focuses on the behavior of failure-free systems, but
node failures are considered in follow-up work [28].

III. CONSISTENCY METRIC

In this section we define a novel metric called Γ (Gamma)
for measuring eventual consistency in key-value storage sys-
tems. Our metric and the underlying methodology build on
the ∆ metric [8], [9]. Γ is theoretically sound and can be
used to quantify both the frequency and severity of consistency
anomalies. We first review the known metric ∆ and point out
its disadvantages, and then describe our new metric Γ.

A. Prior work: ∆ metric

The ∆ metric, expressed in units of time, captures the “de-
viation” of a given execution trace from Lamport’s atomicity
property. Before we formally define ∆, we introduce some
terminology and definitions. For any key k and value x, the

operation k.put(x) denotes a write of x to k, and operation
k.get():x denotes a read of x from k. For any operation op,
the start time op.s refers to the time point when the request
was initiated by the client, and the end time op.e refers to
when the request completes at the client. We say that operation
op happens before operation op′, written as op < op′, if
op.e < op′.s. If neither op < op′ nor op′ < op, we say that
op and op′ are concurrent. The “happens before” partial order
is used to define Lamport’s atomicity property with respect to
an execution trace, as described in Section II.

Given an execution trace T , we say that T is ∆-atomic if
it can be made atomic by shifting the start time (i.e., op.s) of
each get operation to the left by ∆ time units. The process
of shifting operations is a mathematical abstraction and is
performed in off-line analysis; it does not affect the storage
system or workload from which the trace was obtained. Also
note that according to the definition of ∆, only get operations
are considered for shifting, and only at the left endpoint—a
point we address in more detail when we contrast ∆ against
our novel metric Γ.

An example of ∆ atomicity is shown in Figure 1 (a),
which considers a trace comprising three operations on a single
key k, possibly applied at three different clients. As regards
atomicity, the “happens before” order in this trace dictates
that k.put(1) takes effect before k.put(2), which takes effect
before the get operation. Thus, the latest value with respect
to the get is 2, and so the return value of 1 indicates an
atomicity violation. However, the trace is ∆-atomic for ∆
equal to (or greater than) the gap Y between the k.put(2) and
k.get():1. This is because shifting the start time of the get to
the left by at least Y time units yields an atomic trace, as
shown in Figure 1 (b), in which the “happens before” order
no longer constrains k.put(2) relative to k.get(). More details
and examples are described in [9].

k.put(1) k.get():1 k.put(2)

time

(a)

(b)

k.put(1) k.get():1 k.put(2)

Y X

Fig. 1. Example traces illustrating ∆-atomicity, with operations represented
as intervals of time. The symbols X and Y denote gaps in time between
operations. The trace in part (a) is non-atomic but can be made atomic by
stretching the left endpoint of the get operation as shown in part (b).

B. A new metric: Γ

The ∆-atomicity property allows get operations to return
values that are stale by up to ∆ time units. However, it fails to

capture the idea that put operations may take effect in an order
different from their “happens before” order in a trace. Consider
again the example in Figure 1 (a), where k.put(1) appears to
happen before k.put(2) based on the trace. It is possible that
k.put(1) is ordered by the storage system as taking effect after
k.put(2), making 1 the latest value instead of 2. For example,
this can happen if (i) clocks are skewed across storage servers
by an amount comparable to operation latencies, or (ii) writes
are applied asynchronously, thereby taking effect after the end
of the operation time intervals observed at clients. In such
cases, the return value of the get operation is not actually
stale, even though the trace appears to contain a consistency
anomaly. Without knowing the exact details of every operation,
we are left to interpret the causes of this anomaly as either
reordering of put operations, or a get that returns a stale value.

Although both of the above interpretations are plausible,
we argue on philosophical principles (inspired by Occam’s
razor) that the more likely interpretation is the one that entails
less reordering. To quantify the degree of reordering, we must
consider both how stale the get operation is, and how badly out
of order the two puts are. As described above in the discussion
of ∆, the staleness of the get operation is Y since the trace
can be made atomic by stretching the get by Y time units.
Alternatively, we can make the trace atomic by shifting the
end time of k.put(1) to the right, or the start time of k.put(2)
to the left, to close the gap of X time units between the two
puts shown in Figure 1 (a). In that case, k.put(1) no longer
happens before k.put(2), and so the get is no longer stale.
Thus, in some sense the two puts are out of order by X time
units. The quantity min(X,Y) considers all possible causes of
the observed consistency anomaly in this case, and adopts the
cause indicating the least reordering as the most likely one.
This idea defines our new metric Γ.

To illustrate Γ in action, Figure 2 presents an additional
example for comparison against Figure 1 (a). In both figures,
X denotes the shortest distance by which the two puts can be
considered out of order, and Y denotes the shortest distance by
which the get operation can be considered stale. In Figure 1 (a),
X > Y holds and so we interpret the situation as a stale read.
In Figure 2, Y > X holds, and so we consider the two puts
out-of-order. The latter trace is Γ-atomic for any Γ ≥ X , and
∆-atomic only for any ∆ ≥ Y > X .

k.put(1) k.get():1 k.put(2)

time

Y X

Fig. 2. Example of a three-operation trace that is Γ-atomic but not atomic,
and for which Γ is smaller than ∆.

We now give a general definition of Γ: an execution trace T
is Γ-atomic if T can be made atomic by shifting the start time
of each operation (i.e., get or put) to the left by Γ/2 time units,
and by shifting the end time of each operation to the right by
Γ/2 time units. The intuition behind shifting the endpoints by
Γ/2 (as opposed to Γ) is to close the gap between a pair of

operations from both sides, for example stretching put(1) and
put(2) in Figure 2 by X/2 time units each. As we explain in
Section III-D, this allows us to compute Γ for some traces
where ∆ is undefined, such as when clock skew re-orders gets
and puts. Treating start and end time points symmetrically also
avoids awkward corner cases in the definition of Γ.

Like ∆, the Γ metric can be defined at various granularities.
The most fine-grained method, illustrated in Figure 1, captures
the inconsistency caused by the interaction of operations that
access two different values, say v and v′, for the same key k
(e. g. v = 1 and v′ = 2 in Figure 1). We call this quantity the
Γ(k, v, v′, T) score for a trace T . Next, we construct a per-key
quantity called the Γ(k, T) score:

Γ(k, T) = max
values v, v′ accessed on k in T

Γ(k, v, v′, T)

Finally, we can compute a per-trace metric called the Γ(T)
score as follows:

Γ(T) = max
key k accessed in T

Γ(k, T)

Under the assumptions described shortly, it is straightforward
to show that Γ(T) is the smallest real number x such that T
is Γ-atomic for Γ = x.

To simplify our discussion of the assumptions underlying
Γ, we begin with a definition: for any trace T , any key k, and
any value v, let a dictating put for a get of k that returns v
be any put in T that assigns v to k. Now it follows that Γ(T)
is well-defined (i.e., it exists and is finite) under the following
assumption:

Assumption 1: Every get in T has at least one dictating put.

Intuitively, under Assumption 1 a get operation can only
return data written by some put operation in the trace. In that
case, an atomicity violation can occur only if some operations
appear to take effect in an order that contradicts the “happens
before” partial order. For example, a get may appear to return
a stale value, as in Figure 2, or a get may precede all of its
dictating puts in the trace due to clock skew. Shifting both the
start and end point of every operation by Γ/2 time units ensures
that for some large enough Γ, all operations are stretched to
the point that they overlap at a common point in time. In other
words, the “happens before” partial order becomes trivial, and
hence the stretched trace becomes atomic. Thus, every trace
satisfying Assumption 1 is Γ-atomic for some large enough Γ.

In practice, gets applied to a key-value storage system may
on rare occasion return “junk” data in violation of Assump-
tion 1. This behavior might occur as a result of software bugs
or corrupted storage media. Our Γ metric is undefined for such
traces, and we do not consider them any further.

C. Comparison of ∆ and Γ

We discuss two differences between ∆ and Γ in practice.
First, we compare the two metrics empirically. To that end, Fig-
ure 3 presents plots of Γ(k, v, v′, T) and ∆(k, v, v′, T) scores
for an experiment using the Cassandra [14] key-value store.
Only positive scores are considered since we are interested in
consistency anomalies; all other scores are zero because the Γ
score function is by definition non-negative. For each metric,
the box plot presents the minimum, 25th percentile, 75th

percentile, and maximum score. The raw scores are plotted
immediately to the right of each box plot. (See Section IV for
details of the experimental testbed.)

Fig. 3. Comparison of Γ and ∆ scores.

The vast majority of ∆ and Γ scores in Figure 3 are in the
0-30ms range. Among 213 ∆ scores, 15 (≈7%) exceed 30ms,
and out of 203 Γ scores only 3 (≈1.5%) exceed 30ms. The
maximum ∆ score is 155, and the maximum Γ score is 58,
roughly 62% lower. Thus, the Γ scores appear less noisy than
the ∆ scores in the sense that the distribution of Γ scores has
a shorter tail.

Further to our informal observation that Γ tends to yield
less noisy metric values than ∆, we claim specifically that Γ is
more robust than ∆ against clock skew. This claim is based on
theory rather than empirical evidence: badly skewed clocks can
break a fundamental assumption that underlies the definition
of ∆ but is not required for Γ. As a result, there exist traces
for which Γ is well-defined but ∆ is undefined. Specifically,
this occurs when every get has a dictating put but some get
appears to happen before any of its dictating puts in a trace. As
an example, consider a trace T in which a client gets a value
v from some key k, and later on some other client writes v
to key k. Thus, the get operation appears to return a future
value in the trace. As a result ∆(T) does not exist because
stretching the left endpoint of the get cannot make the trace
atomic by creating overlap with a dictating put. In contrast,
Γ(T) remains well-defined since Assumption 1 holds.

We observed the above phenomenon quite frequently in
runs obtained using our experimental platform, where clock
skew across machines is comparable to operation latencies.
Our execution traces are generated by merging timing infor-
mation from multiple clients, and so the order of operations
in a trace may not reflect accurately the true “happens before”
partial order. Thus, gets may appear to precede their dictating
puts, and pairs of puts may appear out of order in the trace. The
Γ metric is designed to account for both types of anomalies.

D. Efficient computation of Γ

Having defined the Γ metric and its properties, we now
describe an efficient (i.e., polynomial-time) algorithm that
calculates Γ(T) given an arbitrary execution trace T . Our algo-
rithm relies on Assumption 1, which ensures that Γ(T) is well-
defined. In addition, we require the following assumption to
circumvent the NP-completeness result discussed in Section II:

Assumption 2: If two puts occur on the same key, they
assign distinct values.

Assumptions 1 and 2 together imply that every get has
a uniquely-defined dictating put. Also note that Assumption 2
does not incur any loss of generality because it can be enforced
in practice by incorporating a unique identifier (e.g., client ID
and timestamp) into the value written by a put. In practice,
enforcing Assumption 2 might result in Γ taking on somewhat
pessimistic values. For example, if a client repeatedly puts and
gets the same value in a given key, then each put is considered
unique under Assumption 2, and so a positive Γ score may
occur even though the client does not observe any consistency
anomaly. In our experience, such workloads are rare.

The algorithm for computing Γ(T) is inspired by ideas
from the atomicity verification algorithm of Gibbons and
Korach [26], and the algorithm for computing ∆(T) [8]. We
first review some important technical definitions. A cluster is
a set of operations that act on the same key, and get or put
the same value. In this paper, the cluster of operations for key
k and value v is denoted C(k, v). For example, Figure 2 had
two clusters: C(k, 1) and C(k, 2). Cluster C(k, 1) comprises
put(1) and the get operation, while cluster C(k, 2) comprises
only put(2). Note that under Assumptions 1 and 2, every cluster
contains exactly one put and zero or more gets.

Corresponding to each cluster C(k, v), we define a zone
denoted Z(k, v). The zone is an interval of time during which
the value v is considered the latest value. Intuitively, overlaps
among zones represent consistency anomalies, although as we
explain later on some of these overlaps are benign. Formally,
Z(k, v) is the time interval from the earliest end time of an
operation in C(k, v) (denoted Z(k, v)min) to the latest start
time of an operation in C(k, v) (denoted Z(k, v)max). A zone
Z(k, v) has a well-defined direction: it is a forward zone if
Z(k, v)min ≤ Z(k, v)max, and we call it a backward zone
otherwise. According to this definition, a backward zone ends
before it starts.

We observe that a backward zone occurs when all the
operations in a cluster overlap at a common point. When we
discuss overlaps among zones, we treat a forward zone Z(k, v)
as the closed interval [Z(k, v)min, Z(k, v)max], and a backward
as the closed interval [Z(k, v)max, Z(k, v)min]. Examples of
zones are shown in Figure 4, and we refer to them while
discussing the algorithm.

The key insight underlying the algorithm for computing
Γ(T) is that it suffices to consider pairs of clusters individually.
The input T is processed in a series of phases that identify
clusters and zones, and then score the consistency anomalies
caused by conflicts among clusters. For each pair of clusters,
the score indicates how far the operations in those clusters
must be stretched to eliminate the conflict, which depends upon
the pattern of overlap among the time intervals representing
the corresponding zones. Formally, we say that two forward
zones conflict if their intervals overlap, and a forward zone
conflicts with a backward zone if the forward interval encloses
the backward interval entirely [26].

The effect of shifting operation start and end points in a
given cluster by Γ/2 time units is to either shrink or expand
the corresponding zone by Γ time units. Backward zones
expand, whereas forward zones shrink and eventually turn

k.get():1

k.put(1)

time

k.get():2 k.put(2)

k.put(3) k.get():3

k.put(4)

k.get():5 k.put(5)

Z(k, 1)

Z(k, 2)

Z(k, 3)

Z(k, 4)

Z(k, 5)

(backward)

(forward)

(forward)

(backward)

(forward)

Fig. 4. Examples of forward and backward zones.

into backward zones. In contrast, in the computation of ∆
the effect of shifting only the start points of get operations is
more complex. For example, if a backward zone contains one
put and no gets, then the zone is unaffected by the shift. For
this reason, computing Γ is simpler than computing ∆.

Phase 1: Organize operations in T into clusters, and identify
the zone for each cluster.

Phase 2: For any key k accessed in T , and for any pair of
values v, v′ written to k in T , define Γ(k, v, v′, T) as follows:

• If v = v′ (i.e., Z(k, v) is compared against itself), assign
Γ(k, v, v′, T) = 0 unless some get of v precedes the put of
v in cluster C(k, v). In the latter case, Γ(k, v, v′, T) is the
distance from the earliest finish time of a get in C(k, v) to
the start of the dictating put. Such a zone could arise due
to clock skew. See for example zone Z(k, 5) in Figure 4.

• Else if Z(k, v) and Z(k, v′) are distinct conflicting zones
(i.e., forward overlaps forward, or forward encloses back-
ward) then Γ(k, v, v′, T) is defined as the minimum of
Z(k, v)max −Z(k, v′)min and Z(k, v′)max −Z(k, v)min.
Intuitively, to remove the conflict, forward zones must
be contracted and backward zones expanded so that the
“max” endpoint of one zone moves past the “min”
endpoint of the other. Note that if Z(k, v) and Z(k, v′)
are both forward zones then the shorter of the two may
become a backward zone as its operations are stretched.
This case could arise naturally when gets are applied
shortly after puts, before the system has had a chance to
synchronize replicas. See for example zone pairs Z(k, 2)
& Z(k, 3), Z(k, 3) & Z(k, 5), as well as Z(k, 2) &
Z(k, 4) in Figure 4.

• Else Z(k, v) and Z(k, v′) are distinct and non-conflicting,
hence Γ(k, v, v′, T) = 0. In Figure 4, this case corre-

sponds to the following combinations of zones: Z(k, 1) &
Z(k, 2), Z(k, 3) & Z(k, 4), Z(k, 1) & Z(k, 4). This case
also applies when Z(k, v) and Z(k, v′) do not overlap.

Phase 3: For each key k accessed in T , compute Γ(k, T) =
maxv,v′ Γ(k, v, v′, T), and Γ(T) = maxk Γ(k, T).

IV. EXPERIMENTAL RESULTS

In this section we present the results of our experimental
study of the sensitivity of the Γ metric under a variety of
configuration and workload parameters. We evaluated Γ using
Cassandra, a popular open-source key value store [14]. Our
results demonstrate the impact on client-side consistency due
to (i) critical Cassandra parameters including replication factor
and read/write consistency level, and (ii) client workload
parameters: get/put ratio and client throughput. Even though
we only focus on failure-free executions, the experiments
generated interesting and sometimes counter-intuitive results.

A secondary goal of the experimental study is to com-
pare our Γ-based passive measurement method from prior
techniques for consistency benchmarking that employ active
measurement. For example, systems like YCSB++ [5] measure
client-centric consistency indirectly by observing the “time
lag” between a put and the first get that returns the value
written. Our experimental hypothesis is that this time lag is
a pessimistic estimate of the consistency actually observed
by clients because it is obtained by probing the system in
a manner that elicits consistency anomalies. In contrast, Γ
captures client-perceived consistency directly, based on passive
calculations. Because the time lag and Γ are both expressed
in units of time, we can compare these two metrics directly.

Since the YCSB++ code base is not integrated into the
main YCSB branch and does not support connectors suitable
for the version of Cassandra used in our experiments, we rely
on an alternative technique to estimate the time lag metric.
Namely, we quantify the length of time needed to synchronize
replicas of a key following a put by injecting a small number of
additional puts into the workload using write-ALL consistency,
and measuring their latency. These additional puts are executed
500ms apart in parallel with the YCSB workload, but do not
participate in the calculation of Γ. Because the additional put
operations wait for acknowledgment from all N replicas, their
latency measures directly the time required to update the last
replica. We expect this to be a reasonable estimate of the metric
computed by YCSB++, where time lag measurements are
obtained using read-ONE/write-ONE client-side consistency
levels. (The ability to vary these levels is not implemented
in the YCSB++ Cassandra connector as of 31/03/2014.)

A. Experimental setup

The experimental testbed comprises ten 64-bit 2.2 GHz
dual-core AMD Opteron servers equipped with 7200 RPM
SATA disks and Gigabit Ethernet. Five servers were used to
execute the storage system (Cassandra 1.2.4), and another five
to run a version of YCSB 0.1.4 modified to collect execution
traces in the format required for our offline passive analysis.
The software environment included CentOS 5.5 Linux and
OpenJDK 1.7.0 19. Clocks on the cluster machines were
synchronized using NTP, yielding 50-100ms accuracy with

respect to stratum 0. However, we verified using ntpq that
clocks on the cluster machines generally agreed to within a few
milliseconds relative to each other. Accordingly, we estimated
the margin of error in our time measurements as 10ms.

Each YCSB experiment consisted of a load phase, followed
by a 60-second work phase. Unless otherwise specified, the
following YCSB parameters were used: eight client threads,
128-byte values, and a get/put ratio of 0.5. In runs where
the YCSB “hotspot” distribution is used, 20% of the keys
received 80% of the load. The YCSB-Cassandra connector
used write ONE / read ONE consistency by default, and
Cassandra was configured with a replication factor of 3. The
typical throughput for this setup was between 500 and 1000
operations per second per Cassandra host.

The size of the keyspace varies across experiments because,
as we discovered, it has a very strong effect on consistency.
In particular, the keyspace must be kept quite small so that
consistency anomalies can be observed at all. In general,
we used the largest possible keyspace for which we could
observe anomalies involving at least 1% of the operations.
Unless stated otherwise, this corresponds to 1000 keys for
the “hotspot” distribution, and 10000 keys for the “latest”
distribution, which is similar to Zipfian but skewed further
toward recently inserted records [29]. Any graphs that display
data for both hotspot and latest distributions are intended to
demonstrate the sensitivity of Γ rather than to enable side-by-
side comparisons of the two distributions.

B. Visualization of Γ

Quantifying eventual consistency precisely is challenging
because the ramifications of sacrificing strong consistency
cannot be sufficiently characterized by a single metric. As a
result, in this paper we consider separately the frequency and
severity of consistency anomalies.

1) Frequency: Using the Γ metric we devise a formula
that counts the proportion of values involved in consistency
anomalies, which is one way to interpret the frequency of
consistency violations. The formula is expressed in terms of a
trace T and Γ scores among pairs of clusters:

|{(k, v) | Γ(k, v, v′, T) > 0 for some v′}|
of (k, v) such that an op. on k accesses value v in T

We visualize such proportions using bar graphs, which
include error bars representing the standard error calculated
as

√
p̂(1− p̂)/n. Here p̂ denotes the proportion obtained

using our formula (i.e., the sample proportion), and n is the
denominator in the formula (i.e., the sample size).

2) Severity: To quantify the severity of consistency anoma-
lies captured by the Γ metric, we visualize Γ(k, v, v′, T) scores
using box plots, similar to Figure 3. The boxes indicate the
25th and 75th percentile scores, whereas the top and bottom
lines indicate the minimum and maximum. The minimum
(and often the 25th percentile) in our experiments is typically
1ms, corresponding to the smallest positive score that can
be observed using the millisecond precision clock provided
in Java. (Although Java does support a nanosecond-precision
clock, it can only be used to measure elapsed time, whereas
passive analysis is based upon wall clock time.)

Our measurements of system-centric consistency or “time
lag”, which are based upon the latencies of write operations,
provide an approximate upper bound for the the actual severity
calculated using Γ. We attempted to visualize the system-
centric numbers using box plots, like Γ, but found that the
distributions were strongly skewed toward small values (i.e., 2-
3 ms), making the 25th and 75th percentiles difficult to separate
visually from the minimum. Instead we present system-centric
consistency using one-dimensional scatter plots, which show
the largest measurements directly.

C. Sensitivity analysis

In this section we investigate the sensitivity of Γ, and the
time lag metric. For each experiment, we visualize consistency
using the three types of plots described earlier in Section IV-B.
For example, in Figure 5 part (a) shows the proportion of
values with positive Γ(k, v, v′, T) scores, part (b) is a box
plot showing quartiles of the Γ(k, v, v′, T) scores, and part (c)
is a scatter plot of the time lag values.

1) Sensitivity to keyspace size: Figure 5 compares runs
using the YCSB hotspot and uniform distributions for various
keyspace sizes. Two patterns can be seen from the results. First,
the proportion of positive Γ scores decreases as the size of the
keyspace increases. Second, the proportions are higher for the
hotspot distribution, which is skewed toward a subset of the
keyspace, than for the uniform distribution. Both trends can be
explained by considering the throughput per key, which affects
the likelihood of gets occurring shortly after their dictating
puts. As the keyspace size increases, the throughput per key
decreases; hence consistency improves. Skewing the workload
has the opposite effect on the subset of “hot” keys.

The results also show that time lag is more pessimistic
than Γ. The time lag values for the uniform distribution
over 100,000 keys suggest inconsistencies in the hundreds
of milliseconds. However there were no Γ scores above the
margin of error of around 10ms in the uniform/100,000 case.
As a result, there is no evidence of clients observing any
consistency anomalies in this particular run. Γ is thus more
accurate as a measure of observed inconsistency.

2) Sensitivity to client-side consistency settings: Figure 6
compares runs with various combinations of client-side read
and write consistency levels, using the latest (10,000 keys) and
the hotspot (1,000 keys) distributions, and a replication factor
of 5. The proportion of positive Γ is highest when the weakest
settings (i.e., ONE-ONE) are used. The box plot shows a
definitive pattern: Γ scores are substantially worse for ONE-*,
otherwise the scores are generally in the 1-2ms range (except
for MAJORITY-ONE), which is within the 10ms margin of
error. In contrast, the time lag does not show any variation
because it is always measured using put operations with ALL
consistency.

The box plot for the ONE-ALL run indicates consistency
violations substantially higher than the 10ms margin of error.
This result demonstrates that atomicity is in fact stronger than
the popular notion of “strong consistency” [2], which holds in
this experiment because reads and writes access overlapping
subsets of replicas. That is, under ONE-ALL consistency the
criterion R + W > N is satisfied with R = 1 and W = N ,
where R is the number of replicas accessed by a read and W

(a) frequency (b) severity (c) system-centric consistency

Fig. 5. Consistency versus keyspace size.

(a) frequency (b) severity (c) system-centric consistency

Fig. 6. Consistency versus number of replicas read and written. (E.g., “ONE-MAJ” indicates read one and write majority.)

is the number of replicas accessed by a write. We comment
on this case in more detail below.

Strong consistency is usually discussed in the special case
when gets do not overlap in time with puts, and puts take effect
in a well-defined order. Under these simplifying assumptions,
the R + W > N rule indeed guarantees that a get operation
always returns the latest value. However, the same rule does
not guarantee atomicity in the general case when gets and puts
may overlap arbitrarily. Attiya, Bar-Noy and Dolev observe
this issue in their simulation of shared memory on top of
message passing, and use an explicit write-back phase to
ensure that when one read observes a partially completed write,
all future reads observe either the same write or a later one
[30]. In contrast, Cassandra lacks a write-back phase and hence
may exhibit atomicity violations even under conditions that
guarantee strong consistency.

To illustrate the above point, we analyzed the operations
corresponding to the maximum Γ score in the ONE-ALL run
in Figure 6 for the “latest” distribution. A simplified illustration
of these operations is shown in Figure 7, which includes two
gets and two puts. The first get operation observes a partially
completed put of value 2, but the second get reaches a replica
that still holds the older value 1. This constitutes a violation of
atomicity because the “happens before” order requires k.put(2)
to take effect after k.put(1), and yet 2 is read from k before 1.
This type of anomaly can only be observed when gets execute
concurrently with puts—a scenario that falls outside the scope
of both active measurement and PBS (see Section II).

k.put(1) k.put(2)

k.get():2

time

k.get():1

Fig. 7. Simplified illustration of an atomicity violation occurring despite
overlapping read and write quorums.

3) Sensitivity to replication factor: Figure 8 compares runs
with various replication factors, using the hotspot (1000 keys)
and latest (10000 keys) distributions. Both the frequency and
severity of consistency violations (Figures 8 (a) and (b)) are
much greater when the replication factor is 3 or 5, versus 1.
This is expected since we used the weakest consistency settings
(read-ONE/write-ONE), which ensure overlapping read and
write quorums only when the replication factor equals one.
In comparison, the time lag plot exhibits only a weak trend of
increasing values as the replication factor grows, with a very
small difference between 1 and 3.

We observe a few positive Γ scores even with a replication
factor of 1. Specifically, out of approximately 100-120k values
written to the storage system, fewer than 100 resulted in
consistency violations. The box plot reveals that the Γ scores

(a) frequency (b) severity (c) system-centric consistency

Fig. 8. Consistency versus replication factor.

in that case were in the 1-2ms range, well within the 10ms
margin of error.

4) Sensitivity to get/put ratio: Figure 9 compares runs with
various proportions of gets for the latest and hotspot distribu-
tions over 100 keys. A very small keyspace was chosen for
this particular experiment to demonstrate the sensitivity more
clearly, and the total throughput was approximately constant
across runs. The proportion of positive Γ scores exhibits a
definitive growth as the fraction of puts increases. In contrast,
the 75th percentile Γ score shown in the box plot tends to
decrease slightly. These outcomes can be explained as follows:
a higher proportion of gets increases the likelihood that clients
observe consistency anomalies (e.g., by reading a key shortly
after it is written), but a correspondingly lower proportion of
puts decreases the pressure on the replication protocol, and
hence the severity of observed anomalies declines.

5) Sensitivity to throughput: Figure 10 compares runs at
various levels of throughput for the “latest” distribution over
10000 keys. The proportion of positive Γ scores increases
steadily with throughput, which is expected since the frequency
of operations per key increases as well. In comparison, the
box plot and time lag plot do not exhibit a clear pattern. The
maximum time lag seems to increase slightly with throughput,
which is expected given the additional load on the replication
protocol.

V. CONCLUSION

In this paper, we presented a theoretically-sound methodol-
ogy for benchmarking eventual consistency, and demonstrated
its use on Cassandra. We showed experimentally that our
client-centric technique exhibits substantial sensitivities to a
variety of configuration and workload parameters, most im-
portantly the keyspace size, client-side read/write consistency
levels, distribution of keys, and replication factor. In compari-
son, measurements of a system-centric consistency (i.e.,“time
lag”) metric were shown to exhibit weak-to-no sensitivity, and
indicated that substantial consistency anomalies might occur
even in cases when no such anomalies were observed using
our metric Γ.

Our consistency benchmarking methodology leads to many
interesting future directions. A challenge with using a predic-
tion tool like PBS [11] is developing an accurate system model,
particularly for modeling uncommon events like failures (both
permanent and transient) or flash crowds. Our measurement

technique provides a way to validate PBS predictions in arbi-
trary workload traces, which may be of particular importance
when comparing the impact of uncommon events on data
staleness. Γ may also provide a way to methodically tune
the trade-off between consistency and latency. Consider the
possibility of “amplifying consistency” by delaying or slowing
down operations in a manner that improves consistency at the
cost of latency. The Γ metric can guide us toward finding the
optimal distribution of delays and deciding which operations
should be delayed to strike a good balance. We also plan to
investigate novel computation techniques for large traces. For
example, for online processing we can work with a fixed size
window of operations in the trace, and continuously discard
old operations that can no longer affect the computation [8].
Second, we can truncate the trace and approximate Γ over
the most recent operations. Third, we can parallelize the Γ
computation code to exploit modern multi-core architectures.
Finally we hope to study the effect of failures (e.g., network
partitions) on consistency using the Γ metric.

ACKNOWLEDGMENTS

We are grateful to Jay J. Wylie for stimulating discussions
on the topic of consistency, and for his insightful feedback on
earlier drafts of this manuscript. Thanks also to Doug Terry,
Xiaozhou (Steve) Li, and the anonymous referees for their
helpful comments. We are indebted to Prof. Ashraf Aboulnaga
for providing access to a computing cluster in support of the
experiments presented in this paper.

REFERENCES

[1] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, “Managing update conflicts in Bayou, a weakly
connected replicated storage system,” in Proc. ACM Symposium on
Operating Systems Principles (SOSP), 1995, pp. 172–182.

[2] W. Vogels, “Eventually consistent,” Queue, pp. 14–19, 2008.
[3] E. A. Brewer, “Towards robust distributed systems (Invited Talk),” in

Proc. ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), 2000.

[4] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: CAP is only part of the story,” IEEE Computer, vol. 45, no. 2,
pp. 37–42, 2012.

[5] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson,
A. Fuchs, and B. Rinaldi, “YCSB++: benchmarking and performance
debugging advanced features in scalable table stores,” in Proc. ACM
Symposium on Cloud Computing (SOCC), 2011, pp. 9:1–9:14.

[6] D. Bermbach and S. Tai, “Eventual consistency: How soon is eventual?
An evaluation of Amazon S3’s consistency behavior,” in Proc. Workshop
on Middleware for Service Oriented Computing (MW4SOC), 2011.

(a) frequency (b) severity (c) system-centric consistency

Fig. 9. Consistency versus proportion of get operations.

(a) frequency (b) severity (c) system-centric consistency

Fig. 10. Consistency versus throughput.

[7] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consistency
properties and the trade-offs in commercial cloud storage: the con-
sumers’ perspective,” in Proc. Conference on Innovative Data Systems
Research (CIDR), 2011, pp. 134–143.

[8] W. Golab, X. Li, and M. A. Shah, “Analyzing consistency properties
for fun and profit,” in Proc. ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), 2011, pp. 197–206.

[9] M. R. Rahman, W. Golab, A. AuYoung, K. Keeton, and J. J. Wylie,
“Toward a principled framework for benchmarking consistency,” in
Proc. USENIX Workshop on Hot Topics in System Dependability
(HotDep), 2012.

[10] A. Aiyer, L. Alvisi, and R. A. Bazzi, “On the availability of non-strict
quorum systems,” in Proc. International Symposium on Distributed
Computing (DISC), 2005, pp. 48–62.

[11] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Sto-
ica, “Probabilistically bounded staleness for practical partial quorums,”
Proc. VLDB Endow., vol. 5, no. 8, pp. 776–787, 2012.

[12] S. Burckhardt, A. Gotsman, and H. Yang, “Understanding eventual
consistency,” Microsoft Research Technical Report MSR-TR-2013-39,
March 2013.

[13] Y. Zhu and J. Wang, “Client-centric consistency formalization and
verification for system with large-scale distributed data storage,” Future
Gener. Comput. Syst., vol. 26, no. 8, pp. 1180–1188, 2010.

[14] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[15] L. Lamport, “On interprocess communication, Part I: Basic formalism
and Part II: Algorithms,” Distributed Computing, vol. 1, no. 2, pp. 77–
101, 1986.

[16] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12,
no. 3, pp. 463–492, 1990.

[17] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison Wesley, 1987.

[18] C. H. Papadimitriou, “The serializability of concurrent database up-
dates,” J. ACM, vol. 26, no. 4, pp. 631–653, 1979.

[19] J. C. Corbett et al., “Spanner: Google’s globally-distributed database,”
in Proc. USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI), 2012, pp. 251–264.

[20] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh, “Consistency-based service level agreements for
cloud storage,” in Proc. 24th ACM Symposium on Operating Systems
Principles (SOSP), 2013, pp. 309–324.

[21] W. Vogels, “Amazon’s dynamo,” All Things Distributed, 2007, http:
//www.allthingsdistributed.com/2007/10/amazons dynamo.html.

[22] N. Lynch and S. Gilbert, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, no. 2, pp. 51–59, 2002.

[23] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Proc. International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), 2011, pp.
386–400.

[24] ——, “Convergent and commutative replicated data types,” Bulletin of
the EATCS, vol. 104, pp. 67–88, 2011.

[25] H. Yu and A. Vahdat, “Design and evaluation of a conit-based contin-
uous consistency model for replicated services,” ACM Trans. Comput.
Syst., vol. 20, no. 3, pp. 239–282, Aug. 2002.

[26] P. B. Gibbons and E. Korach, “Testing shared memories,” SIAM J.
Comput., vol. 26, no. 4, pp. 1208–1244, 1997.

[27] K. Zellag and B. Kemme, “How consistent is your cloud application?”
in Proc. ACM Symposium on Cloud Computing (SOCC), 2012, pp. 1–
14.

[28] A. Davidson, A. Rubinstein, A. Todi, P. Bailis, and S. Venkataraman,
“Adaptive hybrid quorums in practical settings,” UC Berkley, Tech.
Rep., 2013.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. ACM
Symposium on Cloud Computing (SOCC), 2010, pp. 143–154.

[30] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in
message-passing systems,” J. ACM, vol. 42, no. 1, pp. 124–142, Jan.
1995.

