
SIAM J. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 2, pp. 420–455

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME∗

WOJCIECH GOLAB† , XIAOZHOU (STEVE) LI‡ , ALEJANDRO LÓPEZ-ORTIZ§ , AND

NAOMI NISHIMURA§

In memory of Alex López-Ortiz

Abstract. The k-atomicity property can be used to describe the consistency of data operations
in large distributed storage systems. The weak consistency guarantees offered by such systems are
seen as a necessary compromise in view of Brewer’s CAP principle. The k-atomicity property requires
that every read operation obtains a value that is at most k updates (writes) old and becomes a useful
way to quantify weak consistency if k is treated as a variable that can be computed from a history
of operations. Specifically, the value of k quantifies how far the history deviates from the atomicity
(linearizability) property for read/write registers. We address the problem of computing k indirectly
by solving the k-atomicity verification problem (k-AV): given a history of read/write operations and
a positive integer k, decide whether the history is k-atomic. Gibbons and Korach showed that in
general this problem is NP-complete when k = 1 and hence not solvable in polynomial time unless
P = NP. In this paper we present two algorithms that solve the k-AV problem for any k ≥ 3 in
special cases. Similarly to known solutions for k = 1 and k = 2, both algorithms assume that all the
values written to a given object are distinct. The first algorithm places an additional restriction on
the structure of the input history and solves k-AV in O(n2 +n · k log k) time, where n is the number
of operations in the history. The second algorithm does not place any additional restrictions on the
input but is efficient only when k is small and when concurrency among write operations is limited.
Its time complexity is O(n2) if both k and our particular measure of write concurrency are bounded
by constants.

Key words. consistency, atomicity, verification, distributed storage

AMS subject classifications. 68M14, 68Q25, 68N30

DOI. 10.1137/16M1056389

1. Introduction. Distributed storage and data management systems empower
a broad range of data-intensive services today including social networking, web search,
e-mail, calendars, and online auctions. In an effort to cope with web-scale workloads
in the face of immense competitive pressures, the designs of such services have shifted
away from conventional relational databases and toward simpler but more scalable
solutions. As a result, many practical systems offer simple key-value operations and
basically available, soft state, eventual consistency (BASE) properties either instead
of or side by side with conventional transactions and more powerful atomicity, con-
sistency, isolation, durability (ACID) properties.

Eventually consistent key-value stores are an important breed of distributed stor-
age systems that provide BASE properties [8, 35, 37]. Their distinguishing charac-

∗Received by the editors January 12, 2016; accepted for publication (in revised form) February
7, 2018; published electronically April 10, 2018. A preliminary version of this manuscript appears in
the proceedings of PODC 2015 [18].

http://www.siam.org/journals/sicomp/47-2/M105638.html
Funding: The first author was supported in part by the Google Faculty Research Awards

program, the Amazon Web Services (AWS) Cloud Credits for Research program, and the Microsoft
Azure for Research program. The first, third, and fourth authors were supported in part by the
Natural Sciences and Engineering Research Council (NSERC) of Canada.
†Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

(wgolab@uwaterloo.ca).
‡Google Inc., Mountain View, CA 94043 (xzli@google.com).
§School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

(nishi@uwaterloo.ca).

420

http://www.siam.org/journals/sicomp/47-2/M105638.html
mailto:wgolab@uwaterloo.ca
mailto:xzli@google.com
mailto:nishi@uwaterloo.ca

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 421

teristic is the ability to remain available in the face of network partitions, in which
disjoint subsets of hosts become isolated from one another and are unable to commu-
nicate. To ensure that storage operations can proceed despite such partitions, spe-
cialized replication techniques such as sloppy quorums [8, 22, 33] are used. As a side
effect, eventually consistent systems can only provide weak consistency guarantees—a
necessary compromise according to Brewer’s CAP principle [5], which states that a
distributed storage system cannot simultaneously provide strong consistency (C), high
availability (A), and partition-tolerance (P). This observation has been formalized by
Gilbert and Lynch as the impossibility of implementing an atomic read/write register
in an asynchronous message passing system with unreliable communication channels
[15]. A read/write register in this context corresponds to a key-value pair as follows:
the key is the register’s name and is immutable, whereas the value is the object’s state
and can be accessed using read and write operations.

As defined by Terry et al. [35] and Vogels [37], eventual consistency means that
if an object is not updated and no failures occur for a sufficiently long period of time,
then eventually all read operations on the object return the last updated value of that
object. Although this definition captures nicely the essence of eventual consistency,
it also leaves open important questions regarding the behavior of key-value stores
in practice: How long is “eventual,” and how consistent are reads when objects are
updated continuously or failures never subside? In an attempt to answer the latter
question, various notions of data staleness have been defined and analyzed. In this
context, a value written to a key is considered stale once it is overwritten by another
value, and so the staleness of a particular read is a measure of the “distance” between
two write operations: the write that assigned the value read (called the dictating
write of the read), and the write that assigned the latest value to the object under
consideration.

In this paper, we focus on a formal notion of version-based staleness, which is
defined by counting write operations. Specifically, we consider the k-atomicity prop-
erty of Aiyer, Alvisi, and Bazzi [1], which is a generalization of Lamport’s atomicity
property for read/write registers [23]. Both properties are defined over an execution
history, which is a collection of read/write operations tagged with distinct start and
finish times. An operation in such a history “happens before” another operation if the
former finishes before the latter starts, and a history is called k-atomic if there exists
a total order over the operations that extends the “happens before” partial order, and
in which every read returns a value written by one of the last k writes preceding the
read in the total order.

The k-atomicity verification problem (k-AV) is to decide for a given execution
history and integer k ≥ 1 whether the history is k-atomic. An efficient solution to
this problem makes it possible to compute the smallest k for which a given history is
k-atomic, which quantifies the maximum degree of staleness observed by clients ac-
cessing an eventually consistent storage system. Thus, solving k-AV makes it possible
to analyze the actual consistency provided by such systems in arbitrary workloads,
including ones where writes occur continuously and concurrently with each other.

Our main contribution in this paper is a pair of algorithms that solve the k-AV
problem for arbitrary k ≥ 3. Both algorithms assume that all the values written to a
given object in a history are distinct, which establishes a precise “reads from” mapping
between read and write operations. The first algorithm, called GPO (“greedy plus
obligations”), places an additional restriction on the structure of the input history
and solves k-AV for arbitrary k in O(n2 + n · k log k) time, where n is the number of
operations in the history. The second algorithm, called CGS (“configuration graph

422 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

search”), does not place any additional restrictions on the input but is efficient only
when k is small and when the concurrency among write operations is restricted. Its
time complexity is O(n2) if both k and our specific measure of write concurrency
are bounded from above by constants. As explained in section 7, we expect these
algorithms to perform efficiently in practice.

2. Related work. The fundamental problem of defining consistency properties
for shared objects was first addressed by Misra [27] and Lamport [23]. Lamport
defines a number of key concepts in this area, including the happens before and −→
(i.e., precedes) relations, and the atomicity property for registers [23]. The “happens
before” relation is an irreflexive partial order over instantaneous events that captures
the following notion of causality: given two events e1, e2 in Einstein’s four-dimensional
space-time, we say that e1 happens before e2 if it is possible for a pulse of light emitted
at e1 to arrive at e2, and hence for e1 to physically cause e2. Operations on objects
are modeled as collections of events, and given two operations op1, op2 we say that
op1 −→ op2 if every event of op1 happens before every event of op2. In the presence
of a global clock, events can be totally ordered according to time, in which case
op1 −→ op2 means that op1 finishes before op2 starts. Lamport’s atomic read/write
register satisfies the property that any collection of operations applied to the object
can be arranged (conceptually) in some total order that extends −→ and in which
every read returns the value assigned by the latest write [23]. Misra’s axioms [27]
provide an alternative definition of such a register and explicitly address the case of
multiple concurrent writers, whereas Lamport’s definitions are given for the single-
writer case but generalize easily to multiple writers. Herlihy and Wing’s linearizability
property [20] is a generalization of Lamport’s atomicity property to arbitrary typed
shared objects, and to scenarios that include pending (i.e., incomplete) operations
that may appear to take effect before they finish. Herlihy and Wing’s happens before
relation over pairs of operations is a special case of Lamport’s −→ relation when
events are totally ordered.

A variety of relaxed consistency properties have been defined in an attempt to
describe the behavior of weakly consistent distributed storage systems. In general
these properties capture the staleness of the values returned by read operations, which
we can think of more precisely as the “distance” between operations, as explained in
section 1. Two notions of staleness have been defined in the literature: time-based
and version-based. A time-based staleness of t time units (measured using a wall
clock) means that a read returned a value that was considered fresh at most t time
units earlier. Torres-Rojas, Ahamad, and Raynal formalize this notion by defining
timed consistency properties in distributed message passing systems as generalizations
of sequential consistency and causal consistency [36]. Similarly, Golab, Li, and Shah
generalize the atomicity property for read/write registers by defining ∆-atomicity [17]
and Γ-atomicity [19]. On the other hand, a version-based staleness of k versions means
that a read returned the value assigned by one of the last k writes that precede the
read in some total ordering of the write operations. Aiyer, Alvisi, and Bazzi formalize
this notion as the k-atomicity property, which is also inspired by Lamport’s atomic
register [1]. A collection of read/write operations is k-atomic if the operations can be
arranged in some total order that extends −→ and in which every read returns the
value assigned by one of the k latest writes.

Several storage systems and modeling frameworks incorporate relaxed consistency
properties. The TACT (tunable availability/consistency tradeoffs) framework of Yu
and Vahdat defines version-based and time-based staleness informally as order error

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 423

and staleness [39]. Lee and Welch [24] describe a probabilistic consistency framework
in the context of randomized registers implemented using probabilistic quorums, intro-
duced earlier by Malkhi, Reiter, and Wright [25]. The analysis of randomized registers
refers implicitly to version-based staleness by deriving bounds on the probability that
a stale replica exists for a data item that has been overwritten a certain number of
times. The probabilistically bounded staleness (PBS) framework of Bailis et al. uses
similar principles to derive bounds on time-based and version-based staleness [3]. The
authors formalize both notions of staleness in the simplified model where write opera-
tions do not overlap in time with other read or write operations. Ardekani and Terry
[2] as well as Terry et al. [34] propose storage systems that can be configured using
service level agreements (SLAs) to provide bounds on time-based staleness.

Techniques for calculating consistency metrics, such as the ones presented in this
paper, complement the body of work on tunable storage systems and consistency mod-
eling in several ways. First, they enable an empirical understanding of consistency in
practical storage systems, ranging from measuring the convergence time of the repli-
cation protocol [4, 30, 38] to analyzing the complex effect of the workload and system
configuration on the consistency actually observed by client applications [19, 26]. Sec-
ond, precise analysis of consistency enables meaningful verification. For example, a
customer who negotiates an SLA with a service provider could use a k-atomicity de-
cision procedure to determine whether the SLA was indeed honored. This is possible
even if the SLA refers to some alternative notion of staleness, for example one that
refers to the internal implementation details of the system (e.g., where data versions
are determined by timestamp ordering), as long as the provider’s definition of stale-
ness bears a precise relationship to k-atomicity. Similarly, consistency analysis could
be used to validate mathematical models of consistency in environments that do not
conform exactly to the simplifying assumptions on which the models are based. For
example, PBS [3] assumes that network latencies have well-defined and independent
distributions and was validated in an environment where the latencies were controlled
artificially to meet the assumption; its accuracy in a real-world environment remains
to be verified.

Decision problems pertaining to the consistency properties discussed herein are
formalized using concepts borrowed from the study of shared memory multiprocessors.
The input to the decision problem is an execution history—a sequence of invocation
and response events corresponding to operations applied to a collection of shared
objects. The events in a history define the invocations and responses of operations
on objects. Gibbons and Korach show that deciding whether such a history is atomic
is NP-complete in the general case [14]. However, in the special case when each
write operation on a given object assigns a distinct value, polynomial-time decision
algorithms for atomicity have been developed. Under this assumption, Misra’s axioms
can be used to characterize atomicity as the absence of cycles in a conflict graph whose
vertices represent values and whose edges represent precedence constraints imposed
by the ordering of reads and writes in the history [27]. For a history with n operations
the time complexity of this algorithm is O(n2). Gibbons and Korach instead followed
the approach of clustering operations according to the value read or written and
characterized atomicity as the absence of conflicts between pairs of such clusters [14].
Their algorithm has time complexity O(n log n).

The decision problem for the k-atomicity property is called the k-atomicity ver-
ification (k-AV) problem. Given a history and an integer k ≥ 1, the objective is to
decide whether the history is k-atomic. The locality property of k-atomicity states
that the input history is k-atomic if and only if for each object accessed, the subhis-

424 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

tory of operations on that specific object is k-atomic [16, 20]. Accordingly, solutions
to k-AV assume without loss of generality that all operations are applied to the same
object. A solution to k-AV can be used to compute the k-value of a history, defined as
the smallest k for which the history is k-atomic. The k-value equals 1 if and only if the
history is atomic in Lamport’s sense [23], whereas larger k-values indicate deviation
from atomicity and hence from linearizability. In general the higher the k-value, the
greater the deviation.

The k-AV problem was first considered by Golab, Li, and Shah [17]. Like the
problem of deciding atomicity, k-AV is NP-complete in the general case, assuming
that k is part of the input. Golab, Li, and Shah present the first polynomial-time
solutions to 2-AV under the assumption that each write operation on a given object
assigns a distinct value, which is the same assumption that makes 1-AV tractable [16].
One algorithm, called LBT, runs in O(n2) time for a history with n operations. It
leverages ideas inspired by Misra [27], as well as the technique of limited backtracking
[10]. The other algorithm, called Forward Zones First (FZF), runs in O(n log n) time,
and borrows the clustering idea of Gibbons and Korach [14]. Roughly speaking,
both algorithms attempt to establish k-atomicity by arranging the write operations
in a history in a total order constrained by the “happens before” relation and by
the positions of read operations relative to the writes. The key observation with
respect to the latter constraint is that placing a write in some position of the total
order restricts which writes may be placed in neighboring positions. In general, this
restriction either dictates that the next k − 1 positions must include some particular
subset of up to k−1 writes or negates k-atomicity by requiring that the same positions
must include k or more particular writes. In the first case, if the subset of up to k− 1
writes is nonempty, then it has (k − 1)! permutations, meaning that the next write
is determined uniquely when k = 2 but not when k > 2. LBT and FZF exploit this
uniqueness to achieve polynomial running time for k = 2 and do not generalize easily
to higher k.

The k-AV problem has a simple solution when k is greater than or equal to
the number of write operations (e.g., k ≥ n) since in that case the writes can be
ordered arbitrarily subject to the “happens before” constraint, in contrast to the case
of smaller k. More precisely, it suffices to verify that each read returns the value
assigned by some write whose start time is less than the finish time of the read. This
can be achieved in O(n log n) time as follows: (1) use a balanced binary tree to group
the operations by value, representing each group as a linked list; (2) verify that each
group contains at least one write, and compute for each group the minimum start
time of all the writes in the group; and (3) verify for each group that no read finishes
before the minimum write start time computed earlier. Part (1) can be executed in
O(n log n) steps, while O(n) steps in total suffice for parts (2) and (3).

The k-AV problem is somewhat similar to the graph bandwidth problem (GBW).
Given a graph G and a positive integer k, GBW is to decide whether it is possible
to arrange the vertices of G at distinct positions on a line such that any two vertices
that are adjacent in G are separated by at most k−1 other vertices on the line. GBW
is NP-complete when k is part of the input [29] and is solvable in polynomial time
when k is fixed [13, 31]. The algorithm of Saxe uses dynamic programming and runs
in O(nk+1) time, where n is the number of vertices [31]. Kleitman and Vohra [21]
present a GBW algorithm that runs in O(n log n) time but is correct only for interval
graphs.

Our graph-theoretic characterization of k-AV, which is presented later on in sec-
tion 3 (see Lemma 3.8), has a similar flavor to GBW in the sense that it refers to a

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 425

linear arrangement of vertices that is constrained by edges. The main difference is
that we consider constraints with respect to two different but related sets of edges,
with one set imposing “hard” constraints similar to edges in a topological ordering,
and the other set imposing “soft” constraints similar to edges in GBW. Furthermore,
our edges are directed and the union of the two edge sets has a structure similar to an
interval graph, whereas GBW is defined over arbitrary undirected graphs. Regarding
time complexity, we are not aware of a polynomial-time Turing reduction from GBW
to k-AV or vice versa. Such a reduction from k-AV to GBW would imply that k-AV
is solvable in polynomial time for fixed k.

In the area of parameterized complexity, introduced by Downey and Fellows [9],
a problem is associated with one or more parameters; even for a problem without
a known polynomial-time algorithm, it may be possible to confine the potentially
exponential (or worse) blow-up to a function of the parameter(s) only. As in classical
complexity, parameterized complexity also has the notions of a hierarchy of complexity
classes, reductions, and hardness. More on parameterized complexity can be found in
subsequent monographs [7, 11, 28].

Portions of this paper devoted to the CGS algorithm, which has exponential
time complexity in the worst case, are related to fixed-parameter tractability. More
formally, for a parameterized problem P with inputs of the form (x, k), where |x| =
n and k is a positive integer, P is fixed-parameter tractable (or in FPT) if it can
be decided in f(k)nc time, where f is an arbitrary function and c is a constant
independent of both n and k. A fixed-parameter algorithm is of particular interest
when k is known to be a small constant independent of n, hence yielding a polynomial
algorithm for such instances.

3. Preliminaries. Following the model of Herlihy and Wing [20], we define an
execution history (or history for short) as a sequence of events where each event
is either the invocation or the response of an operation on a read/write register.
Each operation in the history has both an invocation and a response event, and all
operations are applied to the same object (see discussion of locality in section 2). Each
event is tagged with a unique time, and events appear in the history in increasing order
of their times. The exact values of these times are not important—only their relative
order—and so we assume without loss of generality that the ith event (counting from
i = 1) occurs at time i. Invocation events also record the operation type (i.e., read
versus write) and the argument (for writes only), whereas response events record the
return value (for reads only). The value of an operation op is its argument if op
is a write, and its response if op is a read. Given a read r and a write w we call
w a dictating write of r if r and w share the same value. In that case we call r a
dictated read of w. A write may have any number of dictated reads, but we require
(see Assumption 3.2) that each read has a unique dictating write. In the remainder
of the paper, the total number of operations and the number of writes in the input
history are denoted by n and nw, respectively.

Given an operation op, we denote by s(op) and f(op) the start time and finish
time of op, respectively. Given a pair of operations op1, op2 in a history H, we denote
Herlihy and Wing’s happens before relation, which is a partial order, by <H (i.e.,
op1 <H op2 if and only if f(op1) < s(op2)). We say that op1 and op2 are concurrent
if neither op1 <H op2 nor op2 <H op1, and we use the notation op1 6<H op2 to denote
that op1 <H op2 is false. A partial order <S over the operations in a history H is
compatible with the partial order <H , denoted <S ∼ <H , if the following property
holds for every pair of operations op1, op2 in H: if op1 <H op2 and <S orders op1

426 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

relative to op2, then op1 <S op2. (Note that <S is not required to order op1 relative
to op2 even if <H does so.) Given a total order <T over the operations in a history
H, <T ∼ <H holds if every pair of operations op1, op2 in H satisfies op1 <H op2 ⇒
op1 <T op2. We call <T a k-atomic total order for H (or k-atomic ordering of the
operations in H) if <T ∼ <H and every read operation returns the value assigned by
one of the last k writes that precede it in <T . A k-atomic value order T for a history
H is a permutation of the values written in H that is consistent with some k-atomic
total order <T for H (i.e., if w(v) <T w(v′), then v precedes v′ in T). We will show
later on in Lemma 3.8 how to determine whether a given sequence of values T is a
k-atomic value order for a history H.

Definition 3.1. A history H is k-atomic if and only if there exists a k-atomic
total order <T for H.

In the remainder of the paper, we make the following assumption to circumvent
the NP-completeness of k-AV.

Assumption 3.2. For any history H, every read operation in H has exactly one
dictating write.

Without Assumption 3.2 the k-AV problem is NP-complete, assuming that k is
part of the input, because 1-AV is NP-complete [14]. Assumption 3.2 can be enforced
in practical storage systems by embedding a unique identifier, for example based on
the current time and client ID, in each value.

Under Assumption 3.2 we adopt the following notational convention: for any
history H and any value v read or written in H, w(v) denotes the unique dictating
write of v in H. Similarly we use r(v) to denote a read of v in H. If more than one
read of v exists in H, then the particular operation corresponding to r(v) is specified
in the context.

We make two additional assumptions to simplify our algorithms and their analysis.
First, we assume that a value cannot be read before it is written.

Assumption 3.3. For any history H, if r is a read in H and w is its dictating
write, then r 6<H w.

Second, we assume that a read never finishes before its dictating write.

Assumption 3.4. For any history H, if r is a read in H and w is its dictating
write, then f(w) < f(r).

Intuitively, Assumption 3.4 ensures that if r happens before some other read r′,
then w also happens before r′, which simplifies the characterization of k-atomicity
presented later on in this section (see Definitions 3.6–3.7 and Lemma 3.8).

Any history that violates Assumption 3.3 automatically fails to satisfy k-atomicity
for any k ≥ 1. Assumption 3.3 can be tested in O(n log n) steps by clustering oper-
ations by their value and checking for each value that no read precedes its dictating
write. On the other hand, Assumption 3.4 implies no loss of generality because any
history H that satisfies Assumptions 3.2 and 3.3 can be transformed efficiently into
a history H ′ that in addition satisfies Assumption 3.4 in a manner that preserves
k-atomicity. This is done using a normalization procedure presented in Algorithm 1.
Theorem 3.5 asserts the correctness of this procedure.

Theorem 3.5. If the input history H of the normalization procedure (Algorithm 1)
satisfies the preconditions (Assumptions 3.2–3.3), then the output history H ′ satisfies
the postconditions (Assumptions 3.2–3.4, and H is k-atomic if and only if H ′ is k-
atomic).

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 427

Input: history H that satisfies Assumptions 3.2–3.3.
Output: history H ′ that satisfies Assumptions 3.2–3.4, and is k-atomic if

and only if H is.
1 H ′ := H
2 for every value v in H do
3 r(v) := read of v with earliest finish time in H
4 if f(r(v)) < f(w(v)) then
5 shift the response event for w(v)’s counterpart in H ′ to the position

immediately preceding the response event of r(v)’s counterpart in H ′

6 end

7 end

Algorithm 1: Normalization procedure for histories.

Proof. Suppose that H satisfies Assumptions 3.2–3.3. It suffices to show that
line 5 either preserves or introduces the desired properties as H is transformed into
H ′. To begin with we must show that H ′ is a history. Initially H ′ = H by line 1
where H is the input history. At line 5 a write operation w is modified by shifting its
response event, and H ′ remains a history unless the response event is shifted beyond
the corresponding invocation event, in which case f(r) < s(w) < f(w) holds and
contradicts Assumption 3.3.

Next, consider Assumptions 3.2–3.4. Assumption 3.2 is preserved since the trans-
formation keeps all the dictating writes, does not modify any reads, and does not
introduce any new reads. Assumption 3.3 is preserved since the transformation does
not introduce any new operations or change the relative order of the response of a read
with respect to the invocation of its dictating write. Assumption 3.4 is established
directly by line 5.

It remains to show that H is k-atomic if and only if H ′ is k-atomic. Suppose that
H is k-atomic and let <T be a k-atomic total order for H. To prove that H ′ is k-atomic
it suffices to show that <T ∼ <H′ . Suppose otherwise. Then H ′ contains operations
op1, op2 such that op1 <T op2 and op2 <H′ op1. Since <T ∼ <H and op1 <T op2, it
follows that op2 6<H op1. Since op2 <H′ op1 but op2 6<H op1, it also follows that op2 is
a write whose response event was shifted at line 5 and placed immediately before the
response of some dictated read op3. First note that op2 <T op3 because a dictating
write precedes its dictated reads in any k-atomic total order. If op3 = op1, then this
implies op2 <T op1, which contradicts op1 <T op2. Otherwise op3 6= op1 and in that
case op3 <H′ op1 because op2 <H′ op1 and the response of op3 is the next event in
H ′ after the response of op2. This implies op3 <H op1 since op3 is a read, and so
op3 <T op1 because <T ∼ <H . Since op2 <T op3 and op3 <T op1 hold, op2 <T op1
follows transitively, which once again contradicts op1 <T op2.

Conversely, suppose that H ′ is k-atomic. Then there is a k-atomic total order <T ′

for H ′ and <T ′ ∼ <H′ . It follows from line 5 that for any pair of operations op1 and
op2, op1 <H op2 ⇒ op1 <H′ op2, and so <T ′ ∼ <H′ in this case implies <T ′ ∼ <H .
As a result, H is k-atomic, as needed.

In general, our algorithms assume that 2 ≤ k ≤ n. As discussed in section 2,
known algorithms can solve the cases k ≤ 2 and k ≥ n in polynomial time, but do
not work correctly when 2 < k < n.

To simplify the presentation and analysis of our k-AV algorithms we first describe

428 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

two graph-theoretic representations of the input history. These representations are
described in Definition 3.6, which is inspired by Misra’s before relation on values
[27], and in Definition 3.7. We use both definitions to characterize k-atomicity in
Lemma 3.8, which we use extensively later in sections 4 and 5.

Definition 3.6. The read value graph for a history H, denoted GR(V,ER), is
a directed graph where V is the set of values written in H, and ER contains an edge
(v, v′) if and only if v 6= v′ and there exists a read r(v′) in H such that w(v) <H r(v′).

Definition 3.7. The write graph for a history H, denoted GW (V,EW), is a
directed graph where V is the set of values written in H, and EW contains an edge
(v, v′) if and only if w(v) <H w(v′).

Informally speaking, GR and GW both capture constraints with respect to k-
atomicity on the order in which writes may appear to take effect. Figure 3.1 presents
an example of these graph structures for a small input history. Operations in the
history are illustrated as intervals of time following the style of diagrams used by
Herlihy and Wing [20]. The horizontal dimension represents time and the vertical
dimension is used only to separate the intervals visually. The history has two 3-atomic
value orders, namely T1 = 〈5, 2, 1, 3, 4〉 and T2 = 〈5, 2, 3, 1, 4〉, but fails to satisfy 2-
atomicity because w(1) and w(3) both separate w(2) from r(2). Consequently, the
history is not 1-atomic either.

time

r(1)w(1)

r(2)w(2)

r(3)w(3)

w(4) r(4)

w(5)

G
R

(V, E
R
)

1 2

3 4

5

1 2

3 4

G
W

(V, E
W

)

5

Fig. 3.1. Example execution history (top) and corresponding graph representation (bottom).

We use GR and GW to characterize k-atomicity in Lemma 3.8, which asserts
that H is k-atomic if and only if there is an ordering of the writes that is consistent
with the direction of the edges in GW , and in which the edges of GR never point

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 429

“backward” by more than k−1 positions. The intuition underlying backward edges is
as follows: since an edge of GR from vi to vj indicates that w(vi) <H r(vj) for some
read r(vj), if vj precedes vi by k or more positions in some ordering of the writes,
then that separates r(vj) from its dictating write w(vj) by k or more other writes
including w(vi).

Lemma 3.8. A history H is k-atomic if and only if its corresponding write graph
GW (V,EW) has a topological ordering T =

〈
v1, v2, . . . , v|V |

〉
, such that for any two

vertices vi and vj in T , if the read value graph GR(V,ER) for H contains an edge
(vi, vj), then j > i− k.

Proof. Recall from Definition 3.1 that H is k-atomic if and only if there exists
a k-atomic total order for H. Intuitively, the proof strategy is to show that the
topological ordering T defined in the statement of the lemma is the k-atomic value
order corresponding to such a k-atomic total order, where the edges of GR determine
the staleness of individual reads with respect to the total order. For example, an edge
from some value vi to a value vj that precedes vi in T by x > 0 positions indicates
that some r(vj) is separated from w(vj) in the k-atomic total order by at least x
other writes including w(vi), as illustrated in Figure 3.2, and hence r(vj) returns the
(x+ 1)st-latest or older value with respect to T .

w(vj),

x or more writes︷ ︸︸ ︷
. . . , w(vi)︸ ︷︷ ︸
x writes

, . . ., r(vj)

Fig. 3.2. Example of a total order of operations for a history H where r(vj) returns the
(x + 1)st-latest or older value due to the presence of an edge (vi, vj) in GR.

Suppose that H is k-atomic. Then there is a total ordering S of the operations in
H such that <S ∼ <H and where each read returns the value assigned by one of the
last k writes. Let T =

〈
v1, v2, . . . , v|V |

〉
be the sequence of values written in S and

note that T is a topological ordering of GW . To derive a contradiction, suppose that
GR contains an edge (vi, vj) such that j ≤ i−k, which corresponds to the example in
Figure 3.2 with x ≥ k. Such an edge indicates that w(vi) happens before some read
r(vj) in H; hence w(vi) <S r(vj). Furthermore, there are i− j ≥ k write operations,
including w(vi), that separate r(vj) from its dictating write w(vj) in S. Since writes
assign distinct values under Assumption 3.2, this implies that r(vj) does not return
one of the last k written values in S, thus contradicting S being a k-atomic total order
for H.

Conversely, suppose that T =
〈
v1, v2, . . . , v|V |

〉
exists and that j > i− k holds for

every edge (vi, vj) in GR, which corresponds to the example in Figure 3.2 with x < k.
We will exhibit a k-atomic ordering of the operations in H in three stages: (i) the
operations will be placed in an order that is compatible with <H ; (ii) some reads will
be shifted to ensure that a read never precedes its dictating write; (iii) we will show
that in the final ordering each read returns one of the last k-values written.

Stage (i). Starting with an empty sequence, insert the write operations in the
same order as their values in T . It follows easily that the ordering S constructed
satisfies <S ∼ <H since T is a topological ordering of GW . Next, form S′ from S by
processing the reads in increasing order of their start times, and placing each read as
early as possible. That is, place each read immediately after the latest operation in
S′ that precedes it in <H , or at the beginning if there is no such operation. We must

430 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

show that <S′ ∼ <H . To derive a contradiction, suppose that there are operations
op1 and op2 such that op1 <H op2 and op2 <S′ op1.

Case 1: op1 and op2 are both writes. This contradicts T being a topological
ordering of GW .

Case 2: op1 and op2 are both reads. Then op1 <H op2 implies that op1 starts
before op2, and so op1 is processed before op2. Therefore, when op2 is processed it is
placed in S′ after op1, which contradicts op2 <S′ op1.

Case 3: op1 is a write and op2 is a read. Then op1 is once again processed before
op2, and we reach a contradiction as in Case 2.

Case 4: op1 is a read and op2 is a write. Without loss of generality suppose that
op1 is the first read processed that satisfies op1 <H op2 and is placed in S′ after op2.
Since each read is placed as early as possible, it follows that some other operation
op3 satisfying op3 <H op1 was processed before op1 and placed in S′ after op2. Thus,
op2 <S′ op3. At the same time op3 <H op1 and op1 <H op2 imply op3 <H op2. If
op3 is a write, then this contradicts Case 1. If op3 is a read, then this contradicts the
assumption that op1 is the first read processed that precedes op2 in <H and succeeds
op2 in <S′ .

Stage (ii). For every value, if one or more reads of the value precede their dictating
write, then shift them to the right and place them immediately after the dictating
write, while maintaining for each value the relative order of the reads of that value.
Call the new sequence of operations S′′. We will use induction on the number of
reads shifted to show that <S′′ ∼ <H . Let S′′i denote the sequence of operations after
i shifts. In the base case i = 0 and S′′i = S′; hence <S′′

0
∼ <H because stage (i)

established <S′ ∼ <H . Now suppose for some j ≥ 0 that <S′′
j
∼ <H and consider

S′′j+1. To derive a contradiction, suppose that H contains operations op1, op2 such
that op1 <H op2 but op2 <S′′

j+1
op1. Since <S′′

j
∼ <H , it follows that op1 is the

(j + 1)st shifted read. Let w1 denote the dictating write of op1. It follows from
Assumption 3.4 that f(w1) < f(op1), and so op1 <H op2 implies w1 <H op2. Thus,
op2 6= w1, and furthermore op2 <S′′

j
w1 as otherwise op1 would not be shifted past

op2 in the formation of S′′j+1 from S′′j . Since <S′′
j
∼ <H , op2 <S′′

j
w1 contradicts

w1 <H op2.
Stage (iii). We will show that S′′ is a k-atomic ordering of the operations in H.

By stage (i) S′′ contains all the operations of H, and by stage (ii) no read precedes
its dictating write. It remains to show that each read in S′′ returns one of the last
k-values written. To derive a contradiction, suppose that some read r(vj) does not
do so; hence it is separated from its dictating write by k or more other writes, the
last one of which is a write of some value vi such that i ≥ j + k. We will show that
w(vi) <H r(vj). This implies that GR(V,ER) contains an edge (vi, vj), which implies
j > i− k by our earlier assumption and contradicts i ≥ j + k.

First, note that r(vj) was not shifted in stage (ii), as otherwise i = j would hold,
contradicting i ≥ j+ k. Next, to derive a contradiction suppose that w(vi) 6<H r(vj).
Without loss of generality suppose that r(vj) is the first read processed in stage (i)
that is placed in S′ between w(vi) and the next write (if one exists), and for which
w(vi) 6<H r(vj). Since w(vi) 6<H r(vj) and since r(vj) is placed after w(vi) in stage (i),
which attempts to place reads as early as possible, it follows that some other read
r is processed before r(vj) such that w(vi) <S′ r <S′ r(vj) and r <H r(vj). Then
it follows from our assumption on r(vj) that w(vi) <H r. Since w(vi) <H r and
r <H r(vj) it follows that w(vi) <H r(vj), which contradicts the earlier assumption
that w(vi) 6<H r(vj).

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 431

Applying Lemma 3.8 with k = 3 to the sample input illustrated in Figure 3.1,
we see that 3-atomicity holds because T1 = 〈5, 2, 1, 3, 4〉 is a topological ordering of
GW such that the edges of GR point backward by at most k − 1 = 2 positions (e.g.,
the edge from 3 to 2). On the other hand, applying the lemma with k = 2 we see
that both 1 and 3 succeed 2 in any topological ordering T of GW , but 1 and 3 both
have edges to 2 in GR, one of which must point backward by 2 > k− 1 positions with
respect to T .

4. An efficient algorithm for a restricted class of histories. In this section,
we present an efficient algorithm called GPO (“greedy plus obligations”) that solves k-
AV for arbitrary k in the special case when the input history satisfies Assumptions 3.2–
3.4 as well as the following.

Assumption 4.1. For any history H and for any value v written in H, the write
w(v) has some dictated read r(v) such that w(v) <H r(v).

Intuitively, this requirement constrains the k-AV problem by ensuring the presence
of certain edges in the read value graph GR for H. Specifically, for every pair of values
v and v′, Assumption 4.1 ensures that GR contains the edge (v, v′) if f(w(v)) <
f(w(v′)), or the edge (v′, v) if f(w(v′)) < f(w(v)). In contrast, Assumptions 3.2–3.4
alone do not imply that v and v′ are ordered by GR in the case when w(v) and w(v′)
are concurrent.

4.1. Algorithm description. The main idea behind GPO is greedy plus
obligations—hence the name. Like the LBT algorithm for 2-AV [16], GPO constructs
a k-atomic value order in reverse or outputs NO if such an order does not exist.
For each value placed in the k-atomic value order the algorithm evaluates any con-
straints this placement imposes on the choice of subsequent values and records these
constraints using internal data structures.

At each iteration, GPO either places a value in the next position of the k-atomic
value order or decides that the choice of values is overconstrained and outputs NO.
In this context (and throughout this section), “next” refers to the position(s) imme-
diately to the left of the suffix of the total order that has been constructed in prior
iterations. Given multiple candidates for the next value to be placed, GPO greedily
picks the one whose dictating write has the largest finish time. In some cases this
choice is narrowed down to a subset of values that must be placed within the next
k − 1 (or fewer) positions in the k-atomic value order due to constraints imposed
on them by values that were placed earlier. Once GPO chooses the next value v, it
identifies two types of constraints imposed on future choices by v with respect to the
input history H: (i) if w(v) <H r(v′) for some read of some value v′ that has not
yet been placed, then v′ must be placed in one of the next k − 1 positions; (ii) if
w(v′) <H w(v′′) for the value v′ defined in the first constraint and some value v′′ that
has not yet been placed, then v′′ must also be placed in the next k − 1 positions.

The constraints are tracked using k−1 sets of values called obligation sets, denoted
by B[1] to B[k−1], initially all empty. The purpose of B[i] is to record the values that
must be placed in the next i positions of the k-atomic value order, and so naturally
GPO must maintain the invariant B[1] ⊆ B[2] ⊆ · · · ⊆ B[k−1]. An obligation set B[i]
is called overfull, full, or underfull if |B[i]| > i, |B[i]| = i, or |B[i]| < i, respectively.
As GPO decides the next value to be placed it faces three possibilities. If there exists
an overfull obligation set, then GPO simply outputs NO because it is impossible to
place more than i values in the next i positions. If no obligation sets are overfull
but at least one of them is full, then GPO first identifies the smallest full set, and

432 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

then among the values in that set it greedily picks the one whose dictating write has
the largest finish time. Otherwise, all obligation sets are underfull, and GPO greedily
chooses a value that has not yet been placed and whose dictating write has the largest
finish time.

Having chosen the next value v, GPO updates the obligation sets by removing
(if necessary) the value that was just placed, and then copying the remaining values
from B[i + 1] to B[i] for all i. Intuitively, if a value was supposed to be placed in
the next i + 1 positions at the beginning of a given iteration and is not chosen in
the same iteration, then it must be placed in the next i positions at the beginning of
the next iteration. In addition, GPO updates B[k − 1] by adding values determined
according to the two types of constraints imposed by v, as described earlier. As long
as no overfull obligation set is encountered, the algorithm continues to choose values
and update the obligation sets until it has constructed a k-atomic value order for the
input history. At that point GPO returns YES. The full procedure is presented as
Algorithm 2.

The algorithm maintains k−1 separate obligation sets, as opposed to their union
as a single set, because constraints placed on the values in these sets tighten after
each iteration. For example, if B[i] and B[j] are both full and i < j, then placing
the values from B[i] in the next i positions is more urgent than placing the values
from B[j] in the next j iterations. In particular, the j − i values of B[j] \ B[i] must
not be placed in the next i positions as otherwise there is no way to discharge the
obligations represented by B[i]. This is why the algorithm chooses the next value v
specifically from the smallest full obligation set (line 6) after discovering that at least
one obligation set is full (line 5), as opposed to choosing the value from the union of
the obligation sets (if not empty) whose dictating write has the largest finish time.

The intuition underlying lines 7 and 9 of GPO, which choose a value v with
maximum finish time over any other candidate value v′, follows from two observations.
First, w(v) happens before a subset of the operations that w(v′) happens before, and
hence the choice of v as the next value in the reverse k-atomic order is the least
constraining with respect to other values that have not yet been chosen. Second,
choosing v in an earlier iteration than v′ positions v′ to the left of v in the k-atomic
value order, which tends to be consistent with the direction of edges in GR because
f(w(v′)) < f(w(v)) implies that GR contains the edge (v′, v) under Assumption 4.1.
On the other hand, if the algorithm chose v′ in an earlier iteration and v later, then v
would precede v′ by some number x of positions in the chosen total order over values.
This opens the possibility that x > k − 1, in which case the presence of the edge
(v′, v) in GR would preclude the partially constructed total order from extending to
a k-atomic value order because the edge reaches too far backward (see Lemma 3.8).

4.2. Examples. With respect to the example history presented in Figure 3.1,
GPO works correctly only if we remove w(5), which lacks a dictated read and hence
violates Assumption 4.1. Consider the case k = 3 with w(5) removed. The algorithm
chooses 4 at line 9 in the first iteration, which imposes no additional constraints. It
then chooses 3 at line 9 in the second iteration, and adds the values {1, 2} to B[2]. In
the third iteration it chooses 1 from B[2] at line 7, and then copies 2 to B[1]. In the
fourth iteration it chooses 2 from B[1] at line 7. Thus, GPO computes the topological
ordering T = 〈2, 1, 3, 4〉 and returns YES. This response is correct because T is a
3-atomic value order for the input history without w(5).

Next, consider the case k = 2 with w(5) removed. As before, the algorithm
chooses 4 in the first iteration. In the second iteration it chooses 3 at line 9, and adds

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 433

the values {1, 2} to B[1], causing a return of NO at line 19 because |B[1]| = 2 > 1.
This response is correct because the input history is not 2-atomic, even without w(5).

Finally, consider the full history in Figure 3.1 with w(5) included. The algorithm
chooses 4 at line 9 in the first iteration, which imposes no additional constraints. It
then chooses 5 at line 9 in the second iteration, and adds the values {1, 2, 3} to B[2],
causing a return of NO at line 19 because |B[2]| = 3 > 2. This response is incorrect
because the input history is 3-atomic. Thus, GPO breaks because the input history
fails to satisfy Assumption 4.1.

Input: history H and integer k, 2 ≤ k ≤ n.
Output: YES if H is k-atomic, NO otherwise.
// suffix of a k-atomic value order for H

1 T := empty sequence
// set of values that have not yet been added to T

2 U := set of values written in H
3 for i := 1 to k − 1 do B[i] := ∅
4 while U 6= ∅ do

// apply greedy heuristic

5 if ∃ i : |B[i]| = i then
6 ` := smallest i such that |B[i]| = i
7 v := value in B[`] such that w(v) has the largest finish time

8 else
9 v := value in U such that w(v) has the largest finish time

10 end
11 remove v from U and prepend it to T

// update obligation sets

12 W := {v′ | v′ ∈ U and some read r(v′) satisfies w(v) <H r(v′)}
13 W ′ := {v′′ | v′′ ∈ U and some value v′ ∈W satisfies w(v′) <H w(v′′)}
14 for j := 1 to k − 2 do
15 B[j] := B[j + 1] \ {v}
16 end
17 B[k − 1] := (B[k − 1] ∪W ∪W ′) \ {v}
18 if ∃ i : |B[i]| > i then
19 return NO
20 end

21 end
22 return YES

Algorithm 2: The GPO algorithm.

4.3. Analysis. References to GR(V,ER) and GW (V,EW) in our analysis pertain
to the read value graph and the write graph for the input history H (Definitions 3.6
and 3.7). These structures are needed only for analysis and therefore do not appear
in the pseudocode of Algorithm 2. The symbols Tx, Ux, and Bx[i] denote the values
of T , U , and B[i] at the end of iteration x of the outer loop.

Lemma 4.2. The outer loop of the algorithm provides the following invariant:
(a) for every value v accessed in H, v is either in Tx or in Ux (but not in both);

and

434 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

(b) for every i, 1 ≤ i ≤ k−1, if there exists a value v ∈ Bx[i] and a value v′ ∈ Ux

such that w(v) <H w(v′), then v′ ∈ Bx[i].

Proof. We proceed by induction on x.
Basis: x = 0. Initially U0 is the set of all values written in H, which equals the

set of all values accessed in H by Assumption 3.2, and T0 = 〈〉. This implies part (a).
Part (b) holds trivially because there is no w ∈ B0[i] for any i.

Induction step. Suppose that parts (a)–(b) hold for some iteration number x.
Assuming that the outer loop has another iteration, consider the state of affairs at
the end of iteration x + 1. Part (a) follows from line 11 where Ux+1 is formed by
removing the chosen value v from Ux and Tx+1 is formed by prepending v to Tx. For
part (b), consider any z ∈ Bx+1[i], where 1 ≤ i ≤ k − 1, and any z′ ∈ Ux+1 such that
w(z) <H w(z′). We must show that z′ ∈ Bx+1[i] as well. Since we assume z′ ∈ Ux+1,
note that z′ cannot be the value v chosen at line 7 or 9 during iteration x + 1, as
otherwise z′ is removed from Ux+1 at line 11 during the same iteration. Also note
that z′ ∈ Ux since z′ ∈ Ux+1 and since elements are never added to U after line 2.

Case A: i = k−1. If z ∈ Bx[i], then z′ ∈ Bx[i] by part (b) for iteration x because
z′ ∈ Ux and w(z) <H w(z′). Since z′ 6= v, as argued earlier, it follows from line 17
that z′ remains in Bx+1[i], as needed. Otherwise, z 6∈ Bx[i] and so z is one of the
values added to Bx+1[i] during iteration x+ 1. Thus, z is a value in one of the sets W
and W ′ computed at lines 12 and 13. Next, we will show that z′ is added to W ′ at
line 13. If z is added to W , then z′ is added to W ′ at line 13 because z′ ∈ Ux+1 and
w(z) <H w(z′). Otherwise, z is added to W ′ and so W contains some value z′′ ∈ Ux+1

such that w(z′′) <H w(z), in which case w(z) <H w(z′) implies w(z′′) <H w(z′) and
so z′ is added to W ′ at line 13 because z′′ ∈ W and z′ ∈ Ux+1. Since z′ 6= v, this
implies that z′ is added to Bx+1[i] at line 17, as needed.

Case B: i < k − 1. Since z ∈ Bx+1[i], it follows from line 15 that z ∈ Bx[i + 1].
Furthermore, since z′ ∈ Ux, part (b) for iteration x implies that z′ ∈ Bx[i+ 1] as well.
Since z′ 6= v, as argued earlier, line 15 implies that z′ ∈ Bx+1[i], as needed.

Lemma 4.3. Suppose that the algorithm outputs YES. Then the sequence of values
T obtained when line 22 is reached is a topological ordering of GW .

Proof. Every value added to T is prepended at line 11, and the choice of each
value is made at line 7 or 9. Suppose that the final sequence of values chosen is
T = 〈v1, v2, . . . , vnw〉. To derive a contradiction, suppose that T contains values vi, vj
such that j < i and yet w(vi) <H w(vj). Then after the iteration x when vi is chosen,
the value vj remains in Ux. Since elements are never added to U after line 2, this
implies that vj ∈ Ux−1, and so during iteration x the value vi is chosen at line 7 from
B[`] and not at line 9, as otherwise the algorithm would choose vj or some other value
at line 9 instead of vi because w(vi) <H w(vj). Thus, vi ∈ Bx−1[`] and vj ∈ Ux−1
hold. Since w(vi) <H w(vj), it follows from Lemma 4.2 (b) that vj ∈ Bx−1[`]. This
contradicts the algorithm choosing vi over vj from B[`] at line 7 during iteration x.

Lemma 4.4. If the algorithm outputs YES, then H is k-atomic.

Proof. Intuitively, we want to show that a YES output indicates that the algo-
rithm successfully constructed a k-atomic value order for H by repeatedly prepending
values to T . Interpreting k-atomicity according to Lemma 3.8, the proof obligation
is to show that T is a topological ordering of GW , and that the edges of GR do not
reach too far backward with respect to T . We will establish the latter by arguing that
any edge (a, b) of GR that reaches backward would result in the addition of b to the
obligation sets during the iteration that places a, and hence the placement of b in one

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 435

of the next k − 1 iterations, thus contradicting the assumption that the edge reaches
too far (i.e., k or more positions) backward.

Suppose that the algorithm outputs YES. Then by Lemma 4.3 the sequence of
values T = 〈v1, v2, . . . , vnw〉 when line 22 is reached is a topological ordering of GW .
It suffices to show that for every 1 ≤ i, j ≤ nw if GR contains an edge (vi, vj),
then j > i − k, in which case Lemma 3.8 implies that H is k-atomic. To derive
a contradiction, suppose otherwise. Then GR contains an edge (vi, vj) such that
j ≤ i − k < i (since k > 1), and so vi is chosen in an earlier iteration than vj .
Consider iteration x of the outer loop, where vi is chosen at line 7 or at line 9. Since
(vi, vj) ∈ ER, it follows that value vj has a read rj such that w(vi) <H rj . Then vj is
added to W at line 12 in iteration x because vj has not yet been chosen, and hence
vj ∈ Ux by Lemma 4.2 (a). As a result, vj is added to B[k − 1] at line 17 during
iteration x, and so vj ∈ Bx[k−1]. Now consider iteration x+y for 1 ≤ y < k−1, which
exists provided that k > 2. Value vj is not added to T in any of these iterations, the
last of which is iteration x+k−2, since we assume that j ≤ i−k and so at the earliest
vj can be added during iteration x+k. Thus, vj ∈ Ux+k−2 holds by Lemma 4.2 (a) and
since we are considering k > 2. Since vj ∈ Bx[k − 1], this implies vj ∈ Bx+k−2[k − 1]
because a value is not removed from B[k−1] until the iteration in which it is removed
from U and added to T . Furthermore, line 15 implies that vj ∈ Bx+y[k − 1 − y] for
1 ≤ y < k − 1; in particular vj ∈ Bx+k−2[1]. Since we assume that the algorithm
outputs YES, it follows from line 18 during iteration x + k − 1 that |Bx+k−2[1]| ≤ 1
and so vj ∈ Bx+k−2[1] implies Bx+k−2[1] = {vj}. As a result, B[1] = {vj} at the
beginning of iteration x+ k − 1, which implies that vj is chosen at line 7 during the
same iteration. This contradicts the earlier observation that vj is not chosen until
iteration x+ k or later.

Lemma 4.5. If H is k-atomic, then the algorithm outputs YES.

Proof. Intuitively, we want to show that if H is k-atomic, then the algorithm
determines a possible k-atomic value order for H by repeatedly prepending values to
T and successfully avoids an overfull obligation set that would lead to a NO response
at line 19. Interpreting k-atomicity according to Lemma 3.8, the proof obligation is
to show that the constructed sequence T is indeed a topological ordering of GW , and
that the edges of GR do not reach too far backward with respect to T as a result of
each obligation set remaining either underfull or full after each iteration.

The proof proceeds by induction, showing that after each iteration the partially
constructed sequence T is a suffix of some k-atomic value order T ′. The main technical
challenge in the proof is that in general the history H may have multiple k-atomic
value orders. As a result, if iteration x constructs a sequence Tx that can be extended
to a k-atomic value order T ′x, there is no guarantee that the sequence Tx+1 obtained
by prepending a value to Tx in the next iteration can also be extended to the same T ′x.
The proof therefore describes how T ′x can be modified carefully, if needed, to obtain
another k-atomic value order for H that extends Tx+1.

Suppose that H is k-atomic. We will show that the algorithm outputs YES by
proving the following predicate P (x) for all 0 ≤ x ≤ nw:

(a) the algorithm executes line 11 at least x times and computes a sequence
Tx = 〈vx1 , vx2 , . . . , vxx〉 that is the suffix of some k-atomic value order for H;

(b) for any i such that 1 ≤ i ≤ k − 1 and for any value v, if v ∈ Bx[i], then v is
one of the i immediate predecessors of vx1 in every k-atomic value order for
which Tx is a suffix, and hence |Bx[i]| ≤ i; and

(c) for any value v, if GR contains an edge (a, b) such that a is i ≥ 0 positions to

436 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

the right of vx1 in Tx and b is not in Tx, then b ∈ Bx[k − 1− j] for all j such
that 0 ≤ j ≤ i.

Part (b) of the predicate ensures that the algorithm never exits at line 19, and therefore
outputs YES at line 22, as needed.

We proceed by induction on x.
Basis: x = 0. Parts (a) and (c) follow trivially since Tx = 〈〉. Part (b) follows

trivially since Bx[i] = ∅ for all i.
Induction step. Choose an arbitrary x, 0 ≤ x < nw, and suppose that P (x) holds.

First, we will show that the algorithm reaches line 11 and computes Tx+1 in iteration
x+ 1. To derive a contradiction, suppose otherwise, meaning that line 11 is executed
fewer than x+ 1 times. It follows from P (x)-(a) that iteration x occurs and extracts
a value from U at line 11. Furthermore, since U initially contains nw elements, and
since the algorithm removes one value from U per iteration, it follows that iteration
x leaves nw − x > 0 elements in U . Therefore, the fact that line 11 is not executed
x + 1 times is due to termination at line 19 in iteration x, and not due to the loop
guard at line 4. This implies |Bx[i]| > i for some i, which contradicts P (x)-(b).

Proof of P (x + 1)-(a). We must show that there exists a k-atomic value order
T ′x+1 for H such that Tx+1 is a suffix of T ′x+1. Suppose otherwise. By P (x)-(a) there
exists a k-atomic value order T ′x for H such that Tx is a suffix of T ′x, and Tx+1 is not
a suffix of T ′x, as otherwise P (x + 1)-(a) would hold with T ′x+1 = T ′x. Since Tx is a
suffix of both Tx+1 and T ′x this implies that Tx+1 and T ′x disagree on the element in
position x + 1 counting from the end. Let v be the element in this position in T ′x
and suppose that Tx+1 (i.e., the algorithm) instead chooses v′ 6= v in this position.
Furthermore, suppose without loss of generality that T ′x is chosen so that v′ appears
in the latest possible (i.e., rightmost) position preceding v. Let S denote the set of
values comprising v, v′, as well as any other value that appears between v and v′ in
T ′x. The scenario under consideration is illustrated in Figure 4.1.

Tx = 〈vx1 , vx2 , . . . , vxx〉
=

〈
vx+1
2 , vx+1

3 , . . . , vx+1
x+1

〉
Tx+1 =

〈
vx+1
1 , vx+1

2 , vx+1
3 , . . . , vx+1

x+1

〉
= 〈v′, vx+1

2 , vx+1
3 , . . . , vx+1

x+1

〉
T ′x = 〈. . . , v′ . . . , v,︸︷︷︸ vx+1

2 , vx+1
3 , . . . , vx+1

x+1

〉
position x + 1
from the end︸ ︷︷ ︸

S

Fig. 4.1. Relationship between Tx, Tx+1, T ′x, and S.

In the remainder of the proof we will derive a contradiction, but first we establish
some salient properties of v and v′ in Claims 4.6–4.9.

Claim 4.6. Value v′ is one of the k − 1 immediate predecessors of v in T ′x. Fur-
thermore, if v′ is chosen at line 7 from Bx[`], then v′ is one of the ` − 1 immediate
predecessors of v in T ′x.

Proof. If v′ is chosen at line 7 from Bx[`] for some `, then by P (x)-(b) value
v′ is one of the ` immediate predecessors in T ′x of the first element of Tx (i.e., the
xth element from the end in T ′x). This implies that v′ is one of the ` − 1 immediate
predecessors of v in T ′x, as needed. Otherwise, v′ is chosen at line 9 as the element of
Ux with maximum finish time, and so f(w(v′)) > f(w(v)). By Assumption 4.1 value

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 437

v′ has a read r in H such that w(v′) <H r; hence w(v) <H r and so GR contains the
edge (v, v′). Since T ′x is a k-atomic value order for H and since v′ precedes v in T ′x,
it follows from Lemma 3.8 that v′ is one of the k − 1 immediate predecessors of v in
T ′x, as needed.

Claim 4.7. S ⊆ Ux, |S| ≤ k, and if v′ is chosen at line 7 from Bx[`], then |S| ≤ `.
Furthermore, v′ has the maximum finish time of any value in S.

Proof. First observe that by definition v′ is the earliest in T ′x of all the elements
in S, and v is the latest. Since v precedes in T ′x all the elements of Tx, we see that
none of the elements in S are in Tx, and hence all of them are in Ux by Lemma 4.2 (a).
Thus, S ⊆ Ux. Furthermore, Claim 4.6 implies that |S| ≤ k, and that if v′ is chosen
at line 7 from Bx[`], then |S| ≤ `. Next, we focus on the finish time of v′. If v′ is
chosen at line 7 from Bx[`], then |Bx[`]| = ` by line 5. Moreover, P (x)-(b) implies
that the ` distinct values in Bx[`] include v and its ` − 1 immediate predecessors in
T ′x. Since we showed that |S| ≤ ` in this case, v′ must be one of these predecessors,
and so S ⊆ Bx[`]. By the choice of v′ at line 7 we see that v′ has maximum finish time
among all elements in S. Otherwise, v′ is chosen at line 9 from Ux. Since we showed
that S ⊆ Ux, it follows by the choice of v′ at line 9 that v′ has maximum finish time
among all elements in S.

Claim 4.8. For any value v′′ ∈ S \ {v′}, if the sequence T ′x+1 obtained from T ′x
by swapping v′ with v′′ is a topological ordering of GW , then v′′ ∈ Bx[|S| − 1].

Proof. Fix any value v′′ ∈ S \ {v′}, and let T ′x+1 be the sequence obtained from
T ′x by swapping v′ with v′′. Suppose that T ′x+1 is a topological ordering of Gw. Recall
that T ′x is a k-atomic value order for H such that Tx is a suffix of T ′x, and that we
assume v′ appears in T ′x at the latest possible position preceding v. Then T ′x+1 is not
a k-atomic value order for H as otherwise that would contradict the definition of v′

because Tx is also a suffix of T ′x+1 and v′ appears later in T ′x+1 than in T ′x. Since we
assume that T ′x+1 is a topological ordering of GW and yet it is not a k-atomic value
order for H, it follows from Lemma 3.8 that GR contains an edge (a, b) such that b
precedes a in T ′x+1 by k or more positions. Furthermore, since T ′x is a k-atomic value
order for H, it follows from Lemma 3.8 that a and b cannot both occupy the same
positions in T ′x as they do in T ′x+1; hence at least one of these two values shifts as a
result of swapping v′ with v′′ in T ′x (i.e., {a, b} ∩ {v′, v′′} 6= ∅). In particular, b must
shift to the left or a must shift to the right in the transformation from T ′x to T ′x+1. We
will prove that a does not shift to the right and hence b shifts to the left. To derive
a contradiction, suppose that this is not so, and consider the following two cases.

Case A: a shifts to the right and b shifts to the left. Then a = v′ and b = v′′, and
so a, b ∈ S. Since we assume that b precedes a and b is not one of the k−1 immediate
predecessors of a in T ′x+1, there are at least k − 1 elements between b and a in T ′x+1.
Since the transformation from T ′x to T ′x+1 preserves the property that the elements
of S remain contiguous, this implies that |S| > k. This contradicts Claim 4.7, which
asserts that |S| ≤ k.

Case B: a shifts to the right and b does not shift. Then a = v′. If b ∈ S, then
{a, b} ⊆ S, and since the elements of S remain contiguous in T ′x+1, the fact that b
precedes a in T ′x+1 by k or more positions contradicts Claim 4.7, which asserts that
|S| ≤ k. Thus, b 6∈ S and so b precedes a in both T ′x+1 and T ′x. Since v′ is the earliest
element of S in T ′x and v is the latest, it follows that b also precedes v in T ′x, and that
swapping v′ with v′′ places v′ in T ′x+1 at a position no later than that of v in T ′x. This
implies that the number of elements between b and v in T ′x is greater than or equal to

438 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

the number of elements between b and a = v′ in T ′x+1 because b is in the same position
in T ′x as in T ′x+1. Since we assume that b precedes a by more than k − 1 positions in
T ′x+1, this implies that b also precedes v by more than k−1 positions in T ′x. However,
since GR contains the edge (v′, b) and since f(w(v)) < f(w(v′)) holds by Claim 4.7,
it follows that GR also contains the edge (v, b), which contradicts Lemma 3.8 with
respect to T ′x.

Thus a does not shift and b shifts to the left. This implies b = v′′; hence b 6= v′.
Since we assume that b precedes a by more than k − 1 positions in T ′x+1, it follows
that a is not an element of S. This is because the elements of S are contiguous in
T ′x+1 and there are at most k of them by Claim 4.7; hence a must follow all these
elements in both T ′x and T ′x+1 given its distance from b. At the same time, since T ′x is
a k-atomic value order for H, Lemma 3.8 implies that b is one of the k− 1 immediate
predecessors of a in T ′x. Now suppose that a follows the immediate successor of v in
T ′x; namely vx+1

2 = vx1 (i.e., the first element of Tx and the second element of Tx+1, as
shown in Figure 4.1) by exactly i ≥ 0 positions. Then b is a value at most k − 1 − i
positions to the left of vx+1

2 in T ′x. Since b 6= v′ and v′ is the earliest in T ′x of all the
values in S, we see that k − 1 − i < |S|; hence i ≥ k − |S|. Since all elements of S
appear in T ′x before vx+1

2 , it follows that b = v′′ is not in Tx; hence applying P (x)-(c)
we see that b ∈ Bx[k − 1 − j] for all j such that 0 ≤ j ≤ i. Letting j = k − |S| this
implies v′′ ∈ Bx[|S| − 1], as needed.

Claim 4.9. For any value v′′ ∈ S \ {v′}, if the sequence T ′x+1 obtained from T ′x
by swapping v′ with v′′ is not a topological ordering of GW , then v′′ ∈ Bx[|S| − 1].

Proof. Since T ′x is a k-atomic value order for H, Lemma 3.8 implies that T ′x is
a topological ordering of GW . Since T ′x+1 is not a topological ordering of GW , it
follows that swapping v′ with v′′ positions two values in T ′x+1 in reverse order with
respect to the edge set of GW . One of these values is v′ or v′′, and since the values
in S are contiguous in T ′x we see that the other value, say v′′′, is also an element of
S (possibly v′′′ ∈ {v′, v′′}). Furthermore, since v′ has the largest finish time of all
values in S by Claim 4.7, it must be the case that v′′ and v′′′ are out of order in
T ′x+1 with respect to GW —not v′ and v′′′. Since swapping v′ with v′′ moves v′′ to an
earlier position, this implies that v′′ precedes v′′′ in T ′x+1 and yet w(v′′′) <H w(v′′).
Now let z 6= v′ be a value in S that minimizes f(w(z)). Since v′ and z have the
largest and smallest finish times, respectively, of all values in S, swapping v′ with
z in T ′x must yield another topological ordering of GW , and hence z ∈ Bx[|S| − 1]
holds by Claim 4.8. If z = v′′, the claim follows. Assume now that z 6= v′′. Then
w(z) <H w(v′′) because f(w(z)) ≤ f(w(v′′′)) by the definition of z and because
w(v′′′) <H w(v′′). Furthermore, since v′′ is chosen from S, it follows from Claim 4.7
that v′′ ∈ Ux. Thus, applying Lemma 4.2 (b) with z ∈ Bx[|S| − 1] and v′′ ∈ Ux we
obtain v′′ ∈ Bx[|S| − 1], as needed.

We now return to the proof of P (x+1)-(a). Claims 4.8 and 4.9 together imply that
for any value v′′ ∈ S \ {v′}, v′′ ∈ Bx[|S| − 1] holds. As a result, S \ {v′} ⊆ Bx[|S| − 1]
and hence |Bx[|S|−1]| ≥ |S|−1. This implies |Bx[|S|−1]| = |S|−1 because |Bx[i]| ≤ i
holds for all i by P (x)-(b). Since |Bx[|S| − 1]| = |S| − 1, the condition at line 5 is
true during iteration x+ 1, and hence v′ is chosen at line 7 rather than at line 9. In
that case, |Bx[|S| − 1]| = |S| − 1 implies |S| − 1 ≥ ` by the minimality of `, which is
ensured by line 6. This contradicts Claim 4.7, which asserts that |S| ≤ ` and implies
that |S| − 1 < `. This completes the proof of P (x+ 1)-(a).

Proof of P (x+1)-(b). Consider Bx+1[i] for any i, and any value z ∈ Bx+1[i]. We
must show that z is one of the i immediate predecessors of vx+1

1 in any k-atomic value

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 439

order T ′ for H such that Tx+1 is a suffix of T ′. If i < k − 1, then Bx+1[i] ⊆ Bx[i+ 1]
by line 15, and so z ∈ Bx[i + 1]. By P (x)-(b) it follows that z is one of the i + 1
immediate predecessors of vx1 in any k-atomic value order for H for which Tx is a
suffix. Since Tx is a suffix of Tx+1 and since vx+1

1 is the immediate predecessor of
vx1 in Tx+1, this implies that z is one of the i immediate predecessors of vx+1

1 in any
k-atomic value order for H for which Tx+1 is a suffix, including T ′ itself. Otherwise,
i = k−1 and so Bx+1[i] comprises the union of Bx[i] and the sets W and W ′ computed
at lines 12 and 13, excluding vx+1

1 itself. If z ∈ Bx[i], then by P (x)-(b), the value
z is one of the i immediate predecessors of vx1 in any k-atomic value order for H
for which Tx is a suffix, and hence one of the i − 1 < i immediate predecessors of
vx+1
1 in any k-atomic value order for H for which Tx+1 is a suffix, including T ′ itself.

Otherwise, z is added to B[i] during iteration x + 1 through the union with W and
W ′ at line 17. If z ∈ W , then z has a read r such that w(vx+1

1) <H r, and so GR

contains an edge (vx+1
1 , z) ∈ ER. Then, by Lemma 3.8, the value z is one of the

k − 1 = i values immediately preceding vx+1
1 in T ′, as needed. Otherwise, z ∈ W ′

and so W contains some z′ such that w(z′) <H w(z). Then z′ is one of the k − 1
values immediately preceding vx+1

1 in T ′ by the same argument as applied for z in the
previous case where z ∈W . Since w(z′) <H w(z), this implies that z is either one of
the k − 1 values immediately preceding vx+1

1 in T ′, or some value that appears in a
later position. Since W ′ ⊂ Ux by line 13, we see that z is not in Tx by Lemma 4.2 (a),
and furthermore that z 6= vx+1

1 , as otherwise it would be removed at line 17. Thus, z
is exactly one of the k − 1 values immediately preceding vx+1

1 in T ′, as needed.
Proof of P (x + 1)-(c). Suppose that GR contains an edge (a, b) such that a is

i ≥ 0 positions to the right of vx+1
1 in Tx+1 and b is not in Tx+1. We must show

that b ∈ Bx+1[k − 1 − j] for all j such that 0 ≤ j ≤ i. If i = 0, then a = vx+1
1 and

we must show that b ∈ Bx+1[k − 1]. Since GR contains the edge (a, b), we see that
b has a read r(b) such that w(a) <H r(b). Furthermore, since b is not in Tx+1 we
see that b ∈ Ux+1 by Lemma 4.2 (a). Since a = vx+1

1 , w(a) <H r(b), and b ∈ Ux+1,
the algorithm adds b to the set W at line 12 during iteration x+ 1. Since b is not in
Tx+1, it follows that b 6= vx+1

1 , and so b is then added to Bx+1[k− 1] at line 17 during
iteration x+ 1. Thus, P (x+ 1)-(c) holds when i = 0. Otherwise, i > 0 and a 6= vx+1

1 ;
hence a is i − 1 positions to the right of vx1 in Tx, which is a suffix of Tx+1. In that
case P (x)-(c) implies that b ∈ Bx[k−1− j] for all j such that 0 ≤ j ≤ i−1. Since b is
not in Tx+1, it follows that b 6= vx+1

1 ; hence b is not removed from the obligation sets
at lines 15 and 17 during iteration x + 1. As a result, b is copied to Bx+1[k − 1 − j]
for all j such that 1 ≤ j ≤ i at line 15, and b remains in Bx+1[k− 1] by line 17. Thus,
b ∈ Bx+1[k − 1− j] for all j such that 0 ≤ j ≤ i, and P (x+ 1)-(c) holds when i > 0.

This completes the proof of Lemma 4.5.

Theorem 4.10. The algorithm outputs YES if and only if H is k-atomic. Fur-
thermore, the algorithm has time complexity O(n2 +n ·k log k), where n is the number
of operations in the input history H.

Proof. If the algorithm outputs YES, then H is k-atomic by Lemma 4.4. If H
is k-atomic, then the algorithm outputs YES by Lemma 4.5. Thus, the algorithm
outputs YES if and only if H is k-atomic.

For time complexity, suppose that all the set variables (i.e., U and B[1] to B[k−
1]) are represented using a balanced tree structure sorted by the finish time of the
corresponding dictating write. Since these variables store distinct values from 1 to
nw ≤ n, it follows that insertions, deletions, and maximum element lookups take
O(log n) time, and the number of elements can be queried in O(1) time. Furthermore,

440 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

we can assume without loss of generality that |B[i]| ≤ i, as otherwise we can stop the
algorithm and return NO, as per line 18. Thus, B[i] supports fundamental operations
in O(log i) time. Let the sequence T be represented using a linked list with an O(1)-
time prepend operation. Initially T is empty and U is populated with all the values
in H, and so lines 1–2 require O(n log n) time. The outer loop has at most nw ≤ n
iterations and so we consider the cost of each iteration. Line 5 requires O(1) time
per obligation set and hence O(k) time in total. Lines 6–9 require O(k + logn) time.
Line 11 requires O(log n) time to remove v from U and O(1) time to prepend v to T .
Line 12 requires a scan of U in O(n) time, and O(n) time to record W (e.g., using
a linked list). Line 13 requires computing the smallest finish time of any dictated
write for the values in W , which takes O(n) time, and another scan of U in O(n)
time to compute W ′. The inner loop at lines 14–16 requires shuffling k− 1 obligation
sets, which requires O(k) time if pointers or references to the structures are copied
rather than the structures themselves. Furthermore, v must be deleted from each set,
which requires O(log i) time for B[i] and O(k log k) time in total. Line 17 entails O(k)
insertions into B[k−1] because, as explained earlier, the algorithm can be stopped as
soon as |B[k−1]| > k−1. The total cost of these insertions is O(k log k). Finally, the
test at line 18 requires O(1) steps per obligation set, or O(k) time in total. Thus, each
iteration runs in O(n+ k log k) time. The overall time complexity of the algorithm is
O(n2 + n · k log k), as needed.

5. A general algorithm. In this section we present a k-AV algorithm called
CGS (“configuration graph search”) for any history satisfying Assumptions 3.2–3.4,
whose worst-case time complexity is polynomial only in the special case when both k
and our specific measure of write concurrency are bounded by constants.

5.1. Algorithm description. The algorithm uses the graph-theoretic represen-
tations of the input history H described in section 3 as Definitions 3.6 and 3.7. Its
complexity depends on both the size of these graph structures and on a formal notion
of concurrency among write operations captured in Definition 5.1.

Definition 5.1. The write concurrency of a history H is the maximum num-
ber of writes that any one write overlaps with (not necessarily at a common point),
including itself.

The algorithm works by analyzing possible topological orderings of GW , which is
why its time complexity is sensitive to the write concurrency, denoted in this section
by m. For example, if m = 1, then the write operations in H are totally ordered by <H

and k-atomicity is decided easily to placing reads carefully around writes, as explained
in [16]. On the other hand, for m > 1, the number of possible topological orderings
in the worst case grows exponentially with the number of writes nw, which makes
it impractical to enumerate such orderings. We therefore adopt an approach that
computes pieces of the possible topological orderings called configurations, which are
formalized in Definition 5.2, and then searches for ways to combine the pieces to form
a full topological ordering. This approach is inspired by Saxe’s algorithm for deciding
whether the bandwidth of a graph is less than or equal to a given parameter k [31].
Saxe’s dynamic programming technique attempts to construct a linear graph layout
that exhibits a bandwidth of k or less by stringing together structures that represent
subsets of at most k vertices and the edges incident on them. Our configurations are
similar conceptually to these structures, but constrained by the edges of two graphs
(GR and GW) representing the input history H, rather than a single input graph.

Each configuration computed by the CGS algorithm is a contiguous subsequence

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 441

of a k-atomic value order for H, and must satisfy internally any constraints related
to edges of GR and GW in accordance with Lemma 3.8 (see Definition 5.2). Con-
figurations are then composed carefully, when possible, to form longer contiguous
subsequences of a k-atomic value order for H. Specifically, the algorithm attempts to
string pairs of overlapping configurations together and reduces k-AV to the problem
of finding a path of a certain length in a graph whose vertices represent the config-
urations and whose edges indicate that two configurations can be composed safely
(see Lemma 5.7). For example, a configuration C = 〈va, vb, vc〉 might be considered
for composition with a configuration C ′ = 〈vb, vc, vd〉 because C ′ begins with a suf-
fix of C. If C and C ′ meet certain additional requirements discussed shortly (see
Definition 5.3), then we say that C ′ extends C, and that their composition induces
the sequence of values 〈va, vb, vc, vd〉 (see Definition 5.4). The graph of configurations
(denoted GC) would then contain a directed edge (C,C ′).

The main technical challenge in stringing together configurations is to ensure that
the constraints related to edges of GR and GW compose correctly, meaning that if they
hold at the level of individual vertices or edges in GC then they hold automatically for
each path in GC . This enables polynomial running time if m and k are bounded from
above by constants, as otherwise the number of paths that must be checked grows
exponentially with nw in the worst case. To begin with, if configurations C and C ′

individually are subsequences of a topological ordering for GW , and C ′ extends C,
then their composition should automatically be a longer subsequence of a topological
ordering for GW . For example, if C = 〈ve, vf 〉 and C ′ = 〈vg, vh〉 are configurations,
then it should never be the case that C ′ extends C (i.e., vg = vf) and C simultaneously
extends C ′ (i.e., ve = vh), as otherwise their repeated composition would induce a
sequence of nonunique values. Similarly, if C ′ extends C, then it should never be the
case that vh <H ve, as otherwise their composition would order ve before vh, counter
to any topological ordering of GW . We avoid such undesirable scenarios in two ways.
First, we require that if C begins with ve and C ′ ends with vh, then C ′ extends
C only if ve 6= vh and vh 6<H ve (see Definition 5.3). Second, we require that each
configuration C contains at least m values (see Definition 5.2), which ensures that any
value v not present in C is ordered by <H (i.e., by the edge set of GW) with respect
to at least one value in C. As we show later on in Lemma 5.5 and Corollary 5.6, these
properties ensure that all paths through the graph GC of configurations are finite and,
if long enough, induce topological orderings of GW .

Constraints related to edges of GR are dealt with by ensuring that each configura-
tion C preserves them internally (see Definition 5.2 (b)), and also by “pinning down”
any backward edges of GR with respect to the last value v of C. More precisely, we
require that if GR contains an edge (v, v′) for some v′ 6= v, then v′ is either one of
the k − 1 immediate predecessors of v in C, or a value outside of C that is ordered
after some value in C by <H (see Definition 5.2 (c)). This ensures that in any topo-
logical ordering of GW obtained by composing C with other configurations, (v, v′)
either reaches backward by at most k− 1 positions or reaches forward, as required by
Lemma 3.8. The configuration size required for this technique to work as stated is
at least k. Thus, an overall configuration size of max(m, k) is sufficient to deal with
constraints imposed by edges of both GW and GR using the techniques described.

Definition 5.2. An (m, k)-configuration with respect to a read value graph
GR(V,ER) and a write graph GW (V,EW) is any sequence S = 〈v1, v2, . . . , v`〉 of
` = max(m, k) values that satisfies the following properties:

(a) S is a contiguous subsequence of some topological ordering of GW ;

442 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

(b) if GR contains an edge (v, v′) such that both v and v′ are values in S, say
v = vi and v′ = vj, then j > i− k; and

(c) if GR contains an edge (v, v′) such that v is the last value in S and v′ is not
in S, then S contains a value v′′ such that GW contains the edge (v′′, v′).

Definition 5.3. For any (m, k)-configurations C and C ′ with respect to a read
value graph GR(V,ER) and write graph GW (V,EW), we say that C ′ extends C if and
only if C ′ is obtained from C by removing the first value v and appending a value
v′ 6= v such that (v′, v) 6∈ EW .

The high-level pseudocode of CGS is presented as Algorithm 3. First, the graphs
GR and GW representing the structure of the input history H are computed at lines 1–
2. Next, the algorithm checks whether k ≥ nw at line 3, which means that H is
automatically k-atomic under Assumptions 3.2–3.4. In this case CGS terminates with
a YES output at line 4. Then, the algorithm looks for a value v such that k or more
edges of GR originate at v and terminate at values that precede v in <H . If such a
value v exists, then for any topological ordering of GW , there will be at least one edge
from v that reaches back by k or more positions, which implies that H is not k-atomic
(see Lemma 3.8). In this case CGS terminates with a NO output at line 6. Bounding
the number of such backward edges at this stage reduces the complexity of the next
phase of the algorithm (see analysis of line 9 in the proof of Theorem 5.11), which
constructs the graph GC of configurations at lines 9–11 after computing the write
concurrency of H earlier at line 8. The cost of executing lines 9–11 dominates the
time complexity of CGS as the number of possible configurations grows exponentially
with nw in the worst case. Finally, lines 12–15 decide k-atomicity based on the length
of the longest path in GC . As we show later on in Lemma 5.7, H is k-atomic if and
only if GC is nonempty and contains a path with |V | −max(m, k) edges.

Input: history H and integer k, 2 ≤ k ≤ n.
Output: YES if H is k-atomic, NO otherwise.

1 GR(V,ER) := read value graph for H
2 GW (V,EW) := write graph for H
3 if |V | ≤ k then
4 return YES

5 else if ∃v ∈ V s.t. |{v′ ∈ V | (v′, v) ∈ EW ∧ (v, v′) ∈ ER}| ≥ k then
6 return NO

7 else
8 m := write concurrency of H
9 C := set of (m, k)-configurations with respect to GR and GW

10 EC := {(c, c′) ⊆ C × C | configuration c′ extends configuration c}
11 GC := configuration graph (C, EC)
12 if GC is nonempty and contains a path with |V | −max(m, k) edges then
13 return YES

14 else
15 return NO
16 end

17 end

Algorithm 3: The CGS algorithm.

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 443

5.2. Examples. With respect to the example history presented in Figure 3.1,
CGS works correctly for all k ≥ 1. The write concurrency for this particular input
is m = 5 because w(5) overlaps the four other writes as well as itself. Recall from
section 3 that the input history is 3-atomic but not 1-atomic or 2-atomic. For k = 1,
the condition at line 5 holds with v = 1 and v′ = 2, and so the algorithm correctly
returns NO at line 6. For k = 2, the condition at line 5 is false and so the algorithm
proceeds to build the set C of (5, 2)-configurations at line 9. According to Definition 5.2
there are no possible (5, 2)-configurations because it is impossible to satisfy clause (b).
As a result, the configuration graph GC computed at line 11 is empty. Thus, the
condition at line 12 is false and CGS correctly returns NO at line 15. For k = 3,
the condition at line 5 is false and so the algorithm proceeds to build the set C of
(5, 3)-configurations at line 9. According to Definition 5.2 the only possible (5, 3)-
configurations are 〈5, 2, 1, 3, 4〉 and 〈5, 2, 3, 1, 4〉, which are the two possible 3-atomic
value orders for H. The configuration graph GC computed at line 11 is therefore
nonempty and contains a path with |V | − max(m, k) = 5 − 5 = 0 edges. Thus, the
condition at line 12 holds and CGS correctly returns YES at line 13.

Finally, consider the example history presented in Figure 3.1 with w(5) removed.
In that case the write concurrency becomes m = 3, and the input history remains
3-atomic but not 2-atomic, as explained in section 4.2. The corresponding write graph
GW has three topological orderings, as shown in Table 5.1. The possible configura-
tions for k = 2 and k = 3 are then enumerated in Table 5.2, and the corresponding
configuration graphs are presented in Figure 5.1.

Table 5.1
Exhaustive list of topological orderings for GW corresponding to the history from Figure 3.1

with w(5) removed.

Topological ordering Is 2-atomic Is 3-atomic

〈2, 1, 3, 4〉 no because w(3) <H r(2) yes
〈2, 1, 4, 3〉 no because w(3) <H r(2) no because w(3) <H r(2)
〈2, 3, 1, 4〉 no because w(1) <H r(2) yes

Table 5.2
Exhaustive list of configurations for k = 2 and k = 3 corresponding to the history from Fig-

ure 3.1 with w(5) removed.

Subsequence of Is a Is a
topological ordering (3, 2)-configuration (3, 3)-configuration

〈1, 3, 4〉 yes yes
〈2, 1, 4〉 yes yes
〈3, 1, 4〉 yes yes
〈2, 1, 3〉 no due to Definition 5.2 (b) yes

with vi = 3 and vj = 2
〈2, 3, 1〉 no due to Definition 5.2 (b) yes

with vi = 1 and vj = 2
〈1, 4, 3〉 no due to Definition 5.2 (c) no due to Definition 5.2 (c)

with v = 3 and v′ = 2 with v = 3 and v′ = 2

For k = 2, the condition at line 5 is false and so the algorithm proceeds to build the
set C of (3, 2)-configurations at line 9. As shown in Table 5.2, the (3, 2)-configurations
in this case are 〈1, 3, 4〉, 〈2, 1, 4〉, and 〈3, 1, 4〉. Since none of these (3, 2)-configurations
extends any other, the configuration graph GC computed at line 11 has three vertices
but no edges and hence does not contain a path with |V |−max(3, 2) = 4−3 = 2 edges.

444 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

<1, 3, 4>

<2, 1, 4>

<3, 1, 4>

<1, 3, 4>

<2, 1, 4>

<3, 1, 4>

<2, 1, 3>

<2, 3, 1>

k = 2 k = 3

Fig. 5.1. Configuration graphs for k = 2 (left) and k = 3 (right) corresponding to the history
from Figure 3.1 with w(5) removed.

Thus, the condition at line 12 is false and CGS correctly returns NO at line 15. For
k = 3, the condition at line 5 is again false and the possible (3, 3)-configurations are
〈1, 3, 4〉, 〈2, 1, 3〉, 〈2, 1, 4〉, 〈2, 3, 1〉, and 〈3, 1, 4〉. Since 〈1, 3, 4〉 extends 〈2, 1, 3〉, and
〈3, 1, 4〉 extends 〈2, 3, 1〉, the graph GC computed at line 11 is nonempty and contains
two paths with |V | −max(3, 3) = 4 − 3 = 1 edges. These two paths induce the two
possible k-atomic value orders for H: 〈2, 1, 3, 4〉 and 〈2, 3, 1, 4〉. Thus, the condition
at line 12 holds and CGS correctly returns YES at line 13.

5.3. Analysis. In this section we suppose that Assumptions 3.2–3.4 hold and we
show that the algorithm returns YES if and only if the input history H is k-atomic.
In our analysis any references to the configuration graph GC pertain to the graph
structure computed at line 11 of the algorithm.

Definition 5.4. Let P = 〈C1, C2, C3, . . . , C`〉 be a finite path in the configura-
tion graph GC . The sequence S of values induced by P is defined recursively as
follows: if ` = 1, then S = C1, as otherwise S is the sequence of values induced by
〈C1, C2, C3, . . . , C`−1〉 followed by the last value of C`.

Lemma 5.5. For any finite path P = 〈C1, C2, C3, . . . , C`〉 in the configuration
graph GC , the sequence S of values induced by P is a subsequence of some topological
ordering of GW .

Proof. To show that S is a subsequence of some topological ordering of GW ,
we must prove two properties: (i) S is a sequence of distinct values; and (ii) if vi
precedes vj in S, then vj 6<H vi. The proof proceeds by induction on `. The base case
` = 1 follows directly from Definition 5.2 (a) since each vertex in GC is an (m, k)-
configuration. Now suppose that the lemma holds for some ` ≥ 1 and consider a path
P`+1 of length ` + 1. Let P` denote the prefix of P`+1 of length `. Let S` and S`+1

denote the sequences of values induced by P` and P`+1, respectively. Let C` and C`+1

denote the last (m, k)-configurations in P` and P`+1, respectively. Let vi denote the
ith element of S`+1 and note that v` is the first element of C`. A counterexample to
the lemma comprises a pair of values vi and vj such that i < j, vj is the last value of
both S`+1 and C`+1, and vi = vj if property (i) is violated, or vj <H vi if property (ii)
is violated. To derive a contradiction, suppose that such a pair vi, vj exists in S`+1.
It follows from the base case (applied to a path comprising C`+1 only) that the values
vi and vj cannot both occur in C`+1 with vi preceding vj . Furthermore, it follows
from the induction hypothesis that the values vi and vj cannot both occur in S` with

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 445

vi preceding vj . Thus, value vi occurs in S`+1 only before the positions corresponding
to the initial max(m, k)− 1 elements of C`+1, which constitute a suffix of S`, whereas
vj occurs in C`+1 in the last position. Since C`+1 extends C`, it also follows from
Definition 5.3 that vj 6= v` and that vj 6<H v`, which implies vi 6= v` regardless of
whether property (i) or property (ii) is violated. In other words, vi occurs in S`+1

only before the positions corresponding to all max(m, k) elements of C`.
Next, we focus on C`, which begins with v`. Since C` is an (m, k)-configuration,

it contains at least m values. Furthermore, since we showed that value vi occurs only
before the elements of C` in S`+1, vi is different from all the values in C`, and so it
follows from Definition 5.1 that one of these m or more values, say va, is adjacent
to vi in GW . Since vi appears in S` before the elements of C`, hence before va, it
follows from the induction hypothesis that va 6<H vi as otherwise S` would not be
a subsequence of some topological ordering. Thus, va being adjacent to vi in GW

specifically implies vi <H va.
To complete the proof, we will show that vj <H va and that va precedes vj in

C`+1, and then derive a final contradiction. First, we focus on the relative order of vj ,
which is the last element of C`+1, and va in <H . If vi and vj violate property (i), then
vi = vj , and so vi <H va implies vj <H va, as needed. If vi and vj violate property
(ii), then vj <H vi, and so vi <H va once again implies vj <H va. Next, consider the
position of va in S`+1 relative to the elements of C`+1. Since C`+1 extends C` and
v` is defined as the first element of C`, it follows from Definition 5.3 that vj 6<H v`
because vj is the last element of C`+1, and so vj <H va implies va 6= v`. Since va is
also one of the values in C`, va 6= v` implies that va is not the first element but one
of the last max(m, k) − 1 elements of C`, and hence one of the first max(m, k) − 1
elements of C`+1, which extends C`. Thus, vj <H va and va precedes vj in C`+1,
which contradicts Definition 5.2 (a) since C`+1 is an (m, k)-configuration.

Corollary 5.6. Suppose that H contains nw ≥ k writes. Then GC is acyclic
and any path P through the configuration graph GC has length (number of edges) at
most nw −max(m, k).

Proof. By Lemma 5.5, any finite path through GC induces a sequence S of values
that is a subsequence of some topological ordering of GW . As a result, S has at most
nw values, all of which are distinct. The first (m, k)-configuration in P contributes
max(m, k) of these, and subsequent configurations contribute one value each. There-
fore, if P has L edges, then S has L + max(m, k) values, and L + max(m, k) ≤ nw
implies L ≤ nw−max(m, k). Moreover, GC is acyclic because every path in the graph
is finite.

Lemma 5.7. Suppose that H contains nw ≥ k writes. Then H is k-atomic if and
only if the configuration graph GC is nonempty and has a path with exactly nw −
max(m, k) edges.

Proof. Suppose that H is k-atomic, and note that nw −max(m, k) ≥ 0 since we
assume nw ≥ k and since nw ≥ m holds in general. We will show that GC contains a
path P with nw −max(m, k) edges and nw −max(m, k) + 1 vertices, which induces
a sequence of values of length nw. Since H is k-atomic, we can apply Lemma 3.8
to obtain a topological ordering T = 〈v1, v2, . . . , vnw〉 of GW such that edges of GR

reach backward by at most k − 1 positions. It suffices to show that for every ` such
that 1 ≤ ` ≤ nw − max(m, k) + 1, the tuple C` =

〈
v`, v`+1, . . . , v`+max(m,k)−1

〉
is

an (m, k)-configuration, in which case the desired path P is the one that traverses
C1, C2, . . . , Cnw−max(m,k)+1. Consider an arbitrary `, 1 ≤ ` ≤ nw−max(m, k)+1, and

446 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

for simplicity denote the values in C` by
〈
w1, w2, . . . , wmax(m,k)

〉
. For property (a) of

Definition 5.2, C` is a contiguous subsequence of T , which is a topological ordering
of GW . It further follows from Lemma 3.8 that if GR contains an edge (wi, wj) =
(v`+i−1, v`+j−1), then ` + j − 1 > ` + i − 1 − k and so j > i − k. Thus, C` satisfies
property (b) of Definition 5.2. For property (c) suppose that (vi, vj) ∈ ER where
vi = wmax(m,k) is the last element of C` and vj is not in C` at all. Then from the
properties of T obtained by Lemma 3.8 we observe that j > i − k. Since vj is not
in C`, this implies that j > i, and so vj succeeds vi in T . Since C` contains at least
m values, vj must be adjacent to at least one of the values of C`, say wa, in GW .
Thus, either (wa, vj) ∈ EW or (vj , wa) ∈ EW . Since T is a topological ordering of
GW where vj appears after all values of C`, it follows that (wa, vj) ∈ EW , as needed.

Conversely suppose that GC has a path P with nw −max(m, k) edges. Then P
induces a sequence S = 〈v1, v2, . . . , vnw

〉 of values, which are distinct because GC is
acyclic by Corollary 5.6. Thus, S has exactly nw values, and so Lemma 5.5 implies
that S is a topological ordering of GW . Now suppose that GR contains an edge
(vi, vj). It suffices to show that j > i− k, in which case H is k-atomic by Lemma 3.8.
If P visits an (m, k)-configuration C that contains both vi and vj , then j > i − k
by Definition 5.2 (b), as needed. Otherwise let C be the (m, k)-configuration visited
by P in which vi appears in the latest possible position (i.e., the first configuration
visited by P that contains vi).

Case 1: vi is the last value in C. Since vj is not in C, it follows from Defini-
tion 5.2 (c) that C contains a value vc such that GW contains the edge (vc, vj). Since
C is a contiguous subsequence of a topological ordering of GW and since C does not
contain vj , this implies that j > i; hence j > i− k as needed.

Case 2: vi is not the last value in C. Then C is the first (m, k)-configuration
visited by P , and so i < max(m, k). Since vj is not in C, it follows that vj appears
in S after the values of C, and so j > max(m, k). Thus, j > i > i− k, as needed.

Theorem 5.8. The algorithm returns YES if H is k-atomic and NO otherwise.

Proof. The return statement at line 4 is reached when |V | ≤ k. In this case,
H contains at most k writes, and so H is k-atomic under Assumption 3.3, and the
algorithm correctly returns YES. The return statement at line 6 is reached when the
write of some value v is followed in <H by the reads of at least k other values whose
dictating writes happen before w(v). In this case GR contains edges from v to at
least k other vertices that must precede v in any topological ordering of GW , and so
Lemma 3.8 implies that H is not k-atomic. Thus, the algorithm correctly returns NO
at line 6. Otherwise, |V | > k and the algorithm returns at line 13 or line 15. Since H
contains at least k writes in this case, Lemma 5.7 states that H is k-atomic if and only
if GC is nonempty and has a path with nw −max(m, k) edges. Indeed, the algorithm
returns YES at line 13 if this condition holds and NO at line 15 otherwise.

In the remainder of this section, we analyze the running time of the algorithm
with the help of two lemmas that bound the size of the graph of configurations.

Lemma 5.9. Let C = 〈v1, v2, . . . , v`〉 be an (m, k)-configuration for a history H.
If vi is fixed for some 1 ≤ i < `, then there are at most 2m − 1 possible choices for
vi+1: at most m − 1 where w(vi) is concurrent with w(vi+1) and at most m where
w(vi) <H w(vi+1).

Proof. Fix vi and let W be the subset of possible values for vi+1. Since C must
be a contiguous subsequence of some topological ordering of GW , we can define W
as the disjoint union of two subsets: W1 is the set of values not adjacent with vi in

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 447

GW (i.e., values vi+1 such that w(vi) is concurrent with w(vi+1)), and W2 is a subset
of out-neighbors of vi in GW (i.e., values vi+1 such that w(vi) <H w(vi+1)). Since
m is the write concurrency of H, it follows from Definition 5.1 that |W1| ≤ m − 1
because w(vi) may overlap with at most m − 1 writes other than itself. Similarly,
|W2| ≤ m as otherwise W2 contains two values x, y such that GW contains edges
(vi, x) and (x, y) (i.e., two values whose dictating writes are not concurrent), in which
case y cannot be an immediate successor of vi in a topological ordering of GW . Thus
|W | = |W1|+ |W2| ≤ 2m− 1, and so there are at most 2m− 1 choices for vi+1.

Lemma 5.10. The graph GC of (m, k)-configurations for a history H with nw
writes has at most nw · (2m− 1)max(m,k)−1 vertices and at most nw · (2m− 1)max(m,k)

edges.

Proof. First consider the number of vertices. Let C =
〈
v1, v2, . . . , vmax(m,k)

〉
denote an arbitrary (m, k)-configuration in GC . There are at most nw choices for
the first element, v1. Now suppose that v1, . . . , vi have been decided for some i <
max(m, k), and consider vi+1. By Lemma 5.9 there are at most 2m − 1 possible
choices for vi+1. Since there are max(m, k)− 1 values in C after v1, the total number
of possible (m, k)-configurations is at most nw · (2m− 1)max(m,k)−1, as needed.

Next consider the edges. Suppose that (m, k)-configurations C and C ′ are adja-
cent in GC , and C ′ extends C. Then C ′ contains the last max(m, k)− 1 elements of
C and one additional element, say v. As explained earlier there are at most 2m − 1
choices for v and so given C there are at most 2m−1 choices for C ′. Thus, the number
of edges in GC is at most a factor of 2m− 1 larger than the number of vertices.

Theorem 5.11. The time complexity of the algorithm is O(n2 + n ·max(m, k)2 ·
(2m − 1)max(m,k)−1), where n denotes the number of operations in the input history
H, and m is the write concurrency of H.

Proof. The time complexity is contingent on a careful implementation of the
algorithm, which we describe in this proof. The analysis is broken down by line
number.

Lines 1 and 2: O(n2) steps. The graphs GR and GW are represented using adja-
cency matrices. The values read and written by operations in H are first remapped
to the domain of consecutive integers from 1 to nw by fixing an order on the values,
and then mapping each value to its position in the chosen order. For example, to
fix the order, the values can be inserted (without duplicates) into a balanced binary
tree sorted in ascending order in O(n log n) time. An in-order tree traversal then
assigns to each distinct value its position in the sorted order, from 1 to nw, in O(n)
time. Finally, the values in the history are replaced with the assigned integers, us-
ing an O(log n) lookup per operation and O(n log n) steps in total. The remapped
values are used to index the rows and columns of the adjacency matrices, which can
be populated in O(n2) steps by scanning H using a pair of nested for loops. In the
remainder of the proof we will use the notation GW [i, j] and GR[i, j] to denote the
matrix elements corresponding to the edge (i, j). The wildcard symbol ? will be used
to denote a matrix row or column, for example GW [?, j] indicating all values whose
dictating writes happen before w(j). Thus, the construction of GR and GW requires
O(n2) steps in total.

Line 3: O(1) steps. The condition |V | ≤ k at line 3 can be evaluated in O(1)
steps since |V | = nw is known from the construction of the adjacency matrices.

Line 5: O(n2w) steps. For each value v, the condition at line 5 can be tested in
O(nw) steps as follows: determine {v′ ∈ V | (v′, v) ∈ EW } using GW [?, v], determine

448 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

{v′ ∈ V | (v, v′) ∈ ER} using GR[v, ?], and take the intersection. Since column v of
GW and row v of GR are nw-element binary vectors, the intersection can be computed
in O(nw) steps using a dot product. The sum of the elements in this dot product is
the size of the set referred to by line 5.

Line 8: O(n2w) steps. For each value v, the number of writes overlapping with
w(v) can be determined in O(nw) steps by using GW [?, v] and GW [v, ?] to first identify
nonoverlapping writes.

Line 9: O(n2w +nw ·max(m, k)2 · (2m−1)max(m,k)−1) steps. The set of all (m, k)-
configurations can be determined by enumerating candidate permutations of values
and testing each permutation against Definition 5.2. By Lemma 5.10 the total number
of such permutations is O(nw · (2m − 1)max(m,k)−1) as there are at most nw choices
for the first element, and at most 2m − 1 choices for each subsequent element. To
identify the candidate permutations efficiently we first compute for each value v the
set W of at most 2m − 1 values that may follow v in a topological ordering of GW ,
which is denoted Succ(v) in the remainder of the proof. It follows from Lemma 5.9
that Succ(v) is the union of the set W1 of values whose writes are concurrent with
w(v), and a subset W2 of values whose writes happen after w(v). To compute W1 it
suffices to compare v against every other value. Set W2 is computed similarly, except
that we must also determine the minimum finish time t of the writes that happen
after w(v) and then prune any writes that start after time t. Precomputing W1 and
W2 for each vertex takes O(n2w) steps in total, and the additional cost of enumerating
candidate permutations of values is O(nw · (2m− 1)max(m,k)−1).

As the algorithm enumerates candidate permutations of max(m, k) values, each
one is tested against the three properties of Definition 5.2 to determine whether it
constitutes an (m, k)-configuration. Property (a) can be tested in O(max(m, k)2)
steps by considering all possible pairs of values v, v′ in a permutation and checking
their relative order against the adjacency matrix for GW . Similarly, property (b)
can be tested in O(max(m, k)2) steps by considering pairs of values v, v′ that are
separated by k or more positions and checking their relative order against GR. For
property (c) we must consider edges (v, v′) ∈ ER such that v is the last value in
the permutation and v′ is not in the permutation at all. Such values v′ comprise
three disjoint categories: (i) (v, v′) ∈ EW , (ii) w(v) is concurrent with w(v′), and (iii)
(v′, v) ∈ EW . A value in category (i) satisfies Definition 5.2 (c) automatically, and so
only values in categories (ii) and (iii) need to be tested explicitly against property (c).
The subsets of values in categories (ii) and (iii) can be precomputed in O(nw) steps for
a given v using the adjacency matrix rows GR[v, ?] and GW [v, ?]. The sizes of these
subsets are bounded by m and k as follows. By definition of the write concurrency
parameter m (see Definition 5.1), there can be at most m−1 choices for v′ in category
(ii). By the negation of the condition evaluated at line 5, which holds as otherwise
line 9 would not be reached, there can be at most k − 1 choices for v′ in category
(iii) since (v, v′) ∈ ER. Thus, given v there are at most m + k − 2 choices for v′ in
total outside of category (i), and for each choice of v′ we must decide whether an edge
(v′′, v′) exists in EW such that v′′ is a value in the candidate permutation. Such an
edge exists if and only if EW contains an edge (v′′′, v′), where v′′′ is the value in the
candidate permutation whose dictating write has the minimum finish time (possibly
v′′′ = v′′), and so it suffices to test for (v′′′, v′) specifically. The value v′′′ can be
computed once for each candidate permutation in O(max(m, k)) steps. The cost
of checking property (c) is therefore O(max(m, k)) steps per candidate permutation
with a one-time precomputation cost of O(n2w) to determine categories (i)–(iii) for
each value v. Thus, the total cost of identifying all the (m, k)-configurations is in

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 449

1 2 3

3 13 1

1 44 3 4

Fig. 5.2. Trie structure corresponding to the set of (3, 3)-configurations shown in Figure 5.1.

O(n2w + nw ·max(m, k)2 · (2m− 1)max(m,k)−1).
The candidate permutations can be stored efficiently using a trie data structure

[12]. An example of such a structure for the set of (3, 3)-configurations presented in
Figure 5.1 is illustrated in Figure 5.2. The root node has a branching factor of nw
and its child pointers are stored in an array indexed directly by the value of the first
element in the permutation. It follows from Lemma 5.9 that the branching factor
is at most 2m − 1 at lower levels of the trie, which can be much less than nw, and
so we use a sorted array instead to store child pointers in each node. The array
contains pairs comprising the value of the next element in the permutation and the
corresponding child pointer, and these pairs are sorted by the value so that following
a child pointer takes O(logm) steps. Fundamental trie operations (i.e., insertions and
lookups) take O(max(m, k)·logm) steps but the total cost of building the trie is linear
in the number of (m, k)-configurations if they are inserted in ascending lexicographical
order because the amortized cost of insertion in that case is O(1). This is accomplished
by enumerating the (m, k)-configurations in ascending order, which does not increase
the time complexity asymptotically. Similarly, the cost of an in-order traversal of the
trie is also linear in the number of elements.

Line 10: O(nw ·max(m, k) · logm · (2m − 1)max(m,k)−1) steps. The edges of the
configuration graph GC can be computed by traversing the trie to visit each (m, k)-
configuration C, and finding every (m, k)-configuration C ′ that extends C according
to Definition 5.3. A linear-time in-order traversal of the trie takes O(nw · (2m −
1)max(m,k)−1) steps since that is the number of (m, k)-configurations by Lemma 5.10.
It follows from Lemma 5.9 that for each (m, k)-configuration C there are at most
2m−1 choices for the last value in C ′, which can be identified in O(m) steps using the
precomputed structure Succ described in the analysis of line 9. The adjacency matrix
for GW must also be tested to rule out the presence of an edge from the last value in
C ′ to the first value in C. Finally, for each C ′ the algorithm must perform a lookup in
the trie structure to determine if C ′ is indeed an (m, k)-configuration. Ordinarily each
lookup takes O(max(m, k) · logm) steps, but in this case an optimization is possible
since all configurations C ′ that extend the same C share the same values in all but
the last position. After the first lookup for a given C, the remaining lookups can
start at the level immediately above the leaf nodes instead of starting at the root,
which takes O(m) additional steps since there are at most 2m− 1 possibilities for C ′.
Thus, the cost of the trie accesses is O(max(m, k) · logm) for each C, and in total
O(nw ·max(m, k) · logm · (2m− 1)max(m,k)−1) steps for all the (m, k)-configurations.

450 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

Each edge (C,C ′) of the configuration graph can be represented efficiently as a pair
of pointers to the corresponding leaf nodes in the trie structure, which is sufficient
for our purposes since we are interested in the length of paths through GC . Such an
adjacency list can be constructed in O(1) steps per edge.

Line 12: O(nw · (2m − 1)max(m,k)) steps. Since GC is acyclic by Corollary 5.6,
the longest path computation can be carried out efficiently [32]. First, depth-first
search is used to compute a topological ordering of GC . The length of the longest
path ending at vertex v, denoted L(v), is then determined by processing vertices in
the computed order. Letting I(v) denote the set of in-neighbors of v, L(v) = 0 if
I(v) = ∅ and L(v) = 1 + maxw∈I(v) L(w) otherwise. Finally, the longest path length
is determined by taking the maximum over the computed values of L(v). Assuming
an adjacency list representation, the total cost is linear in the size (number of edges)
of the configuration graph, which is bounded in Lemma 5.10. The adjacency list
can be computed at line 10, which enumerates the edges of GC , without increasing
asymptotic time complexity.

Total. The time complexity of the entire algorithm, implemented as described in
this proof, is

O
(
n2 + n2w + nw ·max(m, k)2 · (2m− 1)max(m,k)−1 + nw · (2m− 1)max(m,k)

)
,

which can be rewritten as O(n2 + n2w + nw ·max(m, k)2 · (2m − 1)max(m,k)−1). This
implies the theorem since nw ≤ n.

The time complexity of algorithm CGS, as stated in Theorem 5.11, is of the form
O(n2 + f(m, k)n), where k is a constant independent of n, and m ≤ n is a parameter
that depends on the input history but not on n directly. Therefore, Theorem 5.11
establishes that k-AV is fixed-parameter tractable under Assumptions 3.2–3.4 with
respect to the combination of m and k.

6. Practical applicability. In this section we investigate the time complexity
of algorithm CGS (section 5) in practice by computing the parameters n (number of
operations) and m (write concurrency; see Definition 5.1) from experimental data.
The data sets are borrowed from two recent experimental studies [19, 26].

Experimental environment. The suite of experiments presented in [19] was con-
ducted using Cassandra 1.2.4 [22] as the storage system and the Yahoo Cloud Serving
Benchmark (YCSB) 0.1.4 [6] as the workload generator. The hardware infrastructure
comprised ten 64-bit 2.2 GHz dual-core AMD Opteron servers equipped with 8 GB
DRAM, 7200 RPM SATA disks, and Gigabit Ethernet. Five machines were used to
run the storage system and another five for the benchmark, all in the same private
data center. The software environment included CentOS 5.5 Linux and OpenJDK
1.7.0 19. Clock skew across servers was estimated using the ntpq command as less
than 10ms.

The more recent experiments in [26] were conducted using a newer version of
Cassandra (2.0.10) and the same YCSB release. The hardware infrastructure was
provisioned in Amazon’s Elastic Compute Cloud (EC2). Three virtual machines were
used, each equipped with a 64-bit 2.5 GHz quad-core Intel Xeon processor, 16 GB
DRAM, and 2×40 GB SSD local storage. The software environment included Ubuntu
14.04 Linux and Oracle Java 1.7.0 72. In one set of experiments, all three virtual
machines were deployed in the us-west-2 data center, and clocks were synchronized
to within 0.05ms. In the second set of experiments, the three virtual machines were
distributed across multiple data centers: us-west-1, us-east-1, and sa-east-1. Clocks

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 451

were synchronized to within 10ms.
Translation of execution histories into k-AV inputs. The data set comprises exe-

cution histories from 11 experiments, where each experiment includes multiple (3-9)
runs with different combinations of storage system settings and workload parame-
ters. In each run, the benchmark (YCSB) applied operations to the storage system
(Cassandra) for at least 60 seconds, usually at a throughput level of approximately
1,000 operations per second per server. The start and finish times of operations were
measured using a microsecond precision clock, leading to the possibility that the start
and finish times of operations are not distinct, in contrast to the assumption stated
in section 3. We adopt the convention that if an operation A ends at the same time
as some other operation B begins, then A happens before B for the purpose of defin-
ing the graphs GW and GR representing the history. This convention is justified by
the observation that the start and finish times of operations are measured at clients,
whereas the actual execution of the operation at servers begins slightly later and
finishes slightly earlier due to communication delays between the client and storage
system back end.

Although the history generated by each of the experimental runs could be used
directly as an instance of k-AV, each object accessed in the history can be ana-
lyzed separately thanks to the locality property of k-atomicity, as explained in sec-
tion 2. Therefore, we first project the history obtained from a given run into a set of
subhistories corresponding to distinct objects. Furthermore, each of these subhistories
can often be decomposed into smaller fragments that can be analyzed independently—
a type of divide-and-conquer strategy introduced in connection with the FZF algo-
rithm for solving 2-AV [16]. To a first approximation, the decomposition can be
achieved as follows: if the operations in a history H can be partitioned into sets S1, S2

such that the set of values accessed by operations in S1 is disjoint from the set of values
accessed by operations in S2, then the projections H1, H2 of H corresponding to S1, S2

can be analyzed independently provided that maxop1∈S1 f(op1) < minop2∈S2 s(op2).
In that case H is k-atomic if and only if both H1 and H2 are k-atomic. The projec-
tions H1 and H2 are decomposed recursively, if possible, to further reduce the size of
the problem instances. In some cases, H1 and H2 can be analyzed independently even
when maxop1∈S1

f(op1) ≥ minop2∈S2
s(op2), leading to a more fine-grained decompo-

sition. Before describing the details, we first review some terminology introduced by
Gibbons and Korach [14].

A collection of operations that access the same value v with respect to the same
key κ is called a cluster. The invocation and response times of the operations in a
cluster for a particular v and κ define, roughly speaking, an interval of time during
which v appears to be the current value of κ. More formally, a cluster has an associated
zone, which is defined as the time interval from the minimum finish time of any
operation in the cluster to the maximum start time of any operation in the cluster.
A forward zone occurs when the minimum finish time is less than the maximum start
time, meaning that at least one dictated read starts after some other operation in
the zone finishes. A backward zone occurs when the minimum finish time is greater
than or equal to the maximum start time, meaning that all operations in the zone
overlap at a common point in time. For completeness we include in Figure 6.1 a copy
of Figure 3 from [16], which illustrates a possible combination of zones in one history.
In this figure FZx and BZx indicate forward and backward zones, respectively, and
time increases from left to right.

The fine-grained decomposition procedure, which was introduced in [16], groups
zones into maximal subsets called chunks such that (i) two forward zones are in the

452 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

❋�✁

❋�✂

❋�✄

❋�☎

❋�✆❋�✝ ❋�✞

❋�✟

❇�✝ ❇�✄ ❇�☎ ❇�✆ ❇�✞ ❇�✂ ❇�✟

Fig. 6.1. Example of zones in a history. c©[2013] IEEE. Reprinted, with permission, from [16].

same chunk if they intersect, and (ii) a backward zone belongs to a chunk if its time
interval is contained entirely in the union of the time intervals of the forward zones
in that chunk. As an example, in Figure 6.1 there are three chunks: {FZ 1,BZ 1},
{FZ 2,FZ 3,FZ 4,BZ 3,BZ 4}, and {FZ 5,FZ 6,FZ 7,FZ 8,BZ 6}. Intuitively, the re-
maining zones BZ 2, BZ 5, and BZ 7 can be ignored in the context of k-AV because
their operations can be linearized easily in between chunks. It is straightforward to
show that under Assumptions 3.2–3.3 an execution history is k-atomic if and only if
each chunk of that history is k-atomic.

Experimental results. We applied the above translation procedure to the 89 exe-
cution histories in the data sets under consideration, which generated more than eight
million chunks. For each history we computed the total number of chunks, total num-
ber of zones, total number of operations, maximum number of operations per chunk,
maximum write concurrency, number of chunks with m ≤ 5, number of chunks that
satisfy Assumption 4.1, and number of chunks where m > 5 and Assumption 4.1 is
not satisfied. The chunks mostly comprised 1–200 operations and 1–10 zones. Thus,
the problem instances were fairly small but not small enough to permit solving k-AV
using a brute force approach. The number of chunks satisfying Assumption 4.1, hence
computable efficiently using the GPO algorithm from section 4, was approximately
96% in the experiments conducted using multiple data centers, and more than 99% in
the single data center experiments. Over 99% of the chunks exhibited m ≤ 5, making
them good candidates for the CGS algorithm from section 5 for small values of k.
The remaining chunks, where m > 5 and Assumption 4.1 does not hold, accounted
for fewer than 0.1% of the inputs, and may be too complex for our CGS algorithm.

In addition to analyzing the structure of the chunks, we implemented the GPO
and CGS algorithms in Java and executed them on the inputs under consideration.
CGS was invoked only on chunks that failed to satisfy Assumption 4.1 and was limited
to one second of computation on a laptop equipped with a 2.39 GHz Intel i7-4500
dual-core processor and 8 GB DRAM. More than 99.98% of the inputs were solved
successfully, revealing that k was generally less than 100. More than 99% of the inputs
exhibited k < 10, and more than 90% were 1-atomic. Inputs with k > 2, which could
not be analyzed using prior 1-AV and 2-AV algorithms [14, 16], were found mostly in
the histories obtained from [26]. In those experiments, k > 2 occurred in more than
15% of the nonatomic (i.e., k > 1) inputs.

7. Conclusion and discussion. In this paper, we have presented two algo-
rithms that solve the k-AV problem for arbitrary k ≥ 2 in special cases. Our al-
gorithms assume that each read has exactly one dictating write (Assumption 3.2),
which circumvents NP-completeness when k ≤ 2. The first algorithm (GPO) places
an additional restriction on the structure of the execution history but always runs in
polynomial time. The second algorithm (CGS) does not place any additional restric-
tions on the input but its running time is polynomial only if both k and our measure

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 453

of write concurrency (Definition 5.1) are bounded by constants. The time complex-
ity of k-AV under Assumption 3.2, with no additional restrictions, remains an open
question. Our contributions also leave open the possibility of reducing k-AV to the
graph bandwidth (GBW) problem, which would settle the time complexity of k-AV,
as well as the possibility of reducing GBW to k-AV.

Our algorithms enable precise measurement of version-based staleness, which in
turn has several applications: (i) analyzing and understanding the behavior of eventu-
ally consistent storage systems (e.g., [8, 22, 33]); (ii) validating mathematical models
of consistency (e.g., [3]); as well as (iii) verifying that a storage system or consis-
tency tuning framework (e.g., [2, 34, 39]) delivers a promised level of consistency, and
quantifying the severity of any consistency violations observed.

Measurement of version-based staleness entails computing the k-value of a history
H, denoted kH , which is the smallest integer k ≥ 1 for which H is k-atomic. This
value can be computed by a brute force method where k-AV is solved for consecutive
values of k starting at k = 1, or by executing a binary search over 1 ≤ k ≤ nw
where nw is the number of writes in H. When the time complexity of the k-AV solver
grows exponentially with k, such as in our CGS algorithm, the overall running time is
dominated by the highest k tested, and so the brute force approach is preferred as it
only considers k ≤ kH . In other cases the computation may benefit from binary search
with the overall time complexity bounded by O(log nw) times the cost of solving k-AV
for k = nw.

Given that our k-AV algorithms do not guarantee polynomial running time with-
out additional restrictions, their practical value depends on how often these restric-
tions hold in real data sets. To shed light on this point, we analyzed the execution
histories from [19, 26] to determine representative values of n (number of operations)
and m (write concurrency; Definition 5.1). The results suggest that in practice the
inputs are typically small, comprising at most a few hundred operations, and the vast
majority of k-AV instances satisfy Assumption 4.1, which makes GPO applicable. In
most of the remaining inputs, m is small (≤5), and CGS is useful for small k (e.g.,
k ≤ m). A minute fraction (<0.1% in our analysis) of inputs fail to satisfy both
Assumption 4.1 and m ≤ 5 and may be too complex for CGS.

Acknowledgments. We are grateful to the anonymous referees for their care-
ful proofreading of this work and their insightful suggestions. Xiaozhou (Steve) Li
conducted part of this research at Hewlett Packard Labs.

REFERENCES

[1] A. Aiyer, L. Alvisi, and R. A. Bazzi, On the availability of non-strict quorum systems,
in Proceedings of the 19th International Symposium on Distributed Computing (DISC),
Krakow, Poland, 2005, pp. 48–62.

[2] M. S. Ardekani and D. B. Terry, A self-configurable geo-replicated cloud storage system, in
Proceedings of the 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), Broomfield, CO, 2014, pp. 367–381.

[3] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Stoica, Proba-
bilistically bounded staleness for practical partial quorums, PVLDB, 5 (2012), pp. 776–787.

[4] D. Bermbach and S. Tai, Eventual consistency: How soon is eventual? An evaluation of
Amazon S3’s consistency behavior, in Proceedings of the 6th Workshop on Middleware for
Service Oriented Computing (MW4SOC), Lisbon, Portugal, 2011, 1.

[5] E. A. Brewer, Towards robust distributed systems (abstract), in Proceedings of the 19th ACM
Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2000, p. 7.

454 W. GOLAB, X. LI, A. LÓPEZ-ORTIZ, AND N. NISHIMURA

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, Benchmarking
cloud serving systems with YCSB, in Proceedings of the 1st ACM Symposium on Cloud
Computing (SoCC), ACM, New York, 2010, pp. 143–154.

[7] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, New York, 2015.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, Dynamo: Amazon’s highly avail-
able key-value store, in Proceedings of the 21st ACM Symposium on Operating System
Principles (SOSP), ACM, New York, 2007, pp. 205–220.

[9] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, New York,
1997.

[10] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow
problems, SIAM J. Comput., 5 (1976), pp. 691–703, https://doi.org/10.1137/0205048.

[11] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag, Berlin, 2006.
[12] E. Fredkin, Trie memory, Comm. ACM, 3 (1960), pp. 490–499.
[13] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth, Complexity results for

bandwidth minimization, SIAM J. Appl. Math., 34 (1978), pp. 477–495, https://doi.org/
10.1137/0134037.

[14] P. B. Gibbons and E. Korach, Testing shared memories, SIAM J. Comput., 26 (1997),
pp. 1208–1244, https://doi.org/10.1137/S0097539794279614.

[15] S. Gilbert and N. A. Lynch, Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services, ACM SIGACT News, 33 (2002), pp. 51–59.

[16] W. Golab, J. Hurwitz, and X. Li, On the k-atomicity-verification problem, in Proceedings
of the 33rd International Conference on Distributed Computing Systems (ICDCS), IEEE,
Washington, DC, 2013, pp. 591–600.

[17] W. Golab, X. Li, and M. A. Shah, Analyzing consistency properties for fun and profit, in
Proceedings of the 30th ACM Symposium on Principles of Distributed Computing (PODC),
ACM, New York, 2011, pp. 197–206.

[18] W. Golab, X. Li, A. López-Ortiz, and N. Nishimura, Computing weak consistency in poly-
nomial time (extended abstract), in Proceedings of the 34th ACM Symposium on Principles
of Distributed Computing (PODC), ACM, New York, 2015, pp. 395–404.

[19] W. Golab, M. R. Rahman, A. AuYoung, K. Keeton, and I. Gupta, Client-centric bench-
marking of eventual consistency for cloud storage systems, in Proceedings of the 34th In-
ternational Conference on Distributed Computing Systems (ICDCS), IEEE, Washington,
DC, 2014, pp. 493–502.

[20] M. Herlihy and J. M. Wing, Linearizability: A correctness condition for concurrent objects,
ACM Trans. Program. Lang. Syst., 12 (1990), pp. 463–492.

[21] D. J. Kleitman and R. V. Vohra, Computing the bandwidth of interval graphs, SIAM J.
Discrete Math., 3 (1990), pp. 373–375, https://doi.org/10.1137/0403033.

[22] A. Lakshman and P. Malik, Cassandra: A decentralized structured storage system, SIGOPS
Oper. Syst. Rev., 44 (2010), pp. 35–40.

[23] L. Lamport, On interprocess communication, Part I: Basic formalism and Part II: Algorithms,
Distributed Comput., 1 (1986), pp. 77–101.

[24] H. Lee and J. L. Welch, Randomized registers and iterative algorithms, Distributed Comput.,
17 (2005), pp. 209–221.

[25] D. Malkhi, M. K. Reiter, and R. N. Wright, Probabilistic quorum systems, in Proceedings
of the 16th ACM Symposium on Principles of Distributed Computing (PODC), ACM, New
York, 1997, pp. 267–273.

[26] M. McKenzie, H. Fan, and W. Golab, Fine-tuning the consistency-latency trade-off in
quorum-replicated distributed storage systems, in Proceedings of the IEEE International
Conference on Big Data, Scalable Cloud Data Management (SCDM) Workshop, IEEE,
Washington, DC, 2015, pp. 1708–1717.

[27] J. Misra, Axioms for memory access in asynchronous hardware systems, ACM Trans. Program.
Lang. Syst., 8 (1986), pp. 142–153.

[28] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, Oxford,
UK, 2006.

[29] C. H. Papadimitriou, The NP-completeness of the bandwidth minimization problem, Comput-
ing, 16 (1976), pp. 263–270.

[30] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson, A. Fuchs,
and B. Rinaldi, YCSB++: Benchmarking and performance debugging advanced features
in scalable table stores, in Proceedings of the 2nd ACM Symposium on Cloud Computing
(SoCC), ACM, New York, 2011, 9.

https://doi.org/10.1137/0205048
https://doi.org/10.1137/0134037
https://doi.org/10.1137/0134037
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1137/0403033

COMPUTING k-ATOMICITY IN POLYNOMIAL TIME 455

[31] J. B. Saxe, Dynamic-programming algorithms for recognizing small-bandwidth graphs in
polynomial time, SIAM J. Algebraic Discrete Methods, 1 (1980), pp. 363–369, https:
//doi.org/10.1137/0601042.

[32] R. Sedgewick and K. D. Wayne, Algorithms, 4th ed., Addison–Wesley Professional, Boston,
MA, 2011, pp. 661–666.

[33] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah, Serving large-scale
batch computed data with Project Voldemort, in Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies (FAST) (San Jose, CA), USENIX Association,
Berkeley, CA, 2012, p. 18.

[34] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and H. Abu-
Libdeh, Consistency-based service level agreements for cloud storage, in Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP), ACM, New York, 2013,
pp. 309–324.

[35] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and
C. H. Hauser, Managing update conflicts in Bayou, a weakly connected replicated stor-
age system, in Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP), ACM, New York, 1995, pp. 172–182.

[36] F. J. Torres-Rojas, M. Ahamad, and M. Raynal, Timed consistency for shared distributed
objects, in Proceedings of the 18th ACM Symposium on Principles of Distributed Comput-
ing (PODC), ACM, New York, 1999, pp. 163–172.

[37] W. Vogels, Eventually consistent, Queue, 6 (2008), pp. 14–19.
[38] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, Data consistency properties and the

trade-offs in commercial cloud storages: The consumers’ perspective, in Proceedings of
the 5th Biennial Conference on Innovative Data Systems Research (CIDR), Asilomar, CA,
2011.

[39] H. Yu and A. Vahdat, Design and evaluation of a conit-based continuous consistency model
for replicated services, ACM Trans. Comput. Syst., 20 (2002), pp. 239–282.

https://doi.org/10.1137/0601042
https://doi.org/10.1137/0601042

	Introduction
	Related work
	Preliminaries
	An efficient algorithm for a restricted class of histories
	Algorithm description
	Examples
	Analysis

	A general algorithm
	Algorithm description
	Examples
	Analysis

	Practical applicability
	Conclusion and discussion
	References

