
Constant-RMR Implementations of CAS and Other

Synchronization Primitives Using Read and Write Operations

Wojciech Golab∗ Vassos Hadzilacos∗

HP Labs, Palo Alto, USA University of Toronto, Canada
wojciech.golab@hp.com vassos@cs.toronto.edu

Danny Hendler Philipp Woelfel∗

Ben-Gurion University, Israel University of Calgary, Canada
hendlerd@cs.bgu.ac.il woelfel@cpsc.ucalgary.ca

May 28, 2011

Abstract

We consider asynchronous multiprocessors where processes communicate only by reading
or writing shared memory. We show how to implement consensus, compare-and-swap (CAS)
and other comparison primitives, as well as load-linked/store-conditional (LL/SC) using only
a constant number of remote memory references (RMRs), in both the cache-coherent and the
distributed-shared-memory models of such multiprocessors. Our implementations are blocking,
rather than wait-free: they ensure progress provided all processes that invoke the implemented
primitive are live.

Our results imply that any algorithm using read and write operations, comparison primitives,
and load-linked/store-conditional, can be simulated by an algorithm that uses read and write
operations only, with at most a constant-factor increase in RMR complexity.

Keywords: Comparison primitives, consensus, load-linked/store-conditional, mutual exclusion,
remote memory references, shared memory.

∗Supported partially by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

1

1 Introduction

Work on synchronization in shared memory multiprocessors has largely focused on the asynchronous
model, either with or without crash failures. In wait-free synchronization, each process must
make progress through its own steps regardless of the execution speeds or crash failures of others;
in blocking synchronization, processes may busy-wait for others by repeatedly accessing shared
memory, and so progress is guaranteed only when every active process is live. (A process is live if,
whenever it begins executing an algorithm, it continues to take steps until the algorithm terminates.)

In this paper we focus on blocking synchronization in asynchronous multiprocessors where
processes communicate through shared memory. A natural way to measure the time complexity
of algorithms in such multiprocessors is to count the number of memory accesses. This measure
is problematic for blocking algorithms because, in this case, a process may perform an unbounded
number of memory accesses while busy-waiting for another process. (For example, this happens in a
mutual exclusion algorithm when a process waits for another to clear the critical section.) Instead,
we can measure the time complexity of an algorithm by counting only remote memory references
(RMRs), i.e., memory accesses that traverse the processor-to-memory interconnect. Local-spin
algorithms, which perform busy-waiting by repeatedly reading shared variables that can be accessed
locally, achieve bounded RMR complexity and have practical performance benefits [4].

The classification of memory accesses into local and remote depends on the memory model of
the multiprocessor: In the distributed shared memory (DSM) model, a variable’s physical address
determines locality with respect to a processor, each variable being local to exactly one processor
and remote to all others. In the cache-coherent (CC) model, processors operate on cached copies
of shared variables, and it is the state of a processor’s local cache combined with the action of the
coherence protocol (which keeps consistent copies of a variable in different caches) that determines
locality. A memory access is local if it results in a cache hit and can be resolved without accessing
main memory or a remote cache; a memory access is remote otherwise. To analyze the worst-case
RMR complexity of an algorithm, we assume that each process runs on a distinct processor. (For
this reason, we speak of processes and processors interchangeably.)

The main theme of this paper is that certain popular synchronization primitives can be im-
plemented efficiently in software, at least in terms of RMRs, from simpler ones. A synchronization
primitive, in this context, is a type of operation that acts on a shared state abstractly represented
by a memory word. We model an implementation of a set S of primitives as a typed shared object
that supports an atomic operation on its state corresponding to each primitive in S. Such an object
supporting only read and write primitives is called a read/write register (or just register).

Summary of results.
(1) All comparison primitives [2], a class of synchronization primitives that includes the pop-

ular compare-and-swap (CAS) primitive, can be implemented using read and write operations with
only a constant number of RMRs, in both the DSM and CC models. The same holds for the
load-linked/store-conditional (LL/SC) pair of primitives. In both cases we show how to make the
implementation readable and writable (i.e., we show how to support read and write primitives on
the shared object).

(2) Our constant-RMR implementations can be made locally-accessible just like their hard-
ware-implemented counterparts. In the DSM model, this means that the implemented object
behaves as if it is local to some processor, and so some designated process can access the object
without performing any RMRs. (This is nontrivial because the implemented object may use inter-
nally many base objects, not all local to the designated process.) Similarly, in the CC model the
object behaves as if it can be cached, meaning that certain operations on an “in-cache” object cost

2

no RMRs; whether an object is “in-cache” depends on the prior history of the execution and the
coherence protocol. (This again is nontrivial because the implemented object may use internally
many base objects and access them in complex ways.)

(3) As a consequence of (1) and (2), any CC or DSM shared memory algorithm using read,
write, comparison primitives and LL/SC can be simulated by an algorithm that uses only read and
write operations, with only a constant-factor increase in the RMR complexity, while preserving
other important properties.

Our constant-RMR implementations of comparison primitives and LL/SC are obtained in a
series of steps. We first show how to transform any leader election algorithm that uses read and
write operations into a name consensus algorithm that uses read and write operations and has
the same worst-case RMR complexity to within a constant factor. (In a leader election algorithm,
exactly one active process declares itself the winner, and all others declare themselves losers. In a
name consensus algorithm, all active processes agree on one of their IDs.) Since there is a constant-
RMR leader election algorithm [13], this transformation yields a constant-RMR name consensus
algorithm. This efficient name consensus algorithm is used, in turn, to obtain constant-RMR CAS
and LL/SC implementations from reads and writes. Finally, we observe that using CAS and no
additional RMRs, one can easily implement any combination of comparison primitives.

Related work and implications of our results. Herlihy has shown that synchronization primi-
tives vary widely in their ability to support wait-free implementations, and can be classified in the
wait-free hierarchy, where the level of a primitive corresponds to its power [16]. For example, CAS
together with read and write operations supports wait-free implementations of arbitrary objects
shared by any number of processes; as a result, CAS is at the top level of the wait-free hierarchy.
In contrast, the primitive fetch-and-store (FAS), together with read and write operations, supports
wait-free implementation of arbitrary objects shared by at most two processes; as a result, FAS
is at level two of the wait-free hierarchy. (FAS atomically reads a shared memory location and
overwrites it with a value that is fixed in advance.)

As regards blocking synchronization, however, all primitives can be implemented using only
read and write operations, by using such operations to implement mutual exclusion [9]. Thus, it is
not meaningful to compare the power of two primitives by asking whether one can be used, along
with read and write operations, to implement the other. Instead of comparing the power of two
primitives based on computability, it is natural to ask whether we can base such a comparison on
complexity — specifically, the RMR complexity of implementing a given primitive using read and
write operations. From this point of view, we define the RMR complexity of a primitive, denoted
C, as the minimum of worst-case RMR complexity over all implementations of that primitive using
read and write operations; and we say that a primitive S is stronger than a primitive W if and only
if C(S) is greater asymptotically than C(W).

Looking at the relative power of primitives from this perspective reveals a landscape very dif-
ferent from that of Herlihy’s wait-free hierarchy [16]. Some primitives classified as strong in the
wait-free hierarchy have low RMR-cost implementations from read and write operations, and are
weak in their ability to solve mutual exclusion efficiently in terms of RMRs. Conversely, some
primitives classified as weak in the wait-free hierarchy have inherently high RMR-cost implemen-
tations from reads and writes, and yield the most RMR-efficient mutual exclusion algorithms. For
example, CAS is at the top of the wait-free hierarchy but, as we show in this paper, it can be
implemented from read and write operations using only a constant number of RMRs. On the other
hand, FAS is only at level two of the wait-free hierarchy, but any implementation of FAS from read
and write operations requires Ω(logN) RMRs in the worst case (where N is a parameter of the
implementation that denotes the number of processes that can access it). This follows from the

3

fact that mutual exclusion can be solved with O(1) RMRs per passage through the critical section
using FAS along with read and write operations [6], but requires Ω(logN) RMRs per passage in
the worst case using only reads and writes [5]. The same holds for the primitive fetch-and-add
(FAA) [4], which is also weak in the wait-free hierarchy.

Anderson and Kim were the first to propose a way of ranking synchronization primitives ac-
cording to their power for solving mutual exclusion efficiently (under the RMR complexity measure)
[1], and to contrast this approach with Herlihy’s wait-free hierarchy [16]. To that end, they de-
fined for each primitive (and value of N) a numerical rank r that captures in a particular way the
primitive’s ability to break symmetry among N processes that apply it concurrently to the same
variable. They then showed that a primitive of rank r ≥ 2 can be used, in conjunction with read
and write operations, to solve mutual exclusion using O(max(1, logrN)) RMRs per passage for any
N . It is not known whether the latter bound is tight in general, although it is tight for common
primitives such as reads and writes, CAS, FAS, and FAA.

Our ranking of synchronization primitives is similar to Anderson and Kim’s in that it cap-
tures, at least for common primitives, their power to efficiently solve mutual exclusion for any N .
The advantage of our ranking scheme over Anderson and Kim’s is that it is based on a simpler
property of “strength”, namely the RMR complexity of implementing a primitive using read and
write operations. This property is easier to define than Anderson and Kim’s rank. Moreover, the
RMR complexity bound obtained to evaluate a primitive’s strength, in the sense we propose, is of
independent interest.

Our results also have an interesting implication regarding mutual exclusion. To explain this
we first recall certain facts about the RMR complexity of mutual exclusion. The most RMR-
efficient mutual exclusion algorithm known to date that uses only read and write operations is
one devised by Yang and Anderson; it performs O(logN) RMRs per passage through the critical
section [24]. Attiya, Hendler and Woelfel showed that this is optimal [5], building on a prior
Ω(logN) lower bound by Fan and Lynch for a related but different cost model [11]. The optimality
result holds for algorithms that use reads and writes only, and tightens a prior Ω(logN/ log logN)
lower bound on RMRs by Anderson and Kim [2] that holds for a broader class of algorithms:
those using reads, writes, and comparison primitives. Anderson and Kim posed the question
whether Θ(logN) is the tight worst-case RMR complexity lower bound for the latter class of
algorithms [2]. We answer this in the affirmative through our result (3), in combination with
the Ω(logN) lower bound on RMR complexity of algorithms that use reads and writes only [5].
(For first-come-first-served (FCFS) mutual exclusion, the Ω(logN) lower bound holds a fortiori,
but the upper bound of O(logN) does not, because the simulation referred to by our result (3)
breaks the FCFS property. The tight bound for FCFS mutual exclusion is established in [8].)

1.1 Organization

We describe our model of computation in Section 2. Our implementations of CAS and LL/SC
are then derived in Sections 3–8 using a layered approach, which we explain in more detail below.
Section 9 then describes how to implement comparison primitives in general, and states our main
result (3). In Section 10 we conclude the paper by discussing open problems. To streamline the
paper, we defer portions of technical analysis to Appendix A.

Presenting our implementations is challenging as we consider two very different shared memory
architectures (CC and DSM) and two shared object types (CAS and LL/SC) that are not easily
derived from each other in a manner that preserves correctness properties of interest in this paper.
Furthermore, some of the algorithms are quite complex because the implementations are based
upon weak base objects (i.e., atomic read/write registers). To simplify matters, we have chosen to

4

break down the construction into multiple layers, as illustrated in Figure 1.
The starting point in our construction is the leader election (LE) problem where, informally

speaking, one of the participating processes is declared as the “winner” and all the others as
“losers”. A constant-RMR implementation of LE using only reads and writes was presented in [13].
In Section 3, we use LE to solve the Name Consensus (NC) problem where, informally speaking,
participating processes agree on the name of the “winner”. The constant-RMR reduction of NC
to LE using only reads and writes is straightforward in the CC model, but considerably more
complex in the DSM model. In Section 4 we use NC to construct a new primitive we call a pseudo-
lock, similar to “one-shot” mutual exclusion. Pseudo-locks provide convenient synchronization
machinery for dealing with concurrent operations in our other implementations. In Section 5, we
use pseudo-locks to implement a block manager—an object similar in spirit to CAS, but specialized
for recording pointers to special data structures we call blocks. Blocks can be used to record
arbitrary state, such as the value of a CAS object.

In the layers above the block manager, we present a series of implementations with increasingly
powerful properties. In order to address both CAS and LL/SC in a clean way, we introduce a new
type called ECAS that generalizes these two primitives. Section 6 defines ECAS and presents a
straightforward implementation of ECAS from a block manager. This implementation is sufficient
for proving our main result (1) but not our main result (3), which motivates our definition of more
powerful locally-accessible implementations in Section 7. Because the latter implementations are
defined very differently in the CC and DSM architectures, we are forced from this layer onward
to present a separate implementation for each architecture. Next, in Section 8 we show how to
make our implementations writable—a feature omitted so far but obtainable easily using techniques
developed in earlier sections. Finally, in Section 9 we explain how to instantiate our ECAS imple-
mentations to CAS and LL/SC objects that are strong enough to establish our main result (3).
Comparison primitive in general are derived trivially from these CAS objects.

O(1)-RMR locally-accessible writable implementation of CAS and LL/SC

⇑
O(1)-RMR locally-accessible writable implementation of ECAS

⇑
O(1)-RMR locally-accessible implementation of ECAS

⇑
O(1)-RMR implementation of ECAS

⇑
block manager

⇑
pseudo-locks

⇑
name consensus (NC)

⇑
leader election (LE)

Figure 1: Implementation layers.

5

2 Model of Computation and Definitions

Our model of computation is based on Herlihy and Wing’s [17].

Processes and objects. There are N asynchronous processes. Processes do not fail. The set
of processes is denoted P = {p1, p2, ..., pN}, and we say that pi has ID i. Processes communicate
by applying operations on shared objects and receiving corresponding responses. Each process
repeatedly applies such operations (one at a time) until it terminates, meaning that it has reached
a special state where it remains indefinitely and takes no further action. A shared object represents
a data structure with a well-defined set of states, as well as a set of operation types. The operation
type determines the state transition that occurs when an operation of that type is applied to the
shared object in a given state, as well as the response of the operation. It encodes the “signature”
of the operation (including any arguments), as well as the ID of the process applying the operation.
Processes and objects can be formally modeled as input/output automata [21], but here we adopt
a more informal approach by describing the possible behaviours of processes and shared objects
through pseudo-code. In pseudo-code, we refer to shared objects as variables.

Steps. A process interacts with shared objects by applying operations on these objects. We
consider two types of operations: atomic and non-atomic. Atomic operations are instantaneous,
and are represented as atomic steps. An atomic step where process p applies an operation of type ot
to object v and receives response ret is denoted (p, v, ot, ret). Non-atomic operations are represented
using separate invocation and response steps. An invocation step where process p invokes operation
type ot on object v is denoted (INV, p, v, ot). A response step where process p receives response ret
from an operation execution on object v is denoted (RES, p, v, ret). We say that a response step
matches an invocation step if the two steps are applied by the same process to the same shared
object.

Histories. A history H is a sequence of steps generated by processes. We explain how histories
are generated later on and focus for now only on their building blocks. An operation execution
in H is a pair consisting of an invocation step and the next matching response step, or just an
invocation step if no matching response follows. We call an operation execution complete in the
former case, and pending in the latter. Operation execution ox precedes operation execution ox′

in H if the response of ox occurs before the invocation of ox′ in H. We say that ox and ox′ are
concurrent in H if neither precedes the other. A history H is sequential if it only contains atomic
steps, or if it only contains complete operation executions no two of which are concurrent. If H is
sequential, then |H| denotes the number of atomic steps or operation executions in H.

For any history H and set P of processes, we denote by H|P the subsequence of H consisting
of all steps by processes in P . Similarly, for any set V of shared objects, we denote by H|V the
subsequence of H consisting of all steps on objects in V . For a process p or object v, we use H|p
and H|v as shorthands for H|{p} and H|{v}, respectively. We say that H is a history over V if
H = H|V .

For any history H, we say that a process p is active in H if H|p is not empty. An infinite
history H is fair if every process that is active in H either takes infinitely many steps or terminates.

Object types and conformity to a type. Every shared object has a type τ = (S, sinit,O,R, δ)
where S is a set of states, sinit ∈ S is the initial state, O is a set of operation types, R is the set
of responses, and δ : S × O → S ×R is a (one-to-many) state transition mapping. The transition

6

mapping δ is intended to capture the behaviour of objects of type τ , in the absence of concurrency,
as follows: if a process applies an operation of type ot to an object of type τ that is in state s,
then the object may return to the process a response r and change its state to s′ if and only if
(s′, r) ∈ δ(s, ot). An object v conforms to type τ in a sequential history H if the steps in H|v are
consistent with some sequence of transitions of δ starting from state sinit, in the following sense:
Letting oti and reti denote the operation type and response of the i’th atomic step or operation
execution in H|v, and letting k = |H|v|, there exists a sequence 〈s0, s1, s2, ..., sk〉 of states (in S)
such that s0 = sinit, and (si, reti) ∈ δ(si−1, oti) holds for all i ≤ k.

States. Let H be a sequential history over some set B of objects, such that every object v ∈ B
conforms to its type in H. For any k ≤ |H|, the state of the system (or simply “the state”) after
k atomic steps or operation executions in H is denoted H[k], and consists of the following: the
state of each shared object and the private state of each process. The private state of a process
comprises the values of private variables, in particular a “program counter” that determines the
next pseudo-code statement executed by that process (and whether the process has terminated).

Concurrent systems. A concurrent system models algorithms where processes apply atomic
steps on a set of shared objects. Formally, it is a tuple S = (P,B,H) where P is the set of
processes, B is the set of shared objects, and H is the set of histories of the concurrent system. We
will define H informally through pseudo-code, consisting of one or more functions for each process,
which are typically called according to some specific rules (e.g., each function is called at most
once). The set H then consists of histories generated by recording an atomic step for each access
to a shared object incurred by processes as they execute their functions.

Implementations of shared objects. An implementation describes how to simulate a target
object of a particular target type using a set of base objects of specified types. It is formally denoted
as a tuple I = (τ,P,B,H) where τ is the target object type, P is the set of processes, B is the set of
base objects, and H is the set of histories. The histories in H are over the base objects in B and the
target object of type τ , denoted Oτ . Informally, we describe an implementation using pseudo-code
to define an access procedure for each operation type ot of the target type and each process p. The
pseudo-code for this access procedure describes how process p applies an operation of type ot to
the target object, and computes the response of that operation, by applying operations on the base
objects. The set H consists of histories generated by recording an invocation or response step on
the target object whenever a process begins or finishes executing an access procedure (respectively),
and an atomic step for each access to a base object in B.

Two correctness properties are required in every implementation: linearizability (safety) and
termination (liveness).

Linearizability and termination.
Linearizability [17] is widely accepted as a correctness condition for histories of shared object

implementations. Informally, it states that each operation execution on the target object appears
to take effect instantaneously at some point between the operation execution’s invocation and
response (or possibly not at all if the operation execution is pending). Formally, we first define
for any history H of an implementation I = (τ,P,B,H) a completion, which is a history H ′ of
invocation and response steps on the target object Oτ such that for every process p, H ′|Oτ |p
contains the same steps as H|Oτ |p, except that for any operation execution Op that is pending in
H, either Op is discarded from H ′ or a matching response step follows the invocation step of Op

7

Figure 2: Shared memory architectures: DSM (left) and CC (right).

in H ′. A history H of an implementation I = (τ,P,B,H) is linearizable with respect to type τ if
there exists a history H̄ that satisfies the following properties:

(a) H̄ is a sequential completion of H.

(b) The total order of operation executions in H̄ is consistent with the partial order of the
corresponding operation executions in H.

(c) The target object Oτ conforms to type τ in H̄.

The termination property for a shared object implementation I = (τ,P,B,H) states that for any
history H of I, if H is fair then every operation execution on the target object Oτ in H is complete.

Local and Remote Memory References. In this paper, we consider the cache-coherent (CC)
and distributed shared memory (DSM) multiprocessor architectures, which are illustrated in Fig-
ure 2.

In each architecture, each memory access is either local or remote, as discussed briefly in Sec-
tion 1. We now describe these concepts in detail in the context of accesses to the most fundamental
of all shared objects: atomic read/write registers. In the DSM model, locality is defined statically:
each object is local to exactly one process and is remote to all others, and so counting RMRs is
straightforward. In the CC model, however, whether an access to an object is local or remote de-
pends on the type of coherence protocol, and the prior accesses to that object in the history under
consideration. We consider two families of cache coherence protocols in this paper: write-through
and write-back [23].

In a write-through protocol, to read an object v a process p must have a (valid) cached copy of
v. If it does, p reads that copy without causing an RMR; otherwise, p causes an RMR that creates
a cached copy of v. To write v, p causes an RMR that invalidates (i.e., effectively deletes) all
other cached copies of v, and writes v to memory (in the same RMR). (The write-through protocol
comes in two flavours: with cache invalidation and with cache update upon write. In this paper we
consider only the invalidation version, as it is far more common in practice.)

In a write-back protocol, each cached copy is held in either “shared” or “exclusive” mode. To
read an object v, a process p must hold a cached copy of v in either mode. If it does, p reads that
copy without causing an RMR. Otherwise, p causes an RMR that: (a) eliminates any copy of v
held in exclusive mode, typically by downgrading the status of such a copy to shared and, if the
exclusive copy was modified, writing that copy to memory; and (b) creates a local cached copy of
v held in shared mode. To write v, p must have a cached copy of v held in exclusive mode. If it

8

does, p writes that copy without causing RMRs. Otherwise, p causes an RMR that: (a) invalidates
all other cached copies of v and writes any modified copy held in exclusive mode back to memory;
and (b) creates a cached copy of v held in exclusive mode.

In both protocols, a read of object v by process p causes an RMR if and only if p has no (valid)
cached copy of v. The protocols differ in the RMRs caused by writes: in write-through, every write
causes an RMR; in write-back, a write of v by p causes an RMR if and only if p does not hold a
local cached copy of v in exclusive mode.

It is possible to define RMRs precisely in the CC model under certain assumptions that capture
“ideal” cache behaviour (e.g., ignoring RMRs due to finite cache size and false sharing). For our
purposes, however, it suffices to define simple rules by which we can bound from above the number
of RMRs incurred in a history. (We state these for sequential histories over atomic read/write
registers here, and then generalize to other types of shared objects in Section 7.) For any history
H of atomic steps over a read/write register object v, and for any process p, each atomic step by
p causes an RMR, except in the situations described below.

In the write-through CC model:

(R) If H ′ is a contiguous subsequence of H where each atomic step is a read, then p’s atomic
steps in H ′ cause at most one RMR in total (to load v into p’s cache).

In the write-back CC model, condition (R) holds, and furthermore:

(W) If H ′ is a contiguous subsequence of H where each atomic step is applied by p, then the
atomic steps in H ′ cause at most two RMRs in total (to load v into p’s cache, and then possibly to
promote p’s local copy of v from shared to exclusive.)

Notation. We use the following notational conventions. In pseudo-code, pi denotes the process
ID i, and PID denotes the ID of the executing process. We denote by read(var) a read of shared
variable var, returning the value read. Similarly, we denote by write var := val a write of val to
shared variable var. We denote by await cond a busy-wait loop that repeatedly evaluates condition
cond, and terminates when cond evaluates to true. The symbol B in pseudo-code denotes access to
a data structure field through a pointer, and is analogous to the operator −> in C++ (e.g., dB f
denotes a field f in a data structure pointed to by d). We use a variety of typefaces in pseudo-code
to distinguish various programming constructs: reserved keyword, variable, FunctionName and
constantName. Comments are formatted in C++ style. Since we use pseudo-code to define both
the transition mappping of a shared object type and a specific implementation of the type, we

distinguish between the two by enclosing transition mapppings in a box .

9

3 Consensus

In this section, we obtain an O(1)-RMR consensus algorithm for N processes using reads and writes
only. We consider the special case of consensus known as name consensus, from which ordinary
consensus follows by a straightforward transformation that preserves RMR complexity, with only
O(1) additional RMRs per process.

Roughly speaking, in the name consensus (NC) problem the active processes must all agree on
a common value, which is the name (ID) of one of them. A process wins if its name is agreed upon
and loses otherwise. The problem is formally defined as follows. First, since NC is a “one-shot”
problem, processes must satisfy the following:

Condition 3.1. Each process calls NameDecide() at most once.

The correctness properties of name consensus are then defined as follows:

Specification 3.2 (safety). For any history where Condition 3.1 holds:

(a) Each call to NameDecide() that terminates returns the ID of a process that has made a call
to NameDecide().

(b) No two calls to NameDecide() return different values.

Specification 3.3 (liveness). For any fair history where Condition 3.1 holds, each call to NameDecide()

terminates.

Name consensus is nontrivial in our model because the winner must be an active process, and not
every process is required to be active; this rules out the naive algorithm that simply returns the ID
of some fixed process.

We distinguish name consensus from the leader election (LE) problem, which was solved with
O(1) RMRs using reads and writes in [13]. In the leader election problem, each active process
executes a function LeaderElect(), which returns win to exactly one process (the leader or winner),
and lose to all others. More formally, leader election is specified as follows:

Condition 3.4. Each process calls LeaderElect() at most once.

Specification 3.5 (safety). For any history where Condition 3.4 holds:

(a) If a call to LeaderElect() terminates, then it returns either win or lose.

(b) At most one call to LeaderElect() returns win.

(c) If each call made to LeaderElect() terminates, then exactly one such call returns win.

Specification 3.6 (liveness). For any fair history where Condition 3.4 holds, each call to LeaderElect()

terminates.

Leader election is trivial to solve using name consensus (by comparing the winner’s ID to the
caller’s ID). Similarly, in the CC model name consensus is easy to solve using leader election with
only O(1) additional RMRs per process. An algorithm that does this is presented in Figure 3. In
this algorithm, processes first execute a leader election algorithm L (line 1) and then either read or
write a shared variable leader initialized to ⊥. The winner of L writes its ID to leader (line 2) and
returns its own ID; other processes wait for leader 6= ⊥ (line 4) and then return the value written
to leader by the winner. We will refer to the corresponding concurrent system (see Section 2) as
ANC-CC . It is straightforward to show that ANC-CC satisfies Specifications 3.2 and 3.3, and that
NameDecide() incurs only one more RMR than L in the CC model. Thus, if we instantiate L with

10

a LE algorithm that uses only reads/writes and O(1) RMRs per process in the CC model, such as
the algorithm given in [13], we obtain a NC algorithm that uses only reads/writes and O(1) RMRs
per process in the CC model.

Declarations
Shared variables:

leader – register, stores process ID or ⊥,
initially ⊥

Subroutines:

L – leader election algorithm

Function NameDecide()

Output: PID of winner
if L.LeaderElect() = win then1

write leader := PID2

else3

await leader 6= ⊥4

end5

return read(leader)6

Figure 3: Name consensus algorithm for the CC model.

In the DSM model, the above algorithm is correct but has poor worst-case RMR complexity.
This is because the variable leader is local to exactly one process, and for all others the busy-
wait loop at line 4 may generate an unbounded number of RMRs. (At line 4 a process reads
leader repeatedly until leader 6= ⊥ holds, which may require an unbounded number of reads due to
asynchrony.) In modifying this algorithm to achieve bounded RMR complexity in the DSM model,
we must allow each process that does not win L to busy-wait on its own locally-accessible shared
variable until the winner is chosen. The winner must ensure that all of these variables are written,
but it cannot write them itself using only O(1) RMRs because there may be up to N − 1 such
variables, all remote to the winner. The technique presented in [13] for sharing work does not solve
this problem because the winner does not know the IDs of all the processes that may be waiting for
it (and hence are capable of sharing work). Nevertheless, a name consensus algorithm that builds
on leader election is quite natural, and, as we show in the remainder of this section, is possible to
construct with O(1)-RMR overhead in the DSM model using read and write operations. For the
remainder of this section, we focus on the DSM model.

3.1 Name Consensus in the DSM Model: A High-Level Description

We now show how to solve name consensus at a cost of O(1) RMRs per process in the worst case
in the DSM model. Our implementation uses as a building block an O(1)-RMR leader election
algorithm L that uses only read/write registers, such as the one presented in [13], as well as some
additional read/write registers. Our approach can also be used to construct a name consensus
algorithm using any leader election algorithm, with at most a constant-factor increase in worst-
case RMR complexity.

The way we use L is derived from the following simple observation: After any history of a
leader election algorithm in which all active processes terminate, there is a “data flow” from the
process elected leader to any other active process. We can define the notion of data flow more
precisely using graph-theoretic concepts. For each process p, we first define the following sets in
the context of p’s execution of L:

• Wp – set of processes to which the variables written remotely by p are local
• Rp – set of processes that wrote the values p read remotely

(N.B.: Rp is not necessarily the set of processes to which the variables read remotely by p are
local. For example, if process p reads a remote variable v that is local to process q, and the
value that p reads in v was written by process r, then Rp records r and not q.)

11

Next, let G = (V,E) be the directed graph where V is the set of processes, and (p, q) ∈ E if and
only if q ∈Wp (i.e., p wrote remotely to q’s memory) or p ∈ Rq (i.e., q read remotely a value written
by p). If l is the process elected leader in L, then a data flow from l to another process p is a path
from l to p in G. We will prove later (see Lemma 3.14) that there is such a path from l to every
active process. Intuitively, this is because if such a data flow does not exist, we can construct a
new execution of algorithm L in which only processes to which such paths do not exist are active,
and they behave exactly as in the execution of L that gave rise to G; these processes would elect
l, which is not active in this new execution.

The high-level idea behind the NC algorithm is as follows. The leader l elected in L writes its
ID in a variable leader, and will be the winner agreed on in NC. It then signals its out-neighbours
in G to let them know that the winner’s name has been decided; once signalled, each neighbour
repeats this step: it signals its out-neighbours; and so on. By our earlier observation, that there is
a path from l to all active processes in G, eventually all active processes will in fact be signalled,
and each can simply read the winner’s name from leader.

A number of issues must be addressed for this idea to work, and moreover to work with the
required O(1)-RMR complexity per process:

(a) A process p does not always know all its out-neighbours: it knows the out-neighbours in Wp,
but does not necessarily know every q such that p ∈ Rq.

(b) In fact, because of asynchrony, p might not be able to ever discover some of its out-neighbours.
For example, suppose that p executes the NC algorithm (and within it L) and writes some
register. After p terminates, q “wakes up” and reads a value written by p while executing L,
so that p ∈ Rq. Thus, q is an out-neighbour of p, and yet p has finished the NC algorithm
and cannot be expected to signal q.

(c) Even if a process p knows all its out-neighbours, it cannot signal them by simply writing into
their local memory (while they busy-wait) because there may be many processes q such that
p ∈ Rq. For example, suppose that in the LE portion of the NC algorithm, p writes a value
that is read by all other processes. Then p has N − 1 out-neighbours, and so if p had to write
a variable local to each, it would be using Θ(N) RMRs instead of O(1).

We address these issues as follows. To solve (a) and (b), we use an idea introduced in [13]: a
“handshaking protocol” that allows a process p to synchronize with each out-neighbour q such that
p ∈ Rq by either discovering q’s ID, or letting q know (in case q becomes active much later than
p) that p is “out of the picture”. In the former case, q waits for a signal from p. In the latter
case, q knows not to wait for p, and can read the winner’s ID from some shared variable (e.g., one
written by l before p executes its side of the handshaking protocol). Thus, p need not know all of
its out-neighbours (which solves (a)), and “latecomers” can discover the winner’s ID easily (which
solves (b)). Finally, for problem (c) we use a work sharing mechanism from [13] that spreads RMRs
among the processes being signalled, namely the out-neighbours of p.

We now describe the building blocks of the name consensus algorithm in detail in Sections 3.2–
3.4, and then present the NC algorithm itself in Section 3.5.

3.2 Instrumented Leader Election Algorithm

In order to compute the sets R and W defined earlier, processes execute an “instrumented” version
of L (denoted L̂) rather than using L directly. This algorithm returns the same response as L, and
also computes Rp and Wp for every active process p. More precisely, we construct L̂ from L as
follows: For every register r initialized to value x by L, initialize r to (⊥, x). For every uninitialized
register r that may be accessed in L, initialize r to (⊥, x̃) for some arbitrary value x̃. Each active

12

process p ∈ P records Rp,Wp ⊆ P as private variables, both initialized to the empty set. To execute
L̂.LeaderElect(), a process p begins by simulating its operations in L.LeaderElect(). If its next
operation in L.LeaderElect() writes value x to register r that is local to q, then p writes (p, x)
to r, and adds q to Wp if q 6= p. Process p also simulates the change in private state following its
write of r. If its next operation in L.LeaderElect() reads register r that is local to process q, then
p reads r. If (z, x) is the pair that p read, then p adds z to Rp if z 6= ⊥, z 6= p, and q 6= p. Here
p also simulates the change in private state following its read of r, treating x as the value read.
Process p repeatedly simulates its steps in L.LeaderElect() in this manner until termination, at
which time p’s execution of L̂.LeaderElect() produces the sets Rp and Wp, and finally returns to
p the response of L.LeaderElect().

They key properties of L̂ are captured in the following lemma. Let ALE-I-DSM denote the
corresponding concurrent system.

Lemma 3.7. For any history H of ALE-I-DSM where Condition 3.4 holds:

(a) Specifications 3.5 and 3.6 hold.

(b) Each call to L̂.LeaderElect() incurs O(1) RMRs in the DSM model.

(c) For each process p, the sets Rp and Wp generated during a call to L̂.LeaderElect() have size
O(1).

Proof. Let L denote the O(1)-RMR leader election algorithm used to construct L̂, and note that
by our construction of L̂, Condition 3.4 holds with respect to L̂ in H. Furthermore, each process
either receives the same response from L̂.LeaderElect() as from L.LeaderElect() in H, or it
does not complete its call to L̂.LeaderElect(). Thus, if H violates Specification 3.5 with respect
to L̂, then it does the same with respect to L. Similarly, if H is fair and violates Specification 3.6
with respect to L̂, then there must be a non-terminating call to L.LeaderElect() in H, and so H
violates Specification 3.6 with respect to L. Since L satisfies Specifications 3.5 and 3.6, this implies
L̂ does also, and so (a) holds.

For parts (b)–(c), recall that L̂.LeaderElect() simulates steps of L.LeaderElect(), perform-
ing an RMR at each step only if L.LeaderElect() does so, and adding an element to either R or
W only when an RMR occurs. Since R and W are private variables, part (b) follows from the O(1)
RMR complexity of L. Similarly, for any process p since Rp and Wp are initially empty, |Rp|+ |Wp|
is bounded from above by the RMR complexity of L, which implies part (c).

3.3 Handshaking Protocol

Our handshaking protocol is used by a process p to synchronize with each out-neighbour q such
that p ∈ Rq. The protocol is similar in spirit to the one presented in [13], but somewhat simpler.
For handshaking between p and an out-neighbour q 6= p, the protocol relies on a two-process O(1)-
RMR leader election algorithm for p and q. Such an algorithm must be accessed according to the
following etiquette (in addition to Condition 3.4):

Condition 3.8. A two-process algorithm for processes p and q can only be accessed by p and q.

The particular LE algorithm we use is local to p meaning that, in addition to Specifications 3.5 and
3.6, it satisfies the following:

Specification 3.9. A call to LeaderElect() by process p incurs zero RMRs.

An O(1)-RMR two-process LE algorithm satisfying this property is presented in detail in [13].
We omit the details for lack of space.

13

The LE algorithm is used for handshaking between p and q as follows: Process p initiates an
instance of the algorithm local to itself with each process q 6= p. Note that by Specification 3.9,
p incurs no RMRs in any of these. With respect to any particular process q 6= p, there are two
outcomes of the LE algorithm for p and q: If process q wins, then we say that q contacted p,
otherwise q failed to contact p. (This is similar to terminology used in [13].) In the former case (q
wins), p eventually loses, and knows that q is an active out-neighbour of p such that p ∈ Rq. Thus,
q can wait for a signal from p, and p knows that it must signal q. In the latter case (q loses), p
eventually wins, and behaves as if q were not active. Thus, p does not signal q, and hence q does
not wait for a signal from p.

Note that up to N − 1 processes may contact p, and that p incurs zero RMRs handshaking
with these processes, since the LE algorithm used is local to p. Also, note that p may contact q
even if q failed to contact p, since there may be two “sessions” of the handshaking protocol between
p and q, running in “opposite directions.”

3.4 Signalling Mechanism

As mentioned before, our name consensus algorithm disseminates the leader’s ID across the data
flow graph G. The straightforward algorithm for doing this, whereby each process p signals all
its out-neighbours in G (that it is aware of) by writing into their local memory, is too expensive
in terms of RMRs. Instead, we use a signalling mechanism that shares the workload among p’s
neighbours.

Informally, the signalling mechanism works as follows. When p needs to communicate the
leader’s ID to a subset N p of its neighbours (e.g., those which p has contacted), it builds a chain
of the IDs from N p in its local memory. Process p then signals the first process in the chain, say
q, by writing p’s ID in a designated location in q’s memory. This costs p a single RMR. Each
process q that is signalled in this way then reads the leader’s ID from p’s memory and signals the
next process in the chain (if any), whose ID it also reads from p’s local memory. The handshaking
protocols executed prior to this ensure that for each such process p, all the processes in N p wait
for p’s (either direct or indirect) signal, as otherwise the signalling mechanism breaks.

The signalling mechanism consists of subroutines signal, wait, and wait-any, which are
presented in Figure 4. Function signal(P) tells the processes in set P that some event, for
which they are waiting, has occurred. Function wait(q) blocks until a signal by process q occurs.
Function wait-any blocks until a signal by any process occurs.

Function signal(P) is implemented as follows. At lines 8–12, the calling process p uses its
local Work array to create a “chain” of identifiers from P (all elements of Work[p][1..N] are initially
⊥). This chain determines the order in which the processes in P signal each other. To bootstrap
the signalling mechanism, p assigns true to D[q][p] where q is the process at the beginning of the
chain (line 13).

Function wait(q) is the counterpart of signal(P). The argument of wait(q) is the ID of a
process q that may signal the caller. The process p executing wait waits for a signal from q by
locally spinning on D[p][q] (which is initially false) until a process that precedes it in a signalling
chain writes true to D[p][q] (see line 14). At line 15, p reads the identifier of the next process in
the chain (if any). If such a process exists, then p signals it (lines 16–18).

We also define a function wait-any, which takes no argument, and terminates when the calling
process has been signalled through any signalling chain. In contrast to wait, this function does
not signal the next process in the chain; a process must call wait subsequently for this to happen.
The correctness properties of signal, wait and wait-any, are formally stated by the following
lemma.

14

Declarations for signal, wait and wait-any.

Shared variables:
Work[1..N][1..N] – array of process ID or ⊥, initially all ⊥, elements Work[p][1..N] local to
process p
D[1..N][1..N] – array of Boolean, initially all false, elements D[p][1..N] local to p

Private variables: (per-process)

prev, next, t – process ID or ⊥, uninitialized

Function signal(P)

Input: P ⊆ P
if P = ∅ then return7

// Create a ‘‘signalling chain’’ from elements of P.
prev := ⊥8

foreach next ∈ P do9

// Order of chain elements is reverse of loop order.

write Work[PID][next] := prev10

prev := next11

end12

// Signal the first process in the chain.

write D[next][PID] := true13

Function wait(q)

Input: q ∈ P
await D[PID][q] = true14

// Identify next process in the

signalling chain.

next := read(Work[q][PID])15

if next 6= ⊥ then16

// Signal the next process.

write D[next][q] := true17

end18

Function wait-any()

loop forever19

// Wait for signal from any

process.

foreach t ∈ P do20

if D[PID][t] = true then21

return22

end23

end24

end25

Figure 4: Work-sharing signalling mechanism.

15

Lemma 3.10 (safety). For any history:

(a) In the DSM model, each call to signal and wait incurs O(1) RMRs, and each call to
wait-any incurs zero RMRs.

(b) Each call to signal performs a bounded number of steps.

(c) If process p completes a call to wait(q) then q previously made a call to signal(P) with
p ∈ P .

(d) If process p completes a call to wait-any() then some process q previously made a call to
signal(P) with p ∈ P .

Proof.
Parts (a) and (b): These follow directly from the algorithms and the locality of Work[p][1..N]
to process p.
Part (c): Suppose that p completes a call to wait(q). Then p reads D[p][q] = true at line 14.
Since this variable is initially false, some process r must have assigned D[p][q] = true, either at
line 13 of signal, or at line 17 of wait. In the former case, it follows from the algorithm for
signal(P) that r = q and that p ∈ P . In the latter case, r read q’s ID from Work[q][r] at line 15,
which must have been written at line 10 of signal(P), namely by q with p ∈ P .
Part (d): The proof is a simplified version of the proof of part (c).

Lemma 3.11 (liveness). For any fair history:

(a) If some process q writes true to D[p][q] at line 13 or at line 17, and if p calls wait(q), then
p’s call terminates.

(b) If some process q writes true to D[p][q] at line 13 or at line 17, and if p calls wait-any, then
p’s call terminates.

Proof. Part (a): Follows directly from the fact that once a process assigns D[p][q] = true, this
variable is never reset back to false. Thus, any call to wait(q) by p in a fair history eventually
progresses beyond line 14 and terminates.
Part (b): The proof is analogous to the proof of part (a).

Lemma 3.12 (liveness). Consider any fair history H where processes call the subroutines signal,
wait and wait-any. Consider a particular call to signal(P) in H, say by some process q. Suppose
that no other call by q to signal(P ′) occurs with P ∩P ′ 6= ∅. Also suppose that in H every process
p ∈ P either makes a call to wait(q) or makes a non-terminating call to wait-any. Then all the
calls to wait(q) and wait-any made in H by processes in P terminate.

Proof. If |P | = 0 then the result follows trivially, so consider the case when |P | ≥ 1. Let σ =
〈p1, p2, ..., pm〉 be the sequence of process IDs selected at line 9 during q’s execution of signal(P)
under consideration, in reverse order (i.e., q assigns D[p1][q] = true at line 13). Note that σ is a
sequence over all the elements of P without repetition. Let S(k) represent the following claim: all
calls to wait-any and wait under consideration made by the first k processes in σ terminate. We
will show that S(k) holds for all k ∈ [1..m] by induction on k, which implies the lemma.
Basis: S(1) follows from Lemma 3.11 (a) and (b) since q assigns D[p1][q] = true at line 13 during
its call to signal(P).
Induction step: Suppose that m ≥ 2 (i.e., |P | ≥ 2). For any k ∈ [2..m], and for all i ∈ [0..k − 1],
suppose that S(i) holds. We must show that S(k) holds. By the induction hypothesis, it suffices
to show that the calls to wait-any and wait(q) by pk terminate. To that end, we will show that
pk assigns D[pk][q] = true at line 17 of wait(q). To see this, first note that by the induction

16

hypothesis and our assumption on when processes call wait(q), pk−1 eventually calls wait(q) and
reads Work[q][PID] at line 15. Since we assume q does not call signal(P ′) with P ∩ P ′ 6= ∅, it
follows that pk−1 reads pk’s ID from Work[q][PID], and then assigns D[pk][q] = true at line 17.
Consequently, any call to wait-any by pk terminates by Lemma 3.11 (b) and any call to wait(q)
by pk terminates by Lemma 3.11 (a), as wanted.

3.5 Name Consensus in the DSM Model: A Detailed Description

The name consensus algorithm (NameDecide()) that uses the instrumented leader election algo-
rithm L̂, handshaking protocol, and signalling mechanism described earlier, is presented in Figure 5.
We will refer to the corresponding concurrent system (see Section 2) as ANC-DSM . The algorithm
uses N2 “instances” of a two-process leader election algorithm for handshaking, each instance hav-
ing its own distinct copy of the underlying shared variables. We denote the instance for p and q,
which is local to p, by L2P [p][q].

Leader election using L̂ occurs at line 26. For each process p, the computation of the sets Rp
and Wp is performed implicitly by L̂. We refer to p and q as neighbours if and only if p and q are
adjacent (ignoring direction of edges) in the (directed) “data flow” graph G defined in Section 3.1
(i.e., p ∈ Rq ∪ Wq or q ∈ Rp ∪ Wp). As we prove later, the graph G has useful connectedness
properties.

After computing Rp and Wp, process p needs to communicate with its neighbours regarding
the leader’s ID, which is the response (i.e., winner) of the name consensus algorithm. As explained
in Section 3.1, the high-level idea is to propagate this response through G, along the directed edges
and away from the leader. We refer to this informally as propagating information “downstream”
in G, even though G may contain cycles. The leader’s ID is itself stored in a global shared register
leader, initially ⊥. If p is not the leader, then it attempts to discover the leader’s ID using two
mechanisms. First, it attempts to “pull” information from an upstream neighbour on a directed
path from the leader to p. To that end, p engages in the handshaking protocol described in
Section 3.3 and tries to contact every neighbour in Rp. If p fails to contact some such neighbour
then that neighbour already knows the leader’s ID and so p can read this ID immediately from
leader. On the other hand, if p succeeds in contacting each neighbour then none of these neighbours
knows the leader’s ID and so p waits for some neighbour (not necessarily one it has contacted) to
“push” information to it. More precisely, “push” means that some neighbour signals p and then p
reads leader. Finally, once p discovers the leader’s ID (through either the pull or push mechanism),
it pushes information to all its neighbours in Wp, and to any neighbour that contacted p using the
handshaking protocol. For subtle reasons related to the work-sharing signalling mechanism, p may
have to perform additional work at this point to ensure that processes it contacted earlier make
progress.

Now consider the outcome of executing line 26. If p is elected leader, then it writes its ID to
leader at line 27. At lines 29–33, p tries to contact its neighbours from Rp. (Since Rp has O(1)
elements (see Lemma 3.7 (c)), this takes O(1) RMRs in total.) Here p stores in the set U the IDs
of neighbours that were actually contacted. If there is some q ∈ Rp that p fails to contact, then
q has progressed to line 41, and so as we show in Lemma 3.15, leader 6= ⊥. If p does not win at
line 26 and it contacts each q ∈ Rp, then p still does not know the leader when it reaches line 34.
In this case, p waits at line 35 for a signal from any neighbour by calling wait-any().

By the time p reaches line 37, leader 6= ⊥ holds, as we show later in Lemma 3.15. Now p must
signal some of its neighbours of this. The algorithm deals first with p’s downstream neighbours in
Wp. To that end, p calls signal({q}) for each q ∈Wp at line 38. Next, p attempts to communicate
with other neighbours downstream of it in G, namely any process q for which p ∈ Rq holds, which

17

Declarations
Shared variables: (global)

L̂ – instrumented O(1)-RMR leader election algorithm (see Section 3.2)
leader – process ID or ⊥, initially ⊥
L2P [1..N][1..N] – array of O(1)-RMR two-process LE algorithms, where L2P [p][q] is for p
and q, and is local to p

Private variables: (per-process)

R,W,U,X – sets of process IDs, initially ∅
q – process ID, uninitialized

Function NameDecide()

Output: PID of leader
// Execute ‘‘instrumented’’ leader election algorithm.

if L̂.LeaderElect() = win then26

write leader := PID27

end28

// Note: sets R and W have been computed (implicitly) at line 27.
// Try to contact neighbours in R.
foreach q ∈ R do29

if L2P [q][PID].LeaderElect() = win then30

U := U ∪ {q}31

end32

end33

// If needed, wait for a signal (that leader 6= ⊥).
if read(leader) = ⊥ then34

wait-any()35

end36

// Invariant: leader 6= ⊥. Next, signal out-neighbours in W.

foreach q ∈W do37

signal({q})38

end39

// Discover other out-neighbours.

foreach q ∈ P \ {PID} do40

if L2P [PID][q].LeaderElect() = lose then41

X := X ∪ {q}42

end43

end44

// Signal discovered neighbours except those already signalled.

signal(X \W)45

// Share work in signalling chains of neighbours contacted at line 30.
foreach q ∈ U do in parallel46

wait(q) // Note: loop body executed concurrently for all q.47

end parallel48

// All parallel calls to wait at line 47 completed by now. Ready to return.

return read(leader)49

Figure 5: Name consensus algorithm for the DSM model.

18

means that q tried to contact p at line 30. If q did contact p, then q may rely on p to signal
it when leader 6= ⊥. Consequently, p determines the IDs of all such processes at lines 40–44,
collects these IDs in the set X, and then signals them all at line 45. Processes participating in this
signalling chain share work, which is necessary since there may be so many of them that p cannot
directly communicate with all of them in a constant number of RMRs. The argument in p’s call
to signal at line 45 is actually the set difference X \W and not X itself, which is done for two
reasons: First, is efficiency – since p already called signal({q}) for each process q ∈W at line 38,
it is not necessary to signal these processes again. The second reason is to meet the conditions of
Lemma 3.12 – process p may not call signal twice with arguments that are non-disjoint sets, as
this may break the two signalling chains.

Finally, p does its share of the work for each of the signalling chains it entered by contacting a
neighbour at line 30. Each of these neighbours will try to signal p that leader 6= ⊥ by calling (via
signal), and will rely on p calling wait to assist in the signalling mechanism. Thus, p calls wait(q)
for each q ∈ U at line 47. More precisely, p executes a parallel for loop at lines 46–48, which makes
multiple calls to wait in parallel by interleaving the corresponding operations, say in round-robin
fashion. (We introduce parallelism here only to facilitate exposition. We could equally well use a
modified version of wait that waits on multiple processes, but such a subroutine is somewhat more
difficult to specify and analyze.) Note that p cannot wait for each q ∈ U sequentially because if p
were to block inside a particular call to wait(q), p could prevent progress in the signalling chain
corresponding to some other process in U , leading to deadlock. If p reaches line 49, then all the
parallel calls have terminated, and leader 6= ⊥ holds (and has held since p reached line 37). Thus,
NameDecide() returns the leader’s ID to p.

To prove the correctness of NameDecide() (see Theorem 3.19 at the end of this section), we
first establish some technical lemmas.

Lemma 3.13. Let H be any history of ANC-DSM in which Condition 3.1 holds, and every active
process has completed the call to L̂.LeaderElect() at line 26. For any pair of distinct processes
p, q ∈ P, if p reads a value written by q while calling L̂.LeaderElect() in H, then once p completes
this call, q ∈ Rp or p ∈Wq.

Proof. If, while executing line 26, p reads remotely a value written by q, then p adds q to Rp.
Otherwise, p reads a value written by q in p’s local memory, in which case q adds p to Wq, because
p and q are distinct.

Lemma 3.14. Let H be any history of ANC-DSM where Condition 3.1 holds, and every ac-
tive process has completed the call to L̂.LeaderElect() at line 26. Suppose that the call to
L̂.LeaderElect() that ends last does so in step i of H. Let GH denote the directed graph (V,E)
where V is the set of process IDs and for any p, q ∈ V , (p, q) ∈ E iff p ∈ Rq or q ∈Wp in state H[i]
(and thereafter). Let l denote the process elected leader at line 26. Then, every process p active
in H is reachable from l in GH .

Proof. Suppose, by way of contradiction, that there is some process p active in H that is not
reachable from l in GH . Let R be the set of vertices of GH that are reachable from l, and let R̄ be
the remaining vertices. Note that l ∈ R and p ∈ R̄, so both sets are nonempty. Our key observation
is that H|R̄, like H, is a history where each process in R̄ calls NameDecide() at most once. This is
because by Lemma 3.13 and our definition of R̄, no process q ∈ R̄ reads (in H or in H|R̄) from a
shared variable a value written by a process in R. (If this were false, there would be an edge in GH
from a vertex in R to a vertex in R̄, contradicting our definition of these sets.) Moreover, H|R̄ is
a history of NameDecide() in which every active process completes its call to L̂.LeaderElect() at

19

line 26, and receives the same response as in H. It follows from Specification 3.5 and Lemma 3.7 (a)
that this response in H is lose for every process different from l, which contradicts Lemma 3.7 (a)
for H|R̄ because l is not active in H|R̄ by our definition of R̄. (Since l is reachable from itself, it
belongs in R and not R̄.)

Lemma 3.15. Let H be any history of ANC-DSM where Condition 3.1 holds. If some process has
reached line 37 in some prefix H ′ of H, then leader 6= ⊥ holds in H after the prefix H ′.

Proof. First, note that leader is written at most once during H, namely at line 27 by the process
elected leader using L̂. Consequently, the property leader 6= ⊥ is stable in H. It remains to show
that for any process p, if p reaches line 37 then leader 6= ⊥. Suppose, for contradiction, that this
is false; without loss of generality let p be the first process to reach line 37 while leader = ⊥ in
H. A fortiori, leader = ⊥ when p reached line 34, and therefore p completed a call to wait-any()

at line 35. By Lemma 3.10 (d), some process q previously called signal(P) with p ∈ P . Since q
calls signal only after it reaches line 37, it follows that q reached line 37 before p, and therefore
while leader = ⊥. This contradicts the definition of p as the first process to reach line 37 while
leader = ⊥.

Lemma 3.16. Let H be any history of ANC-DSM where Condition 3.1 holds. The following hold
in H:

(a) For any processes p and q, the LE algorithm L2P [p][q] is accessed according to Condition 3.4
and Condition 3.8.

(b) If H is fair, all executions of signal at line 45 satisfy all the hypotheses of Lemma 3.12.

Proof. Part (a): It suffices to show that the two-process LE algorithm L2P [p][q] is executed at
most once by p, at most once by q, and only with p 6= q. The only two places where L2P [p][q] is
executed are line 30 and line 41. Thus, it follows from the loop conditions at line 29 and line 40
that if L2P [p][q] is accessed, then p 6= q. (At line 30, this is because z 6∈ Rz for any process z, by
construction of the set R.) It also follows from the loops containing line 30 and line 41 that only p
and q execute L2P [p][q], at most once at each line. If p or q executes L2P [p][q] at both lines, then
this implies p = q, which contradicts our earlier observation.
Part (b): Consider a call to signal(P) made by some process q at line 45. To satisfy the hy-
potheses of Lemma 3.12, we must show two things: (1) q does not make another call to signal(P ′),
where P ∩ P ′ 6= ∅; and (2) every process p ∈ P eventually makes a call to wait(q) at line 47,
provided that any prior call it makes to wait-any at line 35 terminates. For (1), note that any
other such call to signal(P ′) by q must have been at line 38, and in that case P ′ is a singleton
set containing an element of Wq. Then it follows from the set subtraction X \W at line 45 that
P ∩ P ′ = ∅, as wanted. For (2), consider any p ∈ P . Note that since p ∈ P and by part (a) of this
lemma, p must have contacted q at line 30 by Specification 3.5 and the algorithm. Thus, p is active.
Furthermore, since H is fair, it follows from Lemma 3.16 (a), Specification 3.6, Lemma 3.10 (b),
and the algorithm that p either makes a non-terminating call to wait-any at line 35, or reaches
line 46. In the latter case, p begins the for loop at lines 46–48, where it makes a call to wait(z)
for each z ∈ Up. Since these calls are made in parallel, and since q ∈ Up (because p contacted q at
line 30), p eventually makes a call to wait(q), as wanted. (Note that if a non-parallel for loop was
used, p might become blocked in some other call to wait before calling wait(q).)

Lemma 3.17. For any historyH ofANC-DSM where Condition 3.1 holds, each call to NameDecide()

terminates.

20

Proof. Suppose, for contradiction, that NameDecide() does not terminate for a subset B of pro-
cesses that are active in H. By Lemma 3.7 (a), Specification 3.6, and fairness of H, every process
active in H eventually completes its call to L̂.LeaderElect() at line 26. Let GH be the directed
graph corresponding to H, as defined in the statement of Lemma 3.14. Let l be the process that is
elected leader at line 26 during H. By Lemma 3.14, there is a directed path in GH from l to every
process in B.

Now choose any process p ∈ B. Since H is fair, it follows from the structure of NameDecide()
that p makes progress until it makes a non-terminating call to LeaderElect, signal, wait-any, or
wait. Every active process completes line 26, as argued earlier. All executions of the two-process
leader election algorithm also terminate by Lemma 3.16 (a) and Specification 3.6. All executions
of signal terminate by Lemma 3.10 (b). Thus, it remains to rule out the following two cases:
Case A: p makes a non-terminating call to wait-any at line 35. Since p reached line 35, it follows
from the algorithm, particularly lines 26–27 and the test at line 34, that p 6= l. Now without loss
of generality, assume that p is chosen so that the length of the path from l to p in GH is minimal,
and let z be p’s upstream neighbour on this minimal path. Since there is an edge from z to p in
this path, z is active by our definition of GH (i.e., either z wrote a variable local to p, or p read a
remote variable written by z). Moreover, z ∈ Rp or p ∈Wz.
Subcase A-i: z ∈ Rp. First, we will show that p contacted z at line 30. Suppose otherwise. Then
by the time p evaluates the condition at line 34, z has already reached line 41 by Lemma 3.16 (a)
and Specification 3.5. Consequently, Lemma 3.15 implies that leader 6= ⊥ holds when p is at
line 34. But this contradicts p branching to line 35 as stated in Case A. Thus, p contacts z, which
implies (by Lemma 3.16 (a) and Specification 3.5) that z loses L2P [z][p] at line 41. Consequently,
z adds p to Xz at line 42, and then calls signal(Xz \Wz) at line 45, where p ∈ Xz \Wz unless
z already called signal({p}) at line 38. In either case, p’s call to wait-any at line 35 terminates
by Lemma 3.12 and Lemma 3.16 (b), which contradicts the hypothesis of Case A.
Subcase A-ii: p ∈ Wz. Since z is active, and since it terminates in H by our selection of p, it
follows that z calls signal({p}) at line 38. In that case, p’s execution of wait-any at line 35
terminates by Lemma 3.11 (b), which contradicts the hypothesis of Case A.
Case B: p makes a non-terminating call to wait(q) at line 47 for some process q. Note that p
contacted q at line 30 since q ∈ Up when p is at line 46. Now consider q. Since q ∈ Rp, p read a
value written by q in H, and so q is active in H. Furthermore, q 6= p, and by our prior analysis (up
to and including Case A), q eventually reaches line 46. Since p contacted q and p 6= q, it follows
from Lemma 3.16 (a) and Specification 3.5 that q loses L2P [q][p].LeaderElect() at line 41 and so
p ∈ Xq when q reaches line 46. Consequently, either p ∈Wq and q completed a call to signal({p})
at line 38, or p 6∈Wq and q completed a call to signal(Xq \Wq) at line 45 with p ∈ Xq \Wq. In
either case, p’s call to wait(q) at line 47 terminates by Lemma 3.12 and Lemma 3.16 (b), which
contradicts the hypothesis of Case B.

Lemma 3.18. For any historyH ofANC-DSM where Condition 3.1 holds, each call to NameDecide()

incurs O(1) RMRs in the DSM model.

Proof. Let p be any process that calls NameDecide(). We will show that p performs O(1) RMRs
in this call. We consider each line of NameDecide() where p may incur one or more RMRs, and
argue that the number of RMRs p incurs at each such line is O(1).

• lines 26–28: The call to L̂.LeaderElect() incurs O(1) RMRs by Lemma 3.7 (b). At most
one additional RMR occurs at line 27.

• lines 29–33: The loop here has |Rp| iterations, where |Rp| ∈ O(1) by Lemma 3.7 (c). RMRs

21

may occur only at line 30, and each execution of this line incurs O(1) RMRs by the RMR
complexity of the two-process leader election algorithm, and by Lemma 3.16 (a).

• lines 34–36: There is at most one RMR at line 34, and the call to wait-any at line 36
incurs zero RMRs by Lemma 3.10 (a).

• lines 37–39: Each of these lines is executed |Wp| times, where |Wp| ∈ O(1) by Lemma 3.7 (c).
Here RMRs occur only at line 38, and each execution of signal incurs O(1) RMRs by
Lemma 3.10 (a).

• lines 40–44: The loop here has N iterations. RMRs may occur only at line 41, and in fact
an execution of L2P [p][q].LeaderElect() by any process p, for any q, incurs zero RMRs by
Specification 3.9 and Lemma 3.16 (a).

• line 45: The call to signal here incurs O(1) RMRs by Lemma 3.10 (a).

• lines 46–48: Each of these lines is executed |Up| times, which is O(1) since Up ⊆ Rp by the
algorithm, and since |Rp| ∈ O(1) by Lemma 3.7 (c). Here RMRs occur only at line 47, where
each execution of wait incurs O(1) RMRs by Lemma 3.10 (a).

• line 49: At most one RMR occurs here.

Theorem 3.19. For any history H of ANC-DSM (Figure 5) where Condition 3.1 holds, H satisfies
Specifications 3.2 and 3.3. Furthermore, each call to NameDecide() in H incurs O(1) RMRs in the
DSM model.

Proof. Consider any history H of ANC-DSM where Condition 3.1 holds.
Specification 3.2: Suppose that each call to NameDecide() terminates in H. It follows from the
algorithm and Lemma 3.15 that NameDecide() returns to each caller the ID of the process l that
wins L̂ at line 26. By Lemma 3.7 (a), l is the ID of a process that called L̂.LeaderElect() in H,
hence also called NameDecide(), as wanted.
Specification 3.3: Suppose that H is fair. Then each call to NameDecide() in H terminates by
Lemma 3.17.
RMR complexity: This follows directly from Lemma 3.18.

22

4 Pseudo-Locks

In this section, we define a new building block called a pseudo-lock, which underlies the imple-
mentations presented in later sections. We then show how to construct pseudo-locks using name
consensus, reads and writes at a cost of O(1) RMRs per process in the CC and DSM models.

Informally, a pseudo-lock is similar to a “one-shot” mutex, where at most one process acquires
the critical section [10]. In addition, in a pseudo-lock any process that fails to acquire the CS
must wait for the process that succeeded to leave the CS. Formally, a pseudo-lock is an algorithm
that consists of two functions: an entry protocol, denoted Pseudo-Enter(), and an exit protocol,
denoted Pseudo-Exit(). The two functions must be accessed according to the following etiquette:

Condition 4.1.

(a) Each process calls Pseudo-Enter() and Pseudo-Exit() at most once.

(b) A process can call Pseudo-Exit() only after completing a call to Pseudo-Enter().

The correctness properties of a pseudo-lock are captured in Specifications 4.2–4.3.

Specification 4.2 (safety). For any history where Condition 4.1 holds:

(a) If Pseudo-Enter() terminates, it returns a Boolean. If Pseudo-Exit() terminates, it returns
OK.

(b) Pseudo-Enter() returns true to at most one process.

(c) If Pseudo-Enter() returns false to some process, then some other process has completed a
call to Pseudo-Enter() with response true and subsequently made a call to Pseudo-Exit().

Specification 4.3 (liveness). For any fair history where Condition 4.1 holds:

(a) If at least one call to Pseudo-Enter() is made, then at least one such call terminates.

(b) If some process calls Pseudo-Enter() with response true and then completes a call to
Pseudo-Exit(), then all calls to Pseudo-Enter() terminate.

(c) Every call to Pseudo-Exit() terminates.

Definition 4.4. We say that a process acquires the pseudo-lock if it makes a call to Pseudo-Enter()

with response true. We say that a process fails to acquire the pseudo-lock if it makes a call to
Pseudo-Enter() with response false.

In the remainder of this section, we present O(1)-RMR pseudo-lock implementations for the
CC and DSM models.

4.1 Pseudo-locks in the CC Model

A pseudo-lock is straightforward to implement in the CC model given an O(1)-RMR name consensus
algorithm, such as the one described in Section 3. One implementation is presented in Figure 6.
(A very similar algorithm can be devised using leader election instead of name consensus, but we
use name consensus nevertheless for consistency with the DSM algorithm.) Let APL-CC denote the
corresponding concurrent system.

23

Declarations
Shared variables: (global)

flag – Boolean, initially false

Subroutines: (global)

NameDecide() – O(1)-RMR name consensus algorithm (see Section 3)

Private variables: (per-process)

winner – process ID, uninitialized

Function Pseudo-Enter()

Output: Boolean
winner := NameDecide()50

if winner = PID then51

return true52

else53

await flag = true54

return false55

end56

Function Pseudo-Exit()

// Note: winner is assigned at

line 50 of Pseudo-Enter.

if winner = PID then57

write flag := true58

end59

return OK60

Figure 6: Pseudo-lock for the CC model.

Theorem 4.5. For any history H of APL-CC where Condition 4.1 holds, Specifications 4.2 and
4.3 hold. Furthermore, each call to Pseudo-Enter() or Pseudo-Exit() incurs O(1) RMRs in the
CC model.

Proof. The proof is straightforward and is deferred to Appendix A.1.

4.2 Pseudo-lock Implementation for the DSM Model

A pseudo-lock is straightforward to implement in the DSM model given an O(1)-RMR name con-
sensus algorithm, such as the one described in Section 3, multiple instances of a two-process leader
election algorithm that can be made local to one process (see Section 3.3), and the functions
signal/wait from Section 3.4. One implementation is presented in Figure 7. Let APL-DSM denote
the corresponding concurrent system.

Theorem 4.6. For any history H of APL-DSM where Condition 4.1 holds, Specifications 4.2 and
4.3 hold. Furthermore, each call to Pseudo-Enter() or Pseudo-Exit() incurs O(1) RMRs in the
DSM model.

Proof. As in the proof of Theorem 4.5, note that the name consensus algorithm is accessed according
to Condition 3.1, and so we can appeal to Specifications 3.2 and 3.3. In particular, it follows easily
from the algorithm and Specification 3.2 that the two-process LE algorithm instances are accessed
(at line 65 and 72) according to Conditions 3.4 and 3.8, and so we can appeal to Specifications 3.5,
3.6, and 3.9.
Specification 4.2: Properties (a) and (b) follow easily from the algorithm and Specification 3.2,
as in the proof of Theorem 4.5. Now consider property (c). Suppose that Pseudo-Enter() returns
false to some process p. Then some process w 6= p won NameDecide() at line 61. If process p
lost L2P [w][p].LeaderElect() at line 65, then w won it at line 72 of Pseudo-Exit(). Otherwise,

24

Declarations
Shared variables: (global)

L2P [1..N][1..N] – array of O(1)-RMR two-process LE algorithms, where L2P [p][q] is for p
and q, and local to p (see Section 3.3)

Subroutines:

NameDecide() – O(1)-RMR name consensus algorithm (see Section 3)
signal/wait – subroutines from Section 3.4

Private variables: (per-process)

winner – process ID, uninitialized
q – process ID, uninitialized
P – set of process ID, initially ∅

Function Pseudo-Enter()

Output: Boolean
winner := NameDecide()61

if winner = PID then62

return true63

else64

if L2P [winner][PID].LeaderElect() =65

win then
wait(winner)66

end67

return false68

end69

Function Pseudo-Exit()

// Note: winner is assigned at

line 61 of Pseudo-Enter().

if winner = PID then70

foreach q ∈ P \ {PID} do71

if L2P [PID][q].LeaderElect() =72

lose then
P := P ∪ {q}73

end74

end75

signal(P)76

end77

return OK78

Figure 7: Pseudo-lock for the DSM model.

25

p won at line 65 and then completed a call to wait(w) at line 66, and so w must have called
signal(P) with w ∈ P by Lemma 3.10 (c), namely at line 76 of Pseudo-Exit(). In either case, w
previously completed a call to Pseudo-Enter() with response true (by the success test at line 70),
and then called Pseudo-Exit(), as wanted.
Specification 4.3: Let H by any fair history where Condition 4.1 holds. As in the proof of
Theorem 4.5, property (a) holds since the winner of NameDecide() at line 61 completes its call to
Pseudo-Enter(). Let w denote this process. Next, consider property (b). Suppose that w makes a
call to Pseudo-Exit() after completing its call to Pseudo-Enter(). Any process q 6= w that calls
Pseudo-Enter() completes line 61 by Specification 3.3, and then begins executing lines 65–68 by
the algorithm and Specification 3.2. The call to L2P [w][q].LeaderElect() at line 65 terminates by
Specification 3.6. For termination of the call to wait(w) at line 66, it suffices to show that process
w calls signal(P) where P is the set of process that call wait(w) at line 66 of Pseudo-Enter()
(see Lemma 3.12). (The other hypothesis of Lemma 3.12 is that w does not also call signal(P ′)
with P ∩ P ′ 6= ∅, which holds since w calls signal at most once.) To that end, note that by
the algorithm, P is the set of processes z such that z 6= w (see line 71) and w lost L2P [w][z]
at line 72. Consequently, z ∈ P if and only if z wins L2P [w][z] at line 65 by Specification 3.5,
which occurs if and only if z calls wait at line 66 (since H is fair). The argument of the latter
call is w by the algorithm and Specification 3.2. Thus, q’s call to wait at line 66 terminates by
Lemma 3.12. Finally, property (c) follows from the structure of Pseudo-Exit(), Specification 3.6,
and the termination of signal (see Lemma 3.10 (b)).
RMR complexity: This follows from the structure of Pseudo-Enter() and Pseudo-Exit(),
the RMR complexity of NameDecide() (given that Condition 3.1 holds), the RMR complexity of
the two-process LE algorithms (given that Condition 3.4 holds), the locality of these algorithms
(Specification 3.9), and the RMR complexity of signal/wait (Lemma 3.10 (a)).

26

5 Block Manager

Our implementations of CAS and LL/SC manipulate data structures we call blocks. These are
inspired by “cells” in Herlihy’s universal wait-free construction [16], and are similar to the “blocks”
used in the wait-free implementation of CAS by Luchangco, Moir and Shavit [20]. Blocks record
the state of the target object, where the current state is stored in a specially designated current
block. A process effects a state change using the “pointer-swinging” technique: it allocates a new
block representing the new state, and designates that block as current. We say that a block is fresh
if all its fields (i.e., the objects contained in it) are in their initial states. At initialization, a fresh
block called the initial block is current.

Fresh blocks are allocated using a block allocator, denoted in our pseudo-code by the subroutine
AllocBlock(). In this paper, we assume that this function returns a unique fresh block different
from the initial block. Fresh blocks are drawn from an unbounded set, which can be maintained by
each process using a private linked list and accessed using only local computation. (For a discussion
of memory recycling, see the PhD thesis of Wojciech Golab [12].) Formally, we assume that calls
to AllocBlock() incur O(1) RMRs and satisfy the following properties:

Specification 5.1 (safety). For any history:

(a) if a call to AllocBlock() returns response x then x is a block address never before returned
by AllocBlock() and different from the initial block (of the block manager); and

(b) a call to AllocBlock() does not access any block.

Specification 5.2 (liveness). For any fair history, each call to AllocBlock() terminates.

The current block is tracked using a typed shared object we call the block manager. The
block manager type, τBM = (S, sinit,O,R, δ), is formally defined as follows. Each state in S is
a tuple (C, S) where C denotes the address of the current block, and S is a set of pairs of the
form (x, p), where x is a block address and p is a process ID. The initial state is (b0, ∅) where
b0 is the address of the initial block. The following operation types are defined: getCurBlock()

and chngCurBlock(x, y). The set of responses consists of the set of block addresses and the set
of process IDs. The transition mapping is defined by the (atomic execution of) the pseudo-code
shown in Figure 8. (Recall that a box around pseudo-code indicates a transition mapping.) Op-
eration getCurBlock() returns the address of the current block. Operation chngCurBlock(x, y)
makes y the current block, unless some process already called chngCurBlock(x, ...), in which case
it has no side-effect. (Here and subsequently we use “...” as a “wildcard” symbol.) We say
that a chngCurBlock operation is successful in the first case and failed otherwise. A successful
chngCurBlock(x, y) returns the caller’s ID. A failed chngCurBlock(x, y) necessarily follows a suc-
cessful chngCurBlock(x, ...), and returns the ID of the process that executed the latter operation.

Note that, as specified, a successful chngCurBlock(x, y) does not necessarily change the ad-
dress of the current block from x to y; it merely ensures that y is current. However, later on when
we use the block manager to implement CAS and LL/SC, we will call chngCurBlock(x, y) in such
a way that if it succeeds then it does change the current block from x to y; see Lemma 6.6.

Finally, we require that any implementation of the block manager satisfy the following:

Specification 5.3 (safety). Any history of the implementation is linearizable with respect to type
τBM .

Specification 5.4 (liveness). In any fair history of the implementation, each call to getCurBlock

or chngCurBlock terminates.

27

Function getCurBlock()

Output: address of current block
return C79

Function chngCurBlock(x, y)

Input: x, y – blocks
Output: ID of process whose call to

chngCurBlock(x, ...) succeeded
if (x, p) ∈ S for some p then80

return p81

else82

C := y83

S := S ∪ {(x,PID)}84

return PID85

end86

Figure 8: Definition of block manager operation types. (The current state is denoted by (C, S).)

5.1 Linearizable O(1)-RMR Implementation

We now present a simple implementation of the block manager that uses only reads and writes,
and has O(1) RMR complexity in the CC and DSM models. We refer to this implementation as
IBM = (τBM ,P,B,H). The implementation records the address of the current block in a shared
register variable D. It also relies on an O(1)-RMR pseudo-lock, as described in Section 4. We use
multiple “instances” of the pseudo-lock (one per block), each with its own copies of the underlying
shared variables. The pseudo-lock is needed for synchronization inside chngCurBlock, namely when
multiple processes apply chngCurBlock(x, ...) operations for some block x. In that case, processes
use the pseudo-lock in block x to decide whose operation will succeed, and to discover the ID of the
process whose operation succeeded. The access procedures for getCurBlock and chngCurBlock

are presented in Figure 9.
We will now show that the implementation IBM is linearizable, satisfies the termination prop-

erty, and has O(1) RMR complexity (see Section 2).

Lemma 5.5. For any history H of IBM and for any block x accessed by any process in H:

(a) The pseudo-lock in block x is accessed according to Condition 4.1.

(b) A read of xBwinner at line 95 of chngCurBlock returns the ID of the unique process that ac-
quired the pseudo-lock in block x and then completed line 90 during the same chngCurBlock

operation execution.

Proof. The proof is straightforward and is deferred to Appendix A.2.

To prove linearizability, we define for each history H of IBM a candidate linearization H̄ as
follows. First, for each operation execution on the target object in H, we assign a numerical
“timestamp”.

Definition 5.6. The timestamp s for an arbitrary operation execution Op in H, say by process p,
and its completion (where applicable), are defined as follows:

Operation type getCurBlock():

(a) If Op is complete in H and p reads D at line 87 during Op in step i of H, then s = i.

28

Declarations
Shared variables: (global)

D – register, stores a block address, initially points to the initial block defined for τBM
Shared variables: (per-block)

winner – register, stores a process ID or ⊥, initially ⊥
Subroutines: (one instance per-block)

Pseudo-Enter()/Pseudo-Exit() – O(1)-RMR pseudo-lock from Section 4

Function getCurBlock()

return read(D)87

Function chngCurBlock(x, y)

if read(xB winner) = ⊥ then88

if xB Pseudo-Enter() = true then89

write D := y90

write xB winner := PID91

xB Pseudo-Exit()92

end93

end94

return read(xB winner)95

Figure 9: Block manager implementation.

(b) Otherwise s is undefined, and Op does not appear in H̄.

Operation type chngCurBlock(x, y):

(c) If p writes D at line 90 of chngCurBlock during Op in step i of H, then s = i.
(The completion of Op, if Op is pending in H, returns p’s ID.)

(d) Else if Op is complete and p does not write D at line 90 during Op, and reads xB winner at
line 95 for some block x during Op in step i of H, then s = i.

(e) Otherwise s is undefined, and Op does not appear in H̄.

To construct our candidate linearization H̄ of H, we arrange operation executions for which
timestamps are defined, in increasing order of timestamp. (The uniqueness of these timestamps
follows easily from Definition 5.6.) Operation executions that are pending in H, and whose times-
tamps are defined, are completed as explained above.

Lemma 5.7. H̄ satisfies properties (a) and (b) of linearizability (sequential completion and order
preservation, see Section 2).

Proof. Property (a) follows from our construction of H̄ and Definition 5.6. For property (b),
note that by Definition 5.6, if the timestamp of an operation execution Op by p in H is i, then
p executes step i during Op in H. Thus, if Op and Op′ are operation executions in H whose
counterparts appear in that order in H̄, then Op has a smaller timestamp, and so either Op and
Op′ are concurrent in H, or Op precedes Op′ in H.

29

It remains to prove property (c) (conformity to type τBM). To that end, we first define some
useful notation. Let Opi, si, and pi denote the i’th operation execution in H̄ (counting from 1),
its timestamp, and the calling process. If Opi is a chngCurBlock operation execution, then we will
refer to the arguments of Opi as xi and yi. Finally, let νi = (Ci, Si) denote the state of the block
manager after applying the first i operation executions in H̄ on a correctly implemented block
manager initialized to b0 (the initial block).

Lemma 5.8. Implementation IBM satisfies property (c) of linearizability (conformity to type τBM).

Proof. Let H be any history of IBM . Since conformity to a type is a safety property it suffices to
consider finite H̄. Let k = |H̄|. Define s0 = 0 and sk+1 = ∞. We will prove that for any i ∈ N,
0 ≤ i ≤ k:

(a) For any integer t ∈ [si, si+1), D = Ci holds in state H[t].

(b) If i > 0, then the response of Opi is the correct response for an operation execution of that
type applied in state νi−1.

Part (b) implies the lemma, but we require both parts for induction. Now let S(i) denote parts (a)–
(b) for a particular value of i. Note that in H, the value of D is changed only by an execution
of line 90, which is an atomic step that defines the timestamp of an operation execution (on the
target object) in H̄. Therefore, the value of D does not change between atomic steps si and si+1

in H. This, in turn, implies that to prove part (a) of S(i), it suffices to prove that D = Ci in state
H[si]—and that is all we do in the inductive step that follows.

For S(0), (a) follows from our earlier definition of s0, and the initialization of D to b0 (the
initial block). Part (b) holds trivially for S(0). Now for any i, 0 < i ≤ k, suppose that S(i − 1)
holds, and consider S(i). We proceed by cases on how the timestamp si was obtained.

Case A: Opi is a getCurBlock operation execution and process pi reads D at line 87 in step si
of H. In this case, νi = νi−1.

S(i) part (a) follows from S(i− 1) part (a) because νi = νi−1 and step si in H does not write
D.

For S(i) part (b), note that by the algorithm, Opi returns in H̄ the value pi that read from
D in step si. By S(i − 1) part (a), this value equals Ci−1, which is the correct response for
Opi.

Case B: Opi is a chngCurBlock(xi, yi) operation execution and process pi wrote D at line 90 in
step si of H.

Since pi acquires the pseudo-lock in block xi during the counterpart ofOpi inH, it follows from
Lemma 5.5 (a) and Specification 4.2 (b) that no other process does so in H. Furthermore, by
Lemma 5.5 (a) and Specification 4.2 (c), no process completes a call to xiBPseudo-Enter() at
line 89 before step si in H. Consequently, it follows from Definition 5.6 and our construction
of H̄ that Opi is the first chngCurBlock(xi, ...) operation execution in H̄. Thus, Opi succeeds,
and so νi = (Ci, Si) where Ci = yi and Si = Si−1 ∪ {(xi, pi)}.
S(i) part (a) follows by the action of step si in H, where pi writes yi = Ci to D.

For S(i) part (b), we must show that Opi returns pi’s ID since it succeeds. But this follows
from line 95 and Lemma 5.5 (b).

30

Case C: Opi is a complete chngCurBlock(xi, yi) operation execution and process pi reads xi B
winner at line 95 in step si of H, but does not write D at line 90 during the counterpart of
Opi in H.

Since pi does not acquire the pseudo-lock in block xi and completes line 89 during the
counterpart of Opi in H, we will show that some chngCurBlock(xi, ...), precedes Opi in
H̄. If pi reads x B winner 6= ⊥ at line 88, then some process wrote x B winner at line 91
before step si in H. This happens during the counterpart of some chngCurBlock(xi, ...)
operation execution Opj in H that falls under Case B above, and precedes Opi by the order
of lines 90–91, by Definition 5.6, and by our construction of H̄. On the other hand, if pi
executes line 89 and fails to acquire the pseudo-lock, then it follows from Lemma 5.5 (a)
and Specification 4.2 (c) that some other process q does acquire the same pseudo-lock, and
then makes a call to xi B Pseudo-Exit() before step si in H. This happens during the
counterpart of some chngCurBlock(xi, ...) operation execution Opj that falls under Case B
above, and precedes Opi by Definition 5.6 and by our construction of H̄. Thus, Opi is a failed
chngCurBlock, and so νi = νi−1.

S(i) part (a) follows from the fact that νi−1 = νi and the action of step si in H, which does
not overwrite D.

For S(i) part (b), we must show that Opi returns the ID of the process that applies a successful
chngCurBlock(xi, ...) in H̄. Recall that Opi returns the ID pi reads from xi B winner at
line 95, which by Lemma 5.5 (b) is the ID of the unique process q that acquired the pseudo-lock
in block xi and then executed line 90. The corresponding chngCurBlock(xi, ...) operation
execution by q appears in H̄ by Definition 5.6 and our construction of H̄, and is successful
by our analysis of Case B, as wanted.

Theorem 5.9. The implementation IBM of the block manager satisfies Specifications 5.3 and 5.4.
Furthermore, for any history H of IBM , each call to getCurBlock or chngCurBlock incurs O(1)
RMRs in the CC and DSM models.

Proof. Let H be any history of IBM .
Specification 5.3: Linearizability of H follows from Lemma 5.7 and Lemma 5.8 (b).
Specification 5.4: If H is fair, each call to getCurBlock terminates by the structure of the
access procedure. Similarly, each call to chngCurBlock terminates provided that the pseudo-lock
functions Pseudo-Enter and Pseudo-Exit terminate. For termination of the latter functions, first
recall that by Lemma 5.5 (a), Condition 4.1 holds with respect to any pseudo-lock accessed in
H. Since Condition 4.1 holds, and since any process that acquires a pseudo-lock in any block x
eventually calls xB Pseudo-Exit(), the pseudo-lock functions terminate by Specification 4.3.
RMR complexity: The RMR complexity of IBM follows from the structure of the access pro-
cedures and the RMR complexity of the pseudo-lock functions (where Condition 4.1 holds by
Lemma 5.5 (a)).

31

6 Extended Compare-and-Swap

Our goal in this section is to provide O(1)-RMR implementations, using reads and writes only,
of two well-known synchronization primitives: compare-and-swap (CAS) and load-linked/store-
conditional (LL/SC). We first give precise definitions of these primitives as shared object types,
and then describe our implementation methodology. Our definitions at this stage are simplified
in the sense that the type for each primitive does not support a Write operation type; we defer
discussion of writable objects to Section 8.

We model the CAS primitive as a shared object type τCAS . The set of states of the type is the
set of values from a domain U, and the initial state sinit can be any element of U. The following
operation types are defined: CAS(cmp,new) and Read(). The set of responses is also U. The
transition mapping is defined by the (atomic execution of) the pseudo-code shown in Figure 10.
CAS(cmp,new) returns the prior state, which is a value from U, and also acts on the state according
to one of two execution paths: A successful CAS operation occurs when the prior state is cmp, in
which case it changes the state to new. A failed CAS operation occurs when the prior state is
different from cmp, in which case the state does not change. Read() simply returns the previous
state and does not change the state.

Function Read()

Output: current value
return V96

Function CAS(cmp, new)

Input: cmp – comparison value
Input: new – value to be swapped in
Output: prior value
old := V97

if old = cmp then98

V := new99

return old // Operation successful.100

else101

return old // Operation failed.102

end103

Figure 10: Definition of operation types for type τCAS . (The current state is denoted by V .)

Load-linked/store-conditional (LL/SC) is another popular synchronization primitive, and is
similar in spirit to CAS. We model LL/SC as a shared object type τLL/SC whose state consists
of a value V from a domain U and a Boolean array Linked[1..N]. In the initial state sinit, V can
be any element of U, and each element of Linked[1..N] is false. The following operation types are
defined: LL(), SC(new) and Read(). The set of responses consists of the elements of U (for LL and
Read) and the Boolean constants {true, false} (for SC). The transition mapping is defined by (the
atomic execution of) the pseudo-code shown in Figure 11. LL simply sets Linked[PID] and returns
the current value. Read returns the current value and does not change the state, as in the case of
type τCAS . SC(new) has two execution paths: A successful SC operation occurs when in the prior
state Linked[PID] = true; it changes V to new, resets Linked[1..N] to false, and returns true. A
failed SC operation occurs when in the prior state Linked[PID] = false; it does not change the state
and returns false.

Both CAS and LL/SC are important and commonly implemented (in hardware) primitives.
(Popular architectures such as x86, Itanium, Sparc, MIPS, IBM Power, and DEC Alpha support
a variant of either CAS or LL/SC.) They are typically used on a shared variable by calling Read

32

Function Read()

Output: current value
return V104

Function LL()

Output: current value
Linked[PID] := true105

return V106

Function SC(new)

Input: new – value to be stored
Output: Boolean success indicator
if Linked[PID] = true then107

V := new108

foreach i ∈ 1..N do Linked[i] := false109

return true // Operation successful.110

else111

return false // Operation failed.112

end113

Figure 11: Definition of operation types for type τLL/SC . (The current state is denoted by V and
Linked[1..N].)

or LL first to retrieve the value, say v, and then calling CAS or SC to try changing the value from v
to some v′. In some applications, LL/SC is preferred over CAS because it does not suffer from the
so-called A-B-A problem. That is, SC can “detect” when the value of an object has changed (say
from A to B) since the last call to LL, and then changed back (from B to A), whereas CAS only
“looks” at the latest value and succeeds or fails accordingly.

Although CAS and LL/SC are similar in spirit, due to the subtle difference between them, it
is difficult to simulate one from the other in a manner that preserves the RMR-related correctness
properties under consideration in this paper. (Constant-time wait-free simulations of LL/SC from
CAS and vice-versa are known, e.g. [22, 14], but are insufficient for our purposes because they
either use registers of unbounded size or they do not provide special “locality properties” defined
later on in Section 7.) Rather than showing how to implement each type separately, we show how
to implement a stronger object type called extended compare-and-swap (ECAS), from which CAS
and LL/SC can be derived very easily. This new type, denoted τECAS , provides an operation type
ECAS that behaves either like CAS or like SC depending on the value of a Boolean parameter (called
isSC). Like CAS and SC, ECAS either succeeds or fails, which is indicated in its response.

The state space and initial value of τECAS are defined as for τLL/SC (i.e., the combination
of a value V and a Boolean array Linked[1..N]). There are three operation types: Read, LL and
ECAS(isSC, cmp,new). The set of responses consists of the elements of U (for LL and Read), as
well as the set of ordered pairs of the form (v, b) where v ∈ U and b ∈ {true, false} (for ECAS). The
transition mapping is defined by (the atomic execution of) the pseudo-code shown in Figure 11 (for
LL and Read) and in Figure 12 (for ECAS). ECAS is the new operation type that generalizes SC and
CAS, and corresponds to the atomic execution of the pseudo-code shown in Figure 12. ECAS can
simulate either SC or CAS depending on the value of the parameter isSC, as we explain below. It
returns a pair (v, b) consisting of the prior value v and a Boolean success indicator b, which we also
explain below.

The conditional statement in Figure 12 has two cases. In the first case, ECAS behaves either
like a failed SC(new) operation (with Linked[PID] = false) or like a failed CAS(cmp,new) operation
(with cmp 6= V), leaving V and Linked[1..N] unchanged. In the second case, ECAS behaves like a
successful CAS(cmp,new) or SC(new) operation, assigning V = new and also resetting Linked[1..N].
In both cases, the response is a tuple containing the prior value and a success indicator; we say
that an ECAS operation is successful in the second case, and failed otherwise. (Note: At line 119
of Figure 12, it is not always necessary to reset all elements of Linked[1..N], but we do so anyway

33

Function ECAS(isSC, cmp, new)

Input: isSC – Boolean, cmp – comparison value, new – value to be swapped in
Output: pair (prior value,Boolean success indicator)
old := V114

if (isSC = true ∧ Linked[PID] = false) ∨ (isSC = false ∧ cmp 6= old) then115

return (old, false) // Operation failed.116

else117

V := new118

foreach i ∈ 1..N do Linked[i] := false119

return (old, true) // Operation successful.120

end121

Figure 12: Definition of ECAS operation type for type τECAS . (The current state is denoted by V
and Linked[1..N].)

for simplicity. RMR complexity is not relevant in this context since we are defining the transition
mapping for a shared object type rather than implementing that type.)

Implementing CAS and LL/SC (individually) is straightforward given a single ECAS base
object. These implementations, which have the same RMR complexity (asymptotically) as the
underlying ECAS object, are presented in Figure 13. In general, our implementations will satisfy
the following properties:

Specification 6.1 (safety). Any history of the implementation is linearizable with respect to the
primitive’s type.

Specification 6.2 (liveness). In any fair history of the implementation, each call to an access
procedure terminates.

The correctness properties of the implementations presented in Figure 13 are captured by the
following theorem:

Theorem 6.3. Let τ be one of τCAS or τLL/SC . The implementation I of τ presented in Figure 13
satisfies the following correctness properties:

(a) Specification 6.1 (linearizability with respect to type τ).

(b) Specification 6.2 (termination).

(c) Operation executions on the target object have the same worst-case RMR complexity (asymp-
totically) as atomic steps on the base object B.

Proof. Specification 6.1 (linearizability) follows easily if we consider that an operation execution
on the target object takes effect at the same point as the corresponding atomic step on the base
object B. Specification 6.2 (termination) and RMR complexity follow directly from the structure
of the access procedures, each of which applies only a single atomic step, namely on the base object
B.

In the remainder of this section, we present a O(1)-RMR implementation of ECAS using reads
and writes only. The implementation is linearizable but only in certain histories; this restriction
simplifies the underlying algorithms, but at the same time allows the ECAS object to be used

34

Declarations
Shared variables: (global)

B – ECAS object

Private variables: (per-process)

val – value from domain U, uninitialized
succ – Boolean, uninitialized

Function Read()

Output: current value
return B.Read()122

Function CAS(cmp, new)

Input: cmp – comparison value
Input: new – value to be swapped in
Output: prior value
(val, succ) := B.ECAS(false, cmp, new)123

return val124

Function LL()

Output: current value
return B.LL()125

Function SC(new)

Input: new – value to be stored
Output: Boolean success indicator
(val, succ) := B.ECAS(true, new, new)126

return succ127

Figure 13: Implementations of CAS and LL/SC from ECAS.

for implementing CAS and LL/SC (individually), as shown in Figure 13. The particular histories
under consideration are those satisfying the following condition:

Condition 6.4. Either no process invokes LL, or no process invokes ECAS(isSC, cmp, new) with
isSC = false.

6.1 Linearizable O(1)-RMR Implementation of ECAS

We now present an implementation IE = (τECAS ,P,B,H) of ECAS that uses a block manager, as
described in Section 5, as its principal building block. The implementation uses blocks to record
the state of the target object. To that end, each block contains fields called V and Linked[1..N],
which correspond to the two components of the target object’s state. Whenever a successful ECAS
operation execution occurs, the caller allocates a new block and makes that block current by calling
chngCurBlock. The latter operation execution performs much of the synchronization needed to
handle concurrent ECAS operation executions by deciding which operation execution will succeed
and which will fail. Two other fields are present in each block. First, an array NextVal[1..N] is
used (in some cases) by a successful ECAS operation execution to communicate the new value of the
target object to a failed ECAS operation execution that must return that value. Second, a register
writer is used to determine the ID of the process that allocated and made current a particular
block.

The access procedures for the operation types Read, LL, and ECAS are presented in Figures 14–
16. Lines containing shaded statements can be ignored safely for now; these statements come into
play in Section 7 when we discuss locally-accessible implementations. For completeness, we provide
in Figure 16 stub implementations of the subroutines called in shaded statements.

The access procedures for Read, LL, and ECAS are designed around the following invariant: the
current state of the target object is stored in the variables V and Linked[1..N] in the current block.
The access procedure for Read simply retrieves the current block, say x, and returns the value read

35

Declarations for ECAS implementation.

Shared variables: (global)
M – O(1)-RMR block manager (see Section 5)

Subroutines: (global)

AllocBlock() – O(1)-RMR block allocator

Shared variables: (per-block)

V – register, stores value from domain U, initialized to the initial value of type τECAS
Linked[1..N] – array of Boolean, initially all false, element i private to process i
NextVal[1..N] – array of registers, same type as V , uninitialized
writer – register, stores process ID or ⊥, initially ⊥

Private variables: (per-process)

old – value from domain U, uninitialized
ret – Boolean, uninitialized
d, d′ – block addresses, uninitialized
winner – process ID, uninitialized

Function Read()

d := M.getCurBlock()128

HelperBegin(d)129

old := read(dB V)130

HelperEnd(d)131

return old132

Function LL()

d := M.getCurBlock()133

HelperBegin(d)134

old := read(dB V)135

if read(dB Linked[PID]) = false then136

write dB Linked[PID] := true137

end138

HelperEnd(d)139

return old140

Figure 14: Implementation IE of ECAS – part 1.

36

Function ECAS(isSC, cmp, new)

d := M.getCurBlock()141

HelperBegin(d)142

old := read(dB V)143

if (isSC = true ∧ read(dB Linked[PID]) = false) ∨ (isSC = false ∧ cmp 6= old) then144

// Operation execution failed.

ret := false145

else if isSC = false ∧ cmp = new then146

// Operation execution successful, does not change the state.

ret := true147

else if HelperCC(d, new) = true then148

// Operation execution successful, changes the state149

// without changing the current block.

ret := true150

else151

// Try to execute successful operation execution that changes the state.

d′ := AllocBlock()152

write d′ B writer := PID153

write d′ B V := new154

write dB NextVal[PID] := new155

winner := M .chngCurBlock(d, d′)156

if winner 6= PID then157

// Operation execution failed.

old := read(dB NextVal[winner])158

ret := false159

else160

// Operation execution successful, changes the state.

ret := true161

end162

end163

HelperEnd(d)164

return (old, ret)165

Figure 15: Implementation IE of ECAS – part 2.

Function HelperBegin(d)

// Do nothing.

Function HelperEnd(d)

// Do nothing.

Function HelperCC(d, new)

Output: Boolean
return false166

Figure 16: Implementation IE of ECAS – part 3.

37

from xBV . LL is similar, but also ensures that xBLinked[PID] = true holds. The access procedure
for ECAS begins at lines 141–143 in the same way as Read and LL. Then, at lines 144–147, certain
special cases are tested, which allow ECAS to return without trying to change the current block;
these are the cases when the operation execution fails, or succeeds without changing the state of
the target object. Lines 148–150 do nothing in this version of the implementation; they come into
play only in Section 7.2.

If the execution of ECAS reaches line 152, then the calling process has a chance to execute a
successful ECAS, which will change the state of the target object. Since there may be several such
operation executions that access the same block x, we allow one of them to succeed, and force the
rest to fail. (We can always do so thanks to lines 144–147, which for this reason are not merely an
optimization.) The successful operation execution is the one whose chngCurBlock(x, ...) succeeds
at line 156, after the caller allocates and initializes a new block at lines 152–154. This operation
execution returns the value of its cmp argument and a success indicator of true. (Note that a
successful chngCurBlock(x, y) ensures that y.Linked[1..N] = false because this array in block y
has not been accessed since initialization to false. Thus, such a successful chngCurBlock is the
counterpart of line 119 in Figure 12.)

Prior to calling chngCurBlock(x, ...) at line 156, each process records its argument new in
its entry of the array x B NextVal[1..N] at line 155. By doing so, each process ensures that if
its subsequent chngCurBlock(x, ...) succeeds then the new value of the target object is already
recorded in block x, and so it can be accessed easily at line 158 by processes whose chngCurBlock(x,
...) fails. The ECAS operation executions of processes in the latter category fail and return this new
value (as well as a success indicator of false) without any additional waiting.

6.1.1 Analysis

We begin our analysis by proving linearizability. Then, we consider the RMR complexity and
termination properties.

Lemma 6.5. For any history H of implementation IE , and for any block x, if x is current at
some point in H, and subsequently an atomic step involving a successful M .chngCurBlock(..., ...)
occurs, then x is not current at any point after that step in H.

Proof. Suppose otherwise, and consider the second time x becomes current. (If x is the ini-
tial block, we count initialization as the first time.) This happens by the action of a successful
M .chngCurBlock(..., x) at line 156, and x is the value returned by AllocBlock() at line 152.
Consequently, by Specification 5.1, x is not the initial block, and so the first time x became current
was also by a successful M .chngCurBlock(..., x), preceded by another call to AllocBlock() that
returned x. Thus, two calls to AllocBlock() return x in H, which contradicts Specification 5.1.

Lemma 6.6. For any history H of implementation IE , for any blocks x and y, and for any positive
k ∈ N, if a successful M .chngCurBlock(x, y) occurs in step k of H, then x is current in state
H[k − 1].

Proof. Let bi denote the i’th block that becomes current (the initial block being b1), and note that
if i > 1 then bi−1 is current just before bi becomes current. Suppose for contradiction that the
lemma is false, and consider the smallest i > 1 such that block bi becomes current in step k of H
by way of a successful M .chngCurBlock(b, bi) where b 6= bi−1. Since b is the value returned by
M .getCurBlock() before this chngCurBlock, it follows that b = bj for some j < i. Now consider
the subhistory H ′ of H after this getCurBlock and before step k. Since b 6= bi−1, it follows by the

38

minimality of i that a successful M .chngCurBlock(b, ...) occurs in H ′. Since another successful
M .chngCurBlock(b, ...) follows that one, namely in step k of H, this contradicts the specification
of type τBM .

Lemma 6.7. For any history H of implementation IE , for any process p, and for any block x, if
p reads x B V at line 143 at some point in H, then no process q 6= p overwrites x B V after that
point in H.

Proof. Recall that a block x can become current at most once by Lemma 6.5. Next, note that
x B V is only written at line 154 of ECAS, which occurs before x becomes current by way of a
successful M .chngCurBlock(..., x) at line 156 (if this ever happens). Thus, xB V is never written
after x becomes current, and in particular no process q 6= p writes x B V after p makes a call to
M .getCurBlock() with response x at line 141 (hence after p reads xB V at line 143) in H.

To prove linearizability, we now define for each H ∈ H a candidate linearization H̄ as follows.
For each operation execution in H (complete or pending), we assign a “timestamp”, which is a
tuple of the form (x, t, q), where x is a block address, t is an integer, and q is a process ID or zero.

Definition 6.8. The timestamp s for an arbitrary operation execution Op in H, say by process p,
and its completion (where applicable), are defined as follows:

Operation types Read() or LL():

(a) If p executes M.getCurBlock() at line 128 or line 133 during Op, say with response x, and
then reads xB V at line 130 or line 135 in step i of H, then s = (x, i, 0). (If Op is pending
in H, its completion returns the value read from xB V .)

(b) Otherwise s is undefined.

Operation type ECAS(isSC, cmp,new):

(c) If p executes M.getCurBlock() at line 141 during Op with response x, reads x B V at
line 143 in step i of H, and then executes line 145 or line 147, then s = (x, i, 0).
(If Op is pending in H, its completion returns the value read from x B V and the Boolean
assigned to ret at either line 145 or line 147 is executed.)

(d) Else if p executes a successful M .chngCurBlock(b, x) at line 156 during Op in step i of H,
then s = (x, i, 0).
(If Op is pending in H, its completion returns the value read from bB V and true.)

(e) Else if Op is complete in H, and p executes a failed M .chngCurBlock(b, y) at line 156
during Op, then letting i denote the atomic step (by any process) in H involving a successful
M .chngCurBlock(b, x), then s = (x, i, p).
(Since b is a value returned by M .getCurBlock() and then a failed M .chngCurBlock(b, ...)
occurs in H, step i exists and is uniquely defined by the specification of type τECAS and
Lemma 6.6. Note also that process IDs are numbered starting at one and so clauses (d) and
(e) never yield the same timestamp.)

(f) Otherwise s is undefined.

39

It follows from the above definitions that each operation execution for which the timestamp is
defined has a unique timestamp. To construct our candidate linearization H̄, we take all operation
executions for which the timestamp is defined, and arrange these in increasing order of their times-
tamp according to Definition 6.9. Operation executions that are pending in H are completed, as
described earlier, if their timestamps are defined, and are discarded from H̄ otherwise.

Definition 6.9. For timestamps (x1, t1, q1) and (x2, t2, q2), we say that (x1, t1, q1) < (x2, t2, q2) if
and only if one of the following holds:

• x1 6= x2 and block x1 was current before block x2 in H
(Note that we can determine which of x1 and x2 was current first by Lemma 6.5.)

• x1 = x2 and t1 < t2
• x1 = x2, t1 = t2, and q1 < q2

In this ordering, certain groups of concurrent ECAS operation executions have timestamps that
match in the first two positions, say (x, t, ...). The operation execution with timestamp (x, t, 0) is
successful; the others, with timestamps of the form (x, t, p) for some process ID p, fail. Since their
timestamps differ only in the third position, all operation executions in this group appear to take
effect at almost the same point in H – at step t. That is, the successful ECAS takes effect by applying
a successful chngCurBlock in step t, and the others take effect immediately after this. (Note that
“behind the scenes”, these failed ECAS operation executions busy-wait, using pseudo-locks, until
the successful one has taken effect; see Figure 9.)

Next, we define some useful notation. Let Opi, si, and pi denote the i’th operation execution in
H̄ (counting from 1), its timestamp, and the executing process. Also let (isSCi, cmpi,newi) denote
the arguments of Opi in the case when Opi is an ECAS operation execution. We now prove that H̄
satisfies all the properties of a linearization.

Lemma 6.10. H̄ satisfies property (a) of linearizability (sequential completion).

Proof. This follows directly from our construction on H̄. In particular, any operation execution
that is complete in H has its timestamp defined.

Lemma 6.11. If an operation execution Op in H has timestamp s = (..., t, ...) then Op is pending
in state H[t].

Proof. The lemma follows immediately from Definition 6.8 unless Op falls under clause (e). In
the latter case, during Op there is a call to M .getCurBlock() with response b followed by a
failed M .chngCurBlock(b, ...), and step t is the one in which a successful M .chngCurBlock(b, ...)
occurs. It follows from the specification of type τECAS and from Lemma 6.6 that this successful
chngCurBlock is unique and occurs in H. Moreover, by Lemma 6.5 it must occur between the
getCurBlock and failed chngCurBlock during Op. Thus, Op is pending just after step t, as wanted.

Lemma 6.12. If an operation execution Op in H has timestamp s = (x, t, ...) then block x is
current at some point during Op.

Proof. If s does not fall under Definition 6.8 (d)–(e) then the call to M .getCurBlock() during Op
returns x, and so x is current at that point. If s falls under Definition 6.8 (d) then the process that
executes Op makes x current in step t, which occurs during Op by Definition 6.11. If s falls under
Definition 6.8 (e) then x becomes current in step t as explained in the proof of Lemma 6.11.

40

Lemma 6.13. H̄ satisfies property (b) of linearizability (order preservation).

Proof. Consider two distinct operation executions Opi and Opj in H̄, with timestamps si =
(xi, ti, ...) and sj = (xj , tj , ...) respectively, such that Opi precedes Opj in H. We must show
that si < sj .
Case A: xi = xj . It follows from Lemma 6.11 that Opi and Opj are pending in states H[ti] and
H[tj], respectively. Since Opi precedes Opj in H, this implies that ti < tj . Since xi = xj and
ti < tj , si < sj by Definition 6.9.
Case B: xi 6= xj . It follows from Lemma 6.12 that xi and xj are current at some point during Opi
and Opj , respectively. Since we assume Opj precedes Opi in H and since xi 6= xj , it follows that
xi becomes current before xj in H. (The order in which blocks become current is well-defined by
Lemma 6.5.) Thus, sj < si by Definition 6.9.

Lemma 6.14. For any history H of implementation IE where Condition 6.4 holds, any process p,
any block x, and any operation execution Opi in H̄ by p, if the timestamp si of Opi is of the form
(..., ..., 0), and p receives response v when it reads x B Linked[p] during the counterpart of Opi in
H, then v = true if and only if there is an LL operation execution in H̄ before Opi and after any
ECAS that precedes Opi in H̄ and returns (..., true).

Proof. It follows from the access procedures of IE , and the initialization of x B Linked[p] to false,
that p can only read true from xB Linked[p] during Opi if it previously completed an LL operation
execution during which p assigned x B Linked[p] = true at line 137. It remains to show that this
LL occurs after any ECAS that precedes Opi in H̄ and returns (..., true). Suppose otherwise. Let
Opl be p’s LL, and let Ope be the first ECAS that occurs between Opl and Opi in H̄ and returns
(..., true). Since Opl is an LL, it follows from Condition 6.4 that Ope has argument isSCe = true.
Consequently, it follows from our definition of Ope and from the ECAS access procedure that a
successful M .chngCurBlock occurs during the counterpart of Ope in H that makes some block
y current, where y 6= x by Lemma 6.5. Now consider the timestamps of Opl, Ope, and Opi.
For Opl, sl is of the form (x, ..., 0) by Definition 6.8 (a). For Ope, se is of the form (y, ..., 0) by
Definition 6.8 (d). Finally, the timestamp si of Opi is either of the form (x, ..., 0) or of the form
(y′, ..., 0) for some block y′ 6= x by Definition 6.8.
Case A: si is of the form (x, ..., 0). Since sl is of the form (x, ..., 0) and se is of the form (y, ..., 0),
where y 6= x, as noted earlier, Definition 6.9 contradicts Ope occurring between Opl and Opi in H̄.
Case B: si is of the form (y′, ..., 0) for some block y′ 6= x. It follows that si falls under Defini-
tion 6.8 (d), and so a successful M .chngCurBlock(x′, y′) occurs during the counterpart of Opi in H
for some x′. In particular, x′ = x by the algorithm and the assumption that p accesses xBLinked[p]
during the counterpart of Opi in H. Consequently, by Lemma 6.5, y′ is the next block that becomes
current after x. But in that case by our construction of H̄, Opi and Ope are the same operation
execution, which contradicts our definition of Ope.

Lemma 6.15. If H satisfies Condition 6.4 then H̄ satisfies property (c) of linearizability (confor-
mity to type τECAS).

41

Proof. Let H be any history of IE where Condition 6.4 holds. Since conformity to a type is a
safety property it suffices to consider finite H̄. Let k = |H̄|. Let xi and ti denote the first two
components of si. Define x0 as the initial block, and xk+1 as the current block at the end of
H. Define s0 = (x0, 0, 0) and sk+1 = (xk+1,∞, 0). Let νi for 0 ≤ i ≤ k denote the state of a
correctly implemented ECAS object after applying the first i operation executions in H̄. Let νi.V
and νi.Linked[1..N] denote the two components of this state. We will show that for any i ∈ N,
0 ≤ i ≤ k:

(a) For t = ti and any integer t ∈ [ti, ti+1), xi B V = νi.V holds in state H[t].

(b) If i > 0, then the response of Opi is the correct response for an operation execution of that
type applied in state νi−1.

Part (b) implies the lemma, but we require both parts for induction. Now let S(i) denote
parts (a)–(b) for a particular value of i. Note that in H, the current block and value of field V
in that block are changed only by an execution of line 156, which is an atomic step that defines
the timestamp of an operation execution (on the target object) in H̄. Therefore, the current block
and value of V in that block do not change between atomic steps ti and ti+1 in H. This, in turn,
implies that to prove part (a) of S(i), it suffices to prove that xi B V = νi.V in state H[ti]—and
that is all we do in the inductive step that follows.

For S(0), part (a) follows from our earlier definition of x0 as the initial block and t0 = 0, as
well as the initialization of x0 B V to the initial value of type τECAS . Part (b) holds trivially for
S(0). Now for any i, 0 < i ≤ k, suppose that S(i−1) holds, and consider S(i). We proceed by cases
on how si = (xi, ti, ...) was obtained, noting that xi = xi−1 unless si falls under Definition 6.8 (d).

Case A: Opi falls under Definition 6.8 (a). In this case, si = (xi, ti, 0) for some ti, and either Opi
is a Read and pi reads xB V in step ti of H at line 130, or Opi is an LL and pi reads xB V
in step ti of H at line 135.

S(i) (a) follows from S(i − 1) (a) because νi = νi−1, xi = xi−1, and since step ti by pi does
not change the current block or write xi−1 B V .

For S(i) (b), note that by the algorithm, Opi returns the value p reads from xi B V in step
ti, which equals νi−1.V by S(i − 1) (a) and the fact that xi−1 = xi. Since Opi is a Read or
LL, this response is correct in H̄.

Case B: Opi falls under Definition 6.8 (c), and pi executes line 145 during the counterpart of Opi
in H. In this case, si = (xi, ti, 0) for some ti, and Opi is an ECAS operation execution where
pi reads xi B V at line 143 in step ti of H.

As in Case A, it follows that pi reads the value νi−1.V from xi−1 B V at line 143. Similarly,
it follows from Lemma 6.14 that pi reads the value νi−1.Linked[pi] from xi−1 B Linked[p] at
line 144. Consequently, Opi returns (νi−1.V, false) in H̄. Furthermore, by the success of the
test at line 144, either (isSC = true ∧ νi−1.Linked[pi] = false) holds, or (isSC = false ∧ cmpi 6=
νi−1.V) holds. Thus, Opi fails.

S(i) (a) follows from S(i− 1) (a) as in Case A since Opi is a failed ECAS operation execution,
and so νi.V = νi−1.V .

S(i) (b) holds since Opi returns (νi−1.V, false) in H̄ and since Opi is a failed ECAS operation
execution.

42

Case C: Opi falls under Definition 6.8 (c), and pi executes line 147 during the counterpart of Opi
in H. In this case, si = (xi, ti, 0) for some t, and Opi is an ECAS operation execution where
pi reads xi B V at line 143 in step t of H.

As in Case B, it follows that pi reads the value νi−1.V from xi−1BV at line 143, and the value
νi−1.Linked[p] from xi−1 B Linked[pi] at line 144. Consequently, Opi returns (νi−1.V, true) in
H̄. Furthermore, by the success of the test at line 146, isSC = false, cmpi = newi, and cmpi
equals the value read from xi−1 B V , which is νi−1.V . Thus, Opi is successful, and leaves
νi.V = νi−1.V .

S(i) (a) follows from S(i−1) (a) because because Opi is a successful ECAS operation execution
where νi.V = νi−1.V , and since step ti by pi does not change the current block or write
xi−1 B V .

S(i) (b) holds since Opi returns (νi−1.V, true) in H̄ and since Opi is a successful ECAS operation
execution.

Case D: Opi falls under Definition 6.8 (d), and pi executes a successful M .chngCurBlock(d, d′)
for some d and d′ at line 156 during the counterpart of Opi in H. In this case, si = (xi, ti, 0)
for some ti, xi = d′, xi−1 = d (by Lemma 6.6) and Opi is an ECAS operation execution.

Since xi−1 = d, it follows that pi’s call to M .getCurBlock() during the counterpart of Opi in
H returns xi−1, and so as in Case B pi reads the value νi−1.Linked[p] from xi−1 B Linked[p].
Similarly, it follows from Lemma 6.7 and the algorithm that the value pi reads from xi−1BV is
the value of this shared variable in stateH[ti−1], which is νi−1.V by S(i−1) (a). Consequently,
Opi returns (νi−1.V, true) in H̄. Furthermore, by the failure of the tests at line 144 and
line 146, it follows that either (isSC = false ∧ cmpi = νi−1.V ∧ cmpi 6= newi) holds, or
(isSC = true ∧ νi.Linked[pi] = true) holds. In either case, Opi is successful.

S(i) (a) follows by the action of step ti by pi, which is a M .chngCurBlock() that makes
block xi current, and where xi = newi by pi’s prior execution of line 154. (It follows from the
algorithm and Specification 5.1 that no process can overwrite this value until possibly after
step ti.)

S(i) (b) holds since Opi returns (νi−1.V, true) in H̄ and since Opi is a successful ECAS operation
execution.

Case E: Opi falls under Definition 6.8 (e), and pi executes a failed M .chngCurBlock(d, ...) for
some d at line 156 during the counterpart of Opi in H. In this case, si = (xi, ti, pi) for some
ti and Opi is an ECAS operation execution. Furthermore, there is an ECAS operation execution
Opj in H̄ that falls under Definition 6.8 (d), and whose timestamp is sj = (xj , tj , 0) where
xj = xi, tj = ti, and j < i. Moreover, pj applies a successful M .chngCurBlock(d, xj) during
the counterpart of Opj , in step tj of H.

Now consider the response of Opi. Since pi completes line 159 during Opi, note that pi’s
failed M .chngCurBlock(d, ...) at line 156 returns pj ’s ID. Next, pi reads newj from xi B
NextVal[pj] at line 158 (since this read occurs after pj ’s successful chngCurBlock). Since Opj
is a successful ECAS operation execution (see Case D), newj = νj .V holds, and so Opi returns
(νj .V, false) in H̄.

Next, we will show that Opi fails and νi−1.V = νj .V . The latter point follows from S(i−1) (a)
and Definitions 6.8 and 6.9, which imply that either j = i−1, or the only operation executions
between Opj and Opi in H̄ are ones with timestamps of the form (xj , tj , ...) (and fall under
Definition 6.8 (e), like Opi). It remains to show that Opi fails. If isSCi = true, then this

43

holds because Opj is the last successful ECAS operation execution in H̄ before Opi and there
is no LL operation execution by pi between Opj and Opi in H̄ (by Definitions 6.8 and 6.9),
and so νi−1.Linked[1..N] = false. Otherwise, isSCi = isSCj = false (by Condition 6.4), and
so cmp 6= new holds for both Opi and Opj by the failure of the test at line 146. It suffices
to show that cmpi 6= νi−1.V . To that end, since νi−1.V = νj .V = newj and cmpj 6= newj ,
it suffices to show that cmpi = cmpj . To show this, it suffices in turn to show that pi and
pj read the same value from dB V , since this value equals cmp in both operation executions
by the failure of the test at line 144. Suppose otherwise. (Once again, we give a general
argument that is slightly more complex than one needed to deal with implementation IE
alone, but is used later on in Section 7.2.) Then some process q writes dB V between pi and
pj reading it. It follows that q is not pi or pj , because neither pi nor pj writes dB V during
the counterparts of Opi and Opj (respectively) in H, and neither pi nor pj accesses block d
again after completing Opi and Opj by Lemma 6.5, pj ’s successful chngCurBlock(d, ...), and
pi’s failed chngCurBlock(d, ...). However, q 6∈ {pj , pi} contradicts Lemma 6.7.

Thus Opi fails and leaves νi.V = νi−1.V . S(i) (a) follows from S(i−1) (a) since νi−1.V = νj .V
holds and tj = ti. S(i) (b) holds because Opi returns (νi−1.V, false) in H̄ and since Opi is a
failed ECAS operation execution.

Theorem 6.16. The implementation IE satisfies Specifications 6.1 (linearizability) and 6.2 (ter-
mination) under Condition 6.4. Furthermore, each operation execution on the target object incurs
O(1) RMRs in the CC and DSM models.

Proof. Specification 6.1 under Condition 6.4 follows directly from Lemma 6.10, Lemma 6.13, and
Lemma 6.15. Specification 6.2 follows from the structure of the access procedures and from Spec-
ification 5.2. RMR complexity follows from the structure of the access procedures, the RMR
complexity of the base objects, including the block manager object M , and the RMR complexity
of subroutine AllocBlock().

44

7 Locally-Accessible Implementations

Consider an algorithm A that accesses an ECAS object E. Our goal in this section is to show
that one can “plug” our simulation of E into A with at most a constant-factor increase in A’s
RMR complexity, and while preserving other important correctness properties. (See Section 9 for a
discussion of these properties.) To achieve this, our implementation of E must meet the following
locality properties, in addition to worst-case O(1) RMR complexity: (1) in the DSM model, a
designated process pspecial (to which we say E is local) may execute any operation execution on E
without incurring any RMRs; and (2) in the CC model, certain “in-cache” operation executions on
E incur no RMRs.

Since the first property above is straightforward to define, we now focus on formalizing the
second property. To begin with, we must define precisely when an operation on a shared object
provided in hardware is an RMR in the CC model. Our definition is very much tied in with the
one given in Section 2 where the only primitives considered for accessing shared memory were
reads and writes. In a multiprocessor that supports other types of shared objects in hardware,
we must determine which operations cause RMRs and how many. (Recall from Section 2 that an
operation is the application of an operation type to a shared object, and comes in two flavours:
atomic operations represented by atomic steps and non-atomic operations represented by operation
executions.) To that end, we classify operations of every shared object type as being either read-
like or write-like, and apply our definition from Section 2 by treating read-like operations like reads
and write-like operations like writes. (We classify operations and not operation types because two
applications of the same operation type may behave differently.) But what should we classify as
read-like and write-like? To a first approximation, an operation is write-like if it changes the state
of the shared object, and read-like otherwise. One has to be careful about the interpretation of
this statement, however, because in certain cases there is more than one natural way to classify a
particular operation.

Consider an object of type τCAS (as defined in Section 6). For this type, it is natural to treat
Read and failed CAS as read-like, and successful CAS as write-like. However, in the special case when
the arguments of a CAS operation satisfy cmp = new, it is also natural to classify a successful CAS as
read-like because the state transition it causes is trivial. Given such a choice, the safe thing to do
is to classify the operation as read-like, because the more operations are classified as read-like, the
stronger become the correctness properties of locally-accessible implementations, and the harder it
becomes to construct them. In particular, the more operations are read-like, the fewer RMRs the
access procedures of the implementation are permitted to incur. (In this particular case, we can
also assume without loss of generality that CAS is never called with cmp = new, since such calls can
be simulated using Read.)

Next, consider type τLL/SC (as defined in Section 6). Recall that, according to the definition
in Section 6, this state consists of a value denoted V and a Boolean array Linked[1..N]. Applying
our convention to this definition we classify failed SC as read-like, successful SC as write-like, and
LL as write-like. However, note that when process p applies LL, despite writing Linked[p] this
operation has no effect on the component of state that is read by other processes because only
p reads Linked[p]. Consequently, the change of state need not be propagated by the coherence
protocol, and an RMR need not occur unless the value V is also loaded into the local cache. (A
simple hardware implementation of LL/SC encodes Linked[p] in the state of p’s cached copy of the
shared object. An LL by p sets this bit only in p’s cache, and a successful SC triggers an invalidation
that clears this bit in all caches holding copies of the shared object.) Thus, it is also natural to
treat LL as read-like, and once again it is safe for us to do so as it increases the burden on the
implementation. (Another reason for treating LL as read-like is that another definition of τLL/SC

45

exists where LL does not modify the shared state at all.)
Finally, consider type τECAS , which we defined in Section 6 to serve as a precursor for CAS

and LL/SC. We classify operations on such an object as follows: Read, LL, and failed ECAS are
read-like, and successful ECAS is write-like except when isSC = false and cmp = new. (In the latter
case, there is more than one natural classification, but we are free to classify such operations as
read-like, as explained earlier.)

Now consider a (linearizable) implementation I of a shared object type τ using only reads and
writes. We would like the implementation I to have the following RMR-preservation property in
the write-through or write-back CC model:

Definition 7.1 (RMR-preservation property in the CC model). There exist positive constants
c1, c2 such that for any history H of the implementation I there is a linearization H̄ of H such that
for any process p, if p incurs X RMRs in H in the particular CC model under consideration and
Y RMRs in H̄ in the same model, then X ≤ c1Y + c2.

Informally, Definition 7.1 states that the RMR cost of H for any process p is at most a
constant factor greater than the RMR cost of H̄. Consequently, replacing a shared object with
one implemented using I causes at most a constant-factor increase in RMR complexity in any
history. This constant factor is c1. The term c2 is needed to compensate for any pending operation
execution by p in H that may be discarded from H̄. In particular it is possible that H̄ is empty
when H is not empty, in which case Y = 0 and X > 0. (In that case, X ∈ O(1) because H
contains at most one operation execution by p and because we assume I has O(1) worst-case RMR
complexity).

An implementation that merely satisfies O(1) RMR complexity per operation does not auto-
matically satisfy Definition 7.1. This is because in the worst case X grows linearly with the number
of operations invoked on the target object in H, and yet Y may grow much less quickly because
many of these operations are applied “in-cache”. In particular, in the write-back CC model if only
one process is active in H then Y = O(1) no matter how many operations that process applies on
the target object.

We now state conditions on the implementation I that are sufficient for it to satisfy this RMR
preservation property in the write-through and write-back CC model. We call these “locality prop-
erties”. (It is straightforward to show that these locality properties imply the RMR preservation
property by applying the definitions of write-through and write-back caching given in Section 2.)

For the write-through CC model, the locality property informally states that any process p
can apply multiple operation executions “in-cache” (i.e., on a “shared cached copy” of the object)
provided these operation executions are read-like, and not interleaved with any write-like operation
executions. More formally, we have:

Definition 7.2 (locality property for the write-through CC model). Let Oτ denote the target
object implemented by I. For any history H of I, there is a linearization H̄ of H|Oτ such that the
following property holds:
(R) For any process p, if H̄ ′ is a contiguous subsequence of H̄ consisting only of read-like operation
executions on Oτ , and H ′ is the subsequence of corresponding base object atomic steps in H, then
p’s steps in H ′ cause only a constant number of RMRs in H.

For the write-back CC model, the locality property builds on Definition 7.2. Informally, it states
that (in addition to the above) any process p can apply multiple operation executions “in-cache”
(i.e., on an “exclusive cached copy” of the object) provided these operation executions are not
interleaved with any operation executions by other processes. More formally, we have:

46

Definition 7.3 (locality property for the write-back CC model). Let Oτ denote the target object
implemented by I. For any history H of I, there is a linearization H̄ of H|Oτ such that property
(R) stated in Definition 7.2 holds, and furthermore the following property holds:
(W) For any process p, if H̄ ′ is a contiguous subsequence of H̄ consisting only of operation execu-
tions issued by p on Oτ , and H ′ is the subsequence of corresponding base object atomic steps in
H, then p’s steps in H ′ cause only a constant number of RMRs in H.

In the remainder of this section we present locally-accessible implementations of CAS, LL/SC,
and ECAS. Note that we will use two notions of locality in our analysis—the locality of the target
object and the locality of the base objects used to construct the target object. To prove that an
implementation I satisfies a locality property, we will first apply Definitions 7.2 and 7.3 to define
our burden of proof with respect to a given history H of I. Then, to construct such a proof, we
will appeal to the RMR complexity and locality of the base objects accessed in H. To that end,
we will consider sequences of atomic steps where some O(1)-RMR base object B is accessed, and
apply the analogs properties (R) and (W) above to those sequences. (The analog of (R) states that
process p incurs O(1) RMRs accessing a base object B in any contiguous subsequence of H where
no write-like operation is applied to B. The analog of (W) states that process p incurs O(1) RMRs
accessing a base object B in any contiguous subsequence of H where only p accesses B.)

7.1 Locally-Accessible CAS and LL/SC

To illustrate the techniques used for proving locality properties, we first consider the simple imple-
mentations of CAS and LL/SC from ECAS presented at the beginning of Section 6.

Theorem 7.4. The implementations of CAS and LL/SC presented in Figure 13 satisfy the locality
property in the DSM model and the two types of CC model under consideration, provided that the
implementation of the ECAS base object B satisfies the same locality property.

Proof. Because in these implementations of CAS and LL/SC each access procedure applies exactly
one atomic step on the base object B, the RMR cost of executing any access procedure equals the
RMR cost of the corresponding atomic step on B. Now suppose that the implementation of B
satisfies the locality property in one of the models under consideration.
DSM model. The locality property follows directly from the above observation because if B
satisfies the locality property in the DSM model with respect to some designated process pspecial,
then each operation execution applied by pspecial on the target object incurs zero RMRs.
CC model. Recall that operation executions on the target objects are linearized at the point
when the corresponding operation executions on B occur, as discussed in Section 6. Now consider
a history H of the implementation, and let H̄ be this particular linearization of H|Oτ , where Oτ is
the target object.

For property (R), fix p and H̄ ′ as in Definition 7.2, and consider H ′. Since H̄ ′ consists of
read-like operation executions only, and since in Figure 13 a read-like operation execution on the
target object only applies a read-like operation on the ECAS base object, it follows that H ′ is a
contiguous subsequence of atomic steps in H that apply read-like operations on B. Consequently,
by the locality property (R) of B’s implementation, p incurs O(1) RMRs in H applying its steps
from H ′, as wanted.

The proof for property (W) is very similar. Fix p and H̄ ′ as in Definition 7.3, and consider H ′.
Since H̄ ′ consists of operation executions by p only, and since in Figure 13 an operation execution
on the target object applies exactly one operation on the ECAS base object (at which point it takes
effect), it follows that H ′ is a contiguous subsequence of atomic steps in H where only p accesses

47

B. Consequently, by the locality property (W) of B’s implementation, p incurs O(1) RMRs in H
applying its steps from H ′, as wanted.

7.2 Locally-Accessible ECAS for the CC Model

The implementation of ECAS presented in Section 6 satisfies the locality property in the write-
through model (Definition 7.2) when the block manager is implemented as described in Section 5.
The locality property for the write-back model (Definition 7.3) does not hold, however, because a
process performing k successful ECAS operation executions in a solo history will incur Ω(k) RMRs
as it accesses k different blocks. (Property (W) in Definition 7.3 requires that only O(1) RMRs
occur in such a history.)

In the remainder of this section, we show how to modify our earlier implementation of ECAS to
achieve the locality property in the write-back CC model. (As we show later, the same modifications
yield the locality property in the write-through CC model.) The high-level idea is to allow a process
to perform multiple write-like operation executions on an uncontended ECAS object while accessing
only O(1) blocks. To that end, a process p executing a write-like (i.e., successful ECAS) operation
execution will attempt to reuse the current block instead of allocating a new one. The main
challenge here is to handle correctly the race condition when p attempts to reuse some block x
while some other process q attempts to access block x.

The modifications to the implementation from Section 6 are twofold: First, we use a O(1)-
RMR block manager that satisfies the locality property for the write-through CC model (see Defini-
tion 7.2). (This is sufficient even in the write-back CC model.) The block manager implementation
from Section 5 can be used for this purpose, as we show later on (see Lemma 7.17). Second, we
override the subroutines HelperBegin, HelperEnd and HelperCC with the implementations shown
in Figure 17. To support these subroutines, we alter the structure of a block by introducing sev-
eral new fields. Boolean flags seen, accessed, and changing are used to keep track of whether a
block has been accessed, whether an operation execution that accessed the block has taken effect,
and whether the block is being reused (respectively). (In this context we refer to accesses to a
block that occur outside of the block manager.) These three flags are needed for the locality prop-
erty and their use is explained in the next paragraph. In addition, Boolean arrays seenBy[1..N]
and accessedBy[1..N] are used to record which process has written seen and accessed, respectively.
Statements that access these arrays are shaded to indicate that they are needed only for RMR
complexity (i.e., to reduce RMRs incurred while accessing seen and accessed, as we explain later).
Thus, when we reason about linearizability, these statements can be effectively ignored.

The new subroutines work as follows. Recall first that for any block x, the field writer stores
the ID of the process that allocated the block, or ⊥ for the initial block. Whenever some process
p applies an operation execution on an ECAS object where it accesses some block x, and p 6=
xBwriter, HelperBegin(x) announces (to the process whose ID is recorded in xBwriter) that block
x has been accessed by another process by ensuring that xB seen = true. Similarly, HelperEnd(x)
announces that such an operation execution has taken effect by ensuring that xB accessed = true.
Function HelperBegin(x) also waits at line 172 for process x B writer to finish reusing block x,
if it has already started to do so. Thus, process x B writer can use x B seen to decide when it
can reuse block x safely, and can use xB accessed to decide when it can perform additional RMRs
without jeopardizing the locality property. Function HelperCC(x, new) allows process xB writer,
under certain conditions, to access x B V in mutual exclusion, and hence to apply a successful
ECAS operation execution by reusing block x rather than allocating a new one. The subroutines
TryToReuseBlock(x) and DoneReusingBlock(x), which are called from HelperCC(x, new), set
and reset xBchanging to announce that block x is being reused, and should not be accessed during

48

that time.
The subroutines HelperBegin(x) and HelperEnd(x) use the arrays x B seenBy[1..N] and

xBaccessedBy[1..N] in addition to xB seen and xBaccessed only to meet RMR complexity bounds
imposed by locality property (R) (see Definition 7.2). To see why these arrays are needed, consider
a history where processes execute only failed ECAS operation executions on the target object, in
which case Definition 7.2 requires that each process incur O(1) RMRs in the entire history. If
the shaded statements that access seenBy and accessedBy were not present, processes could incur
arbitrarily many RMRs writing seen and accessed in the write-through CC model. Even if the writes
at line 170 and line 177 were preceded by tests checking whether seen and accessed (respectively)
are already true, a process could incur N − 1 RMRs executing each test (in the write-through or
write-back CC model) as every other process writes seen and accessed once. (We return to this
issue in the proof of Lemma 7.14, Cases D and E.)

7.2.1 Analysis

Let IE denote the implementation of ECAS presented in Section 6, and let I ′E = (τECAS ,P,B,H)
denote the implementation obtained by transforming IE as described earlier (i.e., replace the block
manager object M with one that satisfies the locality property in the write-through CC model, and
implement subroutines HelperBegin, HelperEnd, and HelperCC as shown in Figure 17). We now
establish the correctness properties of I ′E . The analysis follows the same approach as in Section 6.1,
and so we defer the proofs of several technical lemmas (7.5–7.10) to Appendix A.3.

Lemma 7.5. The analog of Lemma 6.5 for I ′E holds.

Lemma 7.6. The analog of Lemma 6.6 for I ′E holds.

Lemma 7.7. For any history H of I ′E , and for any block x accessed in H, if process p allocated
block x (i.e., xB writer = p) then:

(a) If p has completed a call to TryToReuseBlock(x) with response true, but has not subse-
quently made a call to DoneReusingBlock(x), then no process q 6= p has completed a call to
HelperBegin(x).

(b) If p has completed a call to TryToReuseBlock(x) with response false, then some process
q 6= p has made a call to HelperBegin(x). Moreover, if p subsequently completes a call to
DoneReusingBlock(x), then some process q′ 6= p has made a call to HelperEnd(x).

(c) If p has completed a call to TryToReuseBlock(x) with response false during some operation
execution Op on the target object, then p does not access block x after completing Op.

Lemma 7.8. The analog of Lemma 6.7 for I ′E holds.

To prove linearizability, we define for any history H ∈ H a candidate linearization H̄ as in
Section 6.1, except that we augment the definition of timestamps (Definition 6.8). That is, we add
a new clause (between clause (e) and clause (f)) for an ECAS(isSC, cmp,new) operation execution
Op in H where line 183 is reached:

(g) Else if p executes M.getCurBlock() at line 141 during Op, say with response x, and then
writes new to xB V at line 183 of HelperCC during Op in step i of H, then s = (x, i, 0).
(If Op is pending in H, its completion returns the value read from x B V at line 143 and
true.)

49

Declarations
Shared variables: (per-block)

seenBy[1..N], accessedBy[1..N] – array of Boolean, initially all false
seen, accessed, changing – Boolean, initially false

Private variables: (per-process)

ret – Boolean, uninitialized

Function HelperBegin(d)

Input: d – block address
if read(dB writer) 6= PID then167

if read(dB seenBy[PID]) = false168

then

write dB seenBy[PID] := true169

write dB seen := true170

end171

await dB changing = false172

end173

Function HelperEnd(d)

Input: d – block address
if read(dB writer) 6= PID then174

if175

read(dB accessedBy[PID]) = false

then

write dB accessedBy[PID] := true176

write dB accessed := true177

end178

end179

Function HelperCC(d, new)

Input: d – block address
Input: new – value to be written in

block d
Output: Boolean success indicator (true

if block d was successfully
reused, false otherwise)

ret := false180

if read(dB writer) = PID then181

if TryToReuseBlock(d) = true then182

write dB V := new183

write dB Linked[PID] := false184

ret := true185

end186

DoneReusingBlock(d)187

end188

return ret189

Function TryToReuseBlock(d)

Input: d – block address
Output: Boolean
write dB changing := true190

if read(dB seen) = false then191

return true192

else193

return false194

end195

Function DoneReusingBlock(d)

Input: d – block address
write dB changing := false196

if read(dB seen) = true then197

await dB accessed = true198

end199

Figure 17: Subroutines for locally-accessible ECAS implementation in CC model.

50

We now establish key properties of H̄, as in Section 6.1.

Lemma 7.9. The analogs of Lemma 6.10 (sequential completion) and Lemma 6.13 (order preser-
vation) for I ′E hold.

Lemma 7.10. The analog of Lemma 6.14 for I ′E holds.

Lemma 7.11. The analog of Lemma 6.15 (conformity to type τECAS) for I ′E holds.

Proof. We modify the proof of Lemma 6.15 as follows. First, replace references to Lemmas 6.5, 6.6,
6.7 and 6.14 with references to Lemmas 7.5, 7.6, 7.8, and 7.10. Next, noting that the subroutines
HelperBegin, HelperEnd and HelperCC do not write any of the shared variables accessed in IE ,
except possibly the field V of a block, at line 183, we extend the case analysis as follows:
Case F: Opk falls under Definition 6.8 (g), and pk writes xBV in some block x at line 183 during
the counterpart of Opk in H. In this case, sk = (s, tk, 0) for some tk, and Opk is an ECAS operation
execution.

As in Case D, it follows that pk reads the value νk−1.V from x B V , and νk−1.Linked[p] from
x B Linked[p]. Consequently, Opk returns 〈νk−1.V, true〉 in H̄. As in Case D, it follows from the
failure of the tests at line 144 and line 146 that Opk is successful. S(i) (a) follows by the action of
step ti by pi, which does not change the current block but overwrites xiBV with newi. S(i) (b) holds
since Opi returns (νi−1.V, true) in H̄ and since Opi is a successful ECAS operation execution.

Having established linearizability (Lemmas 7.9 and 7.11), we now consider the termination
and RMR complexity.

Lemma 7.12. The implementation I ′E satisfies Specification 6.2 (termination).

Proof. Let H be a fair history of I ′E , and suppose for contradiction that some operation execution
Op on the target object does not terminate in H. It follows from the structure of the access
procedures of I ′E that p makes a non-terminating call to HelperBegin, HelperEnd or HelperCC

during Op. It follows from the algorithms for the subroutines under consideration that one of the
following cases applies:
Case A: p loops forever at line 172 during a call to HelperBegin(x). Note that by that time, p has
already executed line 170 during some call to HelperBegin(x), and so it follows by Lemma 7.7 (a)
that any subsequent call to TryToReuseBlock(x) by process w = xBwriter returns false. Next, note
that there is at most one such call by w by Lemma 7.7 (c). This implies that xB changing = false
holds after w’s last call to TryToReuseBlock(x) because only w can assign x B changing to true,
namely at line 190, and following each execution of this line process w resets x B changing at
line 196 (since H is fair). But this contradicts the hypothesis of Case A, which implies that p
repeatedly reads xB changing = true at line 172.
Case B: p loops forever at line 198 during a call to DoneReusingBlock(x) for some block x such
that p = xB writer. Then p previously read xB seen = true at line 197, and so by the algorithm
some process q began executing HelperBegin(x). Since p = x B writer, it follows from q 6= p
and the algorithm (line 181) that q does not subsequently execute DoneReusingBlock(x) before
calling HelperEnd(x). In particular, q does not access block x at line 198. Consequently, by
Case A, the fairness of H, and the algorithms for Read, LL and ECAS, q eventually completes a call
to HelperEnd(x) (at line 131, line 139 or line 164). Moreover, during the first such call in H it
assigns x B accessed = true at line 177. Since no process ever writes x B accessed = false by the
algorithm, this contradicts the hypothesis of Case B.

51

Next, we analyze the RMR complexity and locality properties of the implementation I ′E . Recall
that processes incur RMRs while accessing the block manager, block allocator, and the blocks
themselves. We begin by bounding the number of RMRs a process incurs in each category for each
block accessed (possibly over many executions of access procedures).

Lemma 7.13. For any history H of I ′E , for any block x accessed in H, and for any process p,
p incurs O(1) RMRs in the CC model accessing the block manager and block allocator during
operation executions on the target object where it accesses block x.

Proof. First, consider the block manager object M . By Specification 5.1, there is at most one
operation execution where p allocates x, in which case p applies a successfulM .chngCurBlock(..., x)
in the same operation execution. There is at most one other operation execution where p accesses x
and calls M .chngCurBlock, namely one where p calls M .getCurBlock() with response x and then
applies a failed M .chngCurBlock(x, ...), after which point x is never again current (and hence is not
accessed again by p) by Lemma 7.5. Thus, there are at most two operation executions in H where p
accesses block x and calls M .chngCurBlock or AllocBlock, each call incurring O(1) RMRs. Next,
consider operation executions where p calls M .getCurBlock() only (and not M .chngCurBlock
or AllocBlock). In these cases getCurBlock must return x, otherwise p does not access block x.
Process p incurs O(1) RMRs in H accessing M in such operation executions by the locality-property
of M (see Definition 7.2) because M does not change state between p’s first and last getCurBlock
in H that returns x by Lemma 7.5. (Recall our assumption at the beginning of this section that
M satisfies the locality property for the write-through CC model. We establish this property for
the block manager implementation presented in Section 5 later on in Lemma 7.17.)

Lemma 7.14. For any history H of I ′E , for any block x accessed in H, and for any process p, the
number of RMRs that p incurs while accessing block x in H is:

• O(1) in the CC model with write-back caching; and

• O(1 +m) in the CC model with write-through caching, where m is the number of write-like
operation executions in H on the target object during which p accesses block x.

Proof. Since there are O(1) fields (i.e., shared objects and subroutines) in block x, it suffices to show
the stated upper bound on RMRs separately for each field. (In most cases, we will not distinguish
between the write-through and write-back CC model, as the cost is O(1) in both.)
Case A: variable V . Only one process can write V , namely the process w that allocated block
x. The ID of this process is stored in x B writer once w completes line 153 of ECAS following
the allocation of x. If p = w, then p can only write x B V at line 154 (in ECAS, before block x
becomes current) and at line 183 (in HelperCC). On the other hand, every process may read xBV
at line 130, line 135 or line 143, while executing an access procedure.
Subcase A-i: p = w, write-back model. Process p holds xBV in exclusive mode in its cache from
the moment it first writes it until some process q 6= p reads it. Therefore, p incurs O(1) RMRs
accessing x B V until some process q 6= p reads it. By the algorithm, q has completed a call to
HelperBegin(x) by that time, and so by Lemma 7.7 (a) and the algorithm, p does not write xBV
again. As noted earlier, this implies that no process writes x B V , and so subsequent accesses to
xBV by any process are in-cache reads that incur O(1) RMRs in total per-process. Thus, the total
cost of p accessing xB V is O(1) RMRs.
Subcase A-ii: p = w, write-through model. Here w incurs an RMR each time it writes V , which
occurs at most once during an operation execution where p allocates x, and then once per successful
ECAS operation execution (see Case F in the proof of Lemma 7.11), which is write-like. Also, p

52

incurs O(1) RMRs reading x B V , as in the write-back CC model (Subcase A-i). Thus, p incurs
O(m) RMRs accessing xB V .
Subcase A-iii: p 6= w. Here p only reads xB V . As argued in Subcase A-i, such reads occur only
after the last write to xBV (including initialization). Since p does not write xBV in this case, all
accesses to xB V by p, except the first, are in-cache. Thus, p incurs O(1) RMRs in total accessing
xB V .
Case B: array Linked[1..N]. Note that only p accesses xB Linked[p], and p writes this variable at
most once. Thus, p incurs at most two RMRs accessing this variable.
Case C: variable writer. This variable is written exactly once, by the process that allocates the
block x. All other accesses are reads. Consequently, each process incurs at most two RMR accessing
writer.
Case D: variables seen and seenBy[1..N]. The array x B seenBy[1..N] is accessed similarly to
xB Linked[1..N], and so the analysis is analogous. Next, consider xB seen, which is accessed only
at line 170, line 191, and line 197. Because of the test at line 168, the assignment at line 169,
and the fact that xB seenBy[p] is never assigned false, p accesses xB seen at line 170 at most once.
On the other hand, p may access x B seen multiple times at line 191 and line 197. However, at
most once such access reads true, since in that case TryToReuseBlock(x) returns false, and this
happens at most once by Lemma 7.7 (c). Since true is the only value that can be written to xBseen,
namely at line 170, it follows that all accesses to x B seen during a call to TryToReuseBlock(x)
are in-cache, except the first and possibly the last (which returns true). Thus, p incurs O(1) RMRs
in total accessing seen and seenBy[1..N].
Case E: variables accessed and accessedBy[1..N]. The array x B accessedBy[1..N] is accessed
similarly to xBLinked[1..N], and so the analysis is analogous. Next, consider xBaccessed, which is
accessed only at line 177 and line 198. Because of the test at line 175, the assignment at line 176,
and the fact that x B accessedBy[p] is never assigned false, p accesses x B accessed at line 177 at
most once. At line 198, p reads xBaccessed repeatedly until it reads true. Since xBaccessed is only
written at line 177, and the value written there is true, it follows that p incurs at most two RMRs
at line 198. Thus, p incurs O(1) RMRs in total accessing xB accessed and xB accessedBy[1..N].
Case F: variable changing. Let w denote the process that allocated block x (i.e., x B writer).
If p = w, then by the tests at line 167 and line 174, p only accesses x B changing at line 190
of TryToReuseBlock, and at line 196 of DoneReusingBlock. Similarly, if p 6= w then p accesses
xB changing only at line 172 of HelperBegin. (This includes the case when x is the initial block
and xB writer = ⊥.)
Subcase F-i: p = w, write-back model. Process p holds xBchanging in exclusive mode in its cache
from the moment it first writes it until some process q 6= p reads it at line 172. Once q reaches
line 172, it follows by Lemma 7.7 (a) that p does not make another call to TryToReuseBlock(x),
and so it executes line 190 and line 196 at most one more time with d = x. Thus, p performs at
most three RMRs accessing xB changing.
Subcase F-ii: p = w, write-through model. Each write of x B changing at line 190 or line 196
occurs during a successful ECAS operation execution by p in H, and incurs one RMR. Since there are
at most two such writes per ECAS operation execution, p incurs O(m) RMRs accessing xBchanging.
Subcase F-iii: p 6= w. After p accesses xBchanging for the first time at line 172 of HelperBegin,
process w writes x B changing at most twice more, as explained in Subcase F-i. Thus, after at
most three RMRs, p holds xB changing in its cache and can read it locally. Since p does not write
xB changing, this implies that p incurs O(1) RMRs accessing xB changing.

Lemma 7.15. Implementation I ′E satisfies the locality property in the write-through and write-
back CC model (see Definitions 7.2 and 7.3).

53

Proof. Consider any history H of I ′E , and consider the linearization H̄ of H|Oτ defined in our proof
of conformity to type τECAS (see Lemma 7.11), where Oτ is the target object. To prove the locality
property, we will show that p incurs O(1) RMRs in H while executing the counterparts of certain
operation executions in H̄. To that end, we will show that p accesses O(1) blocks during these
operation executions, in which case the number of RMRs that p incurs is also O(1) by Lemma 7.13
and Lemma 7.14. (There can be at most one operation execution where p does not access any
block, namely a pending one, and it follows easily that p incurs O(1) in that operation execution
as well.)
Property (R) (Definition 7.2). We must consider the write-through and write-back CC models.
Fix process p and a sequence H̄ ′ of consecutive read-like operation executions in H̄. Let H ′ denote
the sequence of atomic steps (which access base objects) in H corresponding to H̄ ′. It suffices to
show that p accesses at most three blocks in H ′.

First, we will show that p allocates at most one block in H ′. Suppose, for contradiction, that
p allocates two or more blocks. Then this happens during the counterparts of at least two distinct
ECAS operation executions by p in H̄ ′, say Op1 and Op2 (in that order), whose timestamps fall
under Definition 6.8 (d) or (e). In fact, clause (e) must apply to both because, by our analysis in
the proof of Lemma 6.15, operation executions of the other type are write-like. Consequently, by
the Definition 6.8 and Definition 6.9, there is an ECAS operation execution Ope whose timestamp
falls under Definition 6.8 (d), and which is linearized between Op1 and Op2 in H̄, hence in H̄ ′.
Since Ope is write-like by our analysis in the proof of Lemma 6.15, this contradicts the definition
of H̄ ′.

Second, we will show that M .getCurBlock() returns at most two distinct values to p during
H ′. Suppose, for contradiction, that p receives three such values, say during the counterparts
of operation executions Op1, Op2, and Op3 (in that order) in H̄ ′. Then by Definition 6.8 and
Definition 6.9, there is an ECAS operation execution Ope in H̄ whose counterpart in H changes
the current block. Furthermore, its timestamp falls under Definition 6.8 (d), and it is linearized
between Op1 and Op2 in H̄, hence in H̄ ′. (Process p may not “see” the block made current by Ope
until Op3, which is why we consider three operation executions by p.) Again, this contradicts the
definition of H̄ ′.

Thus, p allocates at most one block and receives the addresses of at most two more from
M .getCurBlock in H ′, and so p accesses at most three blocks in H ′, as wanted.
Property (W) (Definition 7.3). We need only consider the write-back CC model. Fix process p
and a sequence H̄ ′ of consecutive operation executions by p in H̄. Again let H ′ be the corresponding
sequence of atomic steps. It suffices to show that p accesses at most four blocks in H ′.

As in the proof of (R), note that if M .getCurBlock() returns three distinct values to p during
H ′, then there is an ECAS operation execution Ope in H̄ ′ whose counterpart in H changes the current
block. In this case, this does not lead to a contradiction, since H̄ ′ may contain write-like operation
executions, but it tells us that p executes Ope. Furthermore, we can generalize the argument easily
and conclude that if M .getCurBlock() returns k distinct values to p, then p performs at least
min(0, k − 2) ECAS operation executions in H̄ ′ whose counterparts in H change the current block.
Call this observation (?).

Next, we will show that p tries to change the current block at most once in H ′. Suppose, for
contradiction, that p does so twice, say during the counterparts of operation executions Op1 and Op2
(in that order) in H̄ ′. Note that the timestamps of Op1 and Op2 fall under Definition 6.8 (d) or (e).
Suppose that p’s M .getCurBlock() during the counterpart of Op2 in H returns x. It follows from
the algorithm and Definition 6.8 (d) that p completes a call to TryToReuseBlock(x) during the
counterpart of Op2 in H, with response false, and so Lemma 7.7 (b) implies two things. First, some
process q 6= p has made a call to HelperBegin(x) by that point in H. Second, since p completes its

54

subsequent call to DoneReusingBlock(x) during the counterpart of Op2 in H (otherwise it cannot
call M .chngCurBlock), some process r has made a call to HelperEnd(x) (possibly r = q but not
necessarily). It follows from the latter point, Definition 6.8, and Definition 6.9 that r’s operation
execution, say Opr, which also accesses x, appears in H̄ and is linearized before Op2.

We will now show that Opr is linearized after Op1, which contradicts H̄ ′ containing operation
executions by p only (since Opr is linearized before Op2), and implies that p changes the current
block at most once in H ′. Suppose otherwise, and recall that Op1’s timestamp falls under Def-
inition 6.8 (d) or (e). Assuming, without loss of generality, that Op1 and Op2 are the first two
operation executions in H̄ ′ whose counterparts in H change the current block, it follows that Op1’s
timestamp is (x, t1, ...) for some tl. (Recall that Op1 and Op2 fall under Definition 6.8 (d), that p
calls M .getCurBlock() with response x during the counterpart of Op2 in H, and that no process
other than p applies an operation execution between Op1 and Op2 in H̄ ′.) At the same time, since
r’s call to M .getCurBlock() during the counterpart of Opr in H returns x, by Definition 6.8 Opr’s
timestamp is of the form (x′, tr, ...) for some tr, where either x′ = x or x′ is a block that becomes
current after x. Furthermore, if x′ = x, then t1 < tr by Lemma 7.5 and because step t1 in H (which
could be by p or another process) makes x current, whereas r makes a call to M .getCurBlock()
with response x before step tr in H. In either case, Opr is linearized after Op1 by Definition 6.9,
as wanted.

Thus, p tries to change the current block at most once in H ′. Consequently, by our earlier
observation (?), M .getCurBlock() returns at most three distinct values to p in H ′. Since p
allocates a block only in operation executions where it tries to change the current block (by calling
M .chngCurBlock), and it does so at most once per operation execution, p accesses at most four
blocks in total in H ′, as wanted.

Theorem 7.16. The implementation I ′E satisfies Specifications 6.1 (linearizability) and 6.2 (ter-
mination) under Condition 6.4. Furthermore, each operation execution on the target object incurs
O(1) RMRs. Finally, I ′E satisfies the locality property in the write-through and write-back CC
models (Definitions 7.2 and 7.3).

Proof. Specification 6.1 under Condition 6.4 follows directly from Lemma 7.9 and Lemma 7.11.
Specification 6.2 follows directly from Lemma 7.12. O(1) RMR complexity follows from Lemma 7.13,
Lemma 7.14, and the fact that a process accesses at most two blocks during any operation execution
on the target object. (It follows easily that an operation execution where no block is accessed also
incurs O(1) RMRs.) The locality property follows from Lemma 7.15.

To complete our analysis in this section, we prove that the block manager implementation from
Section 5 satisfies the locality property necessary for our purposes in this section. As stated earlier,
we require only that the block manager satisfy the locality property for the write-through CC model
(see Definition 7.2), even when used in the write-back CC model. (If the block manager satisfied
the locality property in the write-back CC model, this would not help because every operation
execution on the ECAS object that applies a write-like operation on the block manager already
incurs RMRs for another reason – it calls AllocBlock.) To define this locality property, we classify
getCurBlock operations as read-like, failed chngCurBlock operations as read-like and successful
chngCurBlock operations as write-like.

Lemma 7.17. The block manager implementation IBM from Section 5 satisfies the locality prop-
erty stated in Definition 7.2 in both the write-through and write-back CC models provided that
whenever a process p calls chngCurBlock(x, y), p’s last operation execution on the block manager
was a getCurBlock() that returned x.

55

Proof. Consider a history H of the implementation IBM where calls to chngCurBlock are restricted,
as stated. Let H̄ be the linearization of H|Oτ established in Section 5, where Oτ denotes the target
object. We must prove property (R), stated in Definition 7.2. Fix p and H̄ ′ as in Definition 7.2,
and consider the sequence H ′ of base object atomic steps corresponding to H̄ ′ in H. We must show
that p incurs O(1) RMRs in H executing the atomic steps in H ′. Note that no process writes D
in H ′ because at that point a successful chngCurBlock takes effect, which is write-like, and yet we
assume that H̄ ′ does not contain any write-like operation executions. Consequently, each access
to D by p in H ′ is a read, and at most one causes an RMR. Furthermore, each such read returns
the same value, say x, and so by the algorithm, x B winner is not written after p’s first read of
D in H ′, which implies that p incurs at most one RMR accessing x B winner. Finally, consider
pseudo-locks. It follows from the algorithm (see Figure 6) and since p only reads x from D that
the only pseudo-lock p accesses in H ′ is the one in block x. Process p calls x B Pseudo-Enter()

and x B Pseudo-Exit() at most once by Lemma 5.5 (a), and each call incurs O(1) RMRs by
Theorem 4.5.

56

7.3 Locally-Accessible ECAS for the DSM Model

Recall that the locality property in the DSM model states that for some designated process pspecial,
each operation execution on the target object applied by pspecial should cost zero RMRs. The
motivation behind this property is to make the implemented object behave like one supported
directly in hardware, which resides entirely in one memory module and is therefore local to exactly
one process. A locally-accessible implemented object may use internally multiple base objects in
different memory modules, but the subset of base objects pspecial accesses must be local to pspecial.

The implementation IE presented in Section 6 does not satisfy the locality property in the DSM
model because pspecial may perform RMRs while accessing the block manager. This is problematic
because our general approach for implementing the block manager (in Section 5) is, informally
speaking, incompatible with the DSM locality property: We rely on the ability of a process execut-
ing a failed chngCurBlock operation execution to wait for a concurrent successful chngCurBlock
operation execution to take effect, so that the former can be linearized after the latter. (This aspect
of the implementation is handled by the pseudo-lock.) If process pspecial is the one being waited
for, it cannot signal the waiting processes without performing at least one RMR if those waiting
processes have all entered local-spin busy-wait loops.

In the remainder of this section we show how to modify the implementation IE of ECAS
from Section 6 to achieve the locality property in the DSM model with respect to a designated
process pspecial. To that end, we construct an ECAS implementation IE-DSM by taking IE and
making the base objects used therein locally-accessible to pspecial. (Note that we revert to the
trivial implementations of the subroutines HelperBegin, HelperEnd, and HelperCC, as shown in
Figure 16.)

Recall that the base objects used in IE are the block manager M , and for each block the
following: registers V and writer, and the arrays NextVal[1..N] and Linked[1..N]. (Since for the
purposes of this paper the block allocator is not shared, it can be implemented for each process
without shared objects.) We construct IE-DSM from IE by making all of these base objects local
to pspecial. Note that in the case of per-block base objects, such as V , this applies to all blocks,
not just ones returned by the block allocator of pspecial. This is because pspecial may access any
block, even if it that block was allocated by another process. Similarly, we must make all elements
of array NextVal[1..N], and also Linked[pspecial], local to pspecial.

Our task of making base objects local to pspecial is trivial for register objects, which leaves only
the block manager object M . The implementation IBM described in Section 5 cannot be made
local to pspecial easily for reasons described earlier. Instead, we present a new implementation that
provides separate execution paths for pspecial and other processes, and is locally-accessible to pspecial
in the DSM model, with RMR complexity O(1) for other processes. We refer to this implementation
as IBM-DSM = (τBM ,P,B,H), and to the “other processes” as non-special.

The implementation IBM-DSM is presented in Figure 18. This implementation is somewhat
similar to IBM from Section 5. The address of the current block is recorded using registers Dspecial

and Dother. (These replace the single register D in IBM .) Each register actually stores a tuple of the
form (x, s), where x is a block address and s is an integer sequence number. The register containing
the higher sequence number holds the address of the current block. (In case the sequence numbers
are equal, Dother determines the current block.) The access procedure for getCurBlock() reads
Dspecial and Dother at lines 200–201 (using a non-atomic pair of reads), and then at lines 202–
206 compares the sequence numbers, and returns the block address corresponding to the higher
number. To apply chngCurBlock(x, y), processes synchronize as follows: Non-special processes
compete with each other by trying to acquire a pseudo-lock in block x (line 224). The winner of
this pseudo-lock synchronizes with pspecial using a leader election algorithm (line 213 and line 225)

57

that is local to pspecial (see Specification 3.9). The process w that wins the LE algorithm is the one
whose chngCurBlock(x, y) succeeds. If w = pspecial, then w writes y and a new sequence number
nextSeq to Dspecial (line 214). The new sequence number is computed at lines 207–211, and
the algorithm for this ensures that nextSeq is higher than the sequence number in Dother. This
computation uses values stored in private variables Sspecial and Sother, which are assigned by an
earlier call to getCurBlock() (see Condition 7.18). If w 6= pspecial, then w follows similar steps;
it computes nextSeq at lines 226–230, and then writes Dother (line 231). The sequence number
chosen in that case is at least as high as the one in Dspecial.

When a process p applies a failed chngCurBlock(x, y) (i.e., it does not win LE), it must
ensure that the successful chngCurBlock(x, ...) by some other process w has taken effect before
terminating. We do this using three techniques. First, if p 6= pspecial and w 6= pspecial, then p waits
for w using a pseudo-lock (lines 224 and 242), as in IBM . Second, if p = pspecial and w 6= pspecial, p
waits for w using a simple busy-wait loop (lines 221 and 232). Third, if p 6= pspecial and w = pspecial,
then p cannot wait for pspecial because pspecial cannot signal p later on without performing an RMR
(as explained earlier); instead, p applies a “helping mechanism” to ensure that pspecial’s operation
execution has taken effect. Here p discovers what value pspecial is trying to write to Dspecial (lines
212 and 236), and then p writes this value to Dspecial (line 237). At that point, pspecial’s operation
execution takes effect, unless pspecial completed its own write to Dspecial at line 214 earlier. To
ensure that the helping mechanism does not corrupt Dspecial, pspecial waits for this “round” of the
mechanism to finish before applying another chngCurBlock (lines 217–219, 234, and 240).

Before we begin our analysis, we introduce some useful notation for this section. When re-
ferring to the state of Dspecial and Dother, or a value read from these registers, we denote by
operators Block() and Seq() the block address and sequence number embedded therein. For
any history H of IBM-DSM , and any state H[i] that occurs in H, we define MaxBlock(H[i]) as
Block(Dspecial) if Seq(Dspecial) > Seq(Dother) in state H[i], and as Block(Dother) otherwise. We
also define MaxSeq(H[i]) as max(Seq(Dspecial), Seq(Dother)) in state H[i].

The correctness of the implementation IBM-DSM is contingent on the following simplifying
condition, which we justify later (see Lemma 7.34):

Condition 7.18. If a process p calls chngCurBlock(x, y), then:

(a) p’s last operation execution on the target object was a getCurBlock that returned x; and

(b) p never before invoked chngCurBlock(x, ...); and

(c) no process has invoked chngCurBlock(..., y) and y is not the initial block.

We now establish several lemmas that are used later on for proving linearizability. Proofs of
lemmas 7.19–7.24 are deferred to Appendix A.4.

Lemma 7.19. For any history H of implementation IBM-DSM and for any block x accessed by
any process in H, the leader election algorithm and pseudo-lock in block x are accessed according
to Conditions 3.4 and 4.1.

Lemma 7.20. For any history H of implementation IBM-DSM , and any block x, let H ′ be the
subsequence of atomic steps in H applied in executions of chngCurBlock(x, ...). Then H ′ either
contains at most two writes to Dspecial (i.e., at most one by pspecial and at most one by a non-special
process) and zero writes to Dother, or it contains zero writes to Dspecial and at most one write to
Dother (which is by a non-special process).

Lemma 7.21. For any history H of implementation IBM-DSM , and any block x, the variable
xB winner changes state at most once in H.

58

Declarations
Shared variables: (global)

Dspecial, Dother – registers, store a tuple (b, s) where b is a block address and s is an integer,
initially (b0, 0) where b0 is the initial block, both local to pspecial

Shared variables: (per-block)

winner – register, stores a process ID or ⊥, initially ⊥, local to pspecial
helping, specialDone, helperDone – Boolean flags, initially false, local to pspecial
A – register, same type as Dspecial and Dother, local to pspecial

Subroutines: (one instance per-block)

LeaderElect() – O(1) leader election algorithm local to pspecial (see Section 3.3)
Pseudo-Enter()/Pseudo-Exit() – O(1)-RMR pseudo-lock from Section 4

Private variables: (per-process)

Bspecial, Bother – block addresses, uninitialized
Sspecial, Sother – integers, uninitialized
B – same type of value as Dspecial and Dother

Function getCurBlock()

(Bspecial, Sspecial) := read(Dspecial)200

(Bother, Sother) := read(Dother)201

if Sother < Sspecial then202

return Bspecial203

else204

return Bother205

end206

Function chngCurBlock(x, y) for pspecial

if Sother < Sspecial then207

nextSeq := Sspecial208

else209

nextSeq := Sother + 1210

end211

write xBA := (y, nextSeq)212

if xB LeaderElect() = win then213

write Dspecial := (y, nextSeq)214

write xB winner := pspecial215

write xB specialDone := true216

if read(xB helping) = true then217

await xB helperDone = true218

end219

else220

await xB winner 6= ⊥221

end222

return read(xB winner)223

Function chngCurBlock(x, y) for non-
special processes

if xB Pseudo-Enter() = true then224

if xB LeaderElect() = win then225

if Sother < Sspecial then226

nextSeq := Sspecial227

else228

nextSeq := Sother229

end230

write Dother := (y, nextSeq)231

write xB winner := PID232

else233

write xB helping := true234

if read(xB specialDone) = false235

then
B := read(xBA)236

write Dspecial := B237

write xB winner := pspecial238

end239

write xB helperDone := true240

end241

xB Pseudo-Exit()242

end243

return read(xB winner)244

Figure 18: Block manager implementation for DSM model.

59

Lemma 7.22. For any history H of implementation IBM-DSM , any process q 6= pspecial, and any
block x, whenever q is at lines 236–237 during a chngCurBlock(x, ...) operation execution, pspecial
is continuously in a pending chngCurBlock(x, ...) operation execution where it has completed
line 212 and not yet completed line 219.

Lemma 7.23. For any history H of implementation IBM-DSM , and for any block x, if multiple
chngCurBlock(x, ...) operation executions occur in H, then the earliest write to Dspecial or Dother

that occurs during these is the only such write that changes the state of Dspecial or Dother.

Lemma 7.24. For any history H of implementation IBM-DSM , any process p, and any step i in
H, if p writes Dspecial or Dother in step i of H, and changes the state of the variable written to C,
then letting y = Block(C) and x = MaxBlock(H[i− 1]):

(a) y = MaxBlock(H[i]); and

(b) the sequence number in the variable written does not decrease; and

(c) |Seq(Dspecial)− Seq(Dother)| ≤ 1 in state H[i]; and

(d) the value y has never been written to Dspecial or Dother before in H.

We will now show that the implementation IBM-DSM is linearizable using the same approach
as in Section 5. For each history H of IBM-DSM , we define a candidate linearization H̄ as follows.
First, for each operation execution on the target object in H, we assign a “timestamp” of the form
(t, q) where t is an integer and q is a process ID or 0.

Definition 7.25. The timestamp s for an arbitrary operation execution Op in H, say by process
p, and its completion (where applicable), are defined as follows:

Operation types getCurBlock():

(a) If Op is complete in H and returns at line 203, and p reads Dspecial at line 200 in step i of
H, then s = (i, 0).

(b) If Op is complete in H and returns at line 205, and p reads Dspecial at line 200 in step i′ of
H, then s = (i, p) where i is the smallest integer ≥ i′ such that Dother takes on the value read
by p at line 201 in state H[i].

(c) Otherwise s is undefined, and Op does not appear in H̄.

Operation type chngCurBlock(x, y):

(d) If p = pspecial, and the first write to Dspecial (by p during Op at line 214 or by another process
at line 237) during a chngCurBlock(x, ...) operation execution has occurred in H, say in step
i, then s = (i, p).
(The completion of Op, if Op is pending in H, returns p’s ID.)

(e) Else if p 6= pspecial and p writes Dother at line 231 in step i of H, then s = (i, 0).
(The completion of Op, if Op is pending in H, returns p’s ID.)

(f) Else if Op is complete, and p reads x B winner at line 223 or line 244 in step i of H, then
s = (i, 0).

(g) Otherwise s is undefined, and Op does not appear in H̄.

60

To construct H̄, we arrange operation executions for which timestamps are defined, in increas-
ing order of timestamp. We prove the uniqueness of timestamps in Lemma 7.26, and define their
order in Definition 7.27.

Lemma 7.26. The timestamp of each operation execution in H (for which the timestamp is
defined) is unique.

Proof. This follows because, by Definition 7.25, if the timestamp of an operation execution Op by
p in H is (t, q), then either p executes step t in H during Op and q = 0 (clauses other than (b)
and (d)), or Op is pending in state H[t] and q = p (clauses (b) and (d)). It remains to show
why Op is pending in state H[t] in clauses (b) and (d). For clause (b), this follows directly from
Definition 7.25. For clause (d), this follows from Condition 7.18 (b) and Lemma 7.22.

Definition 7.27. For timestamps (t1, p1) and (t2, p2), we say that (t1, p1) < (t2, p2) if and only if
t1 < t2, or t1 = t2 and p1 < p2.

Lemma 7.28. For any historyH of implementation IBM-DSM , and any step i inH, if a getCurBlock
operation execution Op by process p in H has timestamp (i, ...) (see Definition 7.25 (a)–(b)), and
Op returns x, then x = MaxBlock(H[i]).

Proof. If the timestamp of Op falls under Definition 7.25 (a), then x = Block(Dspecial) in state
H[i], and Op returns x at line 203. By the success of the test at line 202, Seq(Dspecial) in state
H[i] is greater than Seq(Dother) in some later state (when p reads Dother), hence in state H[i] by
Lemma 7.24 (b). Thus, x = MaxBlock(H[i]), as wanted.

If the timestamp of Op falls under Definition 7.25 (b), then x = Block(Dother) in state H[i].
Suppose p reads Dspecial at line 200 in step j during Op, and Dother at line 201 in step j′ > j during
Op. If Dother does not change state between H[j′] and H[j], then i = j, and x = MaxBlock(H[i])
holds by the algorithm for getCurBlock. Otherwise, (x, ...) is written to Dother in step i of H, and
this changes the state of Dother, and so x = MaxBlock(H[i]) by Lemma 7.24 (a).

Lemma 7.29. H̄ satisfies properties (a) and (b) of linearizability (sequential completion and order
preservation).

Proof. Property (a) follows from our construction of H̄ and Definition 7.25. For property (b), note
that by Definition 7.25, if the timestamp of an operation execution Op by p in H is (i, ...), then Op
is pending in state H[i] (see proof of Lemma 7.26). Thus, if Op and Op′ are operation executions
in H such that Op precedes Op′, then Op has a smaller timestamp than Op′ by Definition 7.27, as
wanted.

It remains to prove property (c) of linearizability (conformity to type τBM). To that end, we
first define Opi, si, pi, xi, yi, and νi = (Ci, Li) as in Section 5.1.

Lemma 7.30. Implementation IBM-DSM satisfies property (c) of linearizability (conformity to
type τBM).

Proof. Let H be any history of IBM-DSM . Since conformity to a type is a safety property it suffices
to consider finite H̄. Let k = |H̄|. Define s0 = (b0, 0) and sk+1 = (∞, 0), where b0 is the initial
block. Let (ti, qi) denote the timestamp si.

We will prove that for any i ∈ N, 0 ≤ i ≤ k:

(a) For t = ti and any integer t ∈ [ti, ti+1), MaxBlock(H[t]) = Ci.

61

(b) If i > 0, then the response of Opi is the correct response for an operation execution of that
type applied in state νi−1.

Part (b) implies the lemma, but we require both parts for induction. Now let S(i) denote parts (a)–
(b) for a particular value of i. Note that in H, the state of Dspecial or Dother (hence MaxBlock)
is changed only by an execution of line 214, line 231, or line 237, which is an atomic step that
defines the timestamp of an operation execution (on the target object) in H̄. For writes to Dspecial

this follows from Definition 7.25 (d), Lemma 7.23, and Lemma 7.22 (which implies that if a non-
special process writes Dspecial in step t then there is an operation execution by pspecial in H̄ with
timestamp (t, pspecial)). Therefore, the state of Dspecial and Dother does not change between atomic
steps ti and ti+1 in H. This, in turn, implies that to prove part (a) of S(i), it suffices to prove that
MaxBlock(H[ti]) = Ci—and that is all we do in the inductive step that follows.

For S(0), (a) follows from our earlier definition of s0 = (b0, 0), and the initialization of Dspecial

and Dother to (b0, 0). Part (b) holds trivially. Now for any i, 0 < i ≤ k, suppose that S(i − 1)
holds, and consider S(i). We proceed by cases on how the timestamp si of Opi was obtained.

Case A: Opi falls under Definition 7.25 (a) or (b), and has timestamp si = (ti, qi). In this case,
Opi is a getCurBlock operation execution, and so Ci = Ci−1.

It follows from Lemma 7.28 that x = MaxBlock(H[ti]), and so to prove S(i) (a) and S(i) (b),
it suffices to show that Ci−1 = x. If step ti in H is a read step by pi, then x = MaxBlock(H[ti])
implies x = MaxBlock(H[ti−1]), and ti−1 < ti holds by our construction of H̄ (Definitions 7.25
and 7.27). Thus, S(i− 1) (a) implies Ci−1 = x, as wanted. Otherwise, step ti in H is a write
step by some q 6= pi, and so by our construction of H̄ (Definitions 7.25 and 7.27) the operation
execution Op′ in H̄ that immediately precedes Opi also has a timestamp of the form (ti, ...).
Consequently, MaxBlock(H[ti]) = Ci−1 holds by S(i − 1) part (a), and so Ci−1 = x since
MaxBlock(H[ti]) = x.

Case B: Opi falls under Definition 7.25 (f). In this case, Opi is a chngCurBlock(x, y) operation
execution for some x and y, and si = (ti, 0) where step ti is a read of xi B winner by pi. (We
discharge this case before the remaining ones so that we can claim later on that any operation
execution that falls under Definition 7.25 (f) is a failed chngCurBlock.)

If pi reads xB winner at line 223 during the counterpart of Opi in H, then by the algorithm
and Definition 7.25 (f), pi = pspecial and pi completes line 221 before line 223, but does not
write x B winner. Since x B winner is initially ⊥, pi completing line 221 implies that some
non-special process p′ wrote xBwinner at line 232 or line 238. In fact, p′ must have executed
line 232 otherwise by the algorithm p lost x B LeaderElect() at line 225, and so another
non-special process p′′ won xB LeaderElect() by Lemma 7.19 and Specification 3.5, which
implies that p′ and p′′ both acquired the pseudo-lock in block x, contradicting Lemma 7.19
and Specification 4.2 (b). (Note that pi does not win x B LeaderElect() at line 213 by
the algorithm, our assumption that pi completes line 221, and Condition 7.18 (b).) By our
construction of H̄ (Definitions 7.25 and 7.27), the execution of line 232 by p′ happens during
the counterpart of a chngCurBlock(x, ...) operation execution Op′ that precedes Opi in H̄.
Thus, Opi is a failed chngCurBlock(x, y) operation execution, and so Ci = Ci−1.

S(i) part (a) follows from S(i−1) part (a) since Ci = Ci−1 and step ti does not write Dspecial

or Dother.

For S(i) part (b), we must show that Opi returns the ID of the process pj that applies the
earliest chngCurBlock(x, ...) in H̄. By Lemma 7.21, since p′ writes a process ID to xBwinner

62

before step ti, and by the algorithm for chngCurBlock, Op′ and Opi both return p′. Since Op′

is a chngCurBlock(x, ...) that precedes Opi in H̄, and its response is correct by S(i− 1) (b),
the response of Opi is also correct.

Case C: Opi falls under Definition 7.25 (d). In this case, Opi is a chngCurBlock(x, y) operation
execution for some x and y, si = (ti, pi), and pi = pspecial.

First, we will show that Opi is the earliest chngCurBlock(x, ...) operation execution in H̄.
(Call this observation (?).) Suppose otherwise. By Definition 7.25 (d) and our analysis
in Case B, the first chngCurBlock(x, ...) in H̄, say Op′, falls under Definition 7.25 (d) or
(e). Since pspecial executes Opi and we assume Op′ is not Opi, some non-special process p′

executes Op′ by Condition 7.18 (b). Since Opi falls under Definition 7.25 (d), a write to
Dspecial occurs in the counterpart of some chngCurBlock(x, ...) in H, and so by Lemma 7.20
p′ does not write Dother during the counterpart of Op′ in H. Since p′ 6= pspecial, this implies
Op′ falls under Definition 7.25 (f), which contradicts our earlier observation that Op′ falls
under Definition 7.25 (d) or (e). Thus, Opi is a successful chngCurBlock(x, y) operation
execution, and so Ci = y.

For S(i) part (a), we must show that MaxBlock(H[t]) = y. By observation (?) and Defini-
tion 7.25 (d), the write toDspecial in step ti is the earliest such write during a chngCurBlock(x, ...),
and so by Lemma 7.23 it changes the state of Dspecial. Thus, it follows from Lemma 7.24 (a)
that MaxBlock(H[t]) = y′ where y′ is the block address embedded in the value written in
step ti. It remains to show that y′ = y. If pi applies step ti (at line 214), then this oc-
curs during the counterpart of Opi in H by Condition 7.18 (b), and y′ = y follows directly
from the algorithm for chngCurBlock for pspecial. Otherwise, by Condition 7.18 (b), Defi-
nition 7.25 (d), and the algorithm, some non-special process p′ applies step ti (at line 237)
during a chngCurBlock(x, ...). Furthermore, by Lemma 7.22 and lines 236–237, p′ writes to
Dspecial the value pi wrote earlier to x B A at line 212 during the counterpart of Opi in H.
The block address embedded in this value is y, hence y′ = y, as wanted.

For S(i) part (b), we must show that Opi returns pi’s ID. If the counterpart of Opi in H is
pending, then this follows from Definition 7.25 (d). Otherwise, pi executes lines 215 and 223
during the counterpart of Opi in H, and so by Lemma 7.21 and the algorithm, Opi returns
pi’s ID.

Case D: Opi falls under Definition 7.25 (e). In this case, Opi is a chngCurBlock(x, y) operation
execution for some x and y, and s = (ti, 0).

First, we will show that Opi is the earliest chngCurBlock(x, ...) operation execution in H̄.
(Call this observation (?).) Suppose otherwise. As argued in Case B, the first chngCurBlock(x, ...)
in H̄, say Op′, falls under Definition 7.25 (d) or (e). In the first case, there is a write to
Dspecial during a chngCurBlock(x, ...) in H, which contradicts Lemma 7.20 since there is a
write to Dother during the counterpart of Opi in H by Definition 7.25 (e). In the second case,
there are writes to Dother in the counterparts of Op′ and Opi in H, which again contradicts
Lemma 7.20 since we assume Opi is not Op′. Thus, Opi is a successful chngCurBlock(x, y)
operation execution, and so Ci = Ci−1.

For S(i) part (a), we must show that MaxBlock(H[ti]) = y, where y is the second argument of
Opi. By Definition 7.25 (e) and the algorithm for chngCurBlock, the block address embedded
in the value written in step ti is y. Moreover, this value has never been written to Dother by
the algorithm and Condition 7.18 (c), and so the write in step ti changes the state of Dother.
Consequently, MaxBlock(H[ti]) = y follows from Lemma 7.24 (a).

63

For S(i) part (b), we must show that Opi returns pi’s ID. If the counterpart of Opi in H is
pending, then this follows from Definition 7.25 (e). Otherwise, pi executes lines 232 and 244
during the counterpart of Opi in H, and so by Lemma 7.21 and the algorithm, Opi returns
pi’s ID.

Lemma 7.31. For any history H of implementation IBM-DSM , and for any getCurBlock or
chngCurBlock operation execution Op in H, say by process p, the number of RMRs p incurs in H
while executing Op in the DSM model is zero if p = pspecial, and O(1) otherwise.

Proof. For p = pspecial, note that p incurs zero RMRs executing the leader election algorithm
in each block since this algorithm is local to p (i.e., satisfies Specification 3.9) by Lemma 7.19.
Furthermore, any base object accessed by pspecial outside of the LE algorithm is local to pspecial.
For p 6= pspecial, this follows from the structure of the access procedures for getCurBlock and
chngCurBlock, from the RMR complexity of the leader election algorithm and pseudo-lock in each
block, and from Lemma 7.19.

Lemma 7.32. The implementation IBM-DSM satisfies Specification 5.4 (termination).

Proof. Let H be any fair history of implementation IBM-DSM . Each call to getCurBlock terminates
in H by the structure of the access procedure. Next, consider a call to chngCurBlock in H. If a
leader election algorithm is executed during this call, then it terminates by Specification 3.6 and
Lemma 7.19. If a pseudo-lock is accessed, then the functions Pseudo-Enter and Pseudo-Exit

terminate by Lemma 7.19 and Specification 4.3, and since any process that acquires a pseudo-lock
in any block x (at line 224) eventually calls x B Pseudo-Exit() (at line 242). Finally, we must
show that any execution of the busy-wait loops at line 218 and line 221 terminates. Suppose, for
contradiction, that some process loops forever in one of these.
Case A: line 218. Only process pspecial may execute line 218, and if it reaches this line, then
by the success of the test at line 217, it read x B helping = true earlier, and so some non-special
process p′ wrote xB helping = true at line 234 by the algorithm and initialization of xB helping
to false. Since H is fair, p′ eventually writes x B helperDone = true at line 240, and by the
algorithm no process overwrites this variable with false. This contradicts pspecial repeatedly reading
xB helperDone = false at line 218.
Case B: line 221. Only process pspecial may execute line 221, and if it reaches this line, then by the
failure of the test at line 217, if did not win xB LeaderElect() earlier at line 213. Consequently,
by Lemma 7.19, Specification 3.5, the algorithm, and the fairness of H, some non-special process
p′ wins xBLeaderElect() at line 225. Since H is fair, p′ eventually writes its ID to xBwinner at
line 232, and by the algorithm no process overwrites this variable with ⊥. This contradicts pspecial
repeatedly reading xB winner = ⊥ at line 221.

Theorem 7.33. The implementation IBM-DSM satisfies Specifications 6.1 and 6.2. Furthermore,
each operation execution on the target object incurs O(1) RMRs in the DSM model. Finally,
IBM-DSM satisfies the locality property in the DSM model with respect to the designated process
pspecial.

Proof. Specification 6.1 (linearizability) follows directly from Lemma 7.29 and Lemma 7.30. Spec-
ification 6.2 (termination) follows directly from Lemma 7.32. O(1) RMR complexity and locality
follow from Lemma 7.31.

64

The sequence numbers embedded in the registers Dspecial and Dother can grow without bound
in IBM-DSM . Techniques for bounding these are described in the PhD thesis of Wojciech Golab
[12]. The high-level idea is that since sequence numbers are non-decreasing and MaxSeq grows in
small increments (see Lemma 7.24 (b)–(c)), they can be represented mod N and still compared
correctly, with some modifications to the access procedures for getCurBlock and chngCurBlock.

To complete our analysis, we justify why Condition 7.18 holds when the implementation
IBM-DSM is used in conjunction with the ECAS implementation from Section 6.1.

Lemma 7.34. In implementation IE of ECAS from Section 6.1, the block manager base object M
is accessed according to Condition 7.18.

Proof.
Part (a): This follows directly from the structure of the access procedure for operation type ECAS.
Part (b): This follows from the definition of type τBM , from Lemma 6.5, and from the structure
of the access procedures, whereby at most one call to chngCurBlock(x, y) occurs, and follows a
call to getCurBlock that returns x.
Part (c): This follows from Specification 5.1 since for each call to chngCurBlock(x, y), the argu-
ment y is obtained by first calling AllocBlock.

Theorem 7.35. The implementation IE-DSM of ECAS described in this section satisfies Specifica-
tions 6.1 (linearizability) and 6.2 (termination) under Condition 6.4. Furthermore, each operation
execution on the target object incurs O(1) RMRs in the DSM model. Finally, IE-DSM satisfies the
locality property in the DSM model with respect to the designated process pspecial.

Proof. Recall that IE-DSM is obtained from IE by

(a) declaring certain shared variables to be local to the designated process pspecial, and

(b) changing the implementation of the block manager to IBM-DSM described in this section.

Specification 6.1 under Condition 6.4 follows from the corresponding properties of IE and IBM-DSM
(Theorems 6.16 and 7.33). Specification 6.2 and O(1) RMR complexity follow similarly. Locality
of IE-DSM follows from the fact that, for any process p, (a) the shared objects accessed by p other
than the block manager M are registers declared local to p; and (b) we assume that M is obtained
using the locally-accessible implementation IBM-DSM (see Theorem 7.33).

65

8 Writable Implementations of ECAS

In this section, we describe a writable implementation of ECAS that builds on the techniques
introduced in Sections 6 and 7. A writable ECAS is a type like ECAS except that, in addition, it
supports operation type Write whose transition mapping is defined by (the atomic execution of)
the pseudo-code shown in Figure 19. Let τECAS-W denote this type.

Function Write(new)

Input: new – value to be stored
V := new245

foreach i ∈ 1..N do Linked[i] := false246

return OK247

Figure 19: Definition of Write operation type for type τECAS-W . (The current state is denoted by
V and Linked[1..N].)

We now present an implementation IEW = (τECAS-W ,P,B,H) that is similar in spirit to
the non-writable one presented in Section 6. We rely on a block manager, and define blocks so
that each contains a base object B of non-writable ECAS type, as well as a register writer that
records the ID of the process that made a particular block current. The access procedures for the
operation types Read, LL, ECAS and Write of IEW are shown in Figure 20. Lines containing shaded
statements can be ignored safely for now; these statements come into play in Section 8.1 when we
discuss locally-accessible implementations. For now, the subroutines HelperBegin, HelperEnd and
HelperCC have trivial implementations (see Figure 16).

The access procedures for operation types Read, LL and ECAS are obtained by applying the
corresponding operation to the underlying non-writable ECAS object (B) in the current block.
The Write(new) operation execution attempts to change the current block to one where B is
initialized to new, by applying a chngCurBlock(d, d′) on the block manager at line 255. At this
point, processes applying Write concurrently compete to decide whose Write operation execution
will “succeed,” here meaning that it will be the last among the competing group in the linearization
order. The effect of the “successful” operation execution becomes visible to subsequent operation
executions, whereas the effects of the others are “overwritten” by the successful one.

One subtle point regarding the implementation that requires further explanation is the initial-
ization of the base object d B B at line 254. A base object that is provided in hardware can be
initialized by writing to it, but in this paper we assume that d B B is an object implemented in
software. The only implementations given so far for this object are the ones from Sections 6–7,
which are not writable. However, it is straightforward to provide an initialization operation type
in those implementations because of the following simplifying observations: (1) The initialization
of d B B is the first operation applied to this object. (2) The initialization is permitted to incur
O(1) RMRs because the Write operation execution that calls it at line 254 already incurs several
RMRs. (3) At most one process at a time accesses d B B at line 254, namely the process p that
allocated the block d (see Specification 5.1).

The procedure for initializing d B B to a value val (which is implicit in our pseudo-code)
works as follows: the calling process p simply writes val into the field V in the initial block in the
implementation of d B B (see Sections 6–7). (Recall that the implementation of d B B internally
uses blocks that are distinct from those in Figure 20.) Successive applications of this initialization
procedure can be used to re-initialize B – something we require later on in Section 8.1.1 (see line 277

66

Declarations
Shared variables: (global)

M – block manager from Section 5, initialized to the address of a fresh block

Shared variables: (per-block)

B – instance of O(1)-RMR non-writable ECAS, initialized to the initial state of type IEW
(where V can be any value and Linked[1..N] = false)
writer – register, stores process ID or ⊥, initially ⊥

Subroutines: (per-block)

AllocBlock() – block allocator from Section 5

Private variables: (per-process)

d, d′ – block addresses, uninitialized
ret – Boolean, initially false

Function Write(val)

d := M.getCurBlock()248

HelperBegin(d)249

ret := HelperCC(d, val)250

if ret = false then251

// Try to change current block.

d′ := AllocBlock()252

write d′ B writer := PID253

initialize d′ BB to a state where254

V = val and Linked[1..N] = false
M .chngCurBlock(d, d′)255

end256

HelperEnd(d)257

return OK258

Function ECAS(isSC, cmp, new)

d := M.getCurBlock()259

HelperBegin(d)260

ret := (dBB).ECAS(isSC, cmp, new)261

HelperEnd(d)262

return ret263

Function Read()

d := M.getCurBlock()264

HelperBegin(d)265

ret := (dBB).Read()266

HelperEnd(d)267

return ret268

Function LL()

d := M.getCurBlock()269

HelperBegin(d)270

ret := (dBB).LL()271

HelperEnd(d)272

return ret273

Figure 20: Implementation IEW of writable ECAS.

67

in Figure 21 and Lemma A.11). The main caveat is that when we re-initialize dBB to val, we must
ensure not only that V = val but also that Linked[1..N] = false in the current block underlying this
object. Fortunately, this can be done using O(1) RMRs because each time we re-initialize d B B,
the current block in the implementation of d B B is still the initial block of that implementation,
and furthermore all elements of Linked[1..N] other than possibly Linked[p] are still false. (This is
because we re-initialize dBB only if it has been accessed by no process other than p.)

The proof of correctness and the RMR complexity analysis of this implementation are very
similar to those of the implementation of ECAS presented in Section 6.1, and they are given in
Appendix A.5. In particular, we prove:

Theorem 8.1. The implementation IEW satisfies Specifications 6.1 (linearizability) and 6.2 (ter-
mination) under Condition 6.4. Furthermore, each operation execution on the target object incurs
O(1) RMRs in the CC and DSM models.

8.1 Locality

In this section we describe, for each of the shared memory models under consideration in this paper,
how to transform the writable implementation IEW to an implementation I ′EW = (τECAS-W ,P,B,H)
that satisfies the locality property in that model.

8.1.1 CC Model

In the CC model with write-through and write-back caching, we construct I ′EW from IEW by making
the following modifications. First, we assume that the block manager and non-writable ECAS base
object B (in each block) are implemented as described in Section 5 and Section 7.2, respectively.
Second, we override the subroutines HelperBegin, HelperEnd, and HelperCC in the same way as
in Section 7.2, except for a slight change in HelperCC: In function HelperCC, we replace the Write

operation on the register V (see line 183 in Figure 17) with a statement that re-initializes the base
object B, which is the analog of V here. As we show later (see Lemma A.9), only the process
that allocated block x will perform this for block x, and only before any other process has accessed
x B B, which means that we can apply the special initialization operation discussed earlier. The
modified implementation of HelperCC is shown in Figure 21.

In HelperCC, a process attempts to perform the Write operation execution by changing the
state of B in block d. If the process p executing the Write is the process that allocated d and no
other process has “seen” block d (i.e., the tests at lines 275 and 276 both succeed), then p does
not change the current block. Rather, it re-initializes d B B to the argument new of its Write

(line 277); in this case, HelperCC returns true. Otherwise (i.e., if p is not the process that allocated
d, or some process has “seen” d), p proceeds as before: it allocates a new block d′, initializes d′BB
to new, and attempts to change the current block to d′ (lines 252–255 of Write).

The proof of correctness and the RMR complexity analysis of this implementation are similar
to those of the locally-accessible implementation of ECAS presented in Section 7.2, and they are
given in Appendix A.6. In particular, we prove:

Theorem 8.2. The implementation I ′EW satisfies Specifications 6.1 (linearizability) and 6.2 (ter-
mination) under Condition 6.4. Furthermore, each operation execution on the target object incurs
O(1) RMRs in the CC model. Finally, I ′EW satisfies the locality property in the write-through and
write-back CC models (Definitions 7.2 and 7.3).

68

Declarations
Private variables: (per-process)

ret – Boolean, uninitialized

Function HelperCC(d, val)

ret := false274

if read(dB writer) = PID then275

if TryToReuseBlock(d) = true then276

re-initialize dBB to a state where V = val and Linked[1..N] = false277

ret := true278

end279

DoneReusingBlock(d)280

end281

return ret282

Figure 21: Subroutine HelperCC for locally-accessible writable ECAS implementation in the CC
model.

8.1.2 DSM Model

In the DSM model, we construct a locally-accessible ECAS implementation IEW -DSM from IEW
using a transformation analogous to the one presented in Section 7.3. That is, we designate a
process pspecial, and make the block manager, as well as the block fields B and writer locally-
accessible to pspecial. For the base object B, we achieve locality using the ECAS implementation
from Section 7.3.

Theorem 8.3. The implementation IEW -DSM satisfies Specifications 6.1 (linearizability) and 6.2
(termination) under Condition 6.4. Furthermore, each operation execution on the target object
incurs O(1) RMRs in the DSM model. Finally, IEW -DSM satisfies the locality property in the DSM
model with respect to the designated process pspecial.

Proof. This theorem is analogous to Theorem 7.35 in Section 7.3, and its proof is also analogous. As
in Section 7.3, we must also show that the block manager is accessed according to Condition 7.18
in histories of IEW -DSM , since the locally accessible block manager implementation depends on
this. To that end, the analog of Lemma 7.34 follows from a proof analogous to the one given in
Section 7.3 except that for Condition 7.18 (a) we consider the structure of the access procedure for
operation type Write instead of ECAS.

69

9 Simulation of Algorithms Based on Comparison Primitives and
LL/SC Using Reads and Writes Only

In this Section we establish our principal result (3) from Section 1, which states: “any CC or DSM
shared memory algorithm using read, write, comparison primitives and LL/SC can be simulated
by an algorithm that uses only read and write operations, with only a constant-factor increase
in the RMR complexity, while preserving other important properties.” We explained at the end
of Section 6 why our O(1)-RMR implementations of CAS and LL/SC from that Section are not
sufficient for this purpose. (The same reasoning applies to other comparison primitives, which we
discuss shortly.) Our observations there motivated the material in Sections 7 and 8. Next we will
show how to simulate any comparison primitive using CAS, which we now know how to implement
using reads and writes, and then finally prove our principal result (3).

9.1 Simulation of Comparison Primitives Using CAS

Anderson and Kim define comparison primitives [2] as a class of synchronization primitives that
includes CAS and TAS (test-and-set). A generic comparison primitive can be thought of as an
object type supporting an operation type compare and fg (in addition to Read and Write), which
is parametrized by functions f and g, and corresponds to the atomic execution of the pseudo-code
shown in Figure 22. As an example, this generic definition can be instantiated to CAS by defining
f(cmp, new) ≡ new and g(old, cmp, new) ≡ old.

Function compare and fg(cmp, new)

old := S283

if old = cmp then S := f(cmp,new)284

return g(old, cmp, new)285

Figure 22: Definition of a comparison primitive. (The current state is denoted by S.)

Any comparison primitive can be implemented by using a CAS implementation (e.g., the one
described in Sections 6, 7 and 8 as a black box. Specifically, we record the state of the target object
using a CAS object, and access the state using CAS operations (as well as Read and Write). To
perform a compare and fg operation execution, we execute the pseudo-code above with lines 283–
284 replaced by the following statement:

old := CAS(cmp, f(cmp,new))

Specifications 6.1 and 6.2 (linearizability and termination) follow easily from the structure of this
very simple implementation. The locality property defined in Section 2 also holds if a locally-
accessible CAS implementation is used, such as the one described in Sections 7 and 8.1. This
follows by a straightforward proof similar to the one given for Theorem 7.4 in Section 7. (In this
case we treat a compare and fg operation execution as read-like when the argument cmp is different
from the prior state, and write-like otherwise.)

9.2 Principal Result

The results described up to this point culminate in Theorem 9.1 below, which states precisely
our principal result (3) from Section 1. The theorem assumes that an algorithm A does not

70

access the same shared object using both a comparison primitive and LL/SC. This is a reasonable
assumption because multiprocessors typically provide either one type of primitive or the other. The
assumption coincides with Condition 6.4 in Section 6, which we need for technical reasons to ensure
the linearizability of our implementations.

Informally, Theorem 9.1 states that any algorithm A can be simulated by an algorithm A′
that does not rely on comparison primitives or LL/SC, with only a constant-factor increase in
RMR complexity. Of course this claim is satisfied trivially unless the transformation preserves
fundamental correctness properties. It is difficult to state precisely what properties are or are not
preserved by our transformation from A to A′, and so we characterize only a subset of the properties
that are preserved (see properties (c)–(d) of A′ stated in Theorem 9.1). This subset includes any
safety property that can be defined (solely) in terms of the state of register objects used in A (which
also appear in A′), as well as common liveness properties.

As an example of how Theorem 9.1 can be applied, suppose that A is a mutual exclusion (ME)
algorithm that uses reads, writes and LL/SC. Then A′ is also an ME algorithm and uses reads
and writes only. To see why the ME property is preserved, note that A (and hence A′) can be
instrumented so that any violation of ME in a history H ′ can be inferred from H|R or H ′|R, where
R is the set of register objects used in A. To that end, we introduce a global shared register r
that is first read and then written in each execution of the critical section. If the critical section is
not executed in mutual exclusion in A′, then in some history H ′ of A′ the operations on r by two
distinct processes inside the CS are interleaved in such a way that two consecutive operations on r
in H ′ are reads. The same holds in H by property (c) above, which implies that the critical section
is not always executed in mutual exclusion in A either.

Theorem 9.1 also implies that if A is a ME algorithm that satisfies deadlock or starvation
freedom, then A′ satisfies the same liveness property. For starvation freedom, this follows directly
from property (d) of A′ in Theorem 9.1. For deadlock freedom, this follows from properties (c)–(d),
where property (c) is used to show that if the critical section is executed finitely many times in H ′,
the same holds for H. (The number of times the CS is executed can be deduced by instrumenting
A and A′ as in the analysis of ME.)

Theorem 9.1. For any of the three shared memory models discussed in this paper (i.e., write-
through CC, write-back CC or DSM), and for any algorithmA that uses atomic read/write registers,
as well as (readable/writable) shared objects that support either comparison primitives or LL/SC,
let A′ be the algorithm constructed from A as follows:

1. Simulate every application of a comparison primitives using the CAS operation type, as de-
scribed in Section 9.1.

2. Replace any shared object accessed using CAS or LL/SC with our readable/writable, locally-
accessible O(1)-RMR implementation. (See Section 8.1, which builds on Sections 6–8.)

Then A′ has the following correctness properties:

(a) it uses read/write registers only; and

(b) it has the same RMR complexity asA, up to a constant factor, when executed in the particular
shared memory model under consideration; and

(c) letting R denote the set of objects accessed using only reads and writes in A, for any history
H ′ of A′ there is a history H of A where H ′|R = H|R; and

(d) for any fair history H ′ of A′, there is a fair history H of A where the same processes are
active, and each active process either terminates in both histories, or does not terminate in
either history.

71

Proof.
Property (a): The transformation from A to A′ replaces any objects other than read/write
registers with our implementations, which themselves use only reads and writes, provided the base
objects and subroutines are chosen as stated.
Property (b): Recall that the locality properties imply the RMR-preservation property (see
Section 7). Step 1 in the transformation from A to A′ introduces at most a constant-factor increase
in RMR complexity, since an O(1)-RMR implementation of CAS with the locality property is used
to simulate other comparison primitives. Similarly, step 2 introduces at most a constant-factor
increase in RMR complexity because implementations with locality properties are used. Thus, A′
has the same RMR complexity as A, up to a constant factor, when both algorithms are executed
on the same multiprocessor (of one of the types considered in this paper).
Properties (c) and (d): Suppose we are given a history H ′ of A′. Let H be the history obtained
by “reversing” the two steps in the transformation used to obtain A′ from A as follows. First,
we replace calls to access procedures in our implementations of CAS and LL/SC (each of which
consists of one or more atomic steps) by operation executions (i.e., invocation and response pairs)
on the corresponding objects of type CAS or LL/SC used in A. Next, determine the linearization
of these operation executions as defined in our proof of linearizability, and replace the operation
executions with atomic steps, where each atomic step is scheduled between the corresponding
invocation and response in H ′ in a manner consistent with the linearization order. For operation
executions that are pending, we record an atomic step if the corresponding operation execution on
the target object has taken effect (i.e., appears in the linearization), and we discard the operation
execution otherwise. Finally, we replace certain CAS operation executions with applications of other
synchronization primitives, as needed to “reverse” step 1 of the transformation.

Since the implementations used in both steps of the transformation from A to A′ satisfy
Specification 6.1 (linearizability), it follows that the history H is a history of A. Furthermore,
H|R = H ′|R follows by our construction of H from H ′, and so part (c) holds. For part (d), note
that if H is fair then a process is active in H if and only if it is active in H ′, and furthermore since
our implementations satisfy Specification 6.2 (termination), the following property also holds: p
takes infinitely many steps in H ′ only if it does so in H.

Having stated Theorem 9.1 and given its proof, we now give examples of properties that are
not preserved by the transformation from A to A′. First, if A is an FCFS ME algorithm, then A′
is not necessarily an FCFS algorithm. This is because A has a section of code called the doorway,
which by definition terminates in O(1) steps. The analog of this doorway also appears in A′, but it
does not necessarily terminate in O(1) steps. For example, if a comparison primitive is applied in
the doorway of A, then by replacing objects that are accessed in A using comparison primitives or
LL/SC with our simulations of these objects, we introduce busy-wait loops. (These busy-wait loops
appear in pseudo-locks and the underlying name consensus algorithm.) Thus, our transformation
does not in general preserve the FCFS property. Wait-freedom is another property that is not
preserved, for analogous reasons.

72

10 Open Problems and Future Work

In this paper we proved three principal results. First, we showed that CAS and LL/SC are no
stronger than reads and writes alone under a ranking that defines the strength of a primitive as the
RMR complexity of implementing it from reads and writes only. We did so by presenting O(1)-RMR
implementations of CAS and LL/SC from reads and writes only. Second, we strengthened our O(1)-
RMR implementations of CAS and LL/SC with locality properties that allow these implementations
to simulate their hardware counterparts not only in terms of linearizability, but also in terms of
RMR complexity. We used these locally-accessible implementations to establish our third principal
result, which is that any algorithm based on reads, writes, CAS and LL/SC can be transformed
so that it uses reads and writes only (by replacing objects on which CAS and LL/SC are applied
with our implementations) in a way that introduces at most a constant-factor increase in RMR
complexity and also preserves important correctness properties.

We leave open several interesting problems related to our principal results. To begin with, in
our proof of the first result we defined the synchronization primitives CAS and LL/SC as shared
objects supporting certain operation types, and we assumed that a single shared object would not be
accessed using both CAS and LL/SC operations. This assumption is reasonable since multiprocessors
typically support either CAS or LL/SC, and not both. It is interesting to ask what would be the
specification of a shared object that supports both CAS and LL/SC. We addressed this question
partly by defining the ECAS type in Section 6, which provides an operation type ECAS that can
behave either like CAS or like SC. Unfortunately, for technical reasons our implementation of ECAS
is linearizable only if the ECAS operation is called in a consistent manner—in one history, either all
calls to ECAS simulate CAS, or all calls simulate SC. This restriction is formalized as Condition 6.4 in
our analysis. We see no reason why an O(1)-RMR implementation of ECAS from reads and writes
without this restriction would be impossible, but we also do not know how such an implementation
could be obtained.

Another open problem pertains to a potential practical application of our results. Since in
practice CAS is a slower machine instruction than a read or write, it is natural to ask whether it is
possible to beat the performance of a hardware CAS instruction using a software implementation of
CAS based on reads and writes. As regards atomic reads and writes, it seems unlikely that this can
be done in a modern multiprocessor because the performance gap between CAS and other atomic
instructions is quite small. The gap is considerably larger between CAS and non-atomic reads and
writes, however. We leave open the problem of how to model formally the particular non-atomic
reads and writes provided by modern multiprocessors, and how such instructions can be used to
simulate CAS efficiently.

We would also like to simplify our implementations conceptually. There are three main sources
of complexity at hand: asynchrony, the use of weak base objects (i.e., atomic read/write registers),
and our stringent RMR complexity requirements. Since asynchrony and read/write registers are
inherent in the research problem, our greatest hope for reducing complexity lies in weakening the
RMR complexity requirements. For example, worst-case O(1) RMR complexity per operation is
not necessary for proving our third principal result, which talks about the total number of RMRs a
process performs in a history that may involve multiple operations on an implemented object. For
similar reasons, our locality properties in the CC model (see Definitions 7.2 and 7.3) are stronger
than necessary for proving RMR preservation (see Definition 7.1). We leave open the question of
how the RMR preservation property can be achieved using weaker RMR complexity per-operation
and locality properties. Another interesting possibility, suggested by Sam Toueg, is to relax the
RMR preservation property itself by looking at the total number of RMRs performed in an entire
history by all processes rather than by each process individually.

73

Acknowledgment. Sincere thanks to Angela Demke Brown, Sam Toueg, Prasad Jayanti and Alan
Borodin for their insightful comments on this work while serving on the PhD committee of Wojciech
Golab. We would also like to thank Faith Ellen for her feedback on presentations of this work. We
are also deeply indebted to the anonymous referees for their helpful suggestions and careful reading
of this work, including the shorter conference version.

References

[1] J. Anderson and Y.-J. Kim. A generic local-spin fetch-and-φ-based mutual exclusion algorithm.
J. of Parallel Distributed Computing, 67(5):551–580, 2007.

[2] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of mutual
exclusion. Distributed Computing, 15(4):221–253, 2002.

[3] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major research
trends since 1986. Distributed Computing, 16:75–110, 2003.

[4] T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 1(1):6–16, 1990.

[5] H. Attiya, D. Hendler, and P. Woelfel. Tight RMR Lower Bounds for Mutual Exclusion and
Other Problems. In Proc. of 40th STOC, 2008.

[6] T. Craig. Queuing spin lock algorithms to support timing predictability. In Proc. of 14th
RTSS, pages 148–156, 1993.

[7] R. Cypher. The communication requirements of mutual exclusion. In Proc. of 7th SPAA,
pages 147–156, 1995.

[8] R. Danek and W. Golab. Closing the Complexity Gap Between FCFS Mutual Exclusion and
Mutual Exclusion. In Proc. of 22nd DISC, pages 93–108, 2008.

[9] E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965.

[10] C. Dwork, M. Herlihy and O. Waarts. Contention in shared memory algorithms. Journal of
the ACM, 44(6):779–805, 1997.

[11] R. Fan and N. Lynch. An Ω(n log n) lower bound on the cost of mutual exclusion. In Proc. of
25th PODC, pages 275–284, 2006.

[12] W. Golab. Constant-RMR Implementations of CAS and Other Synchronization Primitives
Using Read and Write Operations. Ph.D. Thesis, University of Toronto, 2010.

[13] W. Golab, D. Hendler, and P. Woelfel. An O(1) RMRs leader election algorithm. SIAM
Journal on Computing, 39(7): 2726–2760, 2010.

[14] P. Jayanti. A Complete and Constant Time Wait-Free Implementation of CAS from LL/SC
and Vice Versa. In Proc. of 12th DISC, pages 216–230, 1998.

[15] P. Jayanti and S. Toueg. Some Results on the Impossibility, Universality, and Decidability of
Consensus. In Proc. of 6th WDAG, pages 69–84, 1992.

74

[16] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems, 13(1):124–149, 1991.

[17] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[18] Y.-J. Kim and J. Anderson. Adaptive Mutual Exclusion with Local Spinning. Distributed
Computing, 19(3):197-236, 2007.

[19] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. In Proc.
15th DISC, pages 1–15, London, UK, 2001.

[20] V. Luchangco, M. Moir, and N. Shavit. On the Uncontended Complexity of Consensus. In
Proc. 17th DISC, pages 45–59, 2003.

[21] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. CWI-Quarterly,
2(3):219–246, 1989.

[22] M. Moir. Practical implementations of non-blocking synchronization primitives. In Proc. of
16th PODC, pages 219–228, 1997.

[23] D. A. Patterson and J. L. Hennessy. Computer Organization & Design: The Hard-
ware/Software Interface. Morgan Kaufmann, San Francisco, California, 1994.

[24] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Com-
puting, 9(1):51–60, 1995.

75

A Appendix

A.1 Analysis from Section 4

Proof of Theorem 4.5. First, note that when Condition 4.1 holds, each process calls Pseudo-Enter()
at most once, and so the name consensus algorithm is accessed according to Condition 3.1 (i.e., at
most once by each process). Thus, we can appeal to Specifications 3.2 and 3.3 (of name consensus)
in our analysis below.
Specification 4.2: Property (a) follows easily from the algorithm. Property (b) holds because
Pseudo-Enter() returns true only if the caller won NameDecide() at line 50, which happens for
at most one process by Specification 3.2. Property (c) holds because Pseudo-Enter() returns
false only after the caller reads flag = true at line 54, which does not happen until the process
that won name consensus completes line 58 of Pseudo-Exit(). This process is the one whose
Pseudo-Enter() returned true, and which has called Pseudo-Exit() by the time flag = true holds.
Specification 4.3: Let H by any fair history where Condition 4.1 holds. For any call to function
Pseudo-Enter() in H, NameDecide() at line 50 terminates by Specification 3.3. The process
that won NameDecide() (which is unique by Specification 3.2) then completes Pseudo-Enter()

after O(1) additional steps, which implies property (a). Since the busy-wait loop at line 54 of
Pseudo-Enter() terminates after the first write of flag at line 58 of Pseudo-Exit(), property (b)
also holds. Finally, property (c) follows directly from the structure of Pseudo-Exit().
RMR complexity: This follows from the structure of Pseudo-Enter() and Pseudo-Exit(), from
the RMR complexity of the name consensus algorithm, and from the fact that the busy-wait loop
at line 54 terminates after at most two RMRs (one at the first access to flag, and possibly one
more once flag is overwritten with true at line 58).

A.2 Analysis from Section 5

Proof of Lemma 5.5.
Part (a): Since a process calls Pseudo-Exit only at line 92, and only after calling Pseudo-Enter at
line 89, it suffices to show that p accesses the pseudo-lock in block x at most once. Suppose, for con-
tradiction, that H is the shortest history at the end of which p is about to call xBPseudo-Enter()

for the second time. The first time p calls xB Pseudo-Enter() in H, this happens at line 89, and
before p reaches line 95 in the corresponding call to chngCurBlock, some process assigns a value
different from ⊥ to xBwinner at line 91. This is because either p does so, or by Specification 4.2 (c)
(and minimality of |H|) some other process does so and then calls x B Pseudo-Exit() at line 92
before p completes its call to xB Pseudo-Enter(). Thus, if p subsequently accesses block x inside
chngCurBlock, then xB winner 6= ⊥ holds at line 88, and so p does not access the pseudo-lock in
block x at all. This contradicts the hypothesis that p is about to call xB Pseudo-Enter() for the
second time at the end of H.
Part (b): Consider the value a process reads from xB winner at line 95 of chngCurBlock. Since
we showed above that the pseudo-lock in block x is accessed according to Condition 4.1, it follows
from the algorithm (Figure 9) that at most one process writes x B winner, namely the winner of
the pseudo-lock in block x. (We appeal to Specification 5.1 (b) implicitly here and in many other
proofs.) We also argued above that by the time a process reaches line 95, some process has executed
line 91, hence line 90. These two observations imply the lemma.

A.3 Analysis from Section 7.2

Proof of Lemma 7.5. This follows by the same proof as given in Section 6.1.

76

Proof of Lemma 7.6. This follows by the same proof as given in Section 6.1, with any reference to
Lemma 6.5 replaced by a reference to Lemma 7.5.

Proof of Lemma 7.7.
Part (a): Note that x B changing = true holds from the moment p completes line 190 during
its last call to TryToReuseBlock(x) until the point in H under consideration. Consequently, if q
completed a call to HelperBegin(x), then it must have completed line 172 before p last executed
line 190. But in that case q’s execution of lines 168–171 precedes p’s last execution of line 191.
It then follows by the algorithm that x B seen = true holds when p’s executes line 191. This
contradicts p executing line 192.
Part (b): If p has completed a call to TryToReuseBlock(x) with response false then it read
d B seen = true at line 191, which implies that some process q 6= p previously executed line 170,
and hence q made a call to HelperBegin(x). Since x B seen = true is a stable property, if p
subsequently completes a call to DoneReusingBlock(x) then it executes line 198, and does not
complete that line until some process q′ 6= p executes line 177 of HelperEnd(x).
Part (c): If TryToReuseBlock(x) returns false, then the calling function HelperCC also returns
false. Furthermore, p executes M .chngCurBlock(x, y) at line 156 (see Figure 15) for some block
y during its ECAS operation execution under consideration before it executes another operation
execution on the target object. Once this chngCurBlock occurs, x is no longer the current block
by Lemma 7.5. Consequently, once p completes Op, it never accesses block x again.

Proof of Lemma 7.8. The proof of Lemma 6.7 given in Section 6.1 breaks, even after replacing
references to Lemma 6.5 by references to Lemma 7.5. This is because inside function HelperCC(d,
new), a process may write d B V at line 183 after d has become current. To fix the proof, we
must show that for any block x, once some process q has read xB V at line 143, no process p 6= q
overwrites xBV at line 183. Suppose otherwise, and note that p = xBwriter by the test at line 181.
Furthermore, when p is at line 183, q has completed a call to HelperBegin(x), p has completed
a call to TryToReuseBlock(x) with response true (at line 182), and p has not subsequently called
DoneReusingBlock(x) (at line 187). But this contradicts Lemma 7.7 (a).

Proof of Lemma 7.9. Both lemmas follow for I ′E by the same proofs as in Section 6.1, with reference
to Lemmas 6.5 and 6.6 replaced by references to Lemmas 7.5 and 7.6.

Proof of Lemma 7.10. We modify the proof of Lemma 6.14 given in Section 6.1 as follows. First,
we replace references to Lemma 6.5 by references to Lemma 7.5. Second, we must consider the case
when Ope or Opi is an ECAS operation execution whose timestamp falls under clause (g) above.

If Opi falls under clause (g) and Ope does not, then we deal with Opi in the same way as when
Opi is a Read or LL. (See Case A in the proof of Lemma 6.14.)

If Ope falls under clause (g), then it must be that the same process (i.e., p) applies Opl and
Ope. To see this, note that since Ope is the first successful ECAS that occurs between Opl and Opi in
H̄, it follows from Definitions 6.8 and 6.9 (as augmented in this section) that the M .getCurBlock()
in the counterparts of both Opl and Ope in H returns x. Furthermore, since Opl occurs before
Ope in H̄, the call to HelperBegin(x) during the counterpart of Opl in H occurs before the call
to DoneReusingBlock(x) during the counterpart of Ope in H, and so Lemma 7.7 part (a) implies
that the same process executes Opl and Ope. Thus, p applies Opl, and then Ope, which assigns
x B Linked[p] = false at line 184. Since p does not apply an LL between Ope and Opi, it follows
from the algorithm that p reads x B Linked[p] = false during the counterpart of Opi in H, which
contradicts the definition of Opi.

77

A.4 Analysis from Section 7.3

Proof of Lemma 7.19. This follows immediately from Condition 7.18 (b) and the structure of the
access procedures.

Proof of Lemma 7.20. A write to Dspecial can only occur at line 214 or line 237, and a write to
Dother can only occur at line 231. By Condition 7.18 (b) and the algorithm, H ′ contains at most
one write to Dspecial or Dother by pspecial, and this is a write to Dspecial. Similarly, for any non-
special process, H ′ contains at most one write to Dspecial or Dother. Furthermore, any non-special
process that applies such a write must first acquire the pseudo-lock in block x at line 224, and so
there is at most one such process by Lemma 7.19 and Specification 4.2 (b). Thus, H ′ contains at
most one write to Dspecial or Dother by any non-special process.

To complete the proof, it suffices to rule out the case when H ′ contains writes to both Dspecial

and Dother. As explained earlier, it follows in this case that a non-special process q writes Dother

and that pspecial writes Dspecial. Furthermore, by the algorithm pspecial wins xB LeaderElect() at
line 213 before applying its write at line 214, and q wins x B LeaderElect() at line 225 before
applying its write at line 231. Thus, pspecial and a non-special process both win xBLeaderElect()

in H, which contradicts Lemma 7.19 and Specification 3.5.

Proof of Lemma 7.21. Two writes to x B winner that assign different values can occur only at
line 215 and line 232, or at line 232 and line 238. In the first case, a write to Dspecial (at line 214)
occurs during some chngCurBlock(x, ...) operation execution, and a write to Dother (at line 231)
also occurs during some chngCurBlock(x, ...), which contradicts Lemma 7.20. In the second case,
a write to Dother (at line 231) occurs during some chngCurBlock(x, ...) operation execution, and a
write toDspecial (at line 237) also occurs during some chngCurBlock(x, ...), which again contradicts
Lemma 7.20.

Proof of Lemma 7.22. Let Opq denote q’s chngCurBlock(x, ...) operation execution under consid-
eration and note that by Condition 7.18 (b) there is at most one such operation execution in
H.

First, we will prove that when q reaches line 236 during Opq, process pspecial has already com-
pleted line 212 during its own chngCurBlock(x, ...) operation execution. Note that before reaching
line 236, q acquires the pseudo-lock in block x at line 224, and then loses xB LeaderElect() at
line 225. Since q loses xB LeaderElect(), by Specification 3.5 another process must make a call
to x B LeaderElect() before q completes its call. By Lemma 7.19, Specification 4.2 (b) and the
algorithm, the only other process that may call x B LeaderElect() is pspecial at line 213 during
a chngCurBlock(x, ...) operation execution. Now let Opspecial denote this chngCurBlock(x, ...)
operation execution by pspecial and note that it is unique in H by Condition 7.18 (b). Since pspecial
makes its call to xBLeaderElect() at line 213 before q completes its own call at line 225, pspecial
completes line 212 during Opspecial before q reaches line 236 during Opq, as wanted.

To complete the proof, we will show that q completes line 237 during Opq before pspecial
completes line 219 during Opspecial. If q reaches line 237 at all during Opq, it does so after
reading x B specialDone = false at line 235, which by the algorithm occurs before pspecial writes
x B specialDone = true at line 216. Thus, pspecial reads x B helping = true at line 217 after q
writes xB helping = true at line 234, and so pspecial branches to line 218 during Opspecial. Before
pspecial completes this line, some process z writes x B helperDone = true, at line 240 during a
chngCurBlock(x, ...) after acquiring the pseudo-lock in block x at line 224. Since q wins this
pseudo-lock before reaching line 219, it follows from Lemma 7.19 and Specification 4.2 (b) that
z = q. Since Opq is q’s only chngCurBlock(x, ...) in H, as explained earlier, this implies that q

78

completes line 240 during Opq before pspecial completes line 218 during Opspecial, hence q completes
line 237 during Opq before pspecial completes line 219 during Opspecial, as wanted.

Proof of Lemma 7.23. If multiple writes to Dspecial or Dother occur in chngCurBlock(x, ...) oper-
ation executions, then by Lemma 7.20 there are exactly two of these, one by pspecial and one by
some non-special process q. Furthermore, both of these writes apply to Dspecial.

To prove the lemma, we first show that q’s write at line 237 assigns the same value as the write
by pspecial at line 214 during the two chngCurBlock(x, ...) operation executions under considera-
tion. To that end, note that by Lemma 7.22, q’s read of x B A at line 236 occurs after pspecial’s
write of xBA at line 212 during these operation executions. Since xBA is written at most once
in H by the algorithm and Condition 7.18 (b), the value pspecial writes to xBA at line 212 is the
same as the value q reads from xBA at line 236, hence the same as the value q writes to Dspecial

at line 237.
Finally, we must prove that no process z writes Dspecial between the two writes under consider-

ation by pspecial and q, regardless of the order in which they occur. First, note that by Lemma 7.22
and the algorithm, pspecial is continuously in a chngCurBlock(x, ...) operation execution between
these two writes. Since pspecial writes Dspecial at most once in each chngCurBlock, this implies
z 6= pspecial. Furthermore, if z 6= pspecial then by Lemma 7.22 z’s write to Dspecial must occur dur-
ing a chngCurBlock(x, ...) by z, which implies that Dspecial is written three times (i.e., by pspecial,
q and z) in a chngCurBlock(x, ...), contradicting Lemma 7.20.

Proof of Lemma 7.24. Since the properties stated are safety properties, it suffices to consider finite
H. Let S(j) denote parts (a)–(d) for a history H of length j. We proceed by induction on j. For
S(0), all parts follow trivially. Now for any j > 0, suppose that S(j − 1) holds, and consider S(j).
It suffices to consider the case when p writes Dspecial or Dother in step j of H, and changes the
state of the variable written to C. It follows from the algorithm that such a step must occur during
some chngCurBlock(x′, y′) operation execution Op by p, for some x′ and y′.
Parts (a)–(c): Suppose that x is written to Dspecial or Dother for the first time in step j′ (where
j′ = 0 if x is the initial block b0). It follows from S(j − 1) (a) and the initialization of Dspecial and
Dother that x = MaxBlock(H[j′]). Since x = MaxBlock(H[j− 1]), it follows from S(j− 1) parts (a),
(b) and (d) that neither Dspecial nor Dother changes state in H after step j′ and before step j. Call
this observation (?).

Now consider the sequence number Seq(C). This number is computed and recorded in private
variable nextSeq, either at lines 207–211 or lines 226–230, using as inputs the values Sspecial and
Sother recorded at lines 200–201 during a prior call to getCurBlock that returns x. The latter call
is either by p (see Condition 7.18 (b)), or by pspecial if p obtains the new sequence number from
xB A at line 236 (see Lemma 7.22 and lines 207–212). In particular, during the computation of
nextSeq, Sspecial and Sother are the sequence numbers read from Dspecial and Dother at lines 200–
201, respectively, during a getCurBlock that returns x. Now by our choice of j′, x was read from
either Dspecial or Dother after step j′, and so by S(j−1) (b) and x = MaxBlock(H[j′]) it follows that
max(Sspecial, Sother) ≥ MaxSeq(H[j′]). At the same time, by S(j − 1) (b) and observation (?), it
follows that max(Sspecial, Sother) ≤ MaxSeq(H[j′]). Thus, max(Sspecial, Sother) = MaxSeq(H[j′]), and
so by the computation of Seq(C) at lines 207–211 or lines 226–230, either Seq(C) = MaxSeq(H[j′])
or Seq(C) = MaxSeq(H[j′]) + 1. S(j) (b) follows from this and from observation (?). It remains to
prove S(j) (a) and S(j) (c).
Case A: p = pspecial and p’s write in step j occurs at line 214. Consider p’s prior computation of
nextSeq at lines 207–211.

If Sother < Sspecial then p read x from Dspecial during its last getCurBlock, and nextSeq =

79

Sspecial. By observation (?) and our definition of j′, Dspecial still contains (x, Sspecial) in state
H[j − 1], Dother does not contain (x, ...) in state H[j − 1], and x = MaxBlock(H[j − 1]). Thus,
when p writes (y, Sspecial) to Dspecial in step j, MaxSeq(H[j]) = nextSeq and y = MaxBlock(H[j]),
which implies S(j) (a). Since Seq(Dspecial) does not change, S(j) (c) follows from S(j − 1) (c).

If Sother ≥ Sspecial then p read x from Dother during its last getCurBlock, and nextSeq =
Sother + 1. By observation (?) and our definition of j′, Dother still contains (x, Sother) in state H[j],
Dspecial does not contain (x, ...) in state H[j − 1], and x = MaxBlock(H[j − 1]). Thus, when p
writes (y, Sother + 1) to Dspecial in step j, MaxSeq(H[j]) = nextSeq and y = MaxBlock(H[j]), which
implies S(j) (a). Since Seq(Dspecial) = Seq(Dother) + 1 in state H[j], S(j) (c) also follows.
Case B: p 6= pspecial and p’s write in step j occurs at line 237 of chngCurBlock. As explained
earlier, the value p writes is based the computation of nextSeq by pspecial at lines 207–211. Thus,
when p writes Dspecial in step j, S(j) (a) and S(j) (c) follow as in Case A.
Case C: p 6= pspecial and p’s write in step j occurs at line 231. As in Case A, consider p’s prior
computation of nextSeq at lines 226–230.

If Sother < Sspecial then p read x from Dspecial during its last getCurBlock, and nextSeq =
Sspecial. By observation (?) and our definition of j′, Dspecial still contains (x, Sspecial) in state H[j],
Dother does not contain (x, ...) in state H[j− 1], and x = MaxBlock(H[j− 1]). Thus, when p writes
(y, Sspecial) to Dother in step j, MaxSeq(H[j]) = nextSeq and y = MaxBlock(H[j]), which implies
S(j) (a). Since Seq(Dspecial) = Seq(Dother) in state H[j], S(j) (c) also follows.

If Sother ≥ Sspecial then p read x from Dother during its last getCurBlock, and nextSeq =
Sother. By observation (?) and our definition of j′, Dother still contains (x, Sother) in state H[j],
Dspecial does not contain (x, ...) in state H[j−1], and x = MaxBlock(H[j−1]). Thus, when p writes
(y, Sother) to Dother in step j, MaxSeq(H[j]) = nextSeq and y = MaxBlock(H[j]), which implies
S(j) (a). Since Seq(Dspecial) = Seq(Dother) in state H[j], S(j) (c) also follows.
Part (d): First, we will show that y is the second argument of some chngCurBlock operation
execution in H. This is either p’s operation execution Op under consideration, if step j occurs at
line 214 or line 231, or by Lemma 7.22 and the algorithm it is a chngCurBlock(x, ...) operation
execution Op′ by pspecial (that Op is “helping”) if step j occurs at line 237. Furthermore, in
the latter case, by Lemma 7.23 pspecial does not change the state of Dspecial or Dother during Op′

(because p does during Op). Thus, there is a distinct chngCurBlock(..., y) operation execution
in H for every step in H that changes the state of Dspecial or Dother to (y, s) for some sequence
number s. This and Condition 7.18 (c) imply part (d) since by Condition 7.18 (c), y is unique and
different from the initial block in each such operation execution.

A.5 Analysis from Section 8

Lemma A.1. The analog of Lemma 6.5 for IEW holds.

Proof. This follows by a proof analogous to the one given in Section 6.1. References to line 152
and line 156 are replaced by references to line 252 and line 255.

Lemma A.2. The analog of Lemma 6.6 for IEW holds.

Proof. This follows by the same proof as given in Section 6.1, with any reference to Lemma 6.5
replaced by a reference to Lemma A.1.

Now consider linearizability. For any history H of the implementation, we define a candidate
linearization H̄ using the same general approach for (non-writable) ECAS in Section 6.1.1.

80

Definition A.3. The timestamp s for an arbitrary operation execution Op in H, say by process
p, and its completion (where applicable), are defined as follows:

Operation type ECAS: (and similarly for Read and LL, which are implemented in an analogous
way)

(a) If p executes M.getCurBlock() at line 259 during Op, say with response x, and accesses
xBB at line 261 in step i of H, then s = (x, i, 0).
(If Op is pending in H, its completion returns the value returned by the base object atomic
step on xBB in step i.)

(b) Otherwise, s is undefined.

Operation type Write:

(c) If p executes a successful M .chngCurBlock(x, y) at line 255 during Op in step i of H, then
s = (y, i, 0). (If Op is pending in H, its completion returns OK.)

(d) Else if Op is complete in H, and p executes a failed M .chngCurBlock(b, y) at line 255
during Op, and a successful M .chngCurBlock(b, x) (by any process) occurs in step i of H,
then s = (x, i,−p). (Block x is well-defined by the specification of the block manager type.)

(e) Otherwise, s is undefined.

Next, we define si = (xi, ti, ...), Opi, pi, and the candidate linearization H̄ as in Section 6.1.1.
(In particular, we continue to order timestamps according to Definition 6.9.)

Lemma A.4. The analogs of Lemma 6.10 and Lemma 6.13 (properties (a) and (b) of linearizability
– sequential completion and order preservation) for IEW hold.

Proof. Both lemmas follow for IEW by proofs analogous to those given in Section 6.1. References
to Lemmas 6.5 and 6.6 are replaced by references to Lemmas A.1 and A.2. References to Defi-
nition 6.8 are replaced by references to Definition A.3. The analogs of Definition 6.8 (d)–(e) are
Definition A.3 (c)–(d). The analogs of lines 141 and 156 are lines 248 and 255.

Lemma A.5. The analog of Lemma 6.15 (property (c) of linearizability—conformity to type
τECAS-W) for IEW holds.

Proof. Since conformity to a type is a safety property it suffices to consider finite H̄. Let k = |H̄|.
Define x0, xk+1, t0 and tk+1 as in the proof of Lemma 6.15. We will show that for any i ∈ N,
0 ≤ i ≤ k:

(a) If the timestamp ti does not fall under Definition A.3 (d), then for any integer t ∈ [ti, ti+1),
xi BB = νi holds in state H[t].

(b) If i > 0, then the response of Opi is the correct response for an operation execution of that
type applied in state νi−1.

Part (b) implies the lemma, but we require both parts for induction. Now let S(i) denote
parts (a)–(b). Note that in H, the current block and state of B in that block are changed only
by an execution of line 255, line 261, line 266, or line 271, which is an atomic step that defines
the timestamp of an operation execution on the target object in H̄. Therefore, the current block

81

and state of B in that block do not change between atomic steps ti and ti+1 in H. This, in turn,
implies that to prove part (a) of S(i), it suffices to prove that xiBB = νi in state H[si]—and that
is all we do in the inductive step that follows.

For S(0), part (a) follows from our earlier definition of x0 as the initial block and t0 = 0, as
well as the initialization of x0BB to the initial state of type IEW . Now suppose that S(i−1) holds
for some i, 0 < i ≤ k, and consider S(i). We proceed by cases on how si = (xi, ti, ...) was obtained,
noting that xi = xi−1 except possibly when si falls under Definition A.3 (c) or (d).

Case A: Opi falls under Definition A.3 (a). In this case, si = (xi, ti, 0) for some ti, Opi is a Read

or LL or ECAS operation execution, and pi applies the corresponding operation to xi B B in
step ti.

For S(i) (a), first note that xi = xi−1 and that Opi−1 does not fall under Definition A.3 (d),
otherwise by our construction of H̄, Opi would be a Write operation execution falling under
Definition A.3 (c) or (d). Thus, it follows from S(i − 1) (a) that xi B B = νi−1 in state
H[ti− 1]. Consequently, pi’s operation in step ti changes the state of xiBB to νi, as wanted.

For S(i) (b), note that Opi returns the response of step ti, where pi applies an operation
execution of the same type as Opi to xi B B. Since we showed that xi B B = νi−1 in state
H[ti − 1], this response is correct for Opi in H̄.

Case B: Opi falls under Definition A.3 (c). In this case, si = (xi, ti, 0) for some ti, Opi is Write,
and pi executes a successful M .chngCurBlock(..., xi) at line 255 in step ti of H.

S(i) (a) follows by the action of step ti by pi in H, which makes xi the current block, and
from the prior initialization of xi BB to vali (i.e., the argument of Opi) at line 254.

S(i) (b) holds since Opi returns OK at line 258.

Case C: Opi falls under Definition A.3 (d).

Here S(i) (a) holds trivially since Opi falls under Definition A.3 (d).

S(i) (b) holds since Opi returns OK at line 258.

Proof of Theorem 8.1. The theorem asserts that the implementation IEW satisfies Specifications 6.1
(linearizability) and 6.2 (termination) under Condition 6.4. Furthermore, each operation execution
on the target object incurs O(1) RMRs in the CC and DSM models.

Specification 6.1 under Condition 6.4 follows from Lemma A.4 and Lemma A.5. RMR com-
plexity and Specification 6.2 follow from the same arguments as in the proof of Theorem 6.16.

A.6 Analysis from Section 8.1.1

Lemma A.6. The analog of Lemmas 6.5 and 7.5 for I ′EW holds.

Proof. This follows by the same proof as given in Section 6.1.

Lemma A.7. The analog of Lemmas 6.6 and 7.6 for I ′EW holds.

Proof. This follows by the same proof as given in Section 6.1, with any reference to Lemma 6.5
replaced by a reference to Lemma A.6.

Lemma A.8. The analog of Lemma 7.7 holds for I ′EW .

82

Proof. This follows by a proof analogous to the one given in Section 7.2 since I ′EW uses the same im-
plementations of subroutines TryToReuseBlock, DoneReusingBlock, HelperBegin and HelperEnd

as IEW , and since these functions are called in an analogous manner. Any reference to Lemma 7.5
in the proof is replaced by a reference to Lemma A.6.

Lemma A.9. For any history H of implementation I ′EW , any process p, and any block x, if p is
at line 277 during a call to HelperCC(x, val) then:

(a) p is the only process that has accessed xBB; and

(b) x is current from the point when p last called M .getCurBlock() until p makes a call to
DoneReusingBlock(x) at line 280.

Proof. Note that if p is at line 277 during a call to HelperCC(x, val), then by the test at line 275, p
is the process that allocated x. Furthermore, p has completed a call to TryToReuseBlock(x) that
returned true, and p has not subsequently made a call to DoneReusingBlock(x). Consequently, no
process q 6= p has completed a call to HelperBegin(x) by Lemma A.8 (specifically the analog of
Lemma 7.7 (a) for I ′EW). Since a process must complete a call to HelperBegin(x) before accessing
xBB, this implies part (a).

It follows similarly that no process q 6= p completes a call to HelperBegin(x) until p makes
a call to DoneReusingBlock(x) at line 280. This implies part (b) because no process applies a
successful M .chngCurBlock(x, ...) between p’s last call to M .getCurBlock(), which returns x, and
p’s subsequent call to DoneReusingBlock(x) (if it occurs); p itself does not do this by the algorithm,
and no q 6= p does so because by Lemma A.7 that would imply q calls M .chngCurBlock(x, ...),
which can only happen after q completes a call to HelperBegin(x).

Lemma A.10. The analogs of Lemma 6.10 and Lemma 6.13 (properties (a) and (b) of lineariz-
ability – sequential completion and order preservation) for I ′EW hold.

Proof. Both lemmas follow for I ′EW by the same proofs as in Section 6.1, with reference to Lem-
mas 6.5 and 6.6 replaced by references to Lemmas A.6 and A.7.

To prove linearizability, we define for any history H of I ′EW a candidate linearization H̄ as
in Appendix A.5, except that we augment the definition of timestamps (Definition A.3). That is,
we add a new clause (between clause (d) and clause (e)) for a Write operation execution Op in H
where line 277 is reached:

(g) Else if p re-initializes x B B at line 277 for some block x during Op in step i of H, then
s = (x, i, 0). (If Op is pending in H, its completion returns OK.)

Lemma A.11. The analog of Lemma A.5 (property (c) of linearizability—conformity to type
τECAS-W) for I ′EW holds.

Proof. We modify the proof of Lemma A.5 by extending the case analysis as follows:

Case D: Opi falls under Definition A.3 (g). In this case, Op is a Write operation execution where
pi re-initializes xi BB in step ti at line 277.

It follows from Lemma A.9 (b) that xi is current in state H[ti − 1]. Consequently, S(i) (a)
follows from the action of pi’s step at time ti. This step ensures that (xiBB).V = val in state
H[ti] by re-initializing the value of xiBB. Similarly, it ensures that (xiBB).Linked[pi] = false
in state H[ti]. (Recall our prior explanation of the re-initialization operation at the end of
Section 8.) As for the other elements of (xi B B).Linked[1..N], these are all false in states

83

H[ti − 1] and H[ti] by the initialization of xi B B, by Lemma A.9 (a), and since the re-
initialization operation execution does not write them.

S(i) (b) holds because Opi returns OK.

Lemma A.12. The analog of Lemma 7.12 (termination) for I ′EW holds

Proof. This follows by a proof analogous to the one given in Section 7.2. References to Lemma 7.7
are replaced by references to Lemma A.8.

Lemma A.13. The analog of Lemma 7.13 (O(1) RMR cost for a process to access the block
manager and allocator) for I ′EW holds.

Proof. This follows by a proof analogous to the one given in Section 7.2. References to Lemma 7.5
are replaced by references to Lemma A.6.

Lemma A.14. For any history H of I ′EW , for any block x accessed in H, and for any process p,
the number of RMRs that p incurs while accessing block x in H, not including the field B, is:

• O(1) in the CC model with write-back caching; and

• O(1 +m) in the CC model with write-through caching, where m is the number of write-like
operation executions in H on the target object during which p accesses block x.

Proof. This lemma is the counterpart of Lemma 7.14 for I ′EW , but not its analog, because we ignore
RMRs incurred while accessing B, which is the counterpart of V in Section 7.2. (The analog does
not hold because a process may incur arbitrarily many RMRs in a history where only block x is
accessed.) Still, the lemma follows by an analogous proof, where we drop the case that considers
the block field V . References to Lemma 7.7 are replaced with references to Lemma A.8.

Lemma A.15. Implementation I ′EW satisfies the locality property in the write-through and write-
back CC model (see Definitions 7.2 and 7.3).

Proof. Consider any history H of I ′EW , and consider the linearization H̄ of H|Oτ defined in our
proof linearizability (see Lemma A.11), whereOτ is the target object. To prove the locality property,
we will show that p incurs O(1) RMRs in H while executing the counterparts of certain operation
executions in H̄, as in in the proof of Lemma 7.15. (As before, the case when p does not access any
block during some operation execution is discharged easily.) To that end, we will break down the
analysis into two parts: accesses to the base object B in blocks, and accesses to all other shared
objects.
Property (R) (Definition 7.2). We must consider the write-through and write-back CC models.
Fix process p and a sequence H̄ ′ of consecutive read-like operation executions in H̄. Let H ′ denote
the sequence of atomic steps (which access base objects) in H corresponding to H̄ ′.

First, we will show that p accesses at most one block, say x, in H ′. Suppose otherwise. By
our definition of H̄ ′ and H ′, p does not call M .chngCurBlock or AllocBlock() in H ′, since that
can only occur during a Write operation execution. Furthermore, calls to M .getCurBlock() by
p in H ′ return at most one block, otherwise between two such calls by p there is a successful
M .chngCurBlock in H, and so there is a Write operation execution in H̄ that is linearized between
p’s first and last operation execution in H̄ ′, contradicting the assumption that H̄ ′ contains read-like
operation executions only. Thus, by Lemma A.13 and Lemma A.14, p incurs O(1) RMRs accessing
shared objects other than B in H ′.

84

It remains to consider B. Note that between any two base object atomic steps on xBB by p
in H ′, there is no write-like operation on x B B by any other process, otherwise again we reach a
contradiction since there is a write-like ECAS operation execution in H̄ that is linearized between
p’s first and last operation execution in H̄ ′. Thus, by locality property (R) of xBB, p incurs O(1)
RMRs accessing xBB in H ′, as wanted.
Property (W) (Definition 7.3). We need only consider the write-back CC model. Fix process p
and a sequence H̄ ′ of consecutive operation executions by p in H̄. Again, let H ′ denote the sequence
of atomic steps in H corresponding to H̄ ′.

First, we will show that p tries to change the current block at most once in H ′. Suppose,
for contradiction, that p does this in the counterparts of operation executions Op and Op′ in H̄ ′.
Arguing as in the proof of Lemma 7.15, property (W) (with references to Lemma 7.7 replaced by
references to Lemma A.8), this implies that there is an operation execution in H̄ ′ between Op and
Op′ by a process different from p, which contradicts the definition of H̄ ′. Next, note that calls to
M .getCurBlock by p in H ′ return at most two distinct values. This is because if three values are
returned, then there are at least two successful calls to M .chngCurBlock in H between the first
and last step in H ′, where at most one is by p (as argued above), and the other (by a process
different from p) coincides with the timestamp of a Write that appears between the first and last
operation execution in H̄ ′, which contradicts H̄ ′ containing operation executions by p only. Thus,
p accesses at most three blocks in H ′, and so by Lemma A.13 and Lemma A.14, p incurs O(1)
RMRs accessing shared objects other than B in H ′.

It remains to consider B. Note that for any block x process p accesses, and between any two
base object atomic steps on x B B by p in H ′, there is no atomic step at all on x B B by any
other process. To see this, note that otherwise by our construction of H̄ there would be an ECAS,
LL, or Read operation execution in H̄ by a process different from p that is linearized between p’s
first and last operation execution in H̄ ′, which contradicts H̄ ′ containing operation executions by
p only. Thus, by locality property (W) of x B B, p incurs O(1) RMRs accessing x B B in H ′, as
wanted.

Proof of Theorem 4.5. The theorem asserts that the implementation I ′EW satisfies Specifications 6.1
(linearizability) and 6.2 (termination) under Condition 6.4. Furthermore, each operation execution
on the target object incurs O(1) RMRs in the CC model. Finally, I ′EW satisfies the locality property
in the write-through and write-back CC models (Definitions 7.2 and 7.3).

Specification 6.1 (linearizability) under Condition 6.4 follows directly from Lemma A.10 and
Lemma A.11. Specification 6.2 (termination) under Condition 6.4 follows from Lemma A.12. O(1)
RMR complexity follows from Lemma A.13, Lemma A.14, as well as the fact that during any
operation execution on the target object, a process accesses at most two blocks and accesses the
field B at most once per block per operation execution. Locality follows from Lemma A.15.

85

