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Abstract

Replication protocols in distributed storage systems are fundamentally con-
strained by the finite propagation speed of information, which necessitates trade-
offs among performance metrics even in the absence of failures. We focus on the
consistency-latency trade-off, which dictates that a distributed storage system
can either guarantee that clients always see the latest data, or it can guarantee
that operation latencies are small (relative to the inter-data-center latencies)
but not both. We propose a technique called spectral shifting for tuning this
trade-off adaptively to meet an application-specific performance target in a dy-
namically changing environment. Experiments conducted in a real world cloud
computing environment demonstrate that our tuning framework provides supe-
rior convergence compared to a state-of-the-art solution.

Keywords: self-tuning, consistency-latency trade-off, eventual consistency,
distributed storage

1. Introduction

Distributed storage systems form the backbone of essential online services
including web search, e-mail, social networking, and shopping. The replication
protocols that protect such systems from permanent data loss are fundamentally
constrained by the finite propagation speed of information, which necessitates
trade-offs among performance metrics even in the absence of failures. In par-
ticular, any storage system that is replicated across data centers in different
geographies may either guarantee that clients always see fresh data, or guaran-
tee that operation latencies are small relative to the inter-data-center latencies,
but not both. This leads to a difficult choice for application developers – bite
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the bullet and pay the high latency cost of strong consistency, optimize the
system for low latency at the risk of exposing inconsistent data to applications
and their users, or strike a compromise.

The search for a meaningful compromise between consistency and latency is
challenging. Systems that enable application control over this trade-off mostly
do so by implementing a quorum-based replication protocol, and by allowing
the programmer to choose the size of the quorum for reading and writing, as in
Amazon’s Dynamo [1]. The different behaviors achievable using this approach
represent a collection of discrete points in the trade-off space, which tends to be
quite sparse in geo-replicated systems where latencies for strongly and weakly
consistent operations can differ by orders of magnitude. Thus, applications
whose requirements lie squarely in-between these discrete points are not always
served well by such systems. Recent research prototypes (e.g., [2]) have evaded
this problem by allowing applications to declare their consistency and latency
targets precisely through service level agreements (SLAs), but these systems are
not yet in mainstream use, and moreover they tend to support only restricted
forms of consistency, such as deterministically bounded staleness.

Responding to a real world need for flexible performance tuning in dis-
tributed storage systems, we propose a technique for automated control over
a probabilistic consistency-latency trade-off. Our framework can be layered on
top of any key-value storage system that provides read and write operations, and
supports eventual consistency – the property that in the absence of updates and
failures, all replicas of a given key eventually converge to the same value. Given
a target consistency threshold expressed as the proportion of the workload that
participates in consistency anomalies, and a system that is unable to meet this
threshold, the framework boosts consistency by injecting delays artificially into
read and write operations. We introduce a novel technique called spectral shift-
ing for calculating the duration of the optimal delay (i.e., one that meets the
consistency threshold while minimizing latency), which allows the framework
to adapt nimbly to changing network conditions and workload characteristics.
Microbenchmark experiments using a practical cloud storage system show that
our framework achieves superior convergence as compared to a state-of-the-art
solution [3].

2. Background and Definitions

We model a distributed storage system abstractly as a collection of processes
p1, p2, ..., pn that communicate by exchanging messages over point-to-point com-
munication channels. The processes simulate a collection of shared read/write
register objects, each identified by a unique key, using a distributed protocol.
The processes and the network are asynchronous, and may suffer benign failures:
processes may fail by crashing, and communication channels may drop messages
but cannot corrupt or reorder them. The possibility of failure necessitates data
redundancy (e.g., replication) to prevent loss of data, but we focus in this paper
on the behavior of the system in failure-free executions where processing and
network delays are bounded.
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A history of operations executed by a distributed storage system is a se-
quence of steps, representing the invocations and responses of the procedures
Read and Write (as in [4]). Steps record the time when an operation was in-
voked or produced a response, as well as the corresponding arguments (if any)
and return value. The steps in a history appear in increasing order of time.
Invocation and response steps corresponding to the same operation are called
matching, and we assume that steps are tagged with sufficient information so
that all matching pairs can be identified. We assume that every history H is
well-formed meaning that it satisfies two properties: (i) if H contains a Read

response step for key k and value v then H also contains a Write invocation step
for k and v that precedes the response of the Read; and (ii) every invocation
has a unique matching response and vice-versa. An operation is a matching
invocation-response pair. A Write of value v to key k is denoted abstractly by
WriteOp(k, v), and a Read of value v from key k is denoted by ReadOp(k, v). The
projection of a history H onto operations that access some key k by reading or
writing some distinct values v, v′ is denoted H|k, v, v′. The invocation and re-
sponse times of an operation are denoted by the functions start and fin. Given
two operations op1 and op2, we say that op1 happens before op2 in a history H
if fin(op1) < start(op2), otherwise we say that op1 and op2 are concurrent. A
history H is linearizable if there exists a total order T on the operations in H
that extends the happens before relation, and where each ReadOp returns the
value assigned by the most recent WriteOp (preceding the ReadOp) to the same
key, or the initial value of the key if there is no such WriteOp [4]. A history H
is regular if it satisfies the requirements of linearizability with one exception: a
ReadOp may (but is not required to) return the value assigned by any WriteOp

that accesses the same key and with which the ReadOp is concurrent in H [5].
The storage system can be implemented in a variety of ways, for example

using quorum-based replication, and its internal design determines what cor-
rectness property its behaviors satisfy. We are interested in quantifying how far
this behavior deviates from a standard correctness properties for read/write reg-
isters, such as linearizability and regularity. We choose regularity in particular
because it is the strongest property supported (in some configurations) by pop-
ular quorum-replicated storage systems, such as Dynamo [1] and its derivatives.
Specifically, we use the methodology of Golab, Li and Shah [6] to calculate the
proportion of values (read or written) that participate in consistency anomalies
with respect to regularity. This technique applied to a history H entails shifting
the invocation and response steps of operations conceptually (i.e., in the course
of mathematical analysis after H is recorded) in such a way that the time inter-
vals of the operations expand outward, which causes pairs of operations related
by “happens before” in H to become concurrent in the transformed history H ′.
One way to formalize such a transformation is the following:

Definition 1. The t-relaxation of a history H is a history Ht obtained by
decreasing the time of every ReadOp invocation event and increasing the time of
every WriteOp response event by t time units.

A t-relaxation of H tends to increase the number of possible total orders T
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referred to by the definitions of linearizability and regularity, thus lessening the
constraints imposed by these properties. Since we assume that every history
is well-formed, it follows easily that for every history H there exists a t ≥ 0
such that Ht is regular. In particular, such a t occurs when the operation
intervals expand to the point where every ReadOp is concurrent with a WriteOp

of the same value to the same key. This optimal value of t is our measure of
inconsistency.

Definition 2. The regular t-value of a history H is the smallest real number
t ≥ 0 such that the regular t-relaxation of H, denoted Ht, is regular.

As suggested in [7], the inconsistency metric can be interpreted in a more
fine-grained manner by considering smaller subhistories of a given history H
where all the operations are applied to the same key k and access two distinct
values v, v′.

Definition 3. For any history H, key k, and distinct values v, v′, the magni-
tude of the consistency anomaly due to the interaction of operations on key
k that access v or v′, denoted by the scoring function χ(H, k, v, v′), is de-
fined as the regular t-value of H|k, v, v′. Furthermore, χ(H, k, v) is defined as
maxv′ 6=v χ(H, k, v, v′).

As explained in Section 3, under certain assumptions there exists an efficient
technique for computing the regular t-value of any history H, as well as a precise
relationship between this value and the scoring function χ(H, k, v, v′).

3. Efficient Computation of the Inconsistency Metric

Following [7], we note that the regular t-value for a history can be computed
in polynomial time under the following assumption, which we make henceforth:

Assumption 4. For any history H and any distinct operations op1, op2 in H,
if op1 writes v1 to key k and op2 writes v2 to the same key k then v1 6= v2.

The above assumption combined with our definition of a well-formed history
means that each history has an implicit “reads from” mapping:

Definition 5. For any history H that satisfies Assumption 4 and any read
operation ReadOp(k, v) in H, the unique operation WriteOp(k, v) in H is called
the dictating write of the read.

Efficient computation of the regular t-value for a history H exploits the
observation that consistency anomalies can be attributed to the interaction of
operations accessing only two distinct values with respect to the same key [8].

Theorem 6. For any history H, the regular t-value of H is equal to the follow-
ing expression

max
key k, value v, value v′ 6= v

χ(H, k, v, v′)

where the maximum is interpreted as zero unless some key k is accessed with
respect to at least two values in H.
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Proof. If no key k in H is accessed with respect to at least two values in H then
H is regular under Assumption 4 and the well-formedness criterion defined in
Section 2. In that case the theorem holds since the regular t-value of H is 0.

Now suppose that at least one key is accessed with respect to at least two
values in H. Let t denote the regular t-value of H (see Definition 2). Let Ht

denote the t-relaxation of H (see Definition 1), which is regular. Since Ht is
regular, it follows that Ht|k, v, v′ is regular for any k, v, v′, which implies that
χ(H, k, v, v′) ≤ t. Thus, it follows that the regular t-value of H is an upper
bound on the value of the scoring function:

t ≥ max
key k, value v, value v′ 6= v

χ(H, k, v, v′)

To complete the proof, suppose for contradiction that the above upper bound
is not tight, meaning that

t > z > max
key k, value v, value v′ 6= v

χ(H, k, v, v′)

for some real number z. This implies that Hz is not regular. Transform H
to H ′, and hence Hz to H ′z, by removing any read that is concurrent with
its dictating write. Then H ′z is not linearizable, it follows from Gibbons and
Korach’s characterization of linearizability [8] that there exists some key k and
there exist some distinct values v, v′ such that H ′z|k, v, v′ is not linearizable.
Since the transformation from Hz to H ′z ensures that H ′z is regular if and only
if it is linearizable (i.e., makes regularity equivalent to linearizability), it follows
that H ′z|k, v, v′ is not regular either. This, in turn, implies that χ(H ′z, k, v, v

′) >
0, and hence χ(H ′, k, v, v′) > z, which contradicts the earlier supposition that
z is an upper bound on the value of the scoring function.

Theorem 6 justifies formally the use of the scoring function χ(H ′, k, v, v′) in
the analysis of consistency by relating the value of this function in a precise way
to the t-regular value of a history H. Thus, all consistency anomalies can be
quantified with reference to one key and a pair of distinct values, similarly to
the approach taken in [9, 7]. In the remainder of this section, we describe the
mathematical formula for the scoring function. To that end, we first introduce
some definitions modeled after Gibbons and Korach’s [8].

Definition 7. For any history H, key k, and value v written to k in H, the
cluster C(H, k, v) is the subset of operations in H of the form WriteOp(k, v) or
ReadOp(k, v).

Definition 8. For any history H, key k, and value v accessed with respect to k
in H, the regularized cluster C ′(H, k, v) is the subset of the cluster C(H, k, v)
excluding any reads that are concurrent with their dictating write.

Definition 9. For any history H, key k, and value v accessed with respect to
k in H, the corresponding zone is the time interval denoted by Z(H, k, v) and
defined as follows. If C ′(H, k, v) contains at least one read, then

Z(H, k, v) = [ min
op∈C′(H,k,v)

fin(op), max
op∈C′(H,k,v)

start(op)]
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where the left endpoint always corresponds to the finish time of WriteOp(k, v)
and the right endpoint always corresponds to the start time of some ReadOp(k, v)
in C ′(H, k, v). Otherwise C ′(H, k, v) comprises a single write, and

Z(H, k, v) = [start(WriteOp(k, v)), fin(WriteOp(k, v))]

A zone is called forward if C ′(H, k, v) contains a ReadOp(k, v) (first case above),
otherwise it is called backward (second case). The functions min and max
applied to a zone denote the leftmost and rightmost points in the zone’s time
interval, respectively.

With Definitions 7–9 in mind, the closed-form mathematical formula for the
scoring function is stated in Theorem 10.

Theorem 10. For any history H, key k accessed in H, and distinct values
v, v′ accessed using key k in H, the scoring function χ(H, k, v, v′) is equal to the
following formula:

1. if Z(H, k, v) and Z(H, k, v′) are both forward zones that overlap, and
WriteOp(k, v) happens before WriteOp(k, v′), then χ(H, k, v, v′) =

min

{
min

(
1

2

(
max(Z(H, k, v))−min(Z(H, k, v′))

)
,
1

2

(
max(Z(H, k, v′))−min(Z(H, k, v))

))
,

max

(
start(WriteOp(k, v′))− fin(WriteOp(k, v)),

1

2

(
max(Z(H, k, v′))−min(Z(H, k, v′))

))}
2. if Z(H, k, v) and Z(H, k, v′) are both forward zones that overlap, and

WriteOp(k, v′) happens before WriteOp(k, v), then the formula is as in
the previous case, with v and v′ interchanged

3. if Z(H, k, v) and Z(H, k, v′) are both forward zones that overlap, and
WriteOp(k, v) is concurrent with WriteOp(k, v), then χ(H, k, v, v′) =

min

{
min

(
1

2

(
max(Z(H, k, v))−min(Z(H, k, v′))

)
,
1

2

(
max(Z(H, k, v′))−min(Z(H, k, v))

))
,

min

(
1

2
(max(Z(H, k, v))−min(Z(H, k, v))) ,

1

2

(
max(Z(H, k, v′))−min(Z(H, k, v′))

))}
4. if Z(H, k, v) is a forward zone, Z(H, k, v′) is a backward zone, and Z(H, k, v)

is a superset of Z(H, k, v′) then χ(H, k, v, v′) =

min

{
1

2

(
max(Z(H, k, v))−max(Z(H, k, v′))

)
,min(Z(H, k, v′))−min(Z(H, k, v))

}
5. if Z(H, k, v′) is a forward zone, Z(H, k, v) is a backward zone, and Z(H, k, v′)

is a superset of Z(H, k, v), then the formula is as in the previous case, with
v and v′ interchanged

6. otherwise
χ(H, k, v, v′) = 0
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Proof. We must show that the given formula indeed equals the regular t-value
of H|k, v, v′.

Case 1: Z(H, k, v) and Z(H, k, v′) are both forward zones that overlap, and
WriteOp(k, v) happens before WriteOp(k, v′). Then there exists a point in time
tc such that WriteOp(k, v) and WriteOp(k, v′) both finish before tc, and such
that there exist reads ReadOp(k, v) and ReadOp(k, v′) that both start after tc.
This scenario, illustrated in Figure 1, constitutes a regularity anomaly, and is

R(k,  v)

Time

W(k, v)

R(k,  v ')W(k, v ')

Z(H, k,  v)

Z(H, k,  v ')

t c

Figure 1: Example scenario in Case 1.

resolved in any t-relaxation where tc does not exist with respect to Ht. There
are three ways in which such a resolution may occur: (i) the t-relaxation narrows
the gap between the writes and the reads by 2t since the response time of the
write is increased by t and the invocation time of the read is decreased by t;
(ii) the t-relaxation turns one of the forward zones into a backward zone; and
(iii) the t-relaxation turns both of the forward zones into backward zones. In
scenario (i), the t-relaxation must be in the following amount:

min

(
1

2
(max(Z(H, k, v))−min(Z(H, k, v′))) ,

1

2
(max(Z(H, k, v′))−min(Z(H, k, v)))

)
Scenario (ii) is applicable only to Z(H, k, v′), since a t-relaxation that con-
verts Z(H, k, v) into a backward zone requires a greater t than the one in sce-
nario (i). In this case t must be at least 1

2 (max(Z(H, k, v′))−min(Z(H, k, v′)))
to make Z(Ht, k, v

′) a backward zone, and at least start(WriteOp(k, v′)) −
fin(WriteOp(k, v)) to allow WriteOp(k, v′) to take effect before WriteOp(k, v).
Thus, scenario (ii) corresponds to a t-relaxation of

max

(
start(WriteOp(k, v′))− fin(WriteOp(k, v)),

1

2
(max(Z(H, k, v′))−min(Z(H, k, v′)))

)
Scenario (iii) need not be considered because the regularity anomaly is resolved
by (i) with a smaller value of t. Thus, the value of the score function χ(H, k, v, v′)
is the minimum of the values for scenarios (i) and (ii), in agreement with the
stated formula.

Case 2: Z(H, k, v) and Z(H, k, v′) are both forward zones that overlap, and
WriteOp(k, v′) happens before WriteOp(k, v). The analysis is analogous to
Case 1 with v and v′ interchanged.
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Case 3: Z(H, k, v) and Z(H, k, v′) are both forward zones that overlap, and
WriteOp(k, v) is concurrent with WriteOp(k, v′). This scenario, illustrated in

R(k,  v)

Time

W(k, v)

R(k,  v ')W(k, v ')

Z(H, k,  v)

Z(H, k,  v ')

t c

Figure 2: Example scenario in Case 3.

Figure 2, constitutes a regularity anomaly similarly to Case 1. A t-relaxation
removes it in one of three scenarios. Scenario (i) is analyzed in the same way
as in Case 1, leading to the same formula:

min

(
1

2
(max(Z(H, k, v))−min(Z(H, k, v′))) ,

1

2
(max(Z(H, k, v′))−min(Z(H, k, v)))

)
Scenario (ii) is applicable only to either Z(H, k, v) or Z(H, k, v′). In this case
t must be at least 1

2 (max(Z(H, k, v))−min(Z(H, k, v))) to make Z(Ht, k, v)
a backward zone, or at least 1

2 (max(Z(H, k, v′))−min(Z(H, k, v′))) to make
Z(Ht, k, v

′) a backward zone. Thus, the relaxation in scenario (ii) is in the
amount of

min

(
1

2
(max(Z(H, k, v))−min(Z(H, k, v))) ,

1

2
(max(Z(H, k, v′))−min(Z(H, k, v′)))

)
Scenario (iii) once again need not be considered because the regularity anomaly
is resolved by (i) with a smaller value of t. Thus, the value of the score function
χ(H, k, v, v′) is the minimum of the values for scenarios (i) and (ii), in agreement
with the stated formula.

Case 4: Z(H, k, v) is a forward zone, Z(H, k, v′) is a backward zone, and
Z(H, k, v) is a superset of Z(H, k, v′). Then WriteOp(k, v) happens before
WriteOp(k, v′), which happens before some ReadOp(k, v). This scenario, il-
lustrated in Figure 3, constitutes a regularity anomaly that can be resolved
using a t-relaxation in two ways: (i) WriteOp(k, v) becomes concurrent with
WriteOp(k, v′); and (ii) the ReadOp(k, v) operation with the latest invocation
time becomes concurrent with WriteOp(k, v′). In scenario (i), the t-relaxation
narrows the gap between the two writes by t, and must be in the amount of

min(Z(H, k, v′))−min(Z(H, k, v))

In scenario (ii), the t-relaxation narrows the gap between WriteOp(k, v′) and
any ReadOp(k, v) by 2t, and must be in the amount of

1

2
(max(Z(H, k, v))−max(Z(H, k, v′)))
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R(k,  v)

Time

W(k, v)

W(k, v ')

Z(H, k,  v)

Z(H, k,  v ')

Figure 3: Example scenario in Case 4.

Thus, the value of the score function χ(H, k, v, v′) is the minimum of the values
for scenarios (i) and (ii), in agreement with the stated formula.

Case 5: Z(H, k, v′) is a forward zone, Z(H, k, v) is a backward zone, and
Z(H, k, v′) is a superset of Z(H, k, v). The analysis is analogous to Case 4 with
v and v′ interchanged.

Case 6: Under any other combination of Z(H, k, v) and Z(H, k, v′), it is
straightforward to show that H|k, v, v′ is regular. In particular, the regular
total order over operations is obtained by first arranging a regular permutation
of the operations in the zone with the smaller min endpoint, followed by a regular
permutation of the operations in the other zone. Thus, the regular t-value of
H|k, v, v′, and hence the scoring function χ(H, k, v, v′), is zero.

4. Spectral Shifting

In this section we present a framework called SPECSHIFT for trading off
operation latency against consistency by slowing down operations using arti-
ficial delays [10, 3]. Such explicit delays are similar qualitatively to implicit
delays arising from client-server interactions in distributed protocols, for exam-
ple where a process requests data from a majority quorum of replicas instead
of reading or writing locally. Specifically, longer delays tend to improve consis-
tency similarly to larger partial quorums [11]. In eventually consistent systems
where replicas are updated asynchronously, an artificial delay equal to the sum
of the processing delay and one-way network delay is, informally speaking, suffi-
cient to counteract the latency of the replication protocol and ensure regularity.
In comparison, quorum operations require two network delays or one round
trip. However, if the network and processing delays are unbounded in the worst
case, protocols based on artificial delays cannot guarantee regularity determin-
istically, in contrast to quorum-based protocols. Instead, artificial delays can
in some cases provide an attractive probabilistic consistency-latency trade-off
whereby regularity is attained for a large fraction of the workload at a latency
that is substantially lower than using quorum operations.

Our approach to probabilistic consistency-latency tuning is a feedback con-
trol mechanism that combines empirical measurement with probabilistic analy-
sis. Before explaining the details, we first introduce some relevant definitions.
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Definition 11. Let H be a history of operations on key k where m distinct
values are written: v1, v2, ..., vm. Let χi denote the score χ(H, k, vi) for i ∈
[1,m] (see Definition 3). Let φ(H) = m denote the total number of scores
for H, counted with multiplicity. The frequency of a score j ∈ Z≥0, denoted
freq(j,H) is the number of scores in χ1, χ2, ..., χm equal to j. The score set
S(H) = {χ1, χ2, ...., χm} is the set of unique scores in a history H.

Definition 12. The score histogram for a given history H of operations is a
collection of bins, b0, b1, ..., bmax(S(H)), where bin bi = freq(i,H) for 0 ≤ i ≤
max(S(H)).

The score histogram captures the full “spectrum” of regularity anomalies
arising in a history H, and enables a precise calculation of the optimal artificial
delay (AD) with respect to a given consistency target defined as a particular
proportion of positive scores. The actual proportion of positive scores in a his-

tory H is denoted by I(H) = φ(H)−freq(0,H)
φ(H) , and may be higher than or lower

than the target. If I(H) exceeds the target then the AD must be increased to
boost consistency at the expense of greater latency. On the other and, if I(H)
is below the target then the AD can be decreased to reduce latency while main-
taining the desired level of consistency. The optimal AD establishes equality
between I(H) and the target, and may change in response to variations in net-
work conditions and the workload mixture. For example, a rise in the network
delay or processing delay due to a load spike may increase the optimal AD,
requiring more latency to meet the same consistency target, whereas a decrease
in the arrival rate of storage operations may lower the optimal AD, allowing a
latency reduction.

The tuning framework injects the computed artificial delay d at the end of
a WriteOp and at the beginning of a ReadOp, which stretches the boundaries of
these operations. In practical terms, this is achieved by a adding a thin layer
of software on top of a distributed storage system that delays the execution or
reads and the response of writes either at clients or at servers. The effect of
the AD on the consistency of the storage system is analogous to a t-relaxation
(see Definition 1) with t = d. Specifically, a t-relaxation reduces the score
χ(H, k, v, v′) (and similarly χ(H, k, v)) by t time units if the score was > t, or
else reduces the score to zero if it was ≤ t, and so we expect intuitively that an
AD of d = t time units should have a similar effect on the actual behavior of the
storage system. Thus, reasoning precisely about t-relaxations, which operate on
histories at a conceptual level, allows us to compute the optimal AD, which in
turn alters the histories actually generated by the storage system.

Using the above observation, we can roughly predict the effect of an AD of
d milliseconds on the shape of the score histograms generated by the storage
system. If we were to plot the histograms for a history H obtained from the
system without ADs, and for a history H ′ obtained with ADs of d time units,
we would expect the histogram for H ′ to resemble the “tail” of the histogram
for H comprising bins bd+1, bd+2, .... In other words, we expect an AD of d
time units to shift the spectrum of scores to the left by d bins, hence the name
spectral shifting.
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Definition 13. For a given history H and any i, d ∈ Z≥0, the shifted frequency
of j is defined as:

freq-s(i,H, d) =

{ ∑d
j=0 freq(i+ j,H) if i = 0

freq(i+ d,H) otherwise

In general, our tuning framework cannot assume that the initial AD is zero
since it must be capable of tuning the delay in either direction from an arbitrary
starting point, as required to keep up with a dynamically changing environment.
Thus, the goal is to predict the score histogram for a history H ′ obtained using
an AD of d′ time units, given as input the score histogram for a history H
obtained using an AD of d time units. We refer to d as the base delay, and d′

as the target delay.
Consider first the case where d ≤ d′. The predicted score histogram for H ′

has a frequency of freq-s(i,H, d′ − d) for a score i ∈ Z≥0. The accuracy of
the prediction is contingent on H and H ′ reflecting, informally speaking, the
same workload, meaning that the read and write invocation rates and inter-
invocation times are identically distributed. We expect this correspondence to
hold approximately in an open system where the latency of operations does
not affect the random process that generates these operations. (We comment
on open versus closed systems in greater detail later on in Section 5.) The
proportion of positive scores for H ′ can then be predicted using the following
formula:

I ′(H, d) =
φ(H)− freq-s(0, H, d′ − d)

φ(H)

Figure 4 illustrates spectral shifting by presenting score histograms for two
histories obtained with AD = 0ms and 15ms. The histogram on the right roughly
resembles the tail of the histogram on the left, starting at bin 15. We observe
that lower scores have higher frequency and vice-versa. Both the histograms
have long tails, indicating that large scores, though rare, exist. Most of the area
of both histograms is concentrated towards the left, which indicates that most
of the regularity anomalies can be eliminated with smaller delays. However,
as we increase the value of the injected AD, there is a diminishing return in
terms of reduction in the proportion of positive scores. To eliminate all anoma-
lies, we would have to inject a relatively large AD, resulting in a considerable
sacrifice in terms of operation latencies. This underscores the need for intelli-
gent consistency-latency tuning to find the optimal AD to be injected without
sacrificing latency needlessly.

The case when d > d′ (i.e., the base delay exceeds the target delay) is, on
first impression, similar to the case when d < d′ since it entails shifting the
score histogram in the opposite direction, namely from left to right. However,
we cannot simply apply the spectral shifting technique in reverse because the
freq-s function (see Definition 13) is undefined in this case. More concretely,
freq-s does not determine frequencies for new bins that appear at the left end of
the score spectrum following a shift, whereas in the previous case this frequency

11



 0

 100

 200

 300

 400

 500

 600

 700

 10  20  30  40  50  60  70  80  90  100

Fr
e
q

u
e
n
cy

Score (ms)

Frequency of positive scores, artificial delay (AD) = 0ms

 0

 100

 200

 300

 400

 500

 600

 700

 10  20  30  40  50  60  70  80  90  100

Fr
e
q

u
e
n
cy

Score (ms)

Frequency of positive scores, artificial delay (AD) = 15ms

Figure 4: Histograms illustrating the effect of increasing the artificial delay (AD) on the
frequency of non-zero χ(H, k, vi) scores. (Left: AD = 0ms. Right: AD = 15ms.)

was known to be zero for any bins inserted to the right of the tail. We describe
a solution to this problem in the next section.

4.1. Inner-Outer Consistency

Outer Operation

Inner Operation

d

d d

Time

WriteOp(k, 1) ReadOp(k, 1)

ReadOp(k, 0)

Figure 5: Example of inner and outer opera-
tions with an artificial delay of d.

To enable bidirectional spectral
shifting, we propose a novel technique
that captures additional information
in the operation history H, enabling
a transformation from H to a his-
tory H ′ that has the same read and
write invocation rates as well as inter-
invocation times, and where the AD is
zero. Recall from earlier in Section 4
that the ADs are injected at the be-
ginning of a ReadOp and at the end
of a WriteOp. For read operations,
our technique records the time when
the AD finishes at the beginning of a
ReadOp, in addition to the start and finish times. For writes, we record the
time when the AD starts at the end of a WriteOp. We use these additional
timestamps to define inner and outer operations:

Definition 14. The inner operation for a given ReadOp(k, v) with an injected
AD of d is an operation reading v from k in the time interval [start(ReadOp(k, v))+
d, fin(ReadOp(k, v))]. ReadOp(k, v) is the outer operation in this context.

Definition 15. The inner operation for a given WriteOp(k, v) with an injected
AD of d is an operation writing v to k in the time interval [start(WriteOp(k, v)),
fin(WriteOp(k, v))− d]. WriteOp(k, v) is the outer operation in this context.

Figure 5 illustrates inner and outer operations in a history H comprising
one write and two reads with an AD of d. All three operations are on the same
key k with an initial value of 0. The outer operations form a regular history
because WriteOp(k, 1) is concurrent with ReadOp(k, 0), which allows the read
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to return the initial value. However, the history of inner operations, which is
similar to H but with an AD of 0 instead of d, has one consistency anomaly
because WriteOp(k, 1) happens before ReadOp(k, 0).

4.2. Adaptive Tuning Framework

We can use SPECSHIFT to construct an adaptive tuning framework that
adjusts ADs to meet a target proportion of consistency anomalies while min-
imizing the ADs to reduce average operation latency. For each iteration of
tuning, we take a history of operations H, the current AD d injected to each
operation, and a target proportion of positive scores Pt as input. We use these
inputs to predict the target AD dt required to achieve the target proportion Pt.
A new history H ′ is then recorded under the updated AD dt, and the inputs
for the next iteration are dt, H

′ and Pt. The process is repeated in a loop until
convergence to Pt occurs. The framework uses both physical artificial delays for
controlling the behavior of the storage system with respect to consistency and
latency, and conceptual artificial delays while reasoning about t-relaxations to
compute the optimal correction to the length of the physical delay.

The calculation of dt given Pt is the dual problem of the one solved by SPEC-
SHIFT, which predicts the proportion of positive scores from the delay. We solve
the dual problem as follows, with H denoting the most recently measured his-
tory and d denoting the current delay. If the proportion P (H) of positive scores
for H matches the target Pt then d is optimal and dt = d. If P (H) > Pt, then d
is too small, and must be increased. Then dt is computed (as explained shortly)
using the outer operations in H. On the other hand, if P (H) < Pt, then d is
too large, and must be decreased. Then dt is computed using the history Hinner

of inner operations in H. The adjustment to the delay is determined using the
following function, with either H itself or Hinner used as the input history G:

Definition 16. For a history G of operations and a target proportion (of positive
scores) of Pt, the delay prediction function D(G,Pt) is defined as the smallest
non-negative integer dp that satisfies the following inequality:

dp−1∑
i=1

freq(i, G) ≤ φ(G)− freq(0, G)− Pt × φ(G) ≤
dp∑
i=1

freq(i, G)

The intuition underlying Definition 16 is as follows. The number of positive
scores in the input history G is equal to φ(G) − freq(0, G). In comparison,
the desired number of positive scores to meet the target Pt is Pt × φ(G). The
difference between φ(G) − freq(0, G) and Pt × φ(G) is positive by our choice
of G, and represents the number of additional positive scores that must be
eliminated by adjusting the delay. A delay adjustment of +bp is predicted to
eliminate positive scores in bins b1, b2, ..., bp, and so a rolling total over bi yields
the minimum dp that is sufficient to reduce the proportion of positive scores
below Pt.

The output dp of the delay prediction function is applied as follows to com-
pute the target delay dt for the next round of consistency-latency tuning. If G
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comprises the outer operations of H (d too small), then dt = d+ dp, otherwise
G comprises the inner operations of H (d too large) and dt = dp.

5. Experimental Evaluation

In this section we compare the convergence of the SPECSHIFT adaptive
tuning framework, the PCAP multiplicative control loop [3], and a binary search
for the optimal AD over the constrained range [0, 71] using a Apache Cassandra
deployed in Amazon’s Elastic Compute Cloud (EC2). Six Cassandra servers
were deployed across three Amazon regions: Oregon, Ireland, and Tokyo.

We ran 20 experiments on a Cassandra cluster, each with a distinct positive
integer value of starting delay in the range [0, 90] and a target proportion of
consistency anomalies in the range of [0.02, 0.05]. The target proportions are
chosen to be small enough to be tolerated in a real-world application. The
starting delays are chosen to always be less than the largest one-way network
delay between regions, which is 106 ms (between Ireland and Tokyo).

SPECSHIFT, PCAP, and binary search are all implemented as feedback
control loops that first measure consistency in a given iteration while holding
the AD constant, and then compute an adjusted AD for the next iteration. Each
iteration is run for 30 seconds with a throughput of 6000 operations/s and a read-
to-write proportion of 0.8. The workload is generated using the Yahoo Cloud
Serving Benchmark (YCSB), and keys are drawn from the “latest” distribution,
which favors recently chosen keys. We use the number of iterations required
by each technique to obtain convergence to within 0.005 of the desired target
proportion as the figure of merit for comparisons.

The PCAP multiplicative loop operates by starting with a unit step size and
increasing it exponentially at each iteration until the control loop overshoots or
undershoots, at which point the direction of the steps is reversed and the step
size is reset to unity. The search interval selected for binary search is based on
the intuition that the proportion of consistency anomalies is very close to zero
when every operation is delayed by the sum of the one-way network delay and
processing delay. Thus, the optimal AD to achieve a non-zero target proportion
usually lies between 0 and the latter quantity.

We also experimented with a proportional-integral-differential (PID) con-
troller for consistency-latency tuning, but this technique involves tuning addi-
tional control parameters kp, kd and ki. Convergence, if achieved, with the
values of these parameters suggested in [3] (kp = 1, kd = 0.8, ki = 0.5) is
extremely slow and so we have omitted the results.

Figures 6 and 7 illustrate the details for two of the 20 experiments. The tar-
get proportion is denoted by a solid horizontal line in the plots. Figure 6 shows
the proportion of positive scores and the delay at each iteration on the vertical
axis for a starting delay of 0 and a target proportion of 0.05. Figure 7 shows the
same for a starting delay of 75 ms and a target proportion of 0.03. In both cases
SPECSHIFT converges in one iteration, using outer operations in Figure 6 and
inner operations in Figure 7 to compute the AD adjustment. PCAP is prone
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Figure 6: Convergence comparison for target proportion = 0.05, starting AD = 0.
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Figure 7: Convergence comparison for target proportion = 0.03, starting AD = 75 ms.

to oscillations and requires more than ten iterations to converge in the first case
(Figure 6), though it reaches very close to the target value at the eighth iteration.
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Figure 8: Boxplots showing number of itera-
tions required for convergence by different tun-
ing mechanisms over 20 experiments.

Binary search is more predictable,
and either meets or beats the perfor-
mance of PCAP. Binary search and
PCAP converge faster in the second
experiment, partly because the initial
and optimal delays are less far apart.
The number of iterations required by
these two techniques is more sensitive
to the specific values of the starting
delay and the target proportion.

Figure 8 presents data for all 20
runs of the experiment, and shows
that the PCAP multiplicative loop
takes anywhere between 1 to 15 it-
erations to converge, with the mean
value between 7 and 8. Binary search
takes anywhere between 4 to 7 iterations to do the same, with a mean of al-
most 6. SPECSHIFT, however, takes only one iteration to converge in the vast
majority of runs. The plots in Figure 8 shows outliers for SPECSHIFT and
binary search. Outliers are defined as values that lie more than one and a half
times the length of the box from either end of the box, as is the norm with
box-and-whisker plots.

As pointed out earlier in Section 4, the accuracy of the prediction at each
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Figure 9: Convergence comparison for closed system analogous to Figure 6.

iteration of SPECSHIFT is contingent on the workload not changing across
iterations. In the experiments above, we have assumed an open system where
the overall throughput of the system remains unchanged at 6000 ops/s even if
the latencies of individual operations vary due to variations in the injected ADs.
Figure 9 presents an experiment which compares the three techniques in a closed
system, where the individual storage servers operate at peak throughput and
the overall throughput of the system decreases with an increase in operation
latencies. The throughput drops by half (from 22 kops/s to 11 kops/s) between
the starting point of each adaptive loop in figure 9 (AD = 0) and their point
of convergence (AD roughly equal to 46ms). The starting delay and target
proportion are as in Figure 6. Though SPECSHIFT takes one extra iteration
(2 iterations total) to converge in this case, it still converges much more rapidly
than PCAP (9 iterations) and constrained binary search (5 iterations).

Overall, SPECSHIFT exhibits the best convergence of the three control loops
because it exploits the special structure of the tuning problem by examining the
score histograms carefully at each iteration. The other two techniques are more
general, but converge more slowly because they make decisions using a small
subset of the information harvested using consistency measurements in each iter-
ation, namely the proportion of positive scores. PCAP is based on the principle
that the consistency target can be reached more quickly using larger steps, and
indeed it crosses the horizontal line representing the target in Figures 6 and 7
about as quickly as binary search, but this does not guarantee fast convergence.
At the point where PCAP crosses the target, its step size is relatively large
and so it tends to undershoot or overshoot, leading to oscillations. In contrast,
binary search uses larger steps initially and then smaller steps as it nears the
target, similarly to SPECSHIFT in cases where it requires multiple iterations.
The main drawback of binary search is that it must be restarted from the be-
ginning if the optimal delay changes, for example due to a load spike, which
causes disruption as the initial artificial delay can be far from optimal. SPEC-
SHIFT and PCAP minimize disruption by adapting continuously, and are more
appropriate in a practical environment.
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6. Related Work

Recent research on consistency in distributed storage systems has addressed
the classification of consistency models, consistency measurement, and the de-
sign of storage systems that provide precise consistency guarantees. This body
of work is influenced profoundly by Brewer’s CAP principle, which states that a
distributed storage system must make a trade-off between consistency (C) and
availability (A) in the presence of a network partition (P) [12]. The trade-off
between consistency and latency is orthogonal to CAP, and comes into consid-
eration even in the absence of failures [13].

Distributed storage systems use a variety of designs that achieve differ-
ent trade-offs with respect to CAP. Amazon’s Dynamo [1] and its derivatives
(e.g., Cassandra [14], Voldemort and Riak) use a quorum-based replication
scheme [15, 16] that can operate either in CP (i.e., strongly consistent but
sacrificing availability) or AP (i.e., highly available but eventually consistent)
mode depending on the size of the partial quorum used to execute read and
writes, which is determined by client-side consistency settings. Other designs
lack such tuning knobs and instead guarantee various forms of strong consis-
tency [17, 18, 19, 20]. A handful of systems allow users to declare requirements
with respect to consistency, and adjust parameters internally to fulfill these
requirements when possible [21, 22, 2, 23].

Measuring consistency precisely is difficult because consistency anomalies
arise from the interplay between multiple storage operations. As a result, some
experimental studies measured the convergence time of the replication protocol,
which is easier to quantify, rather than consistency actually observed by client
applications (e.g., [24, 25]). Other works quantify the observed consistency by
counting cycles in a dependency graph that represents the interaction of read
and write operations, which is less intuitive than expressing staleness in units of
time [26, 27]. This difficulty can be overcome by defining staleness precisely in
terms of the additional amount of latency that must be added to storage opera-
tions to resolve consistency anomalies [9], which makes it possible to capture in
natural way the consistency actually observed by client applications. The con-
sistency metric used in this paper is an adaptation of this technique whereby
consistency is defined relative to Lamport’s regularity property [5]. The gener-
alization of regularity to multiple writers used in this paper resembles closely
the “MWRegWO” property introduced by Shao et al. in [28].

Mathematical models of consistency are generally rooted in the notion of
probabilistic quorums [29, 30]. The basic model assumes that each read and
write operation accesses a quorum chosen according to a randomized strategy,
and no attempt is made to push updates to replicas outside of a write quorum.
Thus, the probability that a read quorum intersects with the quorum of a past
write operation depends only on the chosen strategy and the number of other
write operations applied subsequently. The probabilistically bounded staleness
(PBS) model of Bailis et al. matches more closely the behavior of a Dynamo-
style storage system, and predicts the probability of reading a stale value t time
units after a single write operation is applied [31].
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Several lower and upper bounds are known on the latency of operations
on read/write registers simulated using message passing. Lipton and Sandberg
show that the sum of read and write latencies for a sequentially consistent regis-
ter cannot be less than the one-way network delay in the worst case [32]. Attiya
and Welch strengthen this result and prove a matching upper bound for lin-
earizability in a model with timing assumptions [33]. These results separate
protocols that use timing assumptions in the absence of failures, where one net-
work delay suffices, from fault-tolerant asynchronous quorum-based protocols,
which incur two network delays (one round trip) to access a quorum of replicas.

Adaptive consistency-latency tuning using artificial delays is proposed in two
prior projects. Golab and Wylie propose consistency amplification, a feedback
control mechanism for supporting probabilistic consistency guarantees by in-
jecting artificial client-side or server-side delays whose duration is determined
using consistency measurements [10]. This framework specifies concrete consis-
tency metrics (based on [9]) for quantifying the consistency-latency trade-off,
but does not state precisely how the delay should be calculated. Rahman et al.
present a similar system called PCAP, where delays are calculated using known
techniques: multiplicative and proportional-integral-derivative (PID) feedback
control [3]. Their consistency metric ignores write latency and assumes that
writes take effect in the order of invocation, hence lacks a precise connection
to Lamport’s formalism [5]. An earlier thesis by Nguyen demonstrates that the
multiplicative control loop used in PCAP is prone to oscillations, and fails to
converge at all in some runs even if the optimal delay duration is constant [34].

7. Discussion and Conclusion

In this paper we proposed and evaluated a framework for tuning the prob-
abilistic consistency-latency trade-off in eventually consistent storage systems.
Our novel spectral shifting technique analyzes the structure of the underlying
optimization problem carefully to reach convergence in a much smaller number
of iterations than a competing solution based on a multiplicative control loop
[3]. The feedback control approach in general requires collecting operation his-
tories at each iteration of the loop, which can lead to a performance bottleneck.
A workaround is to collect histories for a subset of the keys and run the tuning
framework at each iteration on the sample history. However, the correctness of
predictions in this case would depend on the quality of sampling. The frame-
work described in [3] addresses this problem to some extent by injecting storage
operations artificially to gather consistency measurements at each data center,
and by combining these measurements using mathematical composition rules.
However, the effect of the workload on consistency is modeled less accurately in
this approach, leading to a potentially sub-optimal consistency-latency trade-off.
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