
Brief Announcement: The Recoverable Consensus Hierarchy
Wojciech Golab

∗

University of Waterloo, Department of Electrical and Computer Engineering

Waterloo, Ontario, Canada

wgolab@uwaterloo.ca

ABSTRACT
Herlihy’s consensus hierarchy ranks the power of various syn-

chronization primitives for solving consensus in a model where

asynchronous processes communicate through shared memory, and

may fail by halting. This paper revisits the consensus hierarchy in a

model with crash-recovery failures, where the specification of con-

sensus, called recoverable consensus in this paper, is weakened by

allowing non-terminating executions when a process fails infinitely

often. Two variations of this model are considered: with indepen-

dent process failures, and with simultaneous (i.e., system-wide)

process failures. We prove two fundamental results: (i) Test-And-

Set is at level 2 of the recoverable consensus hierarchy if failures

are simultaneous, and similarly for any primitive at level 2 of the

traditional consensus hierarchy; and (ii) Test-And-Set drops to level

1 of the hierarchy if failures are independent, unless the number of

such failures is bounded. To our knowledge, this is the first sepa-

ration between the simultaneous and independent crash-recovery

failure models with respect to the computability of consensus.

CCS CONCEPTS
• Theory of computation→ Shared memory algorithms.

KEYWORDS
concurrency; shared memory; consensus; fault tolerance; theory

ACM Reference Format:
Wojciech Golab. 2019. Brief Announcement: The Recoverable Consensus

Hierarchy. In 2019 ACM Symposium on Principles of Distributed Computing
(PODC’19), July 29–August 2, 2019, Toronto, ON, Canada. ACM, New York,

NY, USA, 3 pages. https://doi.org/10.1145/3293611.3331574

1 INTRODUCTION
Herlihy’s consensus hierarchy [4] ranks the power of synchroniza-

tion primitives for solving consensus – a problem where processes

agree on a decision chosen from a set of proposed values. The posi-

tion of a primitive P in the hierarchy is defined by its consensus num-
ber – the largest n such that P used in conjunction with read/write

registers solves n-process consensus in the asynchronous shared

∗
Author supported in part by an Ontario Early Researcher Award, and by a Google

Faculty Research Award.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331574

memory model with permanent crash failures. Test-And-Set (TAS)

is at level two of this hierarchy as it can be used to solve 2-process

(but not 3-process) consensus: a TAS object is initialized to 0, each

process then announces its proposal in a shared read/write regis-

ter, executes a TAS operation, returns its own proposal if it wins,

and returns the proposal of the other process if it loses. Motivated

by the possibility of recovering program state from non-volatile

main memory (NVRAM) after a failure, we revisit the consensus

hierarchy in a crash-recovery model where a failure merely resets

the private variables of a process (including its program counter)

to their initial values, and preserves the state of shared variables.

Building on the results of Berryhill, Golab, and Tripunitara [2],

who proved that consensus remains sufficiently powerful to im-

plement any shared object type for any number of processes in

the crash-recovery failure model, we consider solutions of the re-
coverable consensus (RC) problem. RC is a natural adaptation of

consensus to crash-recovery failures that relaxes wait-freedom by

allowing non-terminating executions in cases where failures occur

infinitely often. The correctness properties of RC are defined as

follows:

(1) Agreement: distinct processes never output different deci-
sions.

(2) Validity: each decision returned is the proposal value of some

process.

(3) Recoverable wait-freedom: each time a process executes its

algorithm from the beginning, it either returns a decision

after a finite number of its own steps, or crashes.

The recoverable consensus hierarchy is the analog of the traditional

consensus hierarchy for the RC problem in the crash-recovery

model, and defines (recoverable) consensus numbers for a variety

of shared object types and synchronization primitives. We establish

two fundamental results with respect to the position of TAS in this

new hierarchy: (i) TAS is at level 2 if failures are simultaneous, and

similarly for any primitive at level 2 of the traditional consensus

hierarchy; and (ii) TAS drops to level 1 if failures are independent,

unless the number of such failures is bounded. Intuitively, our

result captures the observation that when failures are simultaneous,

a process recovers with more information regarding the states

of other processes than when failures are independent. To our

knowledge, this is the first separation between the simultaneous

and independent crash-recovery failure models with respect to the

computability of consensus.

2 RESULTS FOR SIMULTANEOUS FAILURES
This section presents a technique for transforming any 2-process

conventional consensus algorithm into a 2-process RC algorithm

that tolerates arbitrarily many simultaneous crash-recovery fail-

ures. The transformation is presented in detail in Figure 1. It uses

https://doi.org/10.1145/3293611.3331574
https://doi.org/10.1145/3293611.3331574

PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada Wojciech Golab

Shared variables:
• P[1..2]: array of proposal values, init ⊥
• C: conventional wait-free 2-process consensus object
• D: decision, init ⊥

Private variables:
• other: process ID
• d : decided value

Procedure Decide(v : proposal value) for proc. pi , i ∈ 1..2

1 if i = 1 then other := 2 else other := 1

2 if P[i] = ⊥ ∧ P[other] = ⊥ then
3 P[i] := v

4 d := C .Decide(v)
5 D := d

6 return d

7 else if D , ⊥ then
8 return D

9 else if P[i] , ⊥ ∧ P[other] = ⊥ then
10 return P[i]

11 else if P[i] = ⊥ ∧ P[other] , ⊥ then
12 return P[other]
13 else // P[i] , ⊥ ∧ P[other] , ⊥

14 return P[1]

Figure 1: Transformation from 2-process conventional con-
sensus to 2-process recoverable consensus.

a shared array P[1..2] to announce proposals, a conventional 2-

process consensus algorithm C to reach agreement in some scenar-

ios (e.g., failure-free executions), and a shared variable D to record

the decision value computed using C .
Starting from the initial state where both elements of P[1..2] are

initialized to ⊥, process pi records its proposal, executes C , and
records the outcome in D (lines 2–6). Assuming that some process

completes line 5, recovery from a failure is achieved easily by re-

turning the value saved in D (lines 7–8). However, recovery from a

failure prior to line 5 is more difficult because if the failure occurred

while some process pi was at line 4 then the algorithm must guar-

antee that pi does not access C incorrectly (i.e., by resuming the

interrupted execution of C .Decide from the beginning). Recovery

in this scenario is accomplished by case analysis. If a failure occurs

before any process has completed line 3, then the execution path

on recovery is identical to the failure-free path since P[1..2] and C
remain in their initial states. On the other hand, if some process

did complete line 3, then the algorithm terminates after a bounded

number of read operations, without updating shared memory. If

exactly one element of P[1..2] is ⊥ (lines 9–12) then the algorithm

returns the unique recorded proposal. Finally, if both elements of

P[1..2] are non-⊥, then the algorithm makes an arbitrary but deter-

ministic choice among these two proposal values and returns the

chosen one (lines 13–14).

The correctness properties of the algorithm are captured in The-

orem 2.1, whose detailed proof appears in [3].

Theorem 2.1. The algorithm shown in Figure 1 satisfies agreement,
validity, and recoverable wait-freedom.

Because the non-recoverable consensus algorithm C can be im-

plemented in a wait-free manner using TAS, as explained in Sec-

tion 1, Theorem 2.1 implies that TAS is at level 2 (or higher) of the

RC hierarchy if failures are simultaneous.

3 RESULTS FOR INDEPENDENT FAILURES
3.1 Solution for Finitely Many Failures
This section presents a technique for transforming any n-process
conventional consensus algorithm into an n-process recoverable
consensus algorithm that tolerates up to a (predefined) number f
of independent crash-recovery failures. The transformation is pre-

sented in detail in Figure 2, and uses f + 1 instances of the conven-
tional consensus algorithm denoted by the array C[0.. f]. To a first

approximation, the transformation works by having each process

pi access the f +1 consensus algorithms in a for loop at line 15 until

the Decide procedure is executed to completion without failing.

The array R[1..n] is used at line 16 and line 17 to determine which

consensus algorithm in the array C[0.. f] will be accessed in the

next iteration by each process, and hence to avoid unsafe access to

these base objects. Assuming that there are at most f failures, this

strategy ensures that pi eventually computes a decision because the

total number of iterations required is at most f + 1. The main tech-

nical challenge lies in ensuring agreement in cases when processes

compute decisions in different iterations, using distinct instances

of the conventional consensus algorithm. This is accomplished by

a pair mechanisms working in synergy.

In the first mechanism, a process pi that is executing iteration k
of the outer for loop checks at lines 18–20 whether a decision was

reached in a lower-numbered iteration usingC[k ′] for some k ′ < k ,
and recorded in D[k ′] at line 22, before pi proceeds to execute the

consensus algorithm C[k] at line 21. If D[k ′] holds such a decision

value then pi adopts this value in lieu of its own proposal at line 20.

This statement is inside the inner for loop and may be executed

multiple times in one iteration of the outer for loop, in which case

pi adopts the decision value corresponding to the largest possible

k ′. This mechanism alone is not sufficient, however, since a race

can occur between a process that is about to write D[k − 1] and a

process that is about to access C[k].
The second mechanism deals with the above race condition at

lines 23–26 by inspecting the elements of array R[1..n] belonging
to other processes. If pi finds some element R[z], z , i , holding an
integer larger than R[i], then pz is at least one iteration ahead of pi .
In this case pi “forgets” the decision it computed earlier at line 21

by resetting the private variable d at line 26, and continues to the

next iteration of the for loop; the conditional statement at line 27

bypasses the return statement at line 28. If pi does not find such a

process pz , then pi reaches line 28, where it returns the decision it

computed in the current iteration of the outer for loop. The two

mechanisms combined ensure agreement despite the possibility

that the consensus algorithms C[0.. f] may not all reach the same

decision.

The correctness properties of the algorithm are captured in The-

orem 3.1, whose detailed proof appears in [3].

Brief Announcement: The Recoverable Consensus Hierarchy PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

Shared variables:
• R[1..n]: array of read/write register, init 0
• C[0.. f]: array of conventional wait-free n-process consensus
objects

• D[0.. f]: array of read/write register, init ⊥

Private variables:
• k,k ′: integers, uninitialized
• d : decision value, uninitialized

Procedure Decide(v : proposal value) for proc. pi , i ∈ 1..n

15 for k in 0.. f do
16 if R[i] = k then
17 R[i] := k + 1

// check for a decision in a

lower-numbered iteration

18 for k ′ ∈ 0..(k − 1) do
19 if D[k ′] , ⊥ then
20 v := D[k ′]

21 d := C[k].Decide(v)
22 D[k] := d

// check for a collision with a

higher-numbered iteration

23 if k < f then
24 for z ∈ 1..n, z , i do
25 if R[z] > R[i] then
26 d := ⊥

// return decision if known

27 if d , ⊥ then
28 return d

Figure 2: Transformation from n-process conventional con-
sensus to n-process recoverable consensus (≤ f failures).

Theorem 3.1. The algorithm shown in Figure 2 satisfies agreement,
validity, and recoverable wait-freedom in every execution with at most
f failures.

3.2 Impossibility Result for Test-And-Set
Any impossibility result for solving consensus in the conventional

asynchronous model with halting failures (or without failures) ap-

plies also to solving RC in the asynchronous model with crash-

recovery failures. This is because any execution that is possible in

the conventional model is also admissible in the crash-recovery

model, and because a violation of wait-freedom in such an execu-

tion implies a violation of recoverable wait-freedom as well. Thus,

the position of a primitive in the RC hierarchy cannot be higher

than its position in the traditional consensus hierarchy [4]. In par-

ticular, TAS can be no higher than at level 2 in the RC hierarchy,

and so the analysis from Section 2 implies that TAS is precisely

at level 2 for simultaneous failures. In this section, we extend and

complete the latter result by settling the position of TAS in the RC

hierarchy for independent crash-recovery failures.

Theorem 3.2. The 2-process RC problem cannot be solved using
readable Test-And-Set objects and read/write registers if failures are
independent.

Proof sketch. We suppose for contradiction that such a solu-

tion does exist. The proof uses a valency argument inspired by

Herlihy’s [4] and adapted to work in the crash-recovery model.
1

A restricted subset of executions is considered where only one

designated process p1 may crash, and only in states satisfying two

criteria: (i) p1’s previous step was the first TAS operation by p1 on
some TAS object; and (ii) the same TAS object has been accessed

by p2 as well. Following the standard argument, processes p1 and
p2 take steps until a bivalent state s is reached where every enabled
step is a decision step (i.e., leads to a univalent state). Recoverable

wait-freedom ensures that this construction terminates eventually,

as otherwisep1 crashes infinitely often, in which casep2 is stuck for-
ever without crashing because each crash by p1 is associated with a

distinct step by p2. Moreover, p1 and p2 are enabled to take decision
steps leading to a v1-valent and v2-valent state, respectively, for
some v1 , v2. These decision steps must be TAS operations on the

same shared object that is in its initial state of 0, which implies that

p1 has not yet applied a TAS to this object. If p1 takes its decision
step followed by p2, and then p1 crashes, we arrive at a v1-valent
state s1. Similarly, if p2 takes its decision step followed by p1, and
then p1 crashes, we arrive at a v2-valent state s2. The states s1 and
s2 are indistinguishable to p1, and a contradiction is then reached

following the standard argument since v1 , v2. □

The extended version of this paper [3] uses an alternative form

of the above proof to relate the number of TAS objects used by

a recoverable consensus algorithm to the maximum number of

failures it can tolerate:

Theorem 3.3. For any integer f > 0, there is no algorithm that
uses at most f readable Test-And-Set objects and any number of
read/write registers, and solves 2-process recoverable consensus in
executions with up to f independent failures.

Theorem 3.3 implies that the transformation shown in Figure 2

is optimal as it can be instantiated to use f +1 TAS-based conven-

tional 2-process consensus objects to solve 2-process recoverable

consensus in executions with up to f independent failures.

REFERENCES
[1] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe recoverable

linearizability: Modular constructions for non-volatile memory. In Proc. of the
2018 ACM Symposium on Principles of Distributed Computing (PODC), pages 7–16,
2018.

[2] Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects

for non-volatile main memory. In Proc. of the 19th International Conference on
Principles of Distributed Systems (OPODIS), pages 20:1–20:17, 2016.

[3] Wojciech Golab. Recoverable consensus in shared memory. CoRR, 2018. URL
https://arxiv.org/abs/1804.10597.

[4] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124–149, 1991.

1
Attiya, Ben-Baruch, and Hendler developed a similar proof technique in parallel with

our work, in the context of Nesting-Safe Recoverable Linearizability [1]. They use a

more specialized notion of valency that captures the possible outputs of an algorithm

in failure-free execution fragments. A state that is univalent in their analysis can be

either univalent or bivalent according to our definition.

https://arxiv.org/abs/1804.10597

	Abstract
	1 Introduction
	2 Results for Simultaneous Failures
	3 Results for Independent Failures
	3.1 Solution for Finitely Many Failures
	3.2 Impossibility Result for Test-And-Set

	References

