
PERSISTENT MEMORY

EMULATION

&

PROGRAMMING

Diego Cepeda

August 2, 2019

dcepeda@uwaterloo.ca

PERSISTENT MEMORY

• Pmem has hybrid properties of volatile

memory and disk storage.

• Being a new technology not everyone can

have access to machines that use Pmem.

• Pmem emulation allows the development of

persistent memory applications.

2

NON-VOLATILE MEMORY

PROGRAMMING MODEL

3

• Memory mapped files

Building block of the Pmem programming model.

Allows accessing the contents of a file in virtual

memory.

Allows programs to modify the file by reading and

writing memory directly.

To persist the changes on the memory mapped

files, they need to be flushed to the storage

medium.

https://www.snia.org/tech_activities/standards/curr_standards/npm

https://www.snia.org/tech_activities/standards/curr_standards/npm

NON-VOLATILE MEMORY

PROGRAMMING MODEL

• Pmem Aware File system

Direct access (DAX), which is a fast way

to access the medium without involving

the kernel.

DAX eliminates the use of page cache.

DAX is currently supported by Windows

and Linux.

4

NON-VOLATILE MEMORY

PROGRAMMING MODEL

5

PMEM

Kernel Space

User Space

Application

PMEM-Aware FS

DAX

PERSISTENT MEMORY EMULATION

• Currently there are different options for

emulating Pmem.

Linux: memmap Kernel Option

Virtual machine

• QEMU

• Vmware VSphere

6

EMULATION ON A LINUX SYSTEM

• What can be done
Development teams can work in parallel on their own
emulated system rather than all of them needing
access to a machine with persistent memory.

Program crash testing can be done, and logical
behavior can be verified.

• What can’t be done
Simulating a power failure is still a difficult topic to
address in emulation, given the implication of cache
loss and the complexity involving the appropriate
real-life behavior of a system in these conditions.

7

EMULATION ON A LINUX SYSTEM

• Memmap Kernel option :

This allows users to define a specific region of

DRAM to be reserved.

This will mark the region as a non-standard e820

type of 12.

The kernel will offer these regions to the 'pmem'

driver so they can be used for emulated

persistent storage.

8

• Example

memmap=nn[KMG]!ss[KMG]

nn being region to reserve

ss starting offset

memmap=4G!12G

Reserve 4GB starting from 12GB

EMULATION OF PMEM ON A LINUX

MACHINE

9

Emulated
Pmem

Ordinary Memory

Ordinary
Memory

12GB 4GB

16GB

EMULATION ON A LINUX SYSTEM

• Emulation checklist:

1. Make sure the memory region that will be

reserved is not overlapping with already

reserved memory, as failing to do so might

corrupt your system or produce undefined

behavior.
• sudo dmesg | grep BIOS-e820

• sudo dmesg | sed -n 's/ 0.000000] BIOS-e820://p'

2. Edit the grub configuration to set the memmap

option
• sudo nano /etc/default/grub

10

EMULATION ON A LINUX SYSTEM

• Emulation checklist:

3. Update your grub configuration and reboot

system
• sudo update-grub2

4. Verify the Pmem device is correctly configured
• sudo dmesg | grep user:

• sudo dmesg | sed -n 's/ 0.000000] user://p'

5. After correctly setting up your Pmem device, it

should appear under /dev/pmem0, and we

would be ready to create our DAX filesystem.

11

EMULATION ON A LINUX SYSTEM

• Emulation checklist:
6. After successfully setting up your device you will be

able to mount your device in DAX mode.

7. Make sure to assign the proper permissions on the
mount location so files can be created on the Pmem
aware filesystem.

sudo mkfs.ext4 /dev/pmem0

sudo mkdir /mnt/mem/

sudo mount -o dax /dev/pmem0 /mnt/mem

sudo mount -v | grep /mnt/mem

sudo chmod 777 /mnt/mem

12

PERSISTENT MEMORY

PROGRAMMING

13

CHALLENGES OF PMEM

PROGRAMMING
• Currently, and probably for a

long-time, cache memory will
remain volatile.

• Flushing Instructions:
CLFLUSH

CLFLUSHOPT

CLWB

• The only store to Pmem
guaranteed to be atomic in
case of a power failure is an
8-byte store aligned on an
eight-byte boundary.

14

CORE

L1

L2

Pmem

L3

L1

Data is safe from a
power failure at this
point

Data will be lost in
case of a power
failure

Store to Pmem from application

CHALLENGES OF PMEM

PROGRAMMING

• Programs using persistent memory should

always create/open their corresponding files

early on initialization.

• A valid state of your in-memory data

structure should always be kept to provide

the expected behavior of the program.

15

SOME AVAILABLE DEVELOPMENT

ENVIRONMENTS

• PMDK (Persistent Memory Development Kit)

C

• PCJ (Persistent Collections for Java)

Java 8 or above

16

PERSISTENT MEMORY

DEVELOPMENT KIT

• Collection of libraries and tools and utilities.

libpmem

libpmemobj

libpmemlog

17

LIBPMEM

• Low level Pmem support.

• Freedom to handle memory allocation and

consistency of your program.

• Does not ensure atomicity, even when calling

functions that flush data to persistent

memory.

18

LIBPMEM BASIC API

• pmem_map_file()

Creates a new read/write mapping for the named

file.

• pmem_unmap()

Deletes all the mappings for the specified address

range.

• pmem_is_pmem()

Returns true only if the entire range

[addr, addr+len) consists of persistent memory.

19

LIBPMEM BASIC API

• pmem_memcpy_persist()

Same functionality as memcpy(), but also ensures

that the result has been flushed to persistence

before returning.

• pmem_persist()

Force any changes in the range [addr, addr+len) to

be stored durably in persistent memory.

• pmem_msync()

Same functionality as pmem_persist(), but using

msync(), this function works on either Pmem or a

memory mapped file on traditional storage.

20

LIBPMEM EXAMPLE

21

LIBPMEMOBJ

• High level library abstracting the complexity

of ensuring persistence

Flexible object store

Transactions

Memory management

Locking

22

LIBPMEMOBJ BASIC API

• pmemobj_tx_add_range()
takes a “snapshot” of the memory block of given size,
located at given offset and saves it to the undo log.

• pmemobj_create()
creates a transactional object store with the given
total pool-size

• pmemobj_root()
creates or resizes the root object for the persistent
memory pool.

• pmemobj_direct()
returns a pointer to the PMEMoid object

23

LIBPMEMOBJ EXAMPLE

24

LIBPMEMOBJ EXAMPLE

25

If you know the virtual address the pool is
mapped at, a simple addition can be
performed to get the direct pointer, like this:
(void *)((uint64_t)root + offset)

LIBPMEMOBJ EXAMPLE

26

LIBPMEMOBJ EXAMPLE

• The intended use of

the TX_ONCOMMIT

and TX_ONABORT

macros is to print log

information and set

return variable of the

function.

27

LIBPMEMOBJ & CONCURRENCY

28

• All the libpmemobj library functions are

thread-safe.

• Exceptions:

pool management functions (open, close, etc.)

pmemobj_root() when providing different sizes in

different threads

• A single transaction block works in the

context of a single thread.

LIBPMEMOBJ & CONCURRENCY

• A crash in fetch_and_add, will cause the

pthread_mutex_t structure to contain

invalid values and the application will most

likely segfault when an attempt to use it is

made.

29

LIBPMEMOBJ & CONCURRENCY

• To put a lock in a structure that resides on

persistent memory, libpmemobj provides a

pthread-like API.

30

LIBPMEMOBJ & CONCURRENCY

• There’s no need to initialize those locks or

to verify their state. When an application

crashes, they are all automatically

released.

31

LIBPMEMOBJ & CONCURRENCY

• Using TX_PARAM_MUTEX or TX_PARAM_

RWLOCK causes the specified lock to be

acquired at the beginning of the transaction.

32

LIBPMEMLOG

• Log variable length entries

• Handles the transactional update of the log.

• Useful during development to quickly log

information about your program without the

overhead of writing to disk

33

LIBPMEMLOG BASIC API

• pmemlog_open()
opens an existing log memory pool

• pmemlog_create()
creates a log memory pool with the given total
poolsize

• pmemlog_append()
appends to the current write offset in the log memory
pool

• pmemlog_walk()
walks through the log, from beginning to end, calling
the callback function

34

LIBPMEMLOG EXAMPLE

35

PMDK UTILITIES

• Pmemcheck

Tracks stores you make to persistent memory

and informs you of possible memory violations.

Integrated with valgrind
valgrind --tool=pmemcheck [valgrind options] <your_app> [your_app options]

• Pmreorder

Collection of python scripts designed to parse,

and replay operations logged by pmemcheck

36

PERSISTENT COLLECTIONS FOR

JAVA (PCJ)

• Provides a set of classes that persist beyond
the life of the java VM instance.

• This library is based on the libpmemobj library,
(transactional operations)

• NOTE: Pilot project currently under
development.

• For more information on this library.
https://github.com/pmem/pcj

37

https://github.com/pmem/pcj

LIST OF PERSISTENT CLASSES

• Primitive arrays

• Generic arrays

• Tuples

• ArrayList

• HashMap

• LinkedList

• LinkedQueue

• SkipListMap

• FPTree

• SIHashMap

• ObjectDirectory

• Boxed primitives

• String

• AtomicReference

• ByteBuffer

38

PCJ EXAMPLE

39

cat config.properties
path=/mnt/mem/persistent_heap
size=2147483648

PCJ EXAMPLE

40

Persistent object

PTRString

Pmem PoolObject Directory

PCJ EXAMPLE

41

These are not fields in the

traditional way, but meta

fields.

They serve as a guidance

to PersistentObject.

REFERENCES

1. Rudoff A. (2017, June). Persistent Memory Programming . Retrieved
from:https://www.usenix.org/system/files/login/articles/login_summer17_07_ru
doff.pdf/

2. Rudoff A., USHARANI U., Andy M.(2017, August). Introduction to
Programming with Intel® Optane™ DC Persistent Memory . Retrieved
from:https://software.intel.com/en-us/articles/introduction-to-programming-
with-persistent-memory-from-intel

3. Eduardo B., (2018, May). Introduction to Java* API for Persistent Memory
Programming. Retrieved from:https://software.intel.com/en-
us/articles/introduction-to-programming-with-persistent-memory-from-intel

4. Persistent Memory Programming . Retrieved from: https://pmem.io/

5. Code Samples PMDK. Retrieved from: https://github.com/pmem/pmdk

6. Code Samples PCJ . Retrieved from: https://github.com/pmem/pcj

42

https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf/
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel
https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel
https://pmem.io/
https://github.com/pmem/pmdk
https://github.com/pmem/pcj

