ALGORITHMS: RECOVERABLE MUTEX AND CONSENSUS

Presenter: Wojciech Golab
wgolab@uwaterloo.ca
PODC 2019
Toronto
August 2nd, 2019
OUTLINE

• Background

• Recoverable Mutex

• Recoverable Consensus
BACKGROUND
PROCESS VS. THREAD

Theory:
process = thread

Practice:
process = collection of parallel threads

This talk: theory
MEMORY HIERARCHY

- CPU registers
- L1/L2/L3 cache
- DRAM
- secondary storage
WHAT HAPPENS DURING A FAILURE?

Case 1: system-wide failure (reboot)

- power outage
- kernel panic

1. write X
2. write Y
3. write Z
4. crash
WHAT HAPPENS DURING A FAILURE?

Case 2: individual process failure (no reboot)

- software bug
- uncaught exception
- deadlock breakup

1. write X
2. write Y
3. write Z
4. crash
...

1.
2.
3.
4.
...
WHAT HAPPENS DURING A FAILURE?

Case 2: individual process failure (no reboot)

Question: Did we lose anything important?

Answer:
Yes, the program counter, stack pointer, and the values of certain program variables.
WHAT HAPPENS DURING A FAILURE?

Example:

```python
if T.TestAndSet() then
    // loser
else
    // winner
end if
```
WHAT HAPPENS DURING A FAILURE?

Example:

```plaintext
CPU register := T.TestAndSet()
if CPU register = 1 then
   // loser
else
   // winner
end if
```
In both failure modes, we should be concerned with the potential loss of the response to a Write or Read-Modify-Write operation on a shared variable.

Exception: multi-reader single-writer registers.
ASSUMPTIONS

1. Asynchronous shared memory.
2. Crash-recovery failures (system-wide or independent).
3. Max number of processes N known ahead of time.
4. Participation by all processes is not required (e.g., possible that only $k < N$ processes take steps in an execution).
5. Read-Modify-Write primitives return responses in volatile CPU registers.
OBSERVATIONS

1. In an execution involving N processes, the maximum number of failures is not bounded by N. It is unbounded!

2. In an execution containing infinitely many independent failures, it is possible that some processes fail only a finite number of times.
RECOVERABLE MUTEX
MUTUAL EXCLUSION PROBLEM

Asynchronous, reliable processes.
REMOTE MEMORY REFERENCES (RMR)

Legend:
- P: processor
- M: memory module
- C: cache

Distributed Shared Memory (DSM):
- Remote read or write
- Interconnect
- Read + cache miss

Cache-Coherent (CC):
- Write + invalidation
- Interconnect
- Read + cache miss

Notes:
- Remote memory references (RMR) are mechanisms allowing processors to access memory modules on different processors.
- DSM and CC are two strategies for achieving this, each with different characteristics.
Asynchronous, unreliable processes.

Golab and Ramaraju [PODC'16]
TERMINOLOGY

Passage:
Sequence of step taken by a process from when it begins Recover to when it completes Exit, or crashes, whichever occurs first.

Super-passage:
Maximal non-empty collection of consecutive passages executed by the same process where (only) the last passage in the collection is failure-free.
OBSERVATIONS

1. A process enters the CS at most once in each passage.
2. A process may enter the CS up to $f + 1$ times in a super-passage where it fails f times.
3. A process must reenter the CS after it fails in Exit.
TWO WAYS TO NEST LockS

Way 1:

L1.lock()
L2.lock()
L2.unlock()
L1.unlock()

Way 2:

L1.lock()
L2.lock()
L1.unlock()
L2.unlock()
RME CORRECTNESS PROPERTIES

Mutual Exclusion (ME)
Deadlock Freedom (DF)
Starvation Freedom (SF)
Bounded Recovery (BR)
Critical Section Re-entry (CSR)

Golab and Ramaraju [PODC'16]
EXAMPLE OF REVISED PROPERTY

Starvation Freedom (SF):

For any infinite fair history H, if a process p_i leaves the non-critical section in some step of H then eventually p_i itself enters the CS, or else there are infinitely many crash steps in H.
Critical Section Re-entry (CSR):
If a process p crashes inside the CS, then the next process to enter the CS is also p.

Property required for nesting locks correctly!
TEST-AND-SET LOCK

Shared variable: T, initially 0

Algorithm for process p_i:
Enter

loop while TestAndSet(T) = 1
back off
end loop

Critical Section
Exit

$T := 0$

Properties:
Mutual Exclusion
Deadlock Freedom
Wait-free Exit
<table>
<thead>
<tr>
<th>Upper & lower bounds</th>
<th>single-word Read/Write/CAS...</th>
<th>+ single-word FAS/FAA/CAS</th>
</tr>
</thead>
</table>
| **Mutual Exclusion** | **O**(log N)
Yang, Anderson [DC'95]
Ω**(log N)
Attiya, Hendler, Woelfel [STOC'08] | **O**(1)
Mellor-Crummey, Scott [TOCS'91] |
| **Recoverable Mutual Exclusion** | **O**(log N)
Golab, Raramaju [PODC'16]
Jayanti, Joshi [DISC'17]
Ω**(log N)
Attiya, Hendler, Woelfel [STOC'08] | **O**(log N / log log N)
Golab, Hendler [PODC'17]
Jayanti, Jayanti, Joshi [PODC'19]
O(1)
Golab, Hendler [PODC'18] |
AN IMPORTANT DIFFERENCE

\[\mathcal{O}(\log N / \log \log N) \]
Golab, Hendler [PODC'17]
Jayanti, Jayanti, Joshi [PODC’19]

\[\mathcal{O}(1) \]
Golab, Hendler [PODC'18]

independent failures

system-wide failures
THOUGHTS ON STARVATION FREEDOM

Golab and Ramaraju [PODC’16] allow processes to starve in executions with infinitely many failures:

Starvation Freedom:
For any infinite fair history H, if a process p_i leaves the non-critical section in some step of H then eventually p_i itself enters the CS, or else there are infinitely many crash steps in H.

27
THOUGHTS ON STARVATION FREEDOM

Golab and Hendler [PODC’18] introduced an additional correctness property that mitigates this problem:

Failures-Robust Fairness (FRF):
For any fair history H containing infinitely many super-passages, if a process p_i leaves the NCS in some step of H then p_i eventually itself enters the CS.
THOUGHTS ON STARVATION FREEDOM

Jayanti, Jayanti, and Joshi [PODC’19] also proposed an alternative SF property:

Starvation Freedom:

If every process crashes only a finite number of times in each of its super-passages in a run, then every process enters the CS in each of its super-passages in that run.
RELATIONSHIP BETWEEN PROPERTIES

Strongest

Golab and Ramaraju
Starvation Freedom
+
Golab and Hendler
Failures Robust Fairness

Weakest

Jayanti, Jayanti and Joshi
Starvation Freedom

Golab and Ramaraju
Starvation Freedom

?
RECOVERABLE CONSENSUS
PROBLEM DEFINITION

Agreement: distinct processes never output different decisions.

Validity: each decision returned is the proposal value of some process.

Recoverable wait-freedom: each time a process executes it algorithm from the beginning, it either returns a decision after a finite number of its own steps, or crashes.
CONSENSUS HIERARCHY

<table>
<thead>
<tr>
<th>Type</th>
<th>Consensus Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare-And-Swap</td>
<td>∞</td>
</tr>
<tr>
<td>Test-And-Set</td>
<td></td>
</tr>
<tr>
<td>Fetch-And-Store</td>
<td></td>
</tr>
<tr>
<td>Fetch-And-Add</td>
<td>2</td>
</tr>
<tr>
<td>Stack</td>
<td></td>
</tr>
<tr>
<td>Queue</td>
<td></td>
</tr>
<tr>
<td>Read/Write Register</td>
<td>1</td>
</tr>
</tbody>
</table>

Herlihy, 1991
Recoverable Consensus Hierarchy: System-Wide Failures

<table>
<thead>
<tr>
<th>Type</th>
<th>R-Consensus Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare-And-Swap</td>
<td>∞</td>
</tr>
<tr>
<td>Test-And-Set</td>
<td></td>
</tr>
<tr>
<td>Fetch-And-Store</td>
<td></td>
</tr>
<tr>
<td>Fetch-And-Add</td>
<td>2</td>
</tr>
<tr>
<td>Queue</td>
<td></td>
</tr>
<tr>
<td>Stack</td>
<td></td>
</tr>
<tr>
<td>Read/Write Register</td>
<td>1</td>
</tr>
</tbody>
</table>
TRANSFORMATION

Shared variables:
- $P[1..2]$: array of proposal values, init ⊥
- C: conventional wait-free 2-process consensus object
- D: decision, init ⊥

Private variables:
- other: process ID
- d: decided value
OBSERVATIONS

If a process begins executing C and then crashes, it cannot execute C again!

If a process knows that it lost, then it also knows exactly who won.
Procedure Decide \((v: \text{proposal value})\) for proc. \(p_i, i \in 1..2\)

1. \(\text{if } i = 1 \text{ then } \text{other} := 2 \text{ else } \text{other} := 1\)
2. \(\text{if } P[i] = \bot \land P[\text{other}] = \bot \text{ then}\)
 \(\quad P[i] := v\)
 \(\quad d := C.\text{Decide}(v)\)
 \(\quad D := d\)
 \(\quad \text{return } d\)
3. \(\text{else if } D \neq \bot \text{ then}\)
 \(\quad \text{return } D\)
4. \(\text{else if } P[i] \neq \bot \land P[\text{other}] = \bot \text{ then}\)
 \(\quad \text{return } P[i]\)
5. \(\text{else if } P[i] = \bot \land P[\text{other}] \neq \bot \text{ then}\)
 \(\quad \text{return } P[\text{other}]\)
6. \(\text{else } // P[i] \neq \bot \land P[\text{other}] \neq \bot\)
 \(\quad \text{return } P[1]\)
Recoverable Consensus Hierarchy:

\[\leq F \text{ Independent Failures} \]

<table>
<thead>
<tr>
<th>Type</th>
<th>R-Consensus Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare-And-Swap</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Test-And-Set</td>
<td></td>
</tr>
<tr>
<td>Fetch-And-Store</td>
<td></td>
</tr>
<tr>
<td>Fetch-And-Add</td>
<td>2</td>
</tr>
<tr>
<td>Queue</td>
<td></td>
</tr>
<tr>
<td>Stack</td>
<td></td>
</tr>
<tr>
<td>Read/Write Register</td>
<td>1</td>
</tr>
</tbody>
</table>
TRANSFORMATION

Shared variables:
- $R[1..n]$:
 - array of read/write register, \textbf{init} 0
- $C[0..f]$:
 - array of conventional wait-free n-process consensus objects
- $D[0..f]$:
 - array of read/write register, \textbf{init} \bot

Private variables:
- k, k': integers, uninitialized
- d: decision value, uninitialized

\[f = \text{upper bound on total number of failures} \]
Procedure Decide (v: proposal value) for proc. p_i, $i \in 1..n$

\begin{align*}
&\textbf{for } k \text{ in } 0..f \text{ do} \\
&\quad \textbf{if } R[i] = k \text{ then} \\
&\qquad R[i] := k + 1 \\
&\qquad // \text{ check for a decision in a lower-numbered iteration} \\
&\quad \textbf{for } k' \in 0..(k-1) \text{ do} \\
&\qquad \quad \textbf{if } D[k'] \neq \perp \text{ then} \\
&\qquad \qquad v := D[k'] \\
&\qquad d := C[k].\text{Decide}(v) \\
&\qquad D[k] := d \\
&\qquad // \text{ check for a collision with a higher-numbered iteration} \\
&\quad \textbf{if } k < f \text{ then} \\
&\qquad \textbf{for } z \in 1..n, z \neq i \text{ do} \\
&\qquad \quad \textbf{if } R[z] > R[i] \text{ then} \\
&\qquad \qquad d := \perp \\
&\quad // \text{ return decision if known} \\
&\quad \textbf{if } d \neq \perp \text{ then} \\
&\quad \text{ return } d
\end{align*}
RECOVERABLE CONSENSUS HIERARCHY: INDEPENDENT FAILURES

<table>
<thead>
<tr>
<th>Type</th>
<th>R-Consensus Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare-And-Swap</td>
<td>∞</td>
</tr>
<tr>
<td>Test-And-Set</td>
<td>1</td>
</tr>
<tr>
<td>Read/Write Register</td>
<td>1</td>
</tr>
</tbody>
</table>
IMPOSSIBILITY RESULTS

Result 1: space bound
If there are up to f failures then $f + 1$ instances of TAS are necessary.

Result 2: consensus number
If there are arbitrarily many failures, then recoverable consensus is not solvable even with infinitely many TAS objects!
RESULT 1: SPACE BOUND

Valency argument, similar to Herlihy’s but modified for crash-recovery failures.

v-potent state s: there exists a sequence of steps starting from s such that some process returns v.

v-valent state s: v-potent but not v’-potent for any $v' \neq v$.

univalent state s: v-valent for some v.

bivalent state: both v-potent and v’-potent for some distinct values v and v’.
RESULT 1: SPACE BOUND

Why Herlihy’s technique breaks:

- crash
- ...
RESULT 1: SPACE BOUND

Why Herlihy’s technique breaks:

\[v \]
\[p_1 \text{ non-crash} \]
\[p_1 \text{ crash} \]
\[p_2 \text{ non-crash} \]
\[v \]
\[p_2 \text{ crash} \]

\[v \text{-valent} \]

\[\text{bivalent} \]
RESULT 1: SPACE BOUND

Consider a subset of execution histories satisfying the following invariants:

1. Only one designated process p_i is permitted to fail.
2. If p_i fails f times then it has touched f distinct TAS objects.
RESULT 1: SPACE BOUND

When is p_i allowed to fail?

Only if its previous step was its first access to some TAS object in the execution.
RESULT 2: CONSENSUS NUMBER

Consider a subset of execution histories satisfying the following invariants:

1. Only one designated process p_i is permitted to fail.
2. If p_i fails f times then the other process p_j has taken at least f steps failure-free.

Note: A similar proof technique was developed in parallel by Attiya, Ben-Baruch, and Hendler for NRL [PODC’18].
RESULT 2: CONSENSUS NUMBER

When is p_i allowed to fail?

Only if its previous step was its first access to some TAS object in the execution, and moreover that object was also accessed by the other process p_j.
TAKE-AWAYS
HOW WE GOT HERE

Talked about persistent memory, thought about crash-recover failures.
RESEARCH DIRECTIONS

1. Prove a tight RMR complexity bound for RME with independent failures and single-word primitives.
2. Devise alternative $O(1)$-RMR solutions for RME with simultaneous failures.
3. Establish a more precise relationship between the conventional consensus hierarchy and the recoverable consensus hierarchy.