
ALGORITHMS:

RECOVERABLE MUTEX AND

CONSENSUS

Presenter: Wojciech Golab
wgolab@uwaterloo.ca

PODC 2019

Toronto

August 2nd, 2019

mailto:wgolab@uwaterloo.ca

OUTLINE

• Background

• Recoverable Mutex

• Recoverable Consensus

2

BACKGROUND

3

PROCESS VS. THREAD

Theory:

process = thread

Practice:

process = collection of parallel threads

This talk: theory

4

MEMORY HIERARCHY

5

CPU registers

secondary storage

CPU registers
L1/L2/L3 cache

PMDRAM

PM

WHAT HAPPENS DURING A

FAILURE?

Case 1: system-wide failure (reboot)

• power outage

• kernel panic

6

CPU registers
cache

1. write X
2. write Y
3. write Z
4. crash

X Y Z

PM

WHAT HAPPENS DURING A

FAILURE?

Case 2: individual process failure (no reboot)

• software bug

• uncaught exception

• deadlock breakup

7

CPU registers
cache

1. write X
2. write Y
3. write Z
4. crash
…

X Y Z

WHAT HAPPENS DURING A

FAILURE?

Case 2: individual process failure (no reboot)

Question: Did we lose anything important?

Answer:

Yes, the program counter, stack pointer,

and the values of certain program variables.

8

WHAT HAPPENS DURING A

FAILURE?

Example:

if T.TestAndSet() then

// loser

else

// winner

end if

9

WHAT HAPPENS DURING A

FAILURE?

Example:

CPU register := T.TestAndSet()

if CPU register = 1 then

// loser

else

// winner

end if

10

INSIGHT

In both failure modes, we should be concerned

with the potential loss of the response to a

Write or Read-Modify-Write operation on a

shared variable.

Exception: multi-reader single-writer registers.

11

ASSUMPTIONS

1. Asynchronous shared memory.

2. Crash-recovery failures (system-wide or
independent).

3. Max number of processes N known ahead
of time.

4. Participation by all processes is not
required (e.g., possible that only k < N
processes take steps in an execution).

5. Read-Modify-Write primitives return
responses in volatile CPU registers.

12

OBSERVATIONS

1. In an execution involving N processes, the

maximum number of failures is not bounded

by N. It is unbounded!

2. In an execution containing infinitely many

independent failures, it is possible that

some processes fail only a finite number of

times.

13

RECOVERABLE MUTEX

14

MUTUAL EXCLUSION PROBLEM

loop forever

Non-Critical/remainder Section

Enter

Critical Section (CS)

Exit
Image source: Wikipedia

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Asynchronous, reliable processes.

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

REMOTE MEMORY REFERENCES

(RMR)

16

P

M

interconnect

P

M

P

M

P

M

C C

interconnect

Legend:

processor memory cache

module
CMP

Distributed
Shared Memory

(DSM)

Cache-
Coherent

(CC)

remote
read or
write

read +
cache
miss

write +
invalidation

RECOVERABLE MUTUAL

EXCLUSION (RME) PROBLEM

loop forever

Non-Critical Section (NCS)

Recover

Enter

Critical Section (CS)

Exit

17

CRASH

Golab and Ramaraju [PODC'16]

Asynchronous, unreliable processes.

TERMINOLOGY

Passage:

Sequence of step taken by a process from when it
begins Recover to when it completes Exit, or
crashes, whichever occurs first.

Super-passage:

Maximal non-empty collection of consecutive
passages executed by the same process where
(only) the last passage in the collection is failure-
free.

18

OBSERVATIONS

1. A process enters the CS at most once in

each passage.

2. A process may enter the CS up to f +1 times

in a super-passage where it fails f times.

3. A process must reenter the CS after it fails

in Exit.

19

TWO WAYS TO NEST LOCKS

Way 1:

L1.lock()

L2.lock()

L2.unlock()

L1.unlock()

Way 2:

L1.lock()

L2.lock()

L1.unlock()

L2.unlock()

20

RME CORRECTNESS PROPERTIES

Mutual Exclusion (ME)

Deadlock Freedom (DF)

Starvation Freedom (SF)

Bounded Recovery (BR)

Critical Section Re-entry (CSR)

21

revised

new

Golab and Ramaraju [PODC'16]

EXAMPLE OF REVISED PROPERTY

22

Starvation Freedom (SF):

For any infinite fair history H, if a process pi

leaves the non-critical section in some step of

H then eventually pi itself enters the CS, or

else there are infinitely many crash steps in H.

EXAMPLE OF NEW PROPERTY

Critical Section Re-entry (CSR):

If a process p crashes inside the CS, then the

next process to enter the CS is also p.

Property required for nesting locks correctly!

23

TEST-AND-SET LOCK

Shared variable: T, initially 0

Algorithm for process pi:
Enter

loop while TestAndSet(T) = 1

back off

end loop

Critical Section

Exit

T := 0

24

Properties:
Mutual Exclusion
Deadlock Freedom
Wait-free Exit

25

Upper &
lower
bounds

single-word
Read/Write/CAS…

+ single-word
FAS/FAA/CAS

Mutual
Exclusion

O(log N)
Yang, Anderson [DC'95]

(log N)
Attiya, Hendler, Woelfel [STOC'08]

O(1)
Mellor-Crummey, Scott [TOCS'91]

Recoverable
Mutual
Exclusion

O(log N)
Golab, Raramaju [PODC'16]
Jayanti, Joshi [DISC'17]

(log N)
Attiya, Hendler, Woelfel [STOC'08]

O(log N / log log N)
Golab, Hendler [PODC'17]
Jayanti, Jayanti, Joshi [PODC’19]

O(1)
Golab, Hendler [PODC'18]

26

O(log N / log log N)
Golab, Hendler [PODC'17]
Jayanti, Jayanti, Joshi [PODC’19]

O(1)
Golab, Hendler [PODC'18]

independent failures

system-wide failures

AN IMPORTANT DIFFERENCE

THOUGHTS ON STARVATION

FREEDOM

Golab and Ramaraju [PODC’16] allow

processes to starve in executions with infinitely

many failures:

Starvation Freedom:

For any infinite fair history H, if a process pi

leaves the non-critical section in some step of

H then eventually pi itself enters the CS, or

else there are infinitely many crash steps in H.

27

THOUGHTS ON STARVATION

FREEDOM

Golab and Hendler [PODC’18] introduced an

additional correctness property that mitigates

this problem:

Failures-Robust Fairness (FRF):

For any fair history H containing infinitely many

super-passages, if a process pi leaves the

NCS in some step of H then pi eventually itself

enters the CS.

28

THOUGHTS ON STARVATION

FREEDOM

Jayanti, Jayanti, and Joshi [PODC’19] also

proposed an alternative SF property:

Starvation Freedom:

If every process crashes only a finite number

of times in each of its super-passages in a run,

then every process enters the CS in each of its

super-passages in that run.

29

RELATIONSHIP BETWEEN

PROPERTIES

Strongest

Weakest

30

Golab and Ramaraju
Starvation Freedom

Golab and Ramaraju
Starvation Freedom

+
Golab and Hendler

Failures Robust Fairness

Jayanti, Jayanti and Joshi
Starvation Freedom

?

RECOVERABLE CONSENSUS

31

PROBLEM DEFINITION

Agreement: distinct processes never output
different decisions.

Validity: each decision returned is the
proposal value of some process.

Recoverable wait-freedom: each time a
process executes it algorithm from the
beginning, it either returns a decision after a
finite number of its own steps, or crashes.

32

CONSENSUS HIERARCHY

33

Type Consensus Number

Compare-And-Swap ∞

Test-And-Set
Fetch-And-Store
Fetch-And-Add

Stack
Queue

2

Read/Write Register 1

Herlihy, 1991

RECOVERABLE CONSENSUS

HIERARCHY:

SYSTEM-WIDE FAILURES

34

Type R-Consensus Number

Compare-And-Swap ∞

Test-And-Set
Fetch-And-Store
Fetch-And-Add

Queue
Stack

2

Read/Write Register 1

TRANSFORMATION

35

OBSERVATIONS

If a process begins executing C and

then crashes, it cannot execute C

again!

If a process knows that it lost, then it

also knows exactly who won.

36

TRANSFORMATION

37

RECOVERABLE CONSENSUS

HIERARCHY:

≤F INDEPENDENT FAILURES

38

Type R-Consensus Number

Compare-And-Swap ∞

Test-And-Set
Fetch-And-Store
Fetch-And-Add

Queue
Stack

2

Read/Write Register 1

TRANSFORMATION

39

f = upper bound on total number of failures

TRANSFORMATION

40

RECOVERABLE CONSENSUS

HIERARCHY:

INDEPENDENT FAILURES

41

Type R-Consensus Number

Compare-And-Swap ∞

Test-And-Set 1

Read/Write Register 1

IMPOSSIBILITY RESULTS

Result 1: space bound

If there are up to f failures then f +1 instances

of TAS are necessary.

Result 2: consensus number

If there are arbitrarily many failures, then

recoverable consensus is not solvable even

with infinitely many TAS objects!

42

RESULT 1: SPACE BOUND

Valency argument, similar to Herlihy’s but modified for
crash-recovery failures.

v-potent state s: there exists a sequence of steps starting
from s such that some process returns v.

v-valent state s: v-potent but not v'-potent for any
v' ≠ v.

univalent state s: v-valent for some v.

bivalent state: both v-potent and v'-potent for some
distinct values v and v'.

43

RESULT 1: SPACE BOUND

Why Herlihy’s technique breaks:

44

v

bivalent

v-valent
crash …

RESULT 1: SPACE BOUND

Why Herlihy’s technique breaks:

45

v

p2 non-crash

p1 crash

p1 non-crash

p2 crashv

v

bivalent

v-valent

RESULT 1: SPACE BOUND

Consider a subset of execution histories

satisfying the following invariants:

1. Only one designated process pi is permitted

to fail.

2. If pi fails f times then it has touched f

distinct TAS objects.

46

RESULT 1: SPACE BOUND

When is pi allowed to fail?

Only if its previous step was its first access to

some TAS object in the execution.

47

RESULT 2: CONSENSUS NUMBER

Consider a subset of execution histories

satisfying the following invariants:

1. Only one designated process pi is permitted

to fail.

2. If pi fails f times then the other process pj

has taken at least f steps failure-free.

48

Note: A similar proof technique was developed in parallel by
Attiya, Ben-Baruch, and Hendler for NRL [PODC’18].

RESULT 2: CONSENSUS NUMBER

When is pi allowed to fail?

Only if its previous step was its first access to

some TAS object in the execution, and

moreover that object was also accessed by the

other process pj.

49

TAKE-AWAYS

50

HOW WE GOT HERE

Talked about persistent memory,

thought about crash-recover failures.

51

RESEARCH DIRECTIONS

1. Prove a tight RMR complexity bound for

RME with independent failures and single-

word primitives.

2. Devise alternative O(1)-RMR solutions for

RME with simultaneous failures.

3. Establish a more precise relationship

between the conventional consensus

hierarchy and the recoverable consensus

hierarchy.

52

