ALGORITHMS:
RECOVERABLE MUTEX AND
CONSENSUS

Presenter: Wojciech Golab

wgolab@uwaterloo.ca
PODC 2019

Toronto
August 2" 2019

IIIIIIIIIIII

mailto:wgolab@uwaterloo.ca

OUTLINE

« Background

« Recoverable Mutex

* Recoverable Consensus

BACKGROUND

PROCESS VS. THREAD

Theory:
process = thread

Practice:
process = collection of parallel threads

This talk: theory

MEMORY HIERARCHY
CPU registers

DRAM

secondary storage

WHAT HAPPENS DURING A
FAILURE?

Case 1: system-wide failure (reboot)
e power outage
« kernel panic

write X
write Y
write Z
crash

= wh e

X Y Z

WHAT HAPPENS DURING A
FAILURE?

Case 2: individual process failure (no reboot)
« software bug

* uncaught exception

« deadlock breakup

write X
write Y
write Z
crash

= wh e

WHAT HAPPENS DURING A
FAILURE?

Case 2: Iindividual process failure (no reboot)

Question: Did we lose anything important?

Answer:

Yes, the program counter, stack pointer,
and the values of certain program variables.

WHAT HAPPENS DURING A
FAILURE?

Example:

If T.TestAndSet() then
/] loser

else
/I winner

end If

WHAT HAPPENS DURING A
FAILURE?

Example:
CPU register .= T.TestAndSet()
If CPU reqgister = 1 then
/] loser
else
/[l winner
end iIf

10

INSIGHT

In both failure modes, we should be concerned
with the potential loss of the response to a

Write or Read-Modify-Write operation on a
shared variable.

Exception: multi-reader single-writer registers.

11

ASSUMPTIONS

1. Asynchronous shared memory.

2. Crash-recovery failures (system-wide or
iIndependent).

3. Max number of processes N known ahead
of time.

4. Participation by all processes is not
required (e.qg., possible that only k < N
processes take steps in an execution).

5. Read-Modify-Write primitives return
responses in volatile CPU registers.

12

OBSERVATIONS

1. In an execution involving N processes, the
maximum number of failures is not bounded

by N. Itis unbounded!

2. In an execution containing infinitely many
Independent failures, it Is possible that
some processes fail only a finite number of

times.

13

14

RECOVERABLE MUTEX

MUTUAL EXCLUSION PROBLEM

@

loop forever
Non-Critical/remainder Section
Enter
Critical Section (CS)
EXit

Image source: Wikipedia
https://en.wikipedia.org/wiki/Edsger W. Dijkstra

Asynchronous, reliable processes.

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

REMOTE MEMORY REFERENCES

(RMR)

remote
read or
write

16

Distributed Cache-
Shared Memory Coherent
(DSM) (CC)
P P
read + \ —
cache C C
miss _
interconnect interconnect
M M
Legend:
processor memory c cache
P module

write +
invalidation

RECOVERABLE MUTUAL
EXCLUSION (RME) PROBLEM

loop forever
@ Non-Critical Section (NCS) <
Recover
Enter
Critical Section (CS)
EXxit

Asynchronous, unreliable processes.
17 Golab and Ramaraju [PODC'16]

TERMINOLOGY

Passage:

Sequence of step taken by a process from when it
begins Recover to when it completes Exit, or
crashes, whichever occurs first.

Super-passage:
Maximal non-empty collection of consecutive
passages executed by the same process where

(only) the last passage in the collection is failure-
free.

18

OBSERVATIONS

1. A process enters the CS at most once In
each passage.

2. A process may enter the CS up to f +1 times
In a super-passage where it fails f times.

3. A process must reenter the CS after it fails
In EXit.

19

TWO WAYS TO NEST LOCKS

Way 1. Way 2.
|_1.lock() _1.lock()

| 2.lock() _2.lock()
|_2.unlock() _1.unlock()
|_1.unlock() _2.unlock()

20

RME CORRECTNESS PROPERTIES

Mutual Exclusion (ME)

Deadlock Freedom (DF) “/ revised

Starvation Freedom (SF)
Bounded Recovery (BR)
. . w new
Critical Section Re-entry (CSR)
Golab and Ramaraju [PODC'16]

21

EXAMPLE OF REVISED PROPERTY

Starvation Freedom (SF):

—or any infinite fair history H, if a process p;
eaves the non-critical section in some step of
H then eventually p; itself enters the CS, or
else there are infinitely many crash steps in H.

22

EXAMPLE OF NEW PROPERTY

Critical Section Re-entry (CSR):

If a process p crashes inside the CS, then the
next process to enter the CS is also p.

Property required for nesting locks correctly!

23

TEST-AND-SET LOCK

Shared variable: T, initially O

Algorithm for process p;:

Enter
loop while TestAndSet(T) =1
back off
end loop
Critical Section Properties:
Exit Mutual Exclusion
T:=0 Deadlock Freedom
Wait-free Exit

24

Upper &
lower
bounds

Recoverable
Mutual
Exclusion

25

single-word

Read/Write/CAS...
O(log N)

Yang, Anderson [DC'95]

Q(log N)

Attiya, Hendler, Woelfel [STOC'08]

O(log N)
Golab, Raramaju [PODC'16]
Jayanti, Joshi [DISC'17]

Q(log N)

Attiya, Hendler, Woelfel [STOC'08]

+ single-word
FAS/FAA/CAS

O(1)

Mellor-Crummey, Scott [TOCS'91]

O(log N / log log N)
Golab, Hendler [PODC'17]
Jayanti, Jayanti, Joshi [PODC’19]

O(1)

Golab, Hendler [PODC'18]

AN IMPORTANT DIFFERENCE

O(Iog N / log log N)e — independent failures

Golab, Hendler [PODC'17]
Jayanti, Jayanti, Joshi [PODC’19]

system-wide failures

Golab, Hendler [PODC'18]

26

THOUGHTS ON STARVATION
FREEDOM

Golab and Ramaraju [PODC’'16] allow
processes to starve in executions with infinitely
many failures:

Starvation Freedom:

—or any infinite fair history H, if a process p,
eaves the non-critical section in some step of
H then eventually p; itself enters the CS, or
else there are infinitely many crash steps in H.

27

THOUGHTS ON STARVATION
FREEDOM

Golab and Hendler [PODC’18] introduced an
additional correctness property that mitigates
this problem:

Failures-Robust Fairness (FRF):

For any fair history H containing infinitely many
super-passages, If a process p; leaves the
NCS in some step of H then p; eventually itself
enters the CS.

28

THOUGHTS ON STARVATION
FREEDOM

Jayanti, Jayanti, and Joshi [PODC’19] also
proposed an alternative SF property:

Starvation Freedom:

If every process crashes only a finite number
of times In each of its super-passages in a run,
then every process enters the CS in each of its
super-passages in that run.

29

RELATIONSHIP BETWEEN
PROPERTIES

Strongest
Golab and Ramaraju ? Jayanti, Jayanti and Joshi
Starvation Freedom) Starvation Freedom
; -

Golab and Hendler
Failures Robust Fairness

Golab and Ramaraju
Starvation Freedom

Weakest

30

31

RECOVERABLE CONSENSUS

PROBLEM DEFINITION

Agreement: distinct processes never output
different decisions.

Validity: each decision returned Is the
proposal value of some process.

Recoverable wait-freedom: each time a
orocess executes it algorithm from the
peginning, it either returns a decision after a
finite number of its own steps, or crashes.

32

CONSENSUS HIERARCHY

Type Consensus Number

Compare-And-Swap oo

Test-And-Set
Fetch-And-Store

Fetch-And-Add p)
Stack
Queue
Read/Write Register 1

Herlihy, 1991

33

RECOVERABLE CONSENSUS
HIERARCHY:
SYSTEM-WIDE FAILURES

Type R-Consensus Number

Test-And-Set
Fetch-And-Store
Fetch-And-Add 2
Queue
Stack

34

TRANSFORMATION

Shared variables:

e P|1..2]: array of proposal values, init L
e (: conventional wait-free 2-process consensus object
e D: decision, init L

Private variables:

e other: process ID
e (: decided value

35

OBSERVATIONS

If a process begins executing C and

then crashes, it cannot execute C
again!

If a process knows that it lost, then it
also knows exactly who won.

36

TRANSFORMATION

Procedure Decide(v: proposal value) for proc. p;, i € 1..2

1 if i = 1 then other := 2 else other :=1
2 if P[i] = L A Plother] = 1L then

3 Pli] =

4 d := C.Decide(v)

5 D :=d

6 return d

7 else if D # 1 then

8 return D

o else if P[i] # L A P[other] = 1 then
10 return P[i]

11 else if P[i] = L A Plother] # L then
12 return Plother]|

13 else // P[i] # L A Plother] # L

14 return P[1]

37

RECOVERABLE CONSENSUS
HIERARCHY:
<F INDEPENDENT FAILURES

Type R-Consensus Number

Test-And-Set
Fetch-And-Store
Fetch-And-Add 2
Queue
Stack

38

TRANSFORMATION

Shared variables:

e R[1..n]: array of read/write register, init 0

e ([0..f]: array of conventional wait-free n-process consensus
objects

e D[0..f]: array of read/write register, init L

Private variables:

e k,k’: integers, uninitialized
e (: decision value, uninitialized

f=upper bound on total number of failures

39

TRANSFORMATION

Procedure Decide (v: proposal value) for proc. p;, i € 1..n

15 forkin0..f do

16 if R[i] = k then

17 R[i] =k+1

// check for a decision in a
lower-numbered iteration

18 for kK’ €0..(k—1)do
19 if D[k’] # L then
20 L v := D[k’]

21 d := C[k].Decide (v)
22 Dlk] :=d

// check for a collision with a
higher-numbered iteration

23 if k < f then

24 forzel.n,z#ido
25 if R[z] > R[i] then
26 L L d:=1

// return decision if known
27 if d # 1 then
40 28 L return d

RECOVERABLE CONSENSUS
HIERARCHY:
INDEPENDENT FAILURES

Type R-Consensus Number

Test-And-Set 1

41

IMPOSSIBILITY RESULTS

Result 1: space bound

If there are up to f failures then f +1 instances
of TAS are necessary.

Result 2: consensus number

If there are arbitrarily many failures, then
recoverable consensus is not solvable even
with infinitely many TAS objects!

42

RESULT 1: SPACE BOUND

Valency argument, similar to Herlihy’'s but modified for
crash-recovery failures.

v-potent state s: there exists a sequence of steps starting
from s such that some process returns v.

v-valent state s: v-potent but not v'-potent for any
V' #F V.

univalent state s: v-valent for some v.

bivalent state: both v-potent and v'-potent for some
distinct values v and v'.

43

RESULT 1: SPACE BOUND

Why Herlihy’s technique breaks:

t bivalent

.
o*
Q
Q
o
Ll
[]
.
.
.
* A
(3 -
Yenans®
Ll LN]
h
Q *
cras 8 8
D .
- [] -
: P e v-valent
"
-
P v
°, Q
. o
- **
MTTTNS

44

RESULT 1: SPACE BOUND

Why Herlihy’s technique breaks:

p, hon-crash i bivalent

5 - v-valent
—P i p, crash @

! p, non-crash

p, crash

45

RESULT 1: SPACE BOUND

Consider a subset of execution histories
satisfying the following invariants:

1. Only one designated process p; Is permitted
to fail.

2. If p; fails f times then it has touched f
distinct TAS objects.

46

RESULT 1: SPACE BOUND

When is p; allowed to fail?

Only If its previous step was its first access to
some TAS object in the execution.

47

RESULT 2: CONSENSUS NUMBER

Consider a subset of execution histories
satisfying the following invariants:

1. Only one designated process p; Is permitted
to fail.

2. If p; fails f times then the other process p,
has taken at least f steps failure-free.

Note: A similar proof technique was developed in parallel by
Attiya, Ben-Baruch, and Hendler for NRL [PODC’18].

48

RESULT 2: CONSENSUS NUMBER

When is p; allowed to fail?

Only If its previous step was its first access to
some TAS object in the execution, and
moreover that object was also accessed by the
other process p;.

49

50

TAKE-AWAYS

HOW WE GOT HERE

Talked about persistent memory,
thought about crash-recover failures.

51

RESEARCH DIRECTIONS

1. Prove atight RMR complexity bound for

RME with independent failures and single-
word primitives.

2. Devise alternative O(1)-RMR solutions for
RME with simultaneous failures.

3. Establish a more precise relationship
petween the conventional consensus

nierarchy and the recoverable consensus
nierarchy.

52

