
LINEARIZABILITY 
TESTING OF MULTI-

WORD 
SYNCHRONIZATION 

PRIMITIVES
Presenter: Sakib Chowdhury
Joint work with: Diego Cepeda, Wojciech 
Golab, Nan Li, Raphael Lopez, Jeff Wang
August 2, 2019



OUTLINE

• Motivation
• Background
• The Algorithm
• Demonstration
• Conclusion

2



MOTIVATION

• Persistent memory will improve performance 
and reliability of data access

• We want to be sure that our behaviour is 
correct

3



MOTIVATION: CODE COMPLEXITY

• CASN
• Harris, 2002
• ~40 lines of code

• PMwCAS
• Larson, Levandoski, 

Wang, 2017
• ~80 lines of code

4

“Mo’ [memory]… mo’ problems.”
— Notorious B.I.G., 1997



MOTIVATION: MWCAS AND 
PERSISTENT MEMORY

5



MOTIVATION: VERIFYING 
CORRECTNESS
• Model checking: exhaustive search and test 

of all possible states of the system
Intractable due to state-space explosion as 
number of processes increases

6



MOTIVATION: VERIFYING 
CORRECTNESS
• Blackbox testing: because we use software 

for what it does
Can identify mistakes in behaviour of a system
Cannot prove that all behaviours are correct
Absence of evidence vs. evidence of absence

7



BACKGROUND: LINEARIZABILITY

8



BACKGROUND: MULTI-WORD 
OPERATIONS
mwread(addresses) {
values[n]
atomic {
for i in 1…n {
values[i] = read(

addresses[i])
}

}
return values

}

mwcas(addresses,

expected-values,

desired-values) {

atomic {

for i in 1…n {

if read(addresses[i]) != 

expected-values[i] {

return false

}

}

for i in 1…n {

write(

addresses[i],

desired-values[i])

}

} return true

}

9



BACKGROUND: OPERATIONS

• Crash failure: when operations fail to return 
a response due to failure of their threads

10



BACKGROUND: RECOVERY

11



BACKGROUND: MODEL

• Behaviour of a system is recorded as an 
execution history

1 t1 INV A B 1 2
2 t1 RES A B 0 1 0

12

time thread addresses valuesevent 
type

operation 
type

event



BACKGROUND: EXAMPLE MULTI-
WORD HISTORY

1 I t1 A B 1 2

2 I t2 C D 3 4

3 I t3 C D 5 6

4 R t3 C D 0 0 0

5 R t2 C D 5 6 0

6 R t1 A B 0 0 0

• 0 is success, 1 ≤ i ≤ n is failure due to comparison i
• R is for reads

13



BACKGROUND: LINEARIZING 
AFTER FAILURE
• No response? No problem!
• Let’s add one if it looks like the operation 

took effect
• But where?

14



BACKGROUND: LINEARIZING 
AFTER FAILURE
• Recoverable linearizability

The operation must have occurred before the 
next operation on the same object by the same 
thread

15



BACKGROUND: ANALYSIS

• Linearizability testing of arbitrary histories 
involving reads, writes is NP-complete.

Gibbons, Korach. 1997.

• How can we do blackbox testing in 
polynomial time?

16



BACKGROUND: ANALYSIS

• Solution: prove P=NP
• Check: is it easier with swaps?

given the previous value in the register during a 
write (i.e. a swap), the problem is still NP-
complete
Gibbons, Korach. 1997.

• Solution: Given the read-mapping, the 
problem is O(nlogn) for a history of n 
operations

Gibbons, Korach. 1997.
We can infer the read-mapping from the log of 
successful swaps if all values are unique

17



BACKGROUND: ANALYSIS 
TECHNIQUES
• Zone-based testing

Proposed by Gibbons, Korach
Defines interval of time, or “zone”, over which a 
value is the latest value of an object

• Graph-based testing
Build precedence graph of operations and check 
for cycles and consistency

18



BACKGROUND: ANALYSIS 
TECHNIQUES
• Hitting families

Order small groups of operations linearizably first
• Ozkan, Majumdar, Niksic. 2019.

• Data-structure-specific methods
P-time algorithms exist for abstract collections

• Emmi, Enea. 2018.

Can reduce some models to simpler models
• Bouajjani et al. 2015.

Local view arguments to easily linearize search 
operations

• Feldman et al. 2018.

19



THE ALGORITHM: THE GRAPH

• Vertices represent each operation

20



THE ALGORITHM: THE GRAPH

• Directed edges establish order in which they 
must be linearized

21



THE ALGORITHM: EDGE BUILDING

• Reads-from edge: read of a value must occur 
after it is written

22



THE ALGORITHM: EDGE BUILDING

• Time-precedence edge: non-concurrent 
operations are totally ordered

23



THE ALGORITHM: EDGE BUILDING

• Greatly reduce the number of time edges by 
using an algorithm to select necessary edges

24



THE ALGORITHM: UNCONDITIONAL 
MULTI-WORD SWAPS

25



THE ALGORITHM: MULTI-WORD 
READS

26



THE ALGORITHM: UNSUCCESSFUL 
CAS OPERATIONS

27



THE ALGORITHM: TYPES OF 
LINEARIZABILITY ERRORS
• Fork

28



THE ALGORITHM: TYPES OF 
LINEARIZABILITY ERRORS
• Time travel

29



THE ALGORITHM: TYPES OF 
LINEARIZABILITY ERRORS
• Disconnect

30



THE ALGORITHM: PERFORMANCE

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450

Ti
m

e 
(s

)

Log size (MB)

Runtime

31



CONCLUSION

• Blackbox testing is a valuable tool when 
model checking becomes increasingly 
difficult

• Graph-based methods allow intuitive 
extension of linearizability testing to multiple 
words and new operations

• Testing recoverability of multi-word primitives 
is important because of their usefulness in 
building linked data structures

Questions?

32


