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Scalable distributed systems face inherent trade-offs arising from the relatively high cost of exchanging information between

computing nodes. Brewer’s CAP (Consistency, Availability, Partition-Tolerance) principle states that when communication

becomes impossible between isolated parts of the system (i.e., the network is partitioned), then the system must give up

either safety (i.e., sometimes return an incorrect result) or liveness (i.e., sometimes fail to produce a result). Abadi generalized

Brewer’s principle by defining the PACELC (if Partition then Availability or Consistency, Else Latency or Consistency)

formulation, which captures the observation that the trade-off between safety and liveness is often made in practice even

while the network is reliable. Building on Gilbert and Lynch’s formal proof of the CAP principle, this paper presents a formal

treatment of Abadi’s formulation and connects this result to a body of prior work on latency bounds for distributed objects.
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1 INTRODUCTION
Designers and implementers of distributed systems suffer many headaches over failures, concurrency, and also

physical limits related to the exchange of information between components. Notably, the propagation delay

for communication between data centers grows linearly with distance due to the finite propagation speed of

light, which makes it difficult to build systems that are scalable in a geographic sense, and yet maintain low

latency for practical workloads. To make matters worse, failures of wide-area network links can partition a

system into components that can communicate internally but cannot communicate with each other. In this

scenario, many systems are unable to fulfill their goals, which can be categorized broadly as ensuring safety (e.g.,

never producing incorrect outputs) and liveness (e.g., producing outputs eventually for all requests). Brewer’s

CAP principle summarizes this observation by stating that the combination of Consistency (safety), Availability

(liveness), and Partition tolerance are not achievable simultaneously.

Following Brewer’s keynote speech at PODC 2000 [3], the CAP Principle became the subject of lively discussion,

raising questions such as how to define consistency and availability precisely, and how to categorize existing

systems according to which correctness property they sacrifice to overcome the conjectured impossibility. This

has led to some confusion, for example the “two out of three” interpretation of CAP, which treats C, A and P

symmetrically and suggests that every system can be classified as AP, CP, or CA. In fact some systems (e.g.,

Apache Cassandra) can be tuned to provide either AP, CP, or none of the above. Moreover, the interpretation of

CA (i.e., consistent and available but not partition tolerant) is questionable because lacking P seems to imply that

either C or A is lost in the event of a partition, unless perhaps the system is not distributed to begin with, in which

case it tolerates partitions trivially. Abadi re-visited the CAP principle by raising two technical points in his 2012

article [1]: (i) no trade-off is necessary at times when the network is reliable, meaning that an AP or CP system

may in fact provide both C and A most of the time; and (ii) many practical systems sacrifice C to reduce latency
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(L) irrespective of network failures. This observation is known as Abadi’s PACELC (“pass-elk”) formulation: if

Partition then Availability or Consistency, Else Latency or Consistency. This formulation distinguishes P from

A and C, thus discouraging the “two out of three” interpretation, and also separates the inherent C-A trade-off

during a network partition from the voluntary L-C trade-off exercised during failure-free operation.
1

In parallel with efforts by practitioners to finesse the interpretation of CAP and related trade-offs, the theory

community has sought to formalize these observations as mathematical facts. Two years following Brewer’s

keynote, Gilbert and Lynch [5] brought rigor to the discussion by formalizing CAP as the impossibility of

simulating a read/write register in a message passing system that simultaneously guarantees Lamport’s atomicity

property [7] (consistency) and eventual termination (availability) in the presence of a network partition (arbitrary

message loss). This result is commonly referred to as the CAP theorem, and is distinguished from Brewer’s

informal and intuitively appealing conjecture. Naturally, the proof of the CAP theorem also validates PAC, or the

first half of Abadi’s PACELC formalism.

Building on the formal model adopted by Gilbert and Lynch [5], this paper aims to present a rigorous treatment

of Abadi’s PACELC formulation by applying and alternative proof technique based on latency bounds for shared

objects. Specifically, the paper makes the following contributions:

• Section 3 discusses known latency bounds for shared objects in partly synchronous systems [2, 8], and

proves an analogous bound for the asynchronous model.

• Section 4 establishes a connection between latency bounds for shared objects and CAP-related trade-offs

by using the lower bound established in Section 3 to derive an alternative proof of the CAP theorem.

• Section 5 states a formal interpretation of Abadi’s PACELC formulation in terms of the results presented in

Sections 3 and 4.

2 FORMAL MODEL
I/O automata and their composition. Similarly to [5], this paper adopts the asynchronous system model formal-

ized by Lynch in Chapter 8 of [9]. There are n reliable processes that communicate using point-to-point FIFO

(first-in first-out) communication channels. Two varieties of such channels are considered in different parts of

this paper: reliable channels that may delay messages but guarantee eventual delivery, and unreliable channels

that may drop message entirely. Both processes and channels are modeled as I/O (input/output) automata, and
their composition is an automaton A representing a system that simulates a single read/write register. Process

automata are denoted P1, . . . , Pn , and the channel automaton by which Pi sends messages to Pj , i , j is denoted
Ci, j . Processes interact with channels using send and receive actions on messages. Processes also support two

types of output actions, invoke and respond, by which they initiate and (respectively) compute the result of an

operation on the simulated read/write register.

Executions and traces. The behavior of the system in a given run is modeled as an execution, which is an

alternating sequence of states an actions, beginning with a start state determined by the initial value of the

simulated register. A trace corresponding to an execution α , denoted trace(α), is the subsequence of invoke
and respond actions (i.e., external actions) in α .2 The projection of an execution α (respectively trace β) onto
the actions of a particular process Pi is denoted α |Pi (respectively β |Pi ). We assume that every execution is

well-formed, meaning that each process executes an alternating sequence of invoke and respond actions, starting
with invoke. The invoke action is enabled for each process in every start state, and also in every state where the

last output action of the process was a respond.

1
Abadi explains that latency is “arguably the same thing” as availability since a network that loses messages is indistinguishable from one

that delays message delivery indefinitely [1]. Thus, L is in some sense synonymous with A.

2
The send action is an output action of each process automaton, and an internal action of the composed automaton A. This is accomplished

by hiding send actions in A.
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Fairness and timing. An execution is fair if every process or channel automaton that is enabled to execute an

action eventually either executes this action or ceases to be enabled to execute it. In this context, fairness means

that every message sent is eventually either dropped or received, and every process eventually invokes another

read or write operation if it has computed the response of its previous operation. Thus, a fair execution may in

principle have a finite trace if the protocol becomes stuck with no actions enabled. Executions are timed, meaning

that each event (occurrence of an action) is tagged with a timestamp from a global clock.
3
This makes it possible

quantify the time taken for a channel to deliver a message in an execution (time of receive minus time of send,
or else ∞ if receive does not occur), or the latency of a read or write operation (time or respond minus time of

invoke, or else ∞ if respond does not occur).

Correctness properties. An execution α of the system automaton A is consistent if trace(α) satisfies Lamport’s

atomicity property for read/write registers [7] (a special case of Herlihy and Wing’s linearizability property [6]),

whose formalization is discussed in Chapter 13 of [9]. Quoting [5], atomicity is explained informally as follows:

Under this consistency guarantee, there must exist a total order on all operations such that each

operation looks as if it were completed at a single instant.

For the impossibility results presented in this paper, it suffices to adopt a weaker notion of consistency based on

Lamport’s regularity property, which is easier to formalize. In the single-writer case, it states that a read must

return either the value assigned by the last write preceding
4
it in the execution, or the value assigned by some

write that is concurrent
5
with the read.

An execution α of the system automaton A is available if for every process Pi , any invocation action of Pi is
eventually followed by a respond action of Pi (i.e., every operation invoked eventually produces a response).

An execution α of the system automaton A is partition-free if for every messagem sent, the send action form
is eventually followed by a receive action form (i.e., all messages sent are delivered eventually).

6

3 LATENCY BOUNDS
Prior work on simulating read/write registers in a message passing model has established bounds on operation

latencies. Informally speaking, these results observe that r +w ≥ d where r and w are upper bounds on the

latencies of reads and writes, respectively, and d is a lower bound on the network delay. This point was first

proved by Lipton and Sandberg for the coherent random access machine (CRAM) model [8], and then formalized

and strengthened by Attiya and Welch for sequential consistency [2]. Both results assume partly synchronous

models, and therefore neither can be applied directly in this paper because the worst-case latencies of reads and

writes are unbounded in the model defined in Section 2 due to asynchrony. In fact, the upper bounds r andw do

not exist if one considers all possible executions of a system, or even all fair executions. This statement remains

true even if message delays are constant (i.e., messages are delivered and processed in a timely manner) because

the processes are asynchronous. For example, a process that is enabled to send a message may take an arbitrarily

long time to transfer that message to a communication channel.

The known lower bound on worst-case operation latency can be recast in the asynchronous model as a lower

bound over a special subset of executions. As stated in Theorem 3.1, the lower bound is asserted universally for

all executions in the special subset, and implies that operation latency greater than half of the minimum message

delay is inherent in the protocol rather following from asynchrony alone.

3
The global clock is introduced to simplify analysis, and in this version of the model processes do not have access to the clock.

4
Operation op1 precedes operation op2 if op1 has a respond action and its timestamp is less than the timestamp of the invoke action of op2.

5
Operation op1 is concurrent with operation op2 if neither op1 precedes op2 nor op2 precedes op1.

6
It is assumed without loss of generality that all messages sent are distinct.
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Theorem 3.1. LetA be an automaton that simulates a read/write register initialized to valuev0 in the asynchronous
system model with at least two processes. Suppose that every execution of A is consistent. Let α be any execution of A
that is available, comprises a write by some process PW of some value v1 , v0 and a read by some other process PR ,
and where the two operations are concurrent. Let r andw denote the latencies of the read and write in α , respectively,
and let d > 0 be a lower bound on the message delay. Then r +w ≥ d .

Proof. Since every execution of A is assumed to be consistent, it follows that the read returns either v0 or v1.
Therefore, the following case analysis is exhaustive.

Case 1: The read returns v1.
First, note that the invoke action of PW ’s write causally precedes

7
the respond action of PR ’s read, which implies

that PW communicates with PR either directly or indirectly (i.e., by way of one or more other processes) in α .
This is because α is otherwise indistinguishable to PR and PW from an execution where the events are shifted so

that PR ’s read responds before PW ’s write begins (i.e., v1 is read before v1 is written), which would contradict

the assumption that all executions of A are consistent. The causal relationship implies that α contains a set of

messagesm1,m2, . . . ,mk for some k ≥ 1, such that PW sendsm1 during its write, PR receivesmk during its read,

and for 1 ≤ i < k the recipient ofmi sendsmi+1 after receivingmi . Such a scenario is illustrated in Figure 1 in

the special case where k = 1. Since the write begins beforem1 is sent and the read finishes aftermk is received,

it follows that the invoke action of PW ’s write is separated from the respond action of PR ’s read by k message

delays or kd time. Moreover, since the two operations are assumed to be concurrent, it also follows that the sum

of their latencies is at least kd . Since k ≥ 1, this implies r +w ≥ d , as required.

PW

PR

invoke
write(v1) respond

invoke
read

respond
with v1

message m
(delay  d)

time

Fig. 1. Execution α in the proof of Theorem 3.1.

Case 2: The read returns v0.
The analysis is similar to Case 1. First, note that the invoke action of PR ’s read causally precedes the respond action
of PW ’s write, which implies that PR communicates with PW either directly or indirectly in α . This is because α
is otherwise indistinguishable to PR and PW from an execution where the events are shifted so that PW ’s write

responds before PR ’s reads begins (i.e., v0 is read after v1 is written), which would contradict the assumption that

all executions ofA are consistent. The causal relationship implies that α contains a set of messagesm1,m2, . . . ,mk
for some k ≥ 1, such that PR sendsm1 during its read, PW receivesmk during its write, and for 1 ≤ i < k the

recipient ofmi sendsmi+1 after receivingmi . Since the read begins beforem1 is sent and the write finishes after

7
The “causally precedes” relation is the transitive closure of two rules: action a causally precedes action b if a occurs before b it the same

process, or of a sends a message that is received in b .
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mk is received, it follows that the invoke action of PR ’s read is separated from the respond action of PW ’write by

k message delays or kd time. Moreover, since the two operations are assumed to be concurrent, it also follows

that the sum of their latencies is at least kd . Since k ≥ 1, this implies r +w ≥ d , as required. �

The proof of Theorem 3.1 considers two operations on a single read/write register, as opposed to [2, 8] where

a weaker four operations on two registers are considered. This is a consequence of the different interpretations

of consistency: this paper deals with atomicity and regularity, which assume that invoke and respond actions

are totally ordered; [2, 8] deal with sequential consistency, which assumes that such actions are only partially

ordered (by program order and the “reads-from” relation).

4 FROM LATENCY BOUNDS TO CAP
The CAP principle in the context of the model from Section 2 is stated formally in Theorem 4.1 below, which is

modeled after Theorem 1 in [5].

Theorem 4.1 (CAP). Let A be an automaton that simulates a read/write register in the asynchronous system
model with at least two processes. Then A cannot satisfy both of the following properties in every fair execution α
(including executions that are not partition-free):

• α is consistent
• α is available

Gilbert and Lynch prove their version of Theorem 4.1 by contradiction, supposing initially that A ensures both

consistency and availability. They construct an execution α involving at least two processes, initially partitioned

into two disjoint groups {G1,G2} that are unable to communicate with each other due to dropped messages.

Letting v0 denote the initial value of the read/write register, some process in G1 is chosen to invoke a write

operation that assigns a new value v1 , v0. Since A ensures that α is available, even if it is not partition-free,

this write produces a response eventually. Next, a process in G2 is chosen to invoke a read operation, which

once again produces a response eventually. However, since there is no communication between processes inG1

and processes in G2, α is indistinguishable to processes in G2 from an execution where the write never occurs.

Therefore, the read must return v0 instead of v1, which contradicts the assumption that α is consistent in addition

to being available.

Alternatively, Theorem 4.1 can be proved using the latency bound from Section 3. Roughly speaking, the

proof argues that if a system ensures consistency then operation latencies grow with message delays, and hence

operations cannot terminate eventually (i.e., system cannot ensure availability) if the network is partitioned.

Alternative proof of Theorem 4.1. Let A be an automaton that simulates a read/write register in the asyn-

chronous system model with at least two processes. Suppose for contradiction that A ensures that every fair

execution is both consistent and available, even if the execution is not partition-free. Let PW and PR be distinct

processes, and suppose that the network drops all messages. There exists a fair execution α1 of A where the

initial value of the register is v0, then PW writes v1 , v0, then PR immediately reads the register (i.e., PR ’s invoke
action is consecutive with PW ’s respond action) and produces a response. Since A ensures consistency even if

the execution is not partition-free, this implies that PR ’s read returns v1 and not v0. Now let α2 be the prefix of
α1 ending in the state immediately following the read’s response. Since α2 is indistinguishable to all processes

from an execution where the messages are merely delayed and not dropped, it is possible to extend α2 to a finite

partition-free execution α3 by delivering all sent messages eventually (after the response of the read), without

introducing any additional read or write operations. Now construct α4 from α3 by swapping the relative order of

PR ’s invoke action and PW ’s respond action, which preserves the property that the execution is both consistent

and available, and also makes Theorem 3.1 applicable. Let w and r denote the latencies of the write and read,
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respectively, in α4. Suppose without loss of generality that the message delay d in α4 is constant and greater

than r +w , which ensures that no message sent by PW after starting its write can influence the outcome of PR ’s
read operation. This scenario is illustrated in Figure 2 in the simplified case when PW and PR are the only two

processes in the system. Then α4 contradicts Theorem 3.1 since this execution is both available and consistent

with d > r +w . �

PW

PR

invoke
write(v1)

invoke
read

respond
with v1

messages
from PW to PR

delayed

time

respond

Fig. 2. Execution α4 in the alternative proof of Theorem 4.1.

5 FORMAL INTERPRETATION OF PACELC
The conjunction of Theorem 4.1 and Theorem 3.1, both of which are proved in this paper using latency arguments

in an asynchronous model, constitutes a formal statement of Abadi’s PACELC formulation. Theorem 4.1 implies

that for executions that are fair and not partition-free, the system cannot always guarantee both consistency

and availability: if Partition then Availability or Consistency. On the other hand, Theorem 3.1 implies that for

executions that are partition-free, the system cannot always guarantee both consistency and operation latency

less than half of the minimum message delay, irrespective of asynchrony (i.e., even if message delays are constant

and processing delays
8
are zero): Else Consistency or Latency.

Attiya and Welch [2] proved that the latency lower bound r +w ≥ d stated in Theorem 3.1 is tight in a partially

synchronous model where processes have access to local clocks that can be used as timers, and where message

delays are constant. Specifically, if message delays are exactly d (which implies partition-freedom), then there

exists a protocol that guarantees atomic consistency and where either reads are instantaneous and writes have

latency d , or reads have latency d and writes are instantaneous. Such protocols maintain a copy of the register’s

state at each process, and use timed delays to compensate for message delays. For example, in the instantaneous

read protocol, a read operation returns the local copy of the state without any network communication, whereas

a write operation first broadcasts the new value to all other processes, then sleeps for d time, and finally updates

its local state. A process updates its local copy of the state instantaneously upon receiving the broadcast value.

Practical distributed storage systems such as Amazon’s Dynamo [4] and its open-source derivatives are

designed to operate in a failure-prone environment, and therefore rely on explicit acknowledgments rather than

timed delays to ensure delivery (i.e., receipt and processing) of messages between processes. As a result, these

systems exhibit operation latencies exceeding the lower bound in Theorem 3.1 by a factor of at least two even

8
In the asynchronous model with timed executions, one can define processing delay as the time between when a send, receive, or respond

action is enabled and when that action is executed.
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in executions where message delays are exactly d . For example, a quorum-replicated system such as Amazon’s

Dynamo [4] can be configured for local reading but then writing requires a full network round trip, or 2d time, to

ensure Lamport’s regularity property [7]. This is accomplished using full replication and a read-one, write-all

quorum configuration. Operation latency is increased further if the system is configured to tolerate server failures,

for example by using majority quorums, in which case both reads and writes require at least 2d time.

6 CONCLUSION
This paper presented both an alternative proof of the CAP principle and a formal treatment of Abadi’s PACELC

formulation based on the inherent trade-off between operation latency and network delay. These results comple-

ment and extend the CAP theorem of Gilbert and Lynch, which was published prior to Abadi’s article, and draw

a precise connection between CAP-related trade-offs and latency bounds for shared objects.

REFERENCES
[1] D. Abadi. Consistency tradeoffs in modern distributed database system design: CAP is only part of the story. IEEE Computer, 45(2):37–42,

2012.

[2] H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM Trans. Comput. Syst., 12(2):91–122, 1994.
[3] E. A. Brewer. Towards robust distributed systems. In Proc. of the 19th ACM Symposium on Principles of Distributed Computing (PODC),

page 7, 2000.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:

Amazon’s highly available key-value store. In Proc. of the 21st ACM Symposium on Operating System Principles (SOSP), pages 205–220,
October 2007.

[5] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, 2002.

[6] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, July 1990.

[7] L. Lamport. On interprocess communication, Part I: Basic formalism and Part II: Algorithms. Distributed Computing, 1(2):77–101, June
1986.

[8] R. J. Lipton and J. Sandberg. PRAM: A scalable shared memory. Technical Report CS-TR-180-88, Princeton University, 1988.

[9] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

, Vol. 1, No. 1, Article . Publication date: April 2018.


	Abstract
	1 Introduction
	2 Formal Model
	3 Latency bounds
	4 From latency bounds to CAP
	5 Formal interpretation of PACELC
	6 Conclusion
	References

