
Enabling Large-Scale Mining Software

Repositories (MSR) Studies Using Web-Scale

Platforms

by

Weiyi Shang

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

May 2010

Copyright c© Weiyi Shang, 2010

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

The Mining Software Repositories (MSR) field analyzes software data to uncover

knowledge and assist software developments. Software projects and products con-

tinue to grow in size and complexity. In-depth analysis of these large systems and

their evolution is needed to better understand the characteristics of such large-scale

systems and projects. However, classical software analysis platforms (e.g., Prolog-like,

SQL-like, or specialized programming scripts) face many challenges when performing

large-scale MSR studies. Such software platforms rarely scale easily out of the box.

Instead, they often require analysis-specific one-time ad hoc scaling tricks and designs

that are not reusable for other types of analysis and that are costly to maintain. We

believe that the web community has faced many of the scaling challenges facing the

software engineering community, as they cope with the enormous growth of the web

data. In this thesis, we report on our experience in using MapReduce and Pig, two

web-scale platforms, to perform large MSR studies. Through our case studies, we

carefully demonstrate the benefits and challenges of using web platforms to prepare

(i.e., Extract, Transform, and Load, ETL) software data for further analysis. The re-

sults of our studies show that: 1) web-scale platforms provide an effective and efficient

platform for large-scale MSR studies; 2) many of the web community’s guidelines for

using web-scale platforms must be modified to achieve the optimal performance for

ii

large-scale MSR studies. This thesis will help other software engineering researchers

who want to scale their studies.

iii

Acknowledgments

This thesis would not have been possible without the continuous support of my par-

ents who always support me and give me the will to succeed.

I would like to thank my supervisor Dr. Ahmed E. Hassan for his support and ad-

vice. A special thank you to Dr. Bram Adams for his fruitful suggestions throughout

my research during the last one and a half years.

In addition, I appreciate the valuable feedback provided by two of my thesis

readers: Dr. Patrick Martin and Dr. Ahmad Afsahi.

I appreciate the lively and engaging discussions with all the members of SAIL. In

particular, I would like to thank Zhen Ming Jiang, for all his help and encouragement.

I would like to thank SHARCNET and Ben Hall for providing the experimental

environment used in this thesis.

Finally, I thank all my friends who patiently put up with me while I was working

on my thesis.

iv

Related Publications

The following is a list of our publications that are on the topic of enabling large-scale

Mining Software Repositories (MSR) studies using web-scale platforms:

• MapReduce as a General Framework to Support Research in Mining Software

Repositories (MSR), Weiyi Shang, Zhen Ming Jiang, Bram Adams and Ahmed

E. Hassan, MSR ’09: Proceedings of the 6th IEEE Working conference on

Mining Software Repositories (MSR), 2009, Vancouver, Canada, 2009. This

work is described in Chapter 3.

• An Experience Report on Scaling Tools for Mining Software Repositories Using

MapReduce, Weiyi Shang, Bram Adams and Ahmed E. Hassan, submitted

to ASE ’10: The 25th IEEE/ACM International Conference on Automated

Software Engineering. This work is presented in Chapter 4.

• Enabling Large Scale Software Studies Using Web-Scale Platforms: An Expe-

rience Report, Weiyi Shang, Bram Adams and Ahmed E. Hassan, submitted

to SCAM ’10: Tenth IEEE International Working Conference on Source Code

Analysis and Manipulation. This work is discussed in Chapter 5.

v

Table of Contents

Abstract ii

Acknowledgments iv

Related Publications v

Table of Contents vi

List of Tables ix

List of Figures x

Chapter 1:
Introduction . 1

1.1 Research hypothesis . 3
1.2 Thesis overview . 4
1.3 Thesis contributions . 6
1.4 Thesis organization . 7

Chapter 2:
Background . 8

2.1 Mining Software Repositories (MSR) 8
2.2 Data pipeline in MSR . 10
2.3 Trends in MSR . 12
2.4 Approaches for scaling MSR . 13
2.5 Web-scale platforms . 15
2.6 Chapter summary . 22

Chapter 3:
Feasibility Study of Scaling MSR Studies using MapRe-
duce . 23

3.1 Requirements . 24

vi

3.2 Case study . 24
3.3 Discussion and limitations . 39
3.4 Chapter summary . 41

Chapter 4:
MapReduce as a General Platform for Scaling MSR Stud-
ies . 42

4.1 Challenges of MapReducing MSR studies. 43
4.2 Case studies . 48
4.3 Migration experiences . 51
4.4 Applicability . 65
4.5 Limitations and threats to validity 67
4.6 Chapter summary . 68

Chapter 5:
Large-Scale MSR Studies with Pig 70

5.1 Motivating example of data preparation in a large-scale MSR Study . 71
5.2 Requirements for ETL in large-scale MSR studies 72
5.3 Case studies . 76
5.4 Discussion . 87
5.5 Chapter summary . 91

Chapter 6:
Conclusion . 92

6.1 Major topics addressed . 93
6.2 Thesis contributions . 94
6.3 Future research . 96

Bibliography . 98

Appendix A:
Sample Source Code of Pig Programming Units . . . 108

A.1 ExtPigStorage . 108
A.2 ExtractLog . 110
A.3 ExtractVersions . 113
A.4 ExtractSourceCode . 115
A.5 CovertSourceToXML . 117
A.6 ChangeLOC . 121
A.7 EvoAnalysisComment . 123
A.8 EvoAnalysisMethod . 129
A.9 GetMethod . 134

vii

A.10 CloneDetection . 138
A.11 TimeOverlap . 141
A.12 TimeSpan . 143
A.13 IsBug . 146
A.14 IsFI . 148

viii

List of Tables

3.1 Overview of distributed steps in DJ-REX1 to DJ-REX3. 27
3.2 Characteristics of Eclipse, BIRT and Datatools. 28
3.3 Disk performance of the desktop computer and the 4 core server com-

puter with SSD. 29
3.4 Experimental results for DJ-REX in Hadoop. 29
3.5 Effort to program and deploy DJ-REX. 30

4.1 Eight types of MSR Analyses. 48
4.2 Overview of the three subject tools. 50
4.3 Characteristics of the input data. 50
4.4 Configuration of MapReduce clusters. 51
4.5 Best results for the migrated MSR tools. 52
4.6 Challenges of MapReducing MSR problems. 52
4.7 Applicability of performing MSR analysis using the MapReduce platform. 65

5.1 How do traditional software study platforms meet the three require-
ments for data preparation? . 76

5.2 Program units for case studies. 83
5.3 Configuration of the server machine and the distributed computing

environment. 85
5.4 Running time of J-REX on single machine, Hadoop platform and Pig

platform. The base line of the relative running time ratio is the running
time of J-REX on single machine. 85

ix

List of Figures

2.1 Pipeline of large-scale MSR studies. 11
2.2 MapReduce programming model. 16
2.3 Pig Latin script for measuring the evolution of the total number of lines

of code (#LOC) in the different snapshots of a source code repository. 19
2.4 Java source code of the exec method of the programming unit ”Ex-

tractLog” (generating source code history log). 20

3.1 The Architecture of J-REX. 25
3.2 MapReduce strategy for DJ-REX. 27
3.3 Comparing the running time of J-REX on the server machine with

SSD and the desktop machine to the fastest DJ-REX3 for Datatools.
In this figure, the base line is the running time of J-REX on desktop
machine, which is 35 minutes and 50 seconds. 32

3.4 Comparing the running time of J-REX on the server machine with
SSD and the desktop machine to the fastest deployment of DJ-REX1,
DJ-REX2 and DJ-REX3 for BIRT. In this figure, the base line is the
running time of J-REX on desktop machine, which is 2 hours, 44 min-
utes and 9 seconds. 33

3.5 Comparing the running time of J-REX on the server machine with SSD
compared to DJ-REX3 with 4 machines for Eclipse. In this figure, the
base line is the running time of J-REX on a server machine with SSD,
which is 12 hours, 35 minutes and 34 seconds. 34

3.6 Comparison of the running time of the 3 flavours of DJ-REX for BIRT.
In this figure, the base line is the running time of DJ-REX1 on 2, 3 and
4 machines. The running time of DJ-REX1 on 2, 3 and 4 machines is
2 hours, 3 minutes and 51 seconds; 2 hours, 5 minutes and 2 seconds;
and 2 hours 16 minutes and 3 seconds respectively. 35

3.7 Comparison of the running time of BIRT and Datatools with DJ-REX3. 36
3.8 Comparing the running time of the basic J-REX on a desktop and

server machine to DJ-REX-3 on 3 virtual machines on the same server
machine. In this figure, the base line is the running time of DJ-REX3
on 3 virtual machines, which is 3 hours, 2 minutes and 47 seconds. . . 38

x

4.1 Example of the typical computational model of clone detection tech-
niques. 54

4.2 Violin plots of machine running-time for JACK and J-REX. 59
4.3 Running time trends of J-REX and JACK with 5 to 10 machines. . . 61

5.1 Pig Latin script for study one. 78
5.2 Pig Latin script for study two. 80
5.3 Pig Latin script for study three. 82
5.4 Composition of the data preparation process for the three MSR studies

performed with PIG. 84

xi

Chapter 1

Introduction

Software projects and systems continue to grow in size and complexity. The first

version of the Linux kernel, which was released in 1994, consists of 176,250 lines of

source code, while version 2.6.32 released in 2009 consists of 12,606,910 lines of source

code. In fifteen years, the size of Linux kernel has grown more than 70 folds. Similarly,

Gonzalez-Barahona et al. find that the size of the Debian Linux distribution doubles

approximately every two years [30,64]. Moreover, recent work by Mockus shows that

a universal repository of the version history of software systems contains TBs of data

and that the process to collect such a repository is rather lengthy and complicated,

taking over a year [57]. The size of the available code continues to grow and so do

the challenges of amassing and analyzing such large code bases.

This explosive growth in the availability and size of software data has led to

the formation of the Mining Software Repositories (MSR) field [37]. The MSR field

recovers and studies data from a large number of software repositories, including

source control repositories, bug repositories, archived communications, deployment

logs, and code repositories. Until today many of such large-scale studies are performed

1

Chapter 1: Introduction 2

on data prepared by classical platforms (e.g., Prolog-like, SQL-like, or specialized

programming scripts). Such prepared data is then further analyzed using modeling

tools like R [42], Weka [33], or other specially built tools. The concept of data

preparation is often referred to as ETL: Extract, Transform, and Load [69].

As the size of software data increases, more complex platforms are needed to enable

rapid and efficient data preparation (ETL). Software engineering studies typically try

to scale up ETL by means of specialized one-off solutions that are not easy to reuse

and that are costly to maintain. For example, to identify clones across the FreeBSD

operation system (131,688k LOC), Livieri et al. developed their own distributed plat-

form instead of reusing other platforms [53]. We believe that in many ways the ETL

phase is not of interest to many researchers, instead they prefer to focus on their core

competency, i.e., the analysis techniques, which analyze the prepared data.

Many of the challenges associated with data preparation in the software engineer-

ing community have already been faced by the web community. The web community

has developed several platforms to enable the large-scale preparation and processing

of large-scale data sets. MapReduce [24], Hadoop [70], Pig [60], Hive [5], Sawzall [62]

and SCOPE [22] are examples of such platforms. Because of the similarity between

MSR studies and web analyses, we firmly believe that our community can adopt many

of these platforms to scale data preparation of MSR studies.

In this thesis, we explore the use of popular web-scale platforms for performing

large-scale MSR studies. Through our case studies we carefully demonstrate the

feasibility and experience of using MapReduce to scale the data preparation phase

in MSR studies, and using Pig to improve the re-usability and maintainability of

software-specific ETL operations.

Chapter 1: Introduction 3

This chapter consists of the following parts: Section 1.1 presents our research

hypothesis. Section 1.2 gives an overview of the thesis. Section 1.3 briefly discusses

the contributions of this thesis. Section 1.4 presents the organization of the thesis.

1.1 Research hypothesis

Prior research and our experience lead us to the formation of our research hypothesis.

We believe that:#

"

!

The need for large-scale Mining Software Repositories (MSR) studies

continues to grow as the size and complexity of studied systems and

analysis techniques increase. Existing approaches to scale MSR studies

are not re-usable and are often costly to maintain. The need for scal-

able studies is very prominent in the MSR field. We believe the MSR

field can benefit from web-scale platforms to overcome the limitation of

current approaches.

The goal of this thesis is to empirically explore this hypothesis by performing

large-scale MSR studies using web-scale platforms. In particular, we perform three

different MSR studies on a MapReduce platform to validate the feasibility of scaling

MSR studies and to generalize our experience of migrating MSR studies to such

web-scale platforms. We then use the Pig platform to improve the re-usability and

maintainability of scaling efforts for MSR studies in practice.

Moreover, we document our experiences and evaluate the guidelines from the web

community when using such platforms to scale MSR studies. Our experiences show

that the standard guidelines from the web community must be changed to avoid sub-

optimal performance for MSR studies that use web-scale platforms. Our documented

Chapter 1: Introduction 4

experiences and source code can assist other MSR researchers and practitioners in

scaling other MSR studies.

1.2 Thesis overview

We now give an overview of the work presented in this thesis.

1.2.1 Chapter 2: Background

The Mining Software Repositories (MSR) field analyzes data in software repositories

to uncover valuable information of software projects and assist software engineering

practitioners [37].

The need for large-scale MSR studies continues to grow as the size and complex-

ity of studied systems and analysis techniques increase, and more different kinds of

repositories become available. MSR researchers often scale their analysis techniques

using specialized one-off solutions, expensive infrastructures, or heuristic techniques

(e.g., search-based approaches). However, such efforts are not re-usable and are often

costly to maintain. The need for scalable studies is very prominent in the MSR field.

Chapter 2 presents the two backgrounds of this thesis: 1) two trends related to the

need of large-scale MSR studies; and 2) existing approaches to scale MSR studies.

Large-scale data analysis is performed everyday by companies such as Google and

Yahoo!. The web community has developed several platforms to enable the large-scale

analysis. These platforms are able to run on a distributed computing environment to

gain computing power and increase data storage space. Data analysis algorithms can

be migrated to these platforms without having to know about network programming

Chapter 1: Introduction 5

details. This chapter presents several widely used data analysis platforms in the web

community and uses examples to illustrate the data analysis processes using these

platforms. The introduction and examples of these platforms show that they hold

promise in enabling large-scale MSR studies.

1.2.2 Chapter 3: Feasibility Study of Scaling MSR Studies

using MapReduce

We propose the use of MapReduce, a web-scale platform, to support research in

MSR. As a feasibility study, we migrate an MSR tool to run on Hadoop, an open

source implementation of MapReduce. Through a case study on the source control

repositories of the Eclipse, BIRT and Datatools projects, we demonstrate that the

migration effort to MapReduce is minimal and that the benefits are significant, as

the running time of the migrated J-REX is only 30% to 40% the time of the original

MSR tools.

1.2.3 Chapter 4: MapReduce as a General Platform for Scal-

ing MSR studies

In this chapter, we propose to use MapReduce as a general platform to scale more

types of software studies in MSR. We performed three representative case studies

from the MSR field to demonstrate that the MapReduce platform could be used as a

general platform to successfully scale MSR studies with minimal effort. We document

our experience such that other researchers could benefit from them. We also note that

many of the web community’s guidelines for using the MapReduce platform need to be

Chapter 1: Introduction 6

modified to better fit the characteristics of MSR problems, otherwise we risk gaining

sub-optimal benefits from such a scalable platform.

1.2.4 Chapter 5: Large-Scale MSR Studies with Pig

We find some of the limitations of MapReduce as a platform for large-scale MSR

studies from the case studies in Chapter 3 and 4. In particular, the use of the

MapReduce platform requires in-depth knowledge of the data processing phases of

MSR studies and requires additional effort of designing Map and Reduce strategies

for every data processing phase. In this chapter, we report on our experience in using

Pig to improve the re-usability of scaling MSR studies. Through three case studies

we carefully demonstrate the use of Pig to prepare data in software repositories for

further analysis.

1.3 Thesis contributions

In this thesis, we demonstrate that web-platforms can be used to effectively enable

large-scale MSR studies. We document our experience and find that standard guide-

lines from the web community may lead to sub-optimal performance due to the dif-

ferent characteristics of MSR data and problems in comparison to the web field. Our

experience can assist other software engineering researchers interested in scaling their

tools and performing large-scale software studies.

In particular, our contributions are as follows:

1. We verified the feasibility and benefits of scaling MSR studies using the MapRe-

duce and Pig platforms.

Chapter 1: Introduction 7

2. We documented our experience in scaling MSR studies using MapReduce and

Pig, and provided code samples of program units of Pig, such that other re-

searchers could benefit from our experience and code samples.

3. We also note that changes are needed to the web community’s standard guide-

lines for the MapReduce platform when migrating MSR studies to web-scale

platforms. These changes highlight the different characteristics of MSR studies

and must be done to ensure that MSR researchers get the most benefits from

such web-scale platform.

1.4 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 presents the background

of this thesis and introduces web platforms for data analysis. Chapter 3 presents a

feasibility study of using MapReduce for scaling MSR studies. Chapter 4 presents

our experience of using MapReduce as a general platform for scaling MSR studies.

Chapter 5 shows using Pig to improve the re-usability and maintainability of scaling

MSR studies in practice. Finally, Chapter 6 summarizes our work and presents our

future work.

Chapter 2

Background

MSR researchers continue to perform large-scale software studies on ever larger amounts

of data using ever more complex algorithms and techniques. However, few of the ap-

proaches address the challenges of performing large-scale MSR studies. This chapter

gives a brief introduction and several examples of MSR studies and illustrates two

trends of MSR studies, i.e., the larger amounts of data and the use of more complex

algorithms. Moreover, we explore the existing approaches for large-scale MSR stud-

ies to motivate the need and benefits of using web-scale platforms to support such

studies. We then present the web-scale platforms and show simple examples of using

two of these platforms to perform MSR studies.

2.1 Mining Software Repositories (MSR)

Various types of data are generated during software engineering activities. Source

code, bug report and system execution logs are examples of software data. Large

amounts of different software data are archived and stored in software repositories,

8

Chapter 2: Background 9

such as source control repositories and bug repositories [37].

The Mining Software Repositories (MSR) field analyzes the data in software repos-

itories to uncover knowledge to assist software engineering researchers and practition-

ers [37]. For example, software developers are required to write text logs when they

commit a change to source code. The text log stored in the source control reposi-

tories can assist other developers understanding the purpose of the change and the

architecture of the software [39].

We here present three MSR studies that are mentioned in this thesis:

• Software evolution. Software systems are continuously evolving during the

history of software projects [40]. Studying the evolution of a software system

assists developers in maintaining and enhancing the system. Typically, an evo-

lutionary study of software systems can be performed at one of five levels [40]:

1. System Level: At system level, one number as a measurement of every

snapshot of a software system is generated. Lehman et al. studied such

measurements and generalized eight laws for software evolution [52].

2. Subsystem Level: At subsystem level, the evolution study is performed on

every subsystem of the software project to understand more details about

the evolution of a software system. For example, Godfrey et al. study the

evolution of lines of code of every subsystem of the Linux kernel [29].

3. File Level: The evolution study at file level reports the evolution of every

source file of a software project. For example, the evolution study would

report evolutionary information such as file “a.c” is 5 lines less after the

most recent change.

Chapter 2: Background 10

4. Code Entity Level: At code entity level, every snapshot of every source

code entity, such as a function, is recorded. The evolution study performs

differencing analysis to generate results such as “Class A is changed, func-

tion foo is added into Class A.”.

5. Abstract Syntax Tree (AST) level: At this level, an AST is built for every

snapshot of the source code. The evolution study is based on tracking the

evolution of the AST. For example, the evolution study at AST level may

report that an if statement ’s condition is changed.

• Code clone detection. Code clones are identical or near identical segments

of source code [65]. There are two contradicting views of clone detection. One

view believes that code clones may increase the maintenance effort and intro-

duce bugs [54]. The other view considers code clone as a pattern in software

development [48]. Detecting code clones can assist in software maintenance and

program comprehension.

• System log analysis. Large amounts of log data are generated during software

system testing and execution. Analyzing system logs can assist software devel-

opers and maintainers in finding bugs and system problems that are difficult to

reveal by other software debugging and testing approaches [45].

In next section, we present a typical data pipeline in MSR studies.

2.2 Data pipeline in MSR

Figure 2.1 shows the typical pipeline for MSR studies, which starts with data prepa-

ration. The figure shows that the process of data preparation consists of the following

Chapter 2: Background 11

Software
Engineering

Data

1. Data
Extraction

2. Data
Transformation

Data
Analysis

Result3. Data
Loading

Data Preparation (ETL)

feedback

Data
Warehouse

Figure 2.1: Pipeline of large-scale MSR studies.

three phases:

1. Data Extraction. Most data gathered during the software engineering pro-

cess was not anticipated to be used for empirical studies. In order to extract

actionable data, special tools are needed to process software repositories. Such

tools are typically implemented in general-purpose programming languages. For

example, bug repositories track the histories of bug reports and feature requests.

Bettenburg et al. [19] built a tool called infoZilla that extracts structural data

from bug reports into a relational database. Jiang et al. [44] developed an

automated approach to extract data from system execution logs.

2. Data Transformation. After the raw data is extracted from software reposi-

tories and software archives, it typically needs to be abstracted and merged with

other extracted data for further analysis. Such transformations can be imple-

mented using general-purpose programming languages, Prolog-like languages,

SQL-like languages, or Web technologies such as MapReduce [24].

Maruyama et al. [56] developed an XML representation of Java source code.

Robles et al. [63] use various software engineering data, such as source code,

mailing list data and bug reports to merge different IDs of a single developers.

Chapter 2: Background 12

Emden et al. [68] used Grok to perform automatic code inspection for identifying

code smells such as code duplication.

3. Data Loading. In this phase, the transformed data is converted into the

format required by analysis tools and is loaded into various types of analysis

environments, such as relational database, R and Weka, for further analysis.

Data loading can even be as simple as writing transformed results to files that

are the input of data analysis.

Data preparation (ETL) is a highly interactive process. For example, if the results

of statistical analysis in the data analysis step look suspicious, researchers need to

examine the output of the data extraction, transformation and loading phases, refine

the phases, and re-prepare the data.

After the data preparation, various types of data analysis techniques can be per-

formed on the prepared data. The data analysis tools generate the final results of the

MSR studies.

2.3 Trends in MSR

In recent years, two major trends can be observed in the MSR field. The first trend is

that the data analyzed by MSR studies is exploding in size. Recent empirical studies

exhibit such a trend, with many researchers exploring large numbers of independent

software products instead of a single software product. Empirical studies on Debian

GNU/Linux by Gonzalez-Barahona et al. [30] analyze up to 730 million lines of source

code from 6 releases of the Debian distribution, which contains over 28,000 software

packages. Similarly, Mockus and Bajracharya et al. have been developing methods

Chapter 2: Background 13

to amass and index TBs of source code history data [17, 57]. Estimation indicates

that an entire year of processing is needed to amass such large source code [57]. This

growth of data is not slowing down. For example, studies show that the Debian

distribution is doubling in size approximately every two years [30, 64].

A second trend in the software engineering is the use of ever more sophisticated

automated techniques. Clone detection techniques are examples of this trend. Text-

based and token-based techniques, such as CC-Finder [47], use raw source code or

lexical “tokens” to detect code clones in a software project. However, as these clone

detection techniques are only able to detect a limited number of clone types [65], more

complex techniques that require much more computing power and running time are

needed to detect more types of code clones with higher precision.

2.4 Approaches for scaling MSR

The growth of data and the increase in the complexity of MSR studies bring many

challenges that hinder the progress of the MSR field. Yet, there is little work that

aims to address these challenges.

To enable large-scale MSR studies, researchers continue to develop ad hoc solu-

tions that migrate MSR studies to distributed computing environments. The simplest

and most naive way is using batch scripts to split input data across a cluster of ma-

chines, deploy the tools (unchanged) to the machines, run the tools in parallel, and fi-

nally merge the output of every machine. Other approaches, such as D-CCFinder [53],

Kenyon [20] and SAGE [28], re-engineer the original non-distributed MSR study tools

to enable them to run on a distributed environment. Distributed computing libraries,

such as OpenMP [23], can assist in developing distributed MSR study tools. However,

Chapter 2: Background 14

the above types of ad hoc solutions require additional programming effort or physical

changes to programs. Moreover, few of the approaches are able to handle massive

amounts of data, do error recovery and scale automatically.

Over the past 20 years, parallel database systems, such as Vertica [11], have

been used to perform large-scale data analyses. Recently, work by Stonebraker et

al. [67] shows that parallel database systems are challenging to install and configure

properly and they typically do not provide efficient fault tolerance. MSR researchers

are neither experts in installing parallel databases nor can they afford the time to learn

the intricacies of such systems. Moreover, MSR experiments require extracting large

amounts of data from software repositories and read the data sets without updating.

Using parallel database system is not an optimal solution because database systems

are hard to use with data extraction and ad hoc analyses. In addition, database

systems are not designed for scan-centric workloads.

Search-based software engineering (SBSE) [35] holds great promise for scaling

software engineering techniques by transforming complex algorithms into search al-

gorithms, which yield approximate solutions in a shorter time span. For example,

Kirsopp et al. [50] use various search algorithms to find an accurate cost estimate for

software projects. Antoniol et al. [15] use search-based techniques to assist large-scale

software maintenance projects. In addition to optimized performance, most search

algorithms are naturally parallelizable to support even larger scale experiments [34].

However, SBSE only offers a set of general techniques to solve problems, and consider-

able application-specific customization is still needed to achieve significant speed-ups.

Not all MSR analyses benefit from approximate solutions either.

Next section presents web-scale platforms such as MapReduce and Pig, which are

Chapter 2: Background 15

promising to assist in enabling large-scale MSR studies.

2.5 Web-scale platforms

The web community has developed large-scale data analysis platforms over the years

to support the data intensive processing in the web field. The web analyses have the

following characteristics.

1. Large input data sets. Large amounts of data are processed by the web field.

The input data may consist of TB-sized files.

2. Scan-centric job. Most of the processing only scans the entire input data

(without updating) and generates relatively small output results.

3. Fast evolving data. The input data evolves fast and frequently. The data is

mostly processed once and is thrown away.

Simple programming models or high-level programming languages are typically

used on the web-scale platforms to minimize the programming effort. The web-scale

platforms are typically leveraged by a distributed data storage technique such as

Google File System (GFS) [27] and Hadoop Distributed File System (HDFS) [4].

The data preparation (ETL) in the MSR studies has similar characteristics as the

analyses typically used in the web field. We believe that web-scale platforms can

be adopted by the MSR community to enable large-scale MSR studies. This thesis

focuses on two such platforms, which are introduced and illustrated below.

Chapter 2: Background 16

Map

Map
key

...
key

key

value

...
value

value
key value Reduce

Reduce

...
key

key
...

value

value

key

...
key

key

value

...
value

value
key value

input records intermediate data result data

... ...

Figure 2.2: MapReduce programming model.

2.5.1 MapReduce

MapReduce is a web-scale platform for processing very large data sets [24]. The

platform is proposed by Google and is used by Google on a daily basis to process

large amounts of web data.

MapReduce enables a distributed divide-and-conquer programming model. Shown

in Figure 2.2, the programming model consists of two phases: a massively parallel

“Map” phase, followed by an aggregating “Reduce” phase. The input data for MapRe-

duce is broken down into a list of key/value pairs. Mappers (processes assigned to

the “Map” phase) accept the incoming pairs, process them in parallel and generate

intermediate key/value pairs. All intermediate pairs having the same key are then

passed to a specific Reducer (process assigned to the “Reduce” phase). Each Reducer

performs computations to reduce the data to one single key/value pair. The output

of all Reducers is the final result of a MapReduce run. MapReduce processes can be

chained to implement analyses that consist of multiple steps.

An Example of MapReducing an MSR analysis. To illustrate how MapRe-

duce can be used to support MSR studies, we consider performing a classical MSR

study of the evolution of the total number of lines of code (#LOC) of a software

Chapter 2: Background 17

project. The input data of this MSR study is a source code repository. The repos-

itory is broken down into a list of key/value pairs as “version number/source code

file name”. Mappers accept every such pair, count the #LOC of the corresponding

source file and generate as intermediate key/value pair “version number/#LOC”. For

example, for a file with 100 LOC in version 1.0, a Mapper will generate a key/value

pair of “1.0/100”. Afterwards, each group of key/value pairs with the same key, i.e.,

version number, is sent to the same Reducer, which sums #LOCs in the list, and

generates as output the key/value pair “version number/SUM #LOC”. If a Reducer

receives a list with key “1.0”, and the list consists of two values “100” and “200”, for

example, the Reducer will sum the values “100” and “200” and output “1.0/300”.

The MapReduce platform holds great promise for scaling MSR studies, because

it is

1. a mature and proven platform. MapReduce is widely used with great

success by the web community and other communities. For example, the New

York Times has recently used MapReduce to transform all its old articles into

PDF format in a cost-effective manner [9].

2. a simple and affordable solution. MapReduce uses a simple, distributed

divide-and-conquer programming model. MapReduce can be deployed on com-

modity hardware, which makes scaling MSR studies more affordable.

3. a read-optimized platform. MapReduce is designed to perform read-only

data analyses. The optimization of read-only analyses can well support the

scan-centric MSR studies.

Hadoop is an open-source implementation of MapReduce that is supported by

Chapter 2: Background 18

Yahoo and is widely used in industry. Hadoop not only implements the MapReduce

model, but also provides a distributed file system, called the Hadoop Distributed

File System (HDFS), to store data. Hadoop supplies Java interfaces to implement

MapReduce operations and to control the HDFS programmatically. Another advan-

tage for users is that Hadoop by default comes with libraries of basic and widely used

“Map” and “Reduce” implementations, for example to break down files into lines, or

to break down a directory into files. With these libraries, users occasionally do not

have to write new code to use MapReduce.

2.5.2 Pig

Pig [60] is a platform designed for analyzing massive amounts of data built on top

of Hadoop, an open-source implementation of MapReduce. Pig provides a high-

level data processing language called Pig Latin [60]. Developers can use Pig Latin

to develop programs that are automatically compiled to MapReduce programming

model instead of designing “Map” and “Reduce” strategies.

To illustrate how Pig can be used for data preparation in MSR studies, we use it

to measure the evolution of the total number of lines of code (#LOC) in the different

snapshots of a source code repository. The corresponding source code in Pig Latin

is shown in Figure 2.3. To better illustrate the Pig Latin script, all variables in our

implementation use upper case, all Pig Latin key words use lower case, and the names

of user defined functions use camel case.

In the source code shown in Figure 2.3, line 1 loads all data from a CVS repository

into Pig storage, which is based on the Hadoop Distributed File System [4] (HDFS),

as a (file name, file content) pair.

Chapter 2: Background 19

Scalability is required in data preparation of studying
software data because of two reasons:

1) Data size and growth. Software repositories contain
massive amounts of data. Hence, studying software
engineering data is very time consuming. For exam-
ple, performing clone detection on FreeBSD source
code may take more than a month [5]. Some large
scale data preparation cannot be performed because
of the hardware limitation. However, data from soft-
ware engineering activities keeps on growing in size.
Scalability is necessary to study the massive amounts
of growing data.

2) Iterative analysis. The pipeline illustrated in Figure 1
shows the iterative process in studying software engi-
neering data. The iterative analysis requires the data
preparing to be scalable, such that each iteration does
not consume too much time to become a burden.

A number of approaches are available to address the
requirement of scalability. Ad hoc distributed programs are
developed to scale data preparation by regular program-
ming skills. D-CCfinder [5] is an example that scales CC-
Finder [16] to run on an ad hoc distributed environment
to support large scale clone detection. MapReduce based
data preparation platforms scalable, because as a distributed
frame, MapReduce can run on a distributed environment
to provide scalability. Parallel databases provide scalability
for SQL-like data preparing platforms. However, Prolog-like
platforms are hard to scale.

Debuggable

As ETL needs to deal with huge data sets, having irregular
data format and missing data, bugs can easily slip into
extraction, transformation and loading scripts. To debug ETL
scripts, researchers need to examine the data from the data
preparation process. Two requirements of data debugging are
shown as following.

1) Available intermediate data. Intermediate data is
important for data debugging because checking the
correctness of intermediate data facilitates locating
the problem in data preparation process and prevents
starting the data preparation all over again.

2) Data sampling and previewing. Previewing and
sampling data before processing the whole data is
required to check the correctness of data extraction
and transformation. For example, heuristics on source
control system logs can be used to group source
code changes into different categorizations [18], for
example feature introducing changes and bug fixing
changes. Researchers would like to see if their heuris-
tics work well on their subject systems before starting
to perform the heuristic on the whole data.

With additional effort, traditional platforms can all sup-
port debuggable data preparation. However, relying on data

Table I
HOW TRADITIONAL SOFTWARE STUDY PLATFORMS MEET THE THREE

REQUIREMENTS FOR DATA PREPARATION? [Ian says: TODO: change + -
and o to the circles.]

Modular Scalable Debuggable
SQL-like + o o
prolog-like + - +
Regular pro-
gramming

+ - +

MapReduce o + o
+ requirement is met

Legend o requirement is met with a little addi-
tional effort
- requirement not met or hard to meet

storage of in distributed environment, MapReduce requires
some more effort to enable checking all intermediate data,
and data sampling and previewing.

As shown in Table I, traditional techniques can meet all
requirements with relative ease, except for scalability, while
MapReduce excels at scalability but falls short at the other
two requirements. In the next section, we introduce Pig [19],
a data processing platform and a high level programming
language on top of MapReduce to combine the advantages
of platforms for large scale software study.

V. PIG: ENABLING LARGE SCALE SOFTWARE STUDIES

Pig [19] is a platform designed for analyzing massive data
built on top of Hadoop, an open-source implementation of
MapReduce.[Ian says: MapReduce is mentioned a lot of
times before, so where to introduce.] Pig provides a high
level data processing language called Pig Latin [20].

To illustrate how Pig can be used in data preparation for
software studies, we use it to measure the evolution of the
total number of lines of code (#LOC) in the different snap-
shots of a source code repository. The corresponding source
code in Pig Latin is shown as following. To better illustrate
the Pig Latin script, all variables in our implementation use
upper case, all Pig Latin key words use lower case, and the
names of user defined functions use camel case.

1 RAWDATA = load ’EclipseCvsData’ using
ExtPigStorage() as (filename:

chararray, filecontent:chararray)
;

2 HISTORYLOG = foreach RAWDATA generate
ExtractLog(filename, filecontent

);
3 HISTORYVERSIONS = foreach HISTORYLOG

generate ExtractVersions($0);
4 CODE = foreach HISTORYVERSIONS

generate ExtractSourceCode($0);
5 LOC=foreach CODE generate GenLOC($0);
6 dump LOC;

Figure 2.3: Pig Latin script for measuring the evolution of the total number of lines
of code (#LOC) in the different snapshots of a source code repository.

Line 2 extracts CVS log data of every source code file. Each of the program units

in Pig, such as ExtractLog in line 2, is implemented as a Java Class with a method

named exec. The Java source code of the exec method of the program unit ExtractLog

is shown in Figure 2.4. In the Java source code shown in Figure 2.4, the parameter of

method exec is a (”CVS file name”, ”CVS file content”) tuple. Because the rlog tool

that generates the historical log of CVS files needs a file as input, lines 7 to 10 write

the file content to a temporary file. Line 11 generates the historical log by calling the

method extractRlog that wraps the tool rlog. Lines 12 to 15 create and return a new

(”CVS file name”, ”CVS historical log”) tuple. The whole method contains less than

20 lines of code and uses an existing tool to complete the process.

In the remainder of the Pig Latin script in Figure 2.3, line 3 parses every source

code file’s log data in order to generate the historical version numbers of every source

code file. After generating the version numbers, line 4 uses CVS commands and

extracts source code snapshots of every file. Line 5 counts the LOC of each snapshot

of every source code file and Line 6 outputs the result data.

Chapter 2: Background 20

In the source code, line 1 loads all data from CVS
repository to Pig storage, which is supported by Hadoop
Distributed File System [21] (HDFS), as a pair of filename,
file content. Even though breaking down data into files and
loading into Pig is not standardly supported by Pig, the
programming is straight forward. Line 2 extracts cvs log data
of every source code file. For every source code file’s log
data, line 3 parse the data and generate the historical version
numbers of every source code file. After generating the
version numbers, line 4 uses CVS commands and extracts
source code snapshots of every file. Line 5 counts the LOC
of each snapshot of every source code file and Line 6 outputs
the result data.

From the Pig Latin source code above, we can see that
the whole process of measuring the evolution of #LOC
contains 4 program units: ”ExtractLog”, ”ExtractVersions”,
”ExtractSourceCode”, and ”GenLOC”.

Each of the program unit is implemented as a Java Class
with a method named exec. As an example, the exec method
of the programming unit ”ExtractLog” (generating source
code history log) is shown as following.

1 public Tuple exec(Tuple input) throws
IOException {

2 if (input == null || input.
size() == 0)

3 return null;
4 try{
5 String name = (String)

input.get(0);
6 String content=(String)

input.get(1);
7 File file=new File(name);
8 FileWriter fw=new

FileWriter(file);
9 fw.write(content);

10 fw.close();
11 String rlog=extractRlog(

name);
12 Tuple tname =

DefaultTupleFactory.
getInstance().newTuple
();

13 tname.append(name);
14 tname.append(rlog);
15 return tname;
16 }catch(Exception e){
17 throw WrappedIOException.

wrap("Caught
exception processing
input row ", e);

18 }
19 }

In the source code, the parameter of method exec is (”CVS
file name”, ”CVS file content”) tuple. Because the rlog tool
that generates the historical log of CVS files needs file as
input, lines 7 to 10 write file content to a temporary file.
Line 11 generates the historical log by calling the method
extractRlog that wraps the tool rlog. Lines 12 to 15 create
and return a new (”CVS file name”, ”CVS historical log”)
tuple. The whole method contains less than 20 lines of code
and uses an existing tool to complete the process.

In the above example, Pig Latin combines a number of
program units that provide different functionalities, which
illustrates the modular design of Pig programs.

Data preparation by the Pig platform is debuggable be-
cause of the following two reasons.

1) Pig enables data previewing and sampling.[Ian says:
it’s the mechanism by the language, but let’s just say
Pig, since Pig Latin is part of it.]

2) All intermediate data is stored as variables in Pig.
Moreover, Pig compiles the source code to MapReduce such
that the program can scale to analyze massive amounts of
data automatically.

In the next section, we present our experience with using
Pig to prepare data for three software studies.

VI. CASE STUDIES

This section reports our experience of preparing data for
three experiments of software studies by Pig. For each exper-
iment, we show the required data to prepare for analysis and
our implementation. After we present the three experiments
of software study and our implementation, we discuss our
experience of performing MSR experiments by Pig.

A. Data preparing for three software studies

We first presents the required data for three software
studies and our implementation of using Pig to perform
the data preparation. The subject system for our three
experiments is Eclipse, a widely used Java IDE, with more
than 2,880KSOC of source code and 9 years history. The
source control system and issue tracking system of Eclipse
both contain around 10GB of data.

Experiment one:

The first software study is an empirical studies on the
correlation between updating comments in the source code
and bugs.
Required data: This analysis requires the data for every
change in the source control system:

1) if the commit is related to bug?
2) if there is comment updating?

Implementation: As the simple example in Section V, the
first step of implementing Pig program is to break down the
process in to a number of program units. The program units
are shown as following.

Figure 2.4: Java source code of the exec method of the programming unit ”Extract-
Log” (generating source code history log).

We can see that the whole process of measuring the evolution of #LOC con-

tains 4 program units: ”ExtractLog”, ”ExtractVersions”, ”ExtractSourceCode”, and

”GenLOC”, and a general data loading method ExtPigStorage.

Pig has the following characteristics that benefit large-scale MSR studies.

1. In the above example, Pig Latin combines a number of program units that

provide different functionalities, which illustrates the modular design of Pig

programs.

Chapter 2: Background 21

2. Pig compiles its source code to MapReduce, such that the program can scale to

analyze massive amounts of data automatically.

3. Data preparation with the Pig platform is debuggable because Pig enables data

previewing and sampling and all intermediate data is stored as variables in Pig.

2.5.3 Other web-scale platforms

In addition to MapReduce and Pig, we briefly reviewed some of the most notable

web-scale platforms that are not focused in this thesis.

Similar to MapReduce and Pig, Microsoft develops a large-scale data processing

platform called Dryad [43] and a corresponding high-level data processing language on

top of Dryad named SCOPE [22]. Using Dryad, developers define a communication

flow of the subroutines of the data processing tool and build a communication graph

with the subroutines being vertices in the graph. The data processing tool can run

in a distributed environment with Dryad [43]. In addition, using SCOPE, a scripting

language on top of Dryad, the developers save programming effort in migrating data

processing tools to the Dryad platform.

Sawzall [62] is a high-level scripting language proposed by Google to hide the de-

tails of MapReduce platform. Similar to Pig, the scripts of Sawzall are automatically

compiled to programs following Google’s MapReduce programming model.

As SQL is widely used in data analysis, an SQL-like language called Hive [5] is

developed on top of Hadoop. Developers can write scripts similar to SQL and the

scripts are automatically compiled to MapReduce code of Hadoop.

Even though Dryad, SCOPE and Sawzall are well designed, highly optimized and

widely used in the web field, they are not open-sourced projects, such that we cannot

Chapter 2: Background 22

use them in our studies. Hive provides the data analysis functionality following the

data preparation (ETL), hence we do not focus on using Hive in this thesis. The use

of Hive to scale software data analysis is in our future work.

2.6 Chapter summary

The Mining Software Repositories (MSR) field analyzes the data in software reposi-

tories to uncover knowledge and assist decision making process in software projects.

Typical MSR process consists of a data preparation (ETL) phase and a data analysis

phase on the prepared data by the data preparation phase. Ever larger data sets are

processed by the MSR studies with more complex algorithms and techniques. Yet,

few existing work scales the MSR studies easily and efficiently. Several web-scale

platforms are developed to perform web analyses that are similar to MSR studies.

We strongly believe these web-scale platforms can help in scaling MSR studies. In the

next chapter, we use MapReduce as an example of a web-scale platform to evaluate

the feasibility of scaling MSR studies using such platforms.

Chapter 3

Feasibility Study of Scaling MSR

Studies using MapReduce

Introduced in Chapter 3, web-scale platforms are designed to process large amounts

of data in the web field. These platforms are promising to scale MSR studies. In this

chapter, we explore one of these platforms, called MapReduce [24], to evaluate the

feasibility of scaling MSR studies with web-scale platforms. As a proof-of-concept,

we migrate J-REX, an MSR study tool for studying software evolution, to run on

the MapReduce platform. Through a case study on the source control repositories of

the Eclipse, BIRT and Datatools projects, we show that J-REX is easy to migrate to

MapReduce and that the benefits are significant. The running time of the migrated

J-REX version is 30% to 40% of the running time of the original J-REX.

23

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 24

3.1 Requirements

Based on our experience, we seek four common requirements for large distributed

platforms to support MSR research. We detail them as follows:

1. Adaptability: The original MSR tools should be easily migrated to MapRe-

duce by MSR researchers without major re-engineering.

2. Efficiency: The adoption of the platform should drastically speed up the min-

ing process.

3. Scalability: The platform should scale with the size of the input data as well

as with the available computing power.

4. Flexibility: The platform should be able to run on various types of machines,

from expensive servers to commodity PCs or even virtual machines.

This chapter presents and evaluates MapReduce as a possible web-scale platform

that satisfies these four requirements.

3.2 Case study

This section presents our case study to evaluate using MapReduce, as an example of

the web-scale platforms, to scale MSR experiments.

3.2.1 J-REX

To validate the promise of MapReduce for MSR research, we discuss our experience

migrating an MSR study tool called J-REX to MapReduce. J-REX is used to study

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 25

Figure 3.1: The Architecture of J-REX.

the evolution of source code of software systems developed in Java programming

language, similar to C-REX [36]. J-REX performs software evolution study at code

entity level, which is presented in Section 2.1.

As shown in Figure 3.1, the whole process of J-REX spans three phases. The first

phase is the extraction phase, where J-REX extracts source code snapshots for each

file from a CVS repository. In the second phase, i.e. the parsing phase, J-REX calls

the Eclipse JDT parser for each file snapshot to parse the Java code into its abstract

syntax tree [3], which is stored as an XML document. In the third phase, i.e. the

analysis phase, J-REX compares the XML documents of consecutive file revisions to

determine changed code units, and generates evolutionary change data in an XML

format [39]. The evolutionary change data reports the evolution of a software system

at the level of code entities such as methods and classes (for example, “Class A

was changed to add a new method B”). J-REX has a typical MSR data pipeline

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 26

corresponding to the data pipeline shown in Figure 2.1.

The J-REX runtime process requires a large amount of I/O operations that lead

to performance bottlenecks. J-REX also requires a large amount of computing power

for comparing XML trees. The I/O and computational characteristics of J-REX make

it an ideal case study to study the performance benefits of the MapReduce platform.

3.2.2 MapReduce strategies for J-REX

This sub-section explains the design of migrating J-REX to MapReduce, which is

referred as “MapReduce strategy” in this thesis. Intuitively, we need to compare the

differences between adjacent revisions of a Java source code file. We could define the

key/value pair output of the Mapper function as (D1, a 0.java and a 1.java), and the

Reducer function output as (revision number, evolutionary information). The key D1

represents the differences between two versions, a 0.java and a 1.java represent the

names of two files. Because of the way that we partition the data, each revision needs

to be copied and transferred to more than one Mapper node. For example, a1.java

needs to be transferred to both Mapper node with a0.java and Mapper node with

a2.java. This generates extra I/O overhead, and turns out to make the process much

longer. The sub-optimal performance of this naive strategy shows the importance of

designing a good strategy of MapReduce.

Therefore, we tried another basic MapReduce strategy, as shown in Figure 3.2.

This strategy performs much better than our naive strategy. The key/value pair

output of the Mapper function is defined as (file name, revision snapshot), whereas the

key/value pair output of the Reducer function is (file name, evolutionary information

for this file). For example, file a.java has 3 revisions. The mapping phase gets the

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 27

Map

Map
b.java

b.java
a.java

a.java

b_1.java

b_0.java
a_2.java

a_1.java
a.java a_0.java

Reduce

Reduce

a.java
b.java

key
a.output
b.output

value

b_1.java

b_0.java
a_2.java

a_1.java
a_0.java

input records intermediate data result data

value key value

Figure 3.2: MapReduce strategy for DJ-REX.

Table 3.1: Overview of distributed steps in DJ-REX1 to DJ-REX3.

Extraction Parsing Analysis
DJ-REX1 No No Yes
DJ-REX2 No Yes Yes
DJ-REX3 Yes Yes Yes

snapshots of a.java as input, and sorts revision numbers per file: (a.java, a 0.java),

(a.java, a 1.java) and (a.java, a 2.java). Pairs with the same key are then sent to the

same Reducer. The final output for a.java is the generated evolutionary information.

On top of this basic MapReduce strategy, we have implemented three strategies

of J-REX (Table 3.1). Each strategy combines of different phases of the original

J-REX implementation (Figure 3.1). The first strategy is called DJ-REX1. One

machine extracts the source code offline and parses it into AST form. Afterwards,

the output XML files are stored in the HDFS and Hadoop uses the XML files as

input of MapReduce to analyze the change information. In this case, only 1 phase

of J-REX becomes distributed. For DJ-REX2, one more phase, the parsing phase,

becomes distributed. Only the extraction phase is still non-distributed, whereas the

parsing and analysis phases are done inside the Reducers. Finally, DJ-REX3 is a

fully distributed implementation with all the three phases in Figure 3.1 running in

a distributed fashion inside each Reducer. The input for DJ-REX3 is the raw CVS

data and MapReduce is used throughout all three phases of J-REX.

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 28

Table 3.2: Characteristics of Eclipse, BIRT and Datatools.

Repository
Size

#Source
Code Files

Length of
History

#Revisions

Datatools 394MB 10, 552 2 years 2,398
BIRT 810MB 13, 002 4 years 19,583

Eclipse 10GB 56, 851 8 years 82,682

In the rest of this sub-section, we first explain our experimental environment and

the details of our experiments. Then, we discuss whether or not using Hadoop for

MSR studies satisfies the four requirements of Section 3.1.

3.2.3 Experimental environment

Our Hadoop installation is deployed on four computers in a local gigabit network.

The four computers consist of two desktop computers, each having an Intel Quad Core

Q6600 @ 2.40 GHz CPU with 2 GB RAM memory, and two server computers, one

having an Intel Core i7 920 @ 2.67 GHz CPU with 4 cores and 6 GB RAM memory,

and the other one having an Intel Quad Core Q6600 @ 2.40 GHz CPU with 8 GB

RAM memory and a RAID5 disk. The 4 core server machine has Solid State Disks

(SSD) instead of regular RAID disks. The difference in disk performance between

the regular disk machines and the SSD disk server computer as measured by hdparm

and iozone (64 kB block size) is shown in Table 3.3. The server’s I/O speed with SSD

drive is around twice as fast as the machines with regular disk for both random I/O

and cached I/O.

The source control repositories used in our experiments consist of the repositories

of Eclipse, BIRT and Datatools. Eclipse has a large repository with a long history,

BIRT has a medium repository with a medium length history, and Datatools has a

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 29

Table 3.3: Disk performance of the desktop computer and the 4 core server computer
with SSD.

Cached read speed Cached write speed
Server with SSD 8, 531MB/sec 1, 075MB/sec

Desktop 3, 302MB/sec 658MB/sec

Random read speed Random write speed
Server with SSD 2, 986MB/sec 211MB/sec

Desktop 1, 488MB/sec 107MB/sec

Table 3.4: Experimental results for DJ-REX in Hadoop.

Repository Desktop Server
with
SSD

Strategy 2 ma-
chines

3 ma-
chines

4 ma-
chines

Datatools 0:35:50 0:34:14 DJ-REX3 0:19:52 0:14:32 0:16:40

BIRT 2:44:09 2:05:55

DJ-REX1 2:03:51 2:05:02 2:16:03
DJ-REX2 1:40:22 1:40:32 1:47:26
DJ-REX3 1:08:36 0:50:33 0:45:16

DJ-REX3(vm) — 3:02:47 —
Eclipse — 12:35:34 DJ-REX3 — — 3:49:05

small repository with a short history. Using these three repositories with different

size and length of history, we can better evaluate the performance of our approach

across subject systems. The repository information of the three projects is shown in

Table 3.2.

3.2.4 Case study discussion

Through this case study, we seek to verify whether the Hadoop solution satisfies the

four requirements listed in Section 3.1. This section uses the experiment data results

of Table 3.4 to discuss whether or not the various DJ-REX solutions meet the 4

requirements outlined in Section 3.1.

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 30

Table 3.5: Effort to program and deploy DJ-REX.

J-REX Logic No Change
MapReduce strategy for DJ-REX1 400 LOC, 2 hours
MapReduce strategy for DJ-REX2 400 LOC, 2 hours
MapReduce strategy for DJ-REX3 300 LOC, 1 hours
Deployment Configuration 1 hour
Reconfiguration 1 minute

Adaptability

Approach: We implemented three MapReduce strategies of J-REX, deployed a

small cluster of machines with MapReduce platform, recorded the time we spent on

MapReduce strategies implementation and deployment and counted the lines of code

of the three MapReduce strategies. We explain the process to migrate the basic J-

REX, a non-distributed MSR study tool, to three different strategies of MapReduce

(DJ-REX1, DJ-REX2, and DJ-REX3).

Table 3.5 shows the implementation and deployment effort required for DJ-REX.

We first discuss the effort devoted to porting J-REX to MapReduce. Then we present

the experience of configuring MapReduce to add in more computing power. The

implementation effort of the three DJ-REX solutions decreases as we got more ac-

quainted with the technology.

Easy to experiment with various strategies

As is often the case, MSR researchers do not have the expertise required for

nor do they have interest in improving the performance of their mining algorithms.

The need to rewrite an MSR tool from scratch to make it run on Hadoop is not an

acceptable option. If the programming time for the Hadoop migration is long (maybe

as long as a major re-engineering), the chances of adopting Hadoop or other web-scale

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 31

platforms become very low. In addition, if one has to modify a tool in such an invasive

way, considerably more time will have to be spent to test it again once it runs in a

distributed fashion.

We found that MSR study tools are very easy to port to MapReduce for the

following reasons:

1. Default classes to split data. Hadoop provides a number of default mech-

anisms to split input data across Mappers. For example, the “MultiFileSplit”

class splits files in a directory, whereas the “DBInputSplit” class splits rows in

a database table. Often, one can reuse these existing mapping strategies.

2. Well-defined and simple APIs. Hadoop has well-defined and simple APIs

to implement a MapReduce process. One just needs to implement the corre-

sponding interfaces to make a custom MapReduce process.

3. Available code examples. Several code examples are available to show users

how to write MapReduce code with Hadoop [70].

After looking at the available code examples, we found that we could reuse the

code for splitting the input data by files. Then, we spent a few hours to write around

400 lines of Java code for each of the three DJ-REX MapReduce strategies. Since

J-REX is developed by us, the internal structure of J-REX is very well known by us,

such that the programming of DJ-REX MapReduce strategies is easy. Moreover, the

programming logic of J-REX itself barely changed.

Easy to deploy and add more computing power

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 32

1

0.955

0.406

Figure 3.3: Comparing the running time of J-REX on the server machine with SSD
and the desktop machine to the fastest DJ-REX3 for Datatools. In this
figure, the base line is the running time of J-REX on desktop machine,
which is 35 minutes and 50 seconds.

It took us only 1 hour to learn how to deploy Hadoop in the local network. To

expand the experiment cluster (i.e., to add more machines), we only needed to add the

machines’ names in a configuration file and install MapReduce on those machines.

Based on our experience, we feel that porting J-REX to MapReduce is easy and

straightforward, and for sure easier and less error-prone than implementing our own

distributed platform.

Efficiency

Approach: We ran J-REX with and without Hadoop on the BIRT, Datatools and

Eclipse repositories. We compare the performance of all three MapReduce strategies

to the performance of J-REX on desktop and server machines.

We now use our experimental data to test how much time could be saved by

using MapReduce for MSR studies. Figure 3.3 (Datatools), Figure 3.4 (BIRT) and

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 33

1

0.767

0.748

0.606

0.276

Figure 3.4: Comparing the running time of J-REX on the server machine with SSD
and the desktop machine to the fastest deployment of DJ-REX1, DJ-
REX2 and DJ-REX3 for BIRT. In this figure, the base line is the running
time of J-REX on desktop machine, which is 2 hours, 44 minutes and 9
seconds.

Figure 3.5 (Eclipse) present the results of Table 3.4 in a graphical way. The data in

the columns with title “Desktop” and “Server” in Table 3.4 are the running time of

J-REX without Hadoop on our desktop machine and server machine respectively.

From Figure 3.3 (Datatools) and Figure 3.4 (BIRT), we can draw the following

two conclusions. On the one hand, faster and powerful machinery can speed up the

mining process. For example, running J-REX on a very fast server machine with SSD

drives for the BIRT repository saves around 40 minutes compared with running it on

the desktop machine. On the other hand, all DJ-REX solutions perform no worse

but usually better than the J-REX on both desktop and server machines. As shown

in Figure 3.4, the running time on the SSD server machine is almost the same to that

using DJ-REX1, which only has the analysis phase distributed, since the analysis

phrase is the shortest of all three J-REX phases. Therefore, the performance gain

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 34

1

0.303

Figure 3.5: Comparing the running time of J-REX on the server machine with SSD
compared to DJ-REX3 with 4 machines for Eclipse. In this figure, the
base line is the running time of J-REX on a server machine with SSD,
which is 12 hours, 35 minutes and 34 seconds.

of DJ-REX1 is not significant. DJ-REX2 and DJ-REX3, however, outperform the

server. The running time of DJ-REX3 on BIRT is almost one quarter the time of

running it on a desktop machine and one third the time of running it on a server

machine. The running time of DJ-REX3 for Datatools has been reduced to around

half the time taken by the desktop and server solutions, and for Eclipse (Figure 3.5)

to around a quarter of the time of the server solution. It is clear that the more we

distribute our processing, the less time is needed.

Figure 3.6 shows the detailed performance statistics of the three flavours of DJ-

REX for the BIRT repository. The total running time can be broken down into three

parts: the preprocess time (black) is the time needed for the non-distributed phases,

the copy data time (light blue) is the time taken for copying the input data into

the distributed file system, and the process data time (white) is the time needed by

the distributed phases. In Figure 3.6, the running time of DJ-REX3 is always the

shortest, whereas DJ-REX1 always takes the longest time. The reason for this is that

the undistributed black parts dominate the process time for DJ-REX1 and DJ-REX2,

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 35

Figure 3.6: Comparison of the running time of the 3 flavours of DJ-REX for BIRT.
In this figure, the base line is the running time of DJ-REX1 on 2, 3 and
4 machines. The running time of DJ-REX1 on 2, 3 and 4 machines is 2
hours, 3 minutes and 51 seconds; 2 hours, 5 minutes and 2 seconds; and
2 hours 16 minutes and 3 seconds respectively.

whereas in DJ-REX3 everything is distributed. Hence, the fully distributed DJ-REX3

is the most efficient one.

In Figure 3.6, process data time (white) is decreasing constantly. The MapRe-

duce strategy of DJ-REX is basically dividing the job by files that are processed

independently from each other in different Mappers. Hence, one could approximate

the job’s processing time by dividing the total processing time by the number of ma-

chines. However, the more machines there are, the smaller the incremental benefit of

extra machines. A new node introduces more overhead, such as network overhead or

distributed file system data synchronization. Figure 3.6 clearly shows that the time

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 36

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

desktop server with
SSD

2 machines 3 machines 4 machines

without Hadoop with Hadoop

BIRT

Datatools

Figure 3.7: Comparison of the running time of BIRT and Datatools with DJ-REX3.

spent on copying data (grey) is increasing when adding machines and hence that the

performance with 4 machines is not always the best one (e.g., for BIRT on DJ-REX2).

Our experiments show that using MapReduce to scale MSR studies is an efficient

approach that can drastically reduce the required processing time.

Scalability

Approach: We ran DJ-REX3 on BIRT and Datatools with Hadoop using cluster

of 2, 3 and 4 machines. We examined the scalability of the MapReduce solutions on

three data repositories with varying sizes. We also examined the scalability of the

MapReduce platform running on a varying number of machines.

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 37

Eclipse has a large repository, BIRT has a medium-sized repository and Datatools

has a small repository. From Figure 3.3 (Datatools), Figure 3.4 (BIRT), Figure 3.5

(Eclipse) and Figure 3.6 (BIRT), it is clear that Hadoop reduces the running time

for each of the three repositories. When mining the small Datatools repository, the

running time is reduced to 50%. The bigger the repository, the more time can be saved

by Hadoop. The running time can be reduced to 36% and 30% of the non-Hadoop

version for the BIRT and Eclipse repositories, respectively.

Figure 3.7 shows that Hadoop scales well for different numbers of machines (2 to 4)

for BIRT and Datatools. We did not include the running time for Eclipse because of

its large data size and the fact that we could not run Eclipse on the desktop machine

(we could not fit the entire data into the memory). However, from Figure 3.5 we

know that the running time for Eclipse on the server machine is more than 12 hours

and that it only takes a quarter of this time (around 3.5 hours) using DJ-REX3.

Unfortunately, we found that the performance of DJ-REX3 is not proportional

to the used computing resources. From Figure 3.7, we observe that adding a fourth

machine introduces additional overhead to our process, since copying input data to

another machine out-weighs the parallelizing process to more machines. The optimal

number of machines depends on the mining problem and the MapReduce strategies

that are being used, as outlined in Figure 3.7.

Flexibility

Approach: We ran DJ-REX3 on BIRT with Hadoop using a cluster of 3 virtual ma-

chines. We study the flexibility of the MapReduce platform by deploying MapReduce

platform on virtual machines in a multi-core environment.

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 38

1

0.898

0.689

Figure 3.8: Comparing the running time of the basic J-REX on a desktop and server
machine to DJ-REX-3 on 3 virtual machines on the same server machine.
In this figure, the base line is the running time of DJ-REX3 on 3 virtual
machines, which is 3 hours, 2 minutes and 47 seconds.

Hadoop runs on many different platforms (i.e., Windows, Mac and Unix). In our

experiments, we used server machines with and without SSD drives, and relatively

slow desktop machines. Because of the load balance control in Hadoop, each machine

is given a fair amount of work.

Because network latency could be one of the major causes of the data copying

overhead, we did an experiment with 3 Hadoop processes running in 3 virtual ma-

chines on the Intel Quad Core server machine without SSD. Running only 3 virtual

machines increases the probability that each Hadoop process has its own processor

core, whereas running Hadoop inside virtual machines should eliminate the majority

of the I/O latency. The row with “DJ-REX3(vm)” in Table 3.4 corresponds to the

experiment that has DJ-REX3 running on 3 KVM [51] virtual machines. The bar

with black and white strips in Figure 3.8 shows the running time of DJ-REX3 when

deployed on 3 virtual machines on the same server machine. The performance of

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 39

DJ-REX3 in virtual machines turns out to be worse than that of the undistributed

J-REX. We suspect that this happens because the virtual machine setup results in

slower disk accesses than deployment on a physical machine. The ability to run

Hadoop in a virtual machine can be used to deploy a large Hadoop cluster in a very

short time by rapidly replicating and starting up virtual machines. A well configured

virtual machine could be deployed to run the mining process without any configura-

tion, which is extremely suitable for non-experts.

3.3 Discussion and limitations

3.3.1 MapReduce on other software repositories

Multiple types of repositories are used in the MSR field, but in principle MapReduce

could be used as a standard platform to speed up and scale up different analyses. The

main challenge is deriving optimal mapping strategies. For example, a MapReduce

strategy could split mailing list data by time or by sender name, when mining a

mailing list repository. Similarly, when mapping a bug reports repository, the creator

and creation time of the bug report could be used as splitting criteria. Case studies

of using MapReduce on other software repositories are presented in the next chapter.

3.3.2 Incremental processing

Incremental processing is one possible way to deal with large repositories and ex-

tensive analysis. Instead of processing the data of a long history in one shot, one

could incrementally process the new data on a weekly or monthly basis. However,

incremental processing requires more sophisticated designs of mining algorithms, and

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 40

sometimes it is just not possible to achieve. Since researchers are mostly prototyping

their ideas, a brute force approach might be more desirable with optimizations (such

as incremental processing) to follow later. The cost of migrating an analysis technique

to MapReduce is negligible compared to the complexity of migrating a technique to

support incremental processing.

3.3.3 Robustness

MapReduce and its Hadoop implementation offer a robust computation model that

can deal with different kinds of failures at run-time. If certain machines fail, the

Hadoop tasks belonging to the failed machines are automatically re-assigned to other

machines. All other machines are notified to avoid trying to read data from the failed

machines. Dean et al. [24] reported that MapReduce clusters with over 80 machines

can become unreachable, yet the processing continues and finishes successfully. This

type of robustness permits the execution of Hadoop on laptops and non-dedicated

machines, such that lab computers can join and leave a Hadoop cluster rapidly and

easily based on the needs of the owners. For example, students can join a Hadoop

cluster while they are away from their desk and leave it on until they are back.

3.3.4 Current Limitations

Data locality is one of the most important issues for a distributed platform, as network

bandwidth is a scarce resource when processing a large amount of data. To solve

this problem, Hadoop attempts to replicate the data across the machines and to

always locate the nearest replica of the data. In Hadoop, a typical configuration

with hundreds of computers by default would have only 3 copies of the data. In this

Chapter 3: Feasibility Study of Scaling MSR Studies using MapReduce 41

case, the chance of finding required data stored on the local machine is very small.

However, increasing the number of data copies requires more space and more time to

put the large amount of data into the distributed file system. This in turn leads to

more processing overhead.

Deploying data into the HDFS file system is another limitation of Hadoop. In

the current Hadoop version (0.19.0), all input data needs to be copied into HDFS,

which introduces large overhead. As Figure 3.6 and Figure 3.7 show, the running

time with 4 machines may not be the shortest one. Finding out the optimal Hadoop

configuration is future work.

3.4 Chapter summary

A scalable MSR study platform should be adaptable, efficient, scalable and flexible.

In this chapter, we use MapReduce to evaluate the feasibility of scaling MSR studies

by the web-scale platforms. To validate our approach, we presented our experience

of migrating J-REX, an evolutionary code extractor for Java, to Hadoop, an open

source implementation of MapReduce. Our experiments demonstrate that our new

solution (DJ-REX) satisfies the four requirements of scalable MSR study solutions.

Our experiments show that running our optimized solution (DJ-REX3) on a small

local area network with four machines requires 30% of time needed when running it

on a desktop machine and 40% of the time on a server machine with SSD. In the next

chapter, we perform more case studies to evaluate MapReduce as a general platform

to scale software studies. We also document our experience in scaling several MSR

experiments and evaluate the standard guidelines from the web field for MapReduce

deployments.

Chapter 4

MapReduce as a General Platform

for Scaling MSR Studies

In Chapter 3, we explored the use of Hadoop, a MapReduce [24] implementation, to

successfully scale and speed-up J-REX, an MSR study tool. The chapter evaluates

and demonstrates the feasibility of using web-scale platforms to scale MSR studies.

In this chapter, we study the benefits and challenges of scaling several MSR studies

using web-scale platforms. In particular, we use three representative MSR studies to

demonstrate that the MapReduce platform, a scalable web analysis platform, could

be used to successfully scale software studies with minimal effort. We document our

experience in scaling several MSR studies, such that other researchers could benefit

from our experience. Moreover, we note the changes needed to the web community’s

standard guidelines for the MapReduce platform when applying MapReduce to MSR

studies. These changes highlight the different characteristics of MSR studies com-

pared to web analyses and must be done to ensure that MSR researchers get the

most benefit out of such a platform.

42

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 43

4.1 Challenges of MapReducing MSR studies.

We envision a number of important challenges based on our experience of using

MapReduce in Chapter 3. We use the MapReduce example shown in Section 2.5.1

to motivate and explain these challenges. The goal of this chapter is to document

our experiences addressing these challenges across various types of MSR analyses and

to carefully examine the guidelines proposed by the web community regarding these

challenges. By documenting the differences in analyses and data processed by both

communities, we hope that our community will be able to exploit the full power of

MapReduce to scale MSR studies.

4.1.1 Challenge 1: Migrating MSR analyses to a divide-and-

conquer programming model.

The first challenge is to find out how to migrate an existing MSR analysis to a divide-

and-conquer programming model. This migration has two important aspects.

1. Locality of analysis. A Divide-and-conquer programming model works best

when the processing of each broken data part requires no interaction with the

other parts (i.e., a modular algorithm). Counting the number of lines of code

(#LOC) for every source file is an example of a local algorithm as this can

be done for each file in isolation and the results of each data part can just

be added up. Global algorithms (e.g., clone detection [65]) would require each

data part (e.g., set of files) to have access to the whole data set. Semi-local

algorithms (e.g. source code differencing) require more data than the local data

(e.g., only two files), but not the whole data set. It is interesting to note that

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 44

an analysis might be global due to the implementation of an analysis, not due

to the analysis itself. For example, several analyses require access to the full

code base when robust techniques such as island parsing [58] could be used to

overcome this implementation requirement and would ensure local analysis.

2. Availability of source code. Having access to the source code of an MSR

study tool provides more flexible ways to map an MSR algorithm to a divide-

and-conquer programming model. However, re-engineering a tool internally

increases the risk of introducing bugs.

4.1.2 Challenge 2: Locating a suitable cluster.

Distributed platforms typically run on a large cluster of machines. Locating a suitable

cluster of machines for MapReduce is a challenge. We list below a few aspects for

locating clusters:

1. Private cluster versus Public cluster. A public cluster is available and

accessible to everyone, whereas a private cluster is not.

2. Dedicated cluster versus Shared cluster. Dedicated clusters ensure that

only one user uses the machines at the same time, while machines in the shared

cluster may be used by many users at the same time.

3. Specialized cluster versus General-purpose cluster. Specialized clusters

are designed and optimized for MapReduce (e.g., [1]), while general-purpose

clusters might result in sub-optimal performance.

On the one hand, private, dedicated, specialized clusters provide the most optimal

performance. On the other hand, public, shared, general-purpose clusters require the

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 45

lowest financial cost. There are eight possible combinations of the three aforemen-

tioned aspects. To illustrate the possible types of clusters, we show four types as

examples.

• Machines in a research lab (Private, Dedicated and Specialized). Re-

search shows that computers are idle half of the time [13]. By bundling these

computers together, a small cluster can be created.

• Machines in a student lab (Private, Dedicated and General). Com-

puters in student labs of universities can be used as medium-sized MapReduce

clusters.

• Scientific clusters (Public, Shared, and General). Some scientific clus-

ters, e.g., SHARCNET [10], have hundreds or thousands of machines and are

specifically designed for scientific computing. The large scale of these clusters

enables running experiments on massive amounts of data.

• Optimized clusters (Public, Dedicated and Specialized). Some clusters

are optimized for MapReduce, e.g., the EC2 MapReduce instances offered by

Amazon [1]. Optimized clusters are often too costly.

4.1.3 Challenge 3: Optimizing MapReduce strategy design

and cluster configuration.

The different implementations and configurations of the MapReduce platform influ-

ence the performance of MapReduce experiments, yet finding the optimal implemen-

tation and configuration is challenging.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 46

1. Static breakdown of analysis. The optimal granularity for breaking down

the analysis should be carefully examined. For example, counting the #LOC

of a software project can be decomposed into different data parts that are

executed in parallel to count the #LOC of: 1) every source code file (fine-

grained) or 2) every subsystem (coarse-grained). The finer the granularity, the

more parallelism that can be achieved. However, finer granularity leads to more

overhead since additional “Map” and “Reduce” procedures must be scheduled

and executed.

2. Dynamic breakdown of processing. Once the static breakdown is deter-

mined, the granularity of processing the input data can still be altered dynami-

cally. MapReduce implementations typically allow sending a number of “Map”

and “Reduce” procedures to a machine at the same time as a “Hadoop task”.

In our #LOC example, one single source code file could be sent to a machine

for analysis, or an ad hoc group of files could be sent together in a batch. The

composition of Hadoop tasks can be completely arbitrary by the MapReduce

platform.

3. Determining the optimal number of machines. A third way to opti-

mize the performance of a MapReduce cluster is by changing the number of

machines. Shown in Chapter 3, adding more machines might not always lead

to better performance or effective use of resources, due to platform overhead.

For example, adding more machines requires more data transfer over the net-

work, extra computing power, and possibly additional usage fees (in the case of

commercial clusters).

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 47

4.1.4 Challenge 4: Managing data during analysis.

MapReduce needs a data management strategy to store and propagate large amounts

of data fast enough to avoid being a bottleneck. Two data storage choices are typically

available:

1. Distributed file system. Input data and intermediate data are stored in one

distributed file system that spreads its data to every machine of the cluster to

increase I/O bandwidth and the total amount of storage, and to achieve fault

tolerance.

2. Local file system. Saving data in the local file system does not require data

replication and transfer on the network.

Choosing the best data storage strategy for different types of analyses is very im-

portant and challenging.

4.1.5 Challenge 5: Recovering from errors.

During the experiments, the machines in the cluster might crash and the MSR study

tools used in the experiments might fail or throw exceptions. The MapReduce plat-

form needs to catch failures and exceptions from both hardware and software during

large-scale experiments. Handling and recovering errors is important when migrating

MSR study tools to a MapReduce cluster.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 48

Table 4.1: Eight types of MSR Analyses.

Name Description

Metadata analysis Analysis on metadata in software reposito-
ries, e.g., [19].

Static source code analysis Static program analysis on source code,
e.g., [31].

Source code differencing and analy-
sis

Analysis of changes between versions of
source code, e.g., [36].

Software metrics Measuring and analyzing metrics of software
repositories, e.g., [66].

Visualization Visualizing information mined from software
repositories, e.g., [59].

Clone detection methods Detecting and analyzing similar source code
fragments, e.g. [47].

Data Mining Applying data mining techniques on software
repositories, e.g., [55].

Social network analysis Social and behavioural analysis on software
repositories, e.g., [18].

4.2 Case studies

This section briefly presents the three case studies that we used to study how to

address the challenges of migrating MSR study tools to the MapReduce platform.

4.2.1 Subject systems and input data

We chose three MSR studies and associated tools to counter potential bias. Prior

research identifies eight major types of MSR studies [46], as shown in Table 4.1.

Techniques across these types require time-consuming processing and must cope with

growing input data. We select three MSR study tools that perform six out of the eight

types of MSR studies. Section 4.4 discusses the applicability of MapReduce to the

two types of MSR studies that are not covered by our case studies (i.e., Visualization

and Social network analysis). We summarize below our case study tools:

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 49

J-REX. CVS repositories [2] contain the historical snapshots of every file in a

software project with a log of every change during the history of the software project.

As explained in Chapter 3, J-REX processes CVS repositories to:

• Extract information (e.g., author name and change message) from each CVS

transaction.

• Transform source code into an XML representation.

• Abstract source code changes from the line level (“line 1 has changed”) to the

program entity level (“function f1 no longer calls function f2”) .

• Calculate software metrics, e.g., #LOC.

J-REX performs four types of MSR studies, i.e., Metadata analysis, Static source

code analysis, Source code differencing and Software metrics [46].

CC-Finder. CC-Finder is a token-based clone detection tool [47] designed to

extract code clones from systems developed in several programming languages (e.g.,

C++, and C). CC-Finder performs the Clone detection analysis type.

JACK. JACK is a log analyzer that uses data mining techniques to process

system execution logs, and automatically identify problems in load tests [45]. JACK

performs the Metadata analysis and Data Mining MSR studies.

Only the source code of J-REX and JACK was available to us.

4.2.2 Experimental environment

To perform our evaluation of MapReduce, we require input data, a cluster of machines

and a MapReduce implementation. We repeated each experiment three times, and

we report the median value of the results.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 50

Table 4.2: Overview of the three subject tools.

J-REX CC-Finder JACK
Programming Lan-
guage

Java Python Perl

Source code avail-
able

yes no yes

Input data Eclipse, Data-
tools

FreeBSD Log files No. 1 & 2

Input data type CVS repository source code execution log

Table 4.3: Characteristics of the input data.

Data Size Data Type # Files
Eclipse 10.4GB CVS repository 189, 156
Datatools 227MB CVS repository 10, 629
FreeBSD 5.1GB source code 317, 740
Log files No.1 9.9GB execution log 54
Log files No.2 2.1GB execution log 54

We use the CVS repository archives of Eclipse, a widely used Java IDE, and

Datatools, a data management platform, as J-REX’s input data. We downloaded the

latest version of these archives on September 15, 2009. FreeBSD is an open-source

operating system. We use the source code distribution of FreeBSD version 7.1 as

the input data for CC-Finder. Finally, two groups of execution log files are used as

input data of JACK [45]. Tables 4.2 and 4.3 give an overview of the three software

engineering tools and their input data.

Our experiments are performed on two clusters: 18 machines of a student lab

and 10 machines of a scientific cluster called SHARCNET [10]. Table 4.4 shows the

configuration of the two clusters. From Chapter 3, we also have experience using a

cluster in a research lab. We choose Hadoop [70] as the MapReduce implementation

of our experiment.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 51

Table 4.4: Configuration of MapReduce clusters.

Student Lab SHARCNET
Machines 18 10
CPU Intel Q6600 (2.4GHz) 8×Xeon(3.0GHz)
Memory 3GB 8GB

Network Gigabit Gigabit
OS Ubuntu 8.04 CentOS 5.2
Disk size 10GB 64GB

4.2.3 Performance

To illustrate the scalability improvements of MapReduce for the three MSR studies in

our experiments, we briefly discuss the performance obtained using MapReduce in our

experiments, compared to the performance on a single machine without MapReduce.

A more detailed analysis of the performance gains of MapReduce for J-REX can be

found in Chapter 3. Table 4.5 shows the best performance measurement for each tool

with the Eclipse CVS repository, FreeBSD source code and the 10GB system execution

log files as input data respectively. For CC-Finder, the running time reported by [47]

for detecting code clones in the FreeBSD source code on one machine is 40 days.

We did not repeat that experiment. From the table, we can see on a cluster of 10

machines (SHARCNET), that the running time of J-REX and JACK is reduced by

a factor 9 and 6 respectively. For CC-Finder, the running time is 59 hours. Our

experiments show that MapReduce is able to perform large-scale MSR studies.

4.3 Migration experiences

While the previous section confirms that MapReduce can effectively scale several

types of MSR studies, it took us several attempts and experiments to achieve such

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 52

Table 4.5: Best results for the migrated MSR tools.

Tool name Input
data

One ma-
chine

MapReduce
version

Relative
running
time ratio

Cluster

J-REX Eclipse 755min 80min 0.106 SHARCNET
CC-Finder FreeBSD − 59hours − student lab
JACK Log file

No.1
580min 98min 0.169 SHARCNET

Table 4.6: Challenges of MapReducing MSR problems.

Challenge number Challenge description
1 Migrating MSR tools to a divide-and-conquer programming model.
2 Locating a suitable cluster.
3 Optimizing MapReduce strategy design and cluster configuration.
4 Managing data during analysis.
5 Recovering from errors.

performance results. In this section we distill our experience such that others can

benefit from them. For each challenge shown in Table 4.6, we discuss our findings

and provide advice based on our experience. We also compare our findings relative

to common guidelines provided by the web community.

Challenge 1: Migrating MSR tools to a divide-and-conquer programming

model.

We used the following strategies to map the MSR study tools to a divide-and-

conquer programming model.

J-REX. For J-REX, we broke down the one-shot processing of a whole repository

such that every single file in the repository is processed in isolation. Every input key/-

value pair contains the raw data of one file in the CVS repository. The Mappers pass

the key/value pairs as “file name/version number of the file” to Reducers. Reducers

perform computations to analyze the evolutionary information of all the revisions of

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 53

every particular file. For example, if file “a.java” has three revisions, the mapping

phase gets file names and revision numbers as input, and generates every revision

number of the file: “a.java/a 0.java”, “a.java/a 1.java” and “a.java/a 2.java”. The

Reducer generates “a.java/evolutionary information of a.java”. The implementation

details are shown in the previous chapter as DJ-REX3.

CC-Finder. Our MapReduce implementation adopts the same computation model

as D-CCFinder [53], which consists of the following steps:

1. Dividing source code into a number N of file groups.

2. Combining every two file groups together, resulting into N × (N + 1)/2 “file

group pair id/file names in both file groups” pairs, which are sent to Mappers.

3. Mapper sends the pair to a Reducer.

4. The Reducer invokes CC-Finder on a particular pair to run the clone analysis.

Figure 4.1 shows an example of the computational model for detecting code clones

in 4 files. From the figure, we can see that every file needs to be compared to every

other file and to itself, resulting into 10 pairs.

JACK. JACK detects system problems by analyzing log files. The Mapper receives

every file name as input key/value pair, and passes “file name, file name” to the

Reducer. Passing only the file name instead of the file content avoids I/O overhead.

Reducers receive the file name and invoke JACK to analyze the file. As we can see,

this MapReduce approach only breaks down the input and runs analysis on them

separately, without any aggregation.

Similar approaches of only using “Map” or “Reduce” are found in examples of

MapReduce strategies such as “Distributed Grep” [24]. Other analyses, such as the

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 54

Figure 4.1: Example of the typical computational model of clone detection techniques.

example LOC study in Section 4.1, perform analysis in both “Map” and “Reduce”

phases.

Notable Findings.

We summarize below our main observations.

1. Locality of analysis. The majority of MapReduce uses in the web community

are local in nature, while for our case study we find that our three tools cover

three levels of locality. The JACK tool performs local analysis because only

one single file is required for one analysis. CC-Finder performs global analysis

because every source code file must be compared to all the input source code

files. J-REX performs semi-local analysis because it compares consecutive re-

visions of every source code file. Yet, all tools show good performance after

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 55

being MapReduced. For CC-Finder we adopted the computation model pro-

posed by [53] using the services provided by the MapReduce platform instead of

spending considerable time implementing the needed platform for such a com-

putation model. For J-REX, we found that for each analysis we needed a subset

of the data (i.e., all consecutive revisions of a particular file), hence we had to

ensure that our “Mappers” mapped all these files to the same machine in the

cluster.

2. Availability of source code. When no source code was available, we used a

program wrapper, which creates a process to call executable programs. When

the source code was available, we sometimes had to use a program wrapper

to invoke the tool because the tool and the MapReduce implementation used

different programming languages (e.g., JACK is written in Perl while developers

need to use Java on Hadoop). When the tool’s source code was available and

written in Java, e.g., for J-REX, the source code of the tool was modified to

migrate to MapReduce.

Migrating local and semi-local analyses is much simpler than migrating global

analysis. Little design effort is required for migrating J-REX and JACK. CC-Finder,

as a global analysis, required more design effort than the other tools. We implemented

300 to 500 lines of Java code to migrate each tool.

Challenge 2: Locating a suitable cluster.

In the previous chapter, we used a four-machine MapReduce cluster in our research

lab. In this chapter, we used a cluster in a student lab and a cluster in SHARCNET.

We document below our experiences using these three types of clusters.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 56

Research lab. The heterogeneous nature of research labs complicates the deploy-

ment of MapReduce implementations such as Hadoop. These implementations require

common configuration choices on every machine, such as a common user name and

installation location. In an effort to reduce the complexity of deployments in research

labs, we explored the use of virtual machines instead of the actual machines. The

virtual machines unify the operating system, user name and installation location.

However, virtual machines introduce additional overhead especially for I/O intensive

analysis, while for CPU intensive analysis the overhead turned out to be minimal.

Student lab. The limited and unstable nature of storage in the student lab limited

the use of Hadoop. All too often student labs provide limited disk space for analysis

and machines are typically configured to erase all space when booting up. The limited

storage space prevented us from running experiments that performed global or semi-

local analysis.

SHARCNET. While SHARCNET (and other scientific computing clusters) provide

the desired disk space and homogeneous configuration, we were not able to use the

main clusters of SHARCNET. Most scientific clusters make use of specialized sched-

ulers to ensure fair sharing of the cluster, which do not support Hadoop. Fortunately,

the SHARCNET operators gave us special access to a small testing cluster without

scheduling requirements.

Notable Findings.

Heterogeneous infrastructures are not frequently used in the web community.

Hence, the support provided by MapReduce implementations, like Hadoop, for such

infrastructures is limited. In the research community, heterogeneous infrastructures

are the norm rather than the exception. We hope that future versions of Hadoop will

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 57

provide better support.

For now, we have explored the use of virtual machines on heterogeneous infras-

tructures to provide a homogeneous cluster. The virtual machine solution works well

for non-I/O intensive analysis and as playground for MSR studies and debugging

before deployment on larger clusters. We have used such a virtual playground to

verify our MapReduce migration before deploying on expensive commercial Hadoop

clusters, such as the Amazon EC2 Hadoop images [1].

While scientific clusters provide an ideal homogeneous infrastructure, their sched-

ulers have yet to adapt to MapReduce’s model. Researchers should work closer with

the administration teams of scientific clusters such that MapReduce-friendly sched-

ulers are adopted by these clusters.

Challenge 3: Optimizing MapReduce strategy design and cluster configu-

ration.

We now discuss our observations regarding the optimization of MapReduce pro-

cessing.

1) Static breakdown of analysis.

We explored the use of fine-grained (most often used in the web community) and

coarse-grained breakdown in our migration of the different tools. For example, for

the CC-Finder tool we started to read files from the input source code repository and

record the size of every file until the total file size reached a certain amount. The

fine-grained breakdown had each part processing 200MB while the coarse-grained

breakdown had each part processing 1GB of data (the CC-Finder version we had

did not support more than 1GB of data). For J-REX, we explored the use of single

files and sub-folders for breakdown granularity. In these experiments, we found that

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 58

coarse-grained breakdown is two to three times faster than fine-grained breakdown

because the processing power needed for each fine-grained unit has a large portion of

the time wasted on communication overhead.

2) Dynamic breakdown of processing.

We studied the impact of the dynamic breakdown of processing on performance

by varying the number of processing tasks in Hadoop. We experimented with J-

REX using the Datatools CVS repository and JACK using the Log files No.2, on 10

machines in SHARCNET. We set the number of Hadoop tasks to 10 (the number

of machines) and recorded the running time of every machine in the cluster. In the

violin plots of Figure 4.2, the top value corresponds to the maximum running time

across all the machines, which determines the running time of the whole MapReduce

process. The higher the grey box in the violin plot, the less balanced the workload of

machines (higher variance in workload).

We then increased the number of Hadoop tasks to 100 for J-REX and 54 (the

number of files, shown in Table 4.3) for JACK and compared the findings for the

increased Hadoop task count to the performance of J-REX and JACK with just 10

Hadoop tasks. The plots in Figure 4.2 show that the running time of every machine

after increasing the number of Hadoop tasks is more balanced than before (higher

grey boxes in the violin plot). However, running JACK with more Hadoop tasks is

faster than with fewer Hadoop tasks, while running J-REX with more Hadoop tasks

is slower than with fewer Hadoop tasks.

This contradictory result is caused by the different types of input data in the two

software systems. The input data of J-REX is a CVS repository [2]. CVS repositories

store the history of each file in a separate file, leading to a large number of input files.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 59

50
0

60
0

70
0

80
0

90
0

10
00

10 Hadoop tasks 54 Hadoop tasks

Violin plots of JACKSeconds

40
0

45
0

50
0

55
0

60
0

65
0

70
0

10 Hadoop tasks 100 Hadoop tasks

Violin plots of J-REXMinutes

Figure 4.2: Violin plots of machine running-time for JACK and J-REX.

As shown in Table 4.2, JACK only has a few dozen files as input. The granularity

of input files is finer for J-REX than for JACK. Increasing the number of Hadoop

tasks, yields a more balanced workload for both J-REX and JACK. However, this

also increases the overhead of the platform to control and monitor Hadoop tasks.

As a result, the best number of Hadoop tasks for J-REX seems to be the number

of machines, i.e., coarsest granularity. For JACK, the best number of Hadoop tasks

seems to be the number of input files, i.e., the finest granularity.

3) Determining the optimal number of machines.

To determine the optimal number of machines in our case study, we varied the

number of machines from 5 to 10 on J-REX for the Datatools CVS repository and on

JACK for the No.1 Log files. Figure 4.3 shows the corresponding running times. We

notice that the performance of J-REX grows sub-linearly, while the performance of

JACK plateaus. Closer analysis indicates that this is primarily due to two reasons:

1. Platform overhead. The platform overhead is the time that the MapReduce

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 60

platform uses to control Hadoop tasks, while the analysis time is the actual

execution time of Mappers and Reducers. In our experiments, we find that the

platform overhead is around 13% of the total running time with 5 machines

and 23% of the total running time with 10 machines. Adding machines into

the cluster introduces additional overhead. However, as the platform overhead

is dominated by the analysis time when doing large-scale analysis, MapReduce

performs better with larger scale analyses.

2. Unbalanced workload. An unbalanced workload causes machines to be idle.

For example, a machine that is assigned much heavier work than others increases

the total running time, as the whole MapReduce run will have to wait for

that machine. In our experiments, unbalanced workload is the main reason

for the bad performance of JACK. In Figure 4.3, JACK does not improve its

performance when moving from 6 machines to 10 machines for analyzing Log

file No. 1. We checked the system logs of the MapReduce platform and found

that one of the Hadoop tasks with the largest input log file took much longer

than the other Hadoop tasks, which had to wait for that one Hadoop task to

finish.

As a distributed platform, MapReduce requires transferring data over the network.

Accessing a large amount of data also requires a large amount of I/O. Intuitively, I/O

might be another possible source of the overhead. We observed the output of vmstat

on every machine in the cluster and found that the percentage of CPU time spent on

I/O is less than 1% on average, which means that in our experiment I/O was not a

bottleneck.

Notable Findings.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 61

J-REX JACK

Figure 4.3: Running time trends of J-REX and JACK with 5 to 10 machines.

The web community often uses MapReduce to perform local analysis, with each

broken-down part requiring substantial processing. In contrast, based on our case

studies we note that many software engineering tasks (e.g., parsing a single file)

require relatively limited processing and that they vary in locality. On the one hand,

we would suggest that researchers analyze files in groups instead of individually in

order to reduce platform overhead. However, the grouping of files might cause an

imbalance in the running time of Hadoop tasks, with some parts requiring more

processing time than others. This in turn reduces the parallelism of the platform. In

short, we can conclude that large-scale MSR studies on balanced input data benefit

more from more machines in the cluster than small-scale MSR studies with unbalanced

input data.

Our studies indicate that the recommended parameter configurations for using

Hadoop on web data do not work well for all types MSR studies. For web data, it is

recommended that the number of “Map” procedures is set to a value in the middle

from 10 to 100 × m, and that the number of “Reduce” procedures is set to 0.95 or

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 62

1.75 × m × n, with n being the number of machines and m being the number of Map

or Reduce processes that can run simultaneously on one machine, which is typically

the number of cores of the machines [6].

This recommendation works well for web analysis, which is traditionally fine-

grained. Fine-grained MSR study tools like J-REX, which have a large number of

input key/value pairs, can still adopt these recommendations. Coarse-grained MSR

study tools like JACK, which have a small number of input key/value pairs, should

not adopt these recommendations. Instead, such tools should set the number of

“Reduce” procedures to be the same as the number of input key/value pairs, e.g., the

number of input files for JACK. Because the “Map” procedures are identity functions

in our case studies, the number of “Map” procedures should be small to avoid the

overhead.

Challenge 4: Managing data during analysis.

Our experiments used both distributed and local file systems.

1. Distributed file system. Hadoop offers a distributed file system (HDFS) to

exchange data between different machines of a cluster. Such file systems are

unfortunately optimized for reading and perform poorly for writing data [70].

With many MSR tools generating a large number of intermediate files, the

overhead of using HDFS is substantial. For example, if J-REX were to use

HDFS when analyzing Eclipse, J-REX would require almost 190,000 writes to

HDFS (a major slowdown). Therefore, we avoided the use of HDFS whenever

possible, opting instead for the local file system. In the special case where no

source code is available for an MSR tool, it might not even be possible to use

HDFS, as accessing HDFS data requires using special APIs.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 63

2. Local file system. In our experiments, we find that using every machine’s

local file system provides the most optimal solution of storing intermediate and

output data. For example, CC-Finder and the log analyzer both output results

to files, which we then must retrieve after the MapReduce run is completed.

However, we have to take the risk of losing output data and having to re-perform

the analysis when a machine crashes.

Notable Findings.

HDFS is the default data storage of Hadoop for the web analyses, but was not

designed for efficient data writes. As MSR studies may generate large amounts of

result data, saving the result data in HDFS may introduce much overhead. From our

experience, we recommend: 1) the use of the local file system if the result data of an

MSR tool consists of a large amount of data; and 2) the use of HDFS if the result

data is small in size.

Challenge 5: Recovering from errors.

Our experiments evaluated the error recovery of Hadoop.

1. Environment failure. To examine the error recovery of Hadoop, we performed

an experiment with J-REX and the Datatools CVS repository on 10 machines.

First, we killed MapReduce processes and restarted them after 1 minute. We

gradually increased the number of killed processes starting from 1 until the

whole MapReduce job failed. Second, we did the same thing as the first step,

but without restarting the processes.

Our experimental results show that MapReduce jobs process well with up to

4 out of 10 machines killed. However, the running time increases from 12 min

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 64

to 22 min. If we restore the working processes, the Hadoop job can finish

successfully with up to half of the machines down at the same time.

2. Tool error. The strategy of addressing MSR tool errors depends on the im-

plementation of “Map” and “Reduce” procedures. If the MapReduce platform

catches an exception, the platform will automatically re-start the Mapper or

Reducer. According to our experience, if a program wrapper is used in the

MapReduce algorithm, the wrapper needs to take the output of the MSR study

tool, determine the running status, and throw an exception to the MapReduce

platform to exploit MapReduce’s tool error recovery. Alternatively, the wrap-

per can restart the analysis without throwing the exception to the MapReduce

platform. In both cases, tool error can be caught and recovered.

Notable Findings.

We found that Hadoop’s error recovery mechanism enabled us to have agile clus-

ters with machines joining and leaving the cluster based on need. In particular, in

our research lab students can join and leave a cluster based on their location and

their current needs for the machine.

Because of Hadoop, an MSR tool might be executed millions of times. Hence,

better reporting is needed by MSR study tools such that any failure can be spotted

easily within the millions of executions. We are currently exploring the use of tech-

niques to detect anomalies in load tests (e.g., [45]) for detecting possible failures of

the execution of an MSR study tool.

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 65

Table 4.7: Applicability of performing MSR analysis using the MapReduce platform.

Name Main Challenge Ease of
migrating

Prior re-
search

Metadata analysis Challenge 3 easy no
Static source code analysis Challenge 1 & 3 easy or

medium
no

Source code differencing and
analysis

Challenge 3 easy no

Software metrics Challenge 3 easy or
medium

no

Visualization Challenge 1 hard no
Clone-detection methods Challenge 1 hard yes, [53]
Data Mining Challenge 1 hard yes, [7]
Social network analysis Challenge 1 medium yes, [12]

4.4 Applicability

This section discusses the applicability of MapReduce to other MSR studies than

the ones we considered in our case studies. We examine the eight types of MSR

studies presented in Section 4.2. The descriptions and examples of the eight types of

MSR studies are presented in Table 4.1. For each type, we present possible migration

strategies. These strategies basically all depend on whether or not an analysis is local.

We summarize in Table 4.7 the main challenges of migration, the ease of migration

and the existence of prior research of scaling the analysis.

Metadata analysis. In metadata analysis, data can be broken down by the type

of the metadata. For example, source code repository can be broken down to every

source code file and bug repository can be broken down to bug report.

Static source code analysis. Local static analyses can be migrated by breaking

down the source code into several local parts and using a program wrapper to invoke

the existing tools. If the static analysis process is non-local, the process of every

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 66

source code file will consist of two steps: 1) collect the required data in the other

source code files; 2) perform analysis on the file and its collected data.

Source code differencing and analysis. The process can be broken down

by files or by consecutive revisions. J-REX performs source code differencing. The

MapReduce strategies of J-REX are presented in Section 3.2.

Software metrics. The MapReduce strategies can be designed based on the

types of software metric. For example, software complexity metrics for different re-

visions can be generated by splitting the historical data by changes. Our example

of studying the evolution of #LOC of a software project in Section 2.5.1 is another

example.

Visualization. The visualization techniques that we consider consist of a regular

MSR technique, followed by the generation of a visualization. For example, Adams

et al. [14] study the evolution of the build system of Linux kernel and generate vi-

sualizations of the build dependency graph. The generation of visualizations is often

non-modular, so it is hard to migrate them to MapReduce.

Clone-detection methods. Clone-detection techniques are non-modular. This

is the reason why they are hard to migrate to MapReduce. [53] proposes an approach

to map clone-detection to divide-and-conquer, which we adopted in our case study as

MapReduce strategy. The strategy is presented in Section 4.2.

Data Mining. Many Data Mining techniques require the entire data to build a

model or to retrieve information, which makes Data Mining techniques hard to mi-

grate to MapReduce. However, research has been performed to address the challenges

of Data Mining algorithms to MapReduce. As such, some open source libraries are

available for running the Data Mining algorithms on Hadoop [7].

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 67

Social network analysis. Social networks can be analyzed as a graph with

nodes and edges. Some of the analysis of the entire graph can be broken down to

analyses of every node or edges. X-RIME [12] is a Hadoop library for social network

analysis.

Based on the examination of the eight types of MSR studies, most studies are

able to migrate to MapReduce, despite some challenges. Moreover, previous research

(e.g., [7, 12, 53]) has addressed some of the more challenging migration problems.

4.5 Limitations and threats to validity

We present the threats to validity for the findings in this chapter.

4.5.1 Generalizability.

We chose to scale three MSR tools. Although we chose tools across different types

of MSR studies and using different subject systems to avoid potential bias of our

studies to any special MSR study, our results may not generalize to other MSR

studies. We firmly believe that other MSR tools would benefit from adoption of

web-scale platforms. Our case studies provide promising findings and we encourage

other researchers to explore MapReducing their tools. Section 4.4 provides a brief

discussion of generalization across other MSR studies.

4.5.2 Shared hardware environment.

The scientific computing environment we used is a shared cluster. The usage of other

users on the cluster may have impacted our case study results, which would threaten

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 68

our findings. To counter this threat, we tried to use the cluster when it was idle, we

repeated each experiment three times, and we report the median value of the results.

4.5.3 Subjectivity bias.

Some findings in our research can include subjectivity bias. For example, one of the

MSR tools in our experiment was developed by the author of this thesis, while the

other two are not. Using our own tools for experimentation may cause subjectivity

bias. However, in practice one will typically only alter the source code of tools that

they know well. More case studies on other MSR tools are needed to verify our

findings.

4.6 Chapter summary

MSR studies continue to analyze large data sets using sophisticated algorithms. In

an effort to scale such tools, developers often opt for ad hoc, one-off solutions that are

costly to develop and maintain. In this chapter, we demonstrate that standard web

scale platforms, like MapReduce, could generally be used to effectively and efficiently

scale MSR studies, despite several challenges. We document our experiences such

that others can benefit from them. We find that while MapReduce provides an

efficient platform, we must follow different guidelines when configuring MapReduce

runs instead of following the standard web community guidelines. We hope that our

experiences will help others explore the use of web scale platforms to scale software

studies, instead of having to develop their own solutions. However, designing and

implementing “Map” and “Reduce” strategies requires additional effort and are not

Chapter 4: MapReduce as a General Platform for Scaling MSR Studies 69

easy to re-use. In the next chapter, we explore using Pig in practice to improve the

re-usability of scaling MSR studies by web-scale platforms.

Chapter 5

Large-Scale MSR Studies with Pig

In Chapter 3 and 4 we showed that we could scale and speed-up MSR studies using

MapReduce. However, our prior experience highlighted some of the limitations of

MapReduce as a platform for large-scale MSR studies. In particular, the use of

the MapReduce platform required in-depth knowledge of the MapReduce processing

phases and required additional effort of designing Map and Reduce strategies for

every data processing phase (DJ-REX1, DJ-REX2, DJ-REX3). The implemented

MapReduce strategies are hard to re-use in other MSR studies. In this chapter,

we explore the use of Pig, a popular web-scale platform, for performing large-scale

MSR studies. Through three case studies we carefully demonstrate the use of Pig to

prepare (i.e., ETL) software data for further analysis. Our experience shows that Pig

programs have a modular design for combining and re-using ETL modules in MSR

studies.

70

Chapter 5: Large-Scale MSR Studies with Pig 71

5.1 Motivating example of data preparation in a

large-scale MSR Study

In this section, we present an example of data preparation in a typical MSR study,

taken from our real life experience. The ETL tool we use in this example is J-

REX, i.e., the highly optimized MSR tool for software evolution study introduced in

Section 3.2.

Researcher Lily wanted to study software defects and code clone on a large, long-

lived software project.

After we used J-REX to prepare the data Lily required, she found out that she

needed the list of methods and their source code content for every snapshot of the

extracted data. In addition, she requested information that lists, for every snapshot,

those methods that were added or deleted. We changed J-REX to provide the newly

required information.

In order to study software defects in the data that we prepared for her, Lily wanted

to use a heuristic that relates changes in source code to bugs by checking keywords

in the commit logs of the source control system. Since the commit log data was not

extracted yet, we performed the data extraction for the commit log data.

While performing data analysis on the prepared data, Lily found that the source

code content of some methods was missing. She also required the deletion of methods

to be associated with the first snapshot after the deletion instead of with the snapshot

of deletion. For example, if method foo was in snapshot 1.0 but not in snapshot 1.1,

Lily needed the deletion of foo to be recorded for snapshot 1.1, not for snapshot 1.0.

Because of the large scale of the data, we spent much effort on fixing the bug,

Chapter 5: Large-Scale MSR Studies with Pig 72

prepared the new data, and delivered it to Lily. She made great progress in her

research, but now she had to perform clone detection on the extracted method content

source code. As we are not clone detection experts, we chose to use an existing clone

detection tool. Even though we already extracted the source code of methods, we

now had to output the source code as intermediate data in the format used by the

clone detection tool. After doing the clone detection, we needed to collect the result

and indicate if a method in the method list contains code clones.

To conclude, the data preparation process takes a large amount of time because

the many iterations of ETL on large-scale data. In order to gather all required data,

we had to rely on the expertise of existing tools. Additional effort is required for

fixing bugs in the data preparation platforms.

5.2 Requirements for ETL in large-scale MSR stud-

ies

From the basic requirements presented in Section 3.1 for a general web-platform that

scales MSR studies, our further experience of performing large-scale MSR studies

using MapReduce and the motivating example presented in Section 5.1, we identify

three requirements for data preparation in large-scale MSR studies.

5.2.1 Modular design

Data preparation for large-scale MSR studies requires modular design because of the

following two reasons:

1. Module re-uses. Various basic approaches and algorithms are widely used in

Chapter 5: Large-Scale MSR Studies with Pig 73

MSR studies, such as extracting CVS logs and grouping source code changes

into transactions. Modular design of data preparation platforms enables reusing

such software modules and building them into a new tool chain instead of re-

developing the same functionality in different MSR studies.

2. Expertise re-uses. Preparing data for MSR studies requires the combination

of information from various types of software repositories with different method-

ologies. However, researchers are not experts in every field of MSR. Hence, the

data preparation platform requires modular design to enable combining existing

tools. In Section 5.1, we combine a source control data extractor, bug report

data extractor and also the output data of a clone detection tool. Effort is spent

on combining different tools and merging the output data of different tools.

In our experience, most platforms for data preparation enable modular design.

Kenyon [20] is a data extractor for different source control systems. Kim et al. com-

bined the extracted data by Kenyon with CC-Finder [47], a code clone detector,

and a location tracker that tracks code clones across versions [49] to perform Clone

Genealogy Analysis [49].

5.2.2 Scalability

Scalability is required for the data ETL in MSR studies because of two reasons:

1. Data size and growth. Software repositories contain massive amounts of

data. Hence, studying software engineering data is very time consuming. For

example, performing clone detection on the FreeBSD source code may take more

than a month [53]. Some large-scale data preparation cannot be performed

Chapter 5: Large-Scale MSR Studies with Pig 74

because of hardware limitations. However, data from software engineering ac-

tivities keeps on growing in size. Scalability is necessary to study the massive

amounts of growing data.

2. Iterative analysis. The pipeline illustrated in Figure 2.1 shows the iterative

process for studying software engineering data. The iterative analysis requires

the data preparation to be scalable, such that each iteration finishes in a rea-

sonable amount of time.

A number of approaches are available to address the requirement of scalability.

Ad hoc distributed programs are developed to scale data preparation in general-

purpose languages. D-CCfinder [53] is an example that scales CC-Finder [47] to

run in an ad hoc distributed environment to support large-scale clone detection.

MapReduce based data preparation platforms are scalable, because as a distributed

framework, MapReduce benefits from the scalability of a distributed environment.

Parallel databases provide scalability for SQL-like data preparing platforms. However,

most Prolog-like platforms are hard to scale. Erlang [21] is a Prolog-like language

that is able to run on distributed environment to scale [16], but the distributed Erlang

relies on Message Passing techniques [32] and requires much programming effort.

5.2.3 Debuggability

As ETL needs to deal with huge data sets having irregular data formats and often

missing data, bugs can easily slip into extraction, transformation and loading scripts.

To debug ETL scripts, researchers need to be able to examine the data generated

during the data preparation process. Two important requirements for data debugging

are:

Chapter 5: Large-Scale MSR Studies with Pig 75

1. Intermediate data. Every step of data preparation generates intermediate

data. Storing intermediate data is important for data debugging because being

able to inspect the correctness of intermediate data facilitates locating problems

in the data preparation process and avoids having to start the data preparation

all over again.

2. Data sampling and previewing. Being able to preview the results of data

preparation on a sample of the data before processing all of the data is required

to avoid having to re-run costly data preparation tools because of a bug in the

last set of processed data. For example, heuristics on source control system logs

can be used to group source code changes into different categorizations [41],

such as feature introducing changes and bug fixing changes. Researchers would

like to automatically have a sample of data for each categorization to see if their

heuristics work well before starting to perform the heuristic on the whole data.

Traditional platforms can all support debuggable data preparation. However, as

MapReduce relies on data storage in a distributed environment, intermediate data of

MapReduce is saved as a list of string pairs distributed in the distributed file system.

Examining intermediate data of MapReduce, and sampling and previewing output

data of MapReduce requires reading the data via distributed file system API, or

copying the data into local file system.

As shown in Table 5.1, traditional techniques can meet all requirements with

relative ease, except for scalability, while MapReduce excels at scalability, but falls

short at the other two requirements. In the next section, we introduce Pig [60], a data

processing platform and a high level programming language on top of MapReduce to

combine the advantages of the different platforms for large-scale MSR studies.

Chapter 5: Large-Scale MSR Studies with Pig 76

Table 5.1: How do traditional software study platforms meet the three requirements
for data preparation?

Modular Scalable Debuggable
SQL-like - o o
Prolog-like + - +
Regular programming + - +
MapReduce o + o

+ requirement is met
Legend o requirement is met with

additional effort
- requirement is not met
or is hard to meet

5.3 Case studies

This section uses Pig to perform data preparation (ETL) on three software studies.

For each study, we show what data is required for the analysis and how we imple-

mented the data’s preparation with Pig. After we present the three MSR studies and

our implementations, we discuss our experience of performing data preparation for

large-scale MSR studies with Pig.

5.3.1 Data preparation for three MSR studies

We first present the data prepared for each MSR study and our implementations

using Pig to perform the data preparation. The subject system for our three MSR

studies is Eclipse, a widely used Java IDE as shown in Table 3.2.

Study one:

The first MSR study is an empirical study on the correlation between updating

comments in the source code and the appearance of bugs.

Required data: This analysis requires the following data for every change in the source

Chapter 5: Large-Scale MSR Studies with Pig 77

control system:

1. is the change related to a bug?

2. does the change update comments?

Implementation: The first step of implementing a Pig program is to break down the

ETL into a number of program units. The following program units are used:

1. Loading data from a CVS repository into Pig storage as a (file name, file con-

tent) pair.

2. Generating log data for every source code file.

3. Generating version information for every source code file.

4. Using heuristics to check if a change is related to bugs.

5. Extracting every version of source code for every source code file.

6. Transforming every snapshot of every source code file into XML format.

7. Checking comment changes of every version of every source code file.

The Pig Latin source code for study one is shown in Figure 5.1. The corresponding

Java code for every Pig program unit is shown in Appendix A.1, A.2, A.3, A.13, A.4,

A.5 and A.7.

In the Pig Latin scripts of study one shown in Figure 5.1, line 1 loads the content

of every file from the input data. Line 2 generates the CVS log data for every file

and line 3 generates the historical versions from the CVS log data. Line 5 and line

6 check if a change is related to bugs. The variable “BUGCHANGES” generated in

Chapter 5: Large-Scale MSR Studies with Pig 78

1 CVSMETADATA = load ’EclipseCvsData’
using ExtPigStorage() as (
filename:chararray, filecontent:
chararray);

2 HISTORYLOG = foreach CVSMETADATA
generate ExtractLog(filename,
filecontent);

3 HISTORYVERSIONS = foreach HISTORYLOG
generate ExtractVersions($0);

4
5 BUGCHANGES= filter HISTORYVERSIONS by

IsBug{$0};
6 NOBUGCHANGES=filter HISTORYVERSIONS

by not IsBug{$0};
7
8 CODE = foreach HISTORYVERSIONS

generate ExtractSourceCode($0);
9 XMLS = foreach CODE generate

ConvertSourceToXML($0);
10 COMMENTEVO= foreach XMLS generate

EvoAnalysisComment($0);
11 BUGRESULT= join BUGCHANGES by $0.$0,

COMMENTEVO by $0.$0;
12 NOBUGRESULT= join NOBUGCHANGES by $0.

$0, COMMENTEVO by $0.$0;
13
14 dump BUGRESULT;
15 dump NOBUGRESULT;

Experiment two:

The second software study is an empirical study on
software defects in both cloned and non-cloned methods in
a software system, which is actually the motivating example
presented in Section II.
Required data: This analysis requires the following data for
every file at every revision:

1) is the revision related to a bug?
2) (for every method in the file) is the method new or

has it been deleted?
3) source code for every method.
4) (for every method) is the method cloned?

Implementation:
Because of the modular programming style of Pig, we

1) if the change is related to bug?
2) if there is comment updating?

Implementation: The first step of implementing a Pig pro-
gram is to break down the process into a number of program
units. The following program units are used:

1) Loading data from CVS repository into Pig storage as
a (filename, file content) pair.

2) Generating log data of every source code file.
3) Generating version information for every source code

file.
4) Using heuristics to check if a change is related to bugs.
5) Extracting every version of source code for every

source code files.
6) Transforming every snapshot of source code files into

XML format.
7) Checking comment change for every version of every

source code file.
The Pig Latin source code for experiment one is shown

as following.

1 CVSMETADATA = load ’EclipseCvsData’
using ExtPigStorage() as (
filename:chararray, filecontent:
chararray);

2 HISTORYLOG = foreach RAWDATA generate
ExtractLog(filename, filecontent

);
3 HISTORYVERSIONS = foreach HISTORYLOG

generate ExtractVersions($0);
4
5 BUGCHANGES= filter HISTORYVERSIONS by

IsBug{$0};
6 NOBUGCHANGES=filter HISTORYVERSIONS

by not IsBug{$0};
7
8 CODE = foreach HISTORYVERSIONS

generate ExtractSourceCode($0);
9 XMLS = foreach CODE generate

ConvertSourceToXMLEval($0);
10 COMMENTEVO= foreach XMLS generate

EvoAnalysisComment($0);
11 BUGRESULT= join BUGCHANGES by $0.$0,

CommentEvolution by $0.$0;
12 NOBUGRESULT= join NOBUGCHANGES by $0.

$0, CommentEvolution by $0.$0;
13
14 dump BUGRESULT;
15 dump NOBUGRESULT;

Experiment two:

The second software study is an empirical study on
software defects in both cloned and non-cloned methods in

source code, which is the motivating example presented in
Section II.
Required data: This analysis requires the data for every file
at every revision:

1) if the revision is related to a bug?
2) for every method in the file, if the method is newly

added or deleted.
3) source code for every method.
4) for every method, if the method is cloned.

Implementation:
Because of the modular programming style of Pig, we

re-used program units 1, 2, 3, 4, 5, 6 from experiment one
without any modification. Additional program units required
in experiment two are: [Ian says: TODO: add the part that
we changed the indicator of bug from cvs log to bug report.]

1) Checking added and deleted methods for every version
of every source code file.

2) Generating every method contents.
3) Clone detection on all method content.
4) Ruling out falsely reported cloned methods.
Running clone detection on all source code files that ever

existed may falsely report code clones between parts of
source code that do not co-exist in the source code history.
Program unit 4 filters out the code clones that are falsely
generated.

Moreover, the intermediate data, e.g., variable CODE in
line 8 of the Pig Latin source code of experiment one, can
be stored in HDFS and used in other experiments. The Pig
Latin script with the existing variables from experiment one
is shown as following.

1
2 METHODEVO= foreach XMLS generate

EvoAnalysisMethod($0);
3 METHODCONTENTS= foreach CODES

generate GetMethod($0);
4
5 METHODPAIRS= cross MethodContents,

MethodContents;
6
7 CLONES= foreach METHODPAIRS generate

CloneDetection($0);
8
9 CLONES= filter CLONES by TimeOverlap(

$0);
10
11 BUGRESULT= join BUGCHANGES by $0.$0,

CLONES by $0.$0;
12 NOBUGRESULT= join NOBUGCHANGES by $0.

$0, CLONES by $0.$0;
13
14 dump BUGRESULT;
15 dump NOBUGRESULT

Figure 4. Pig Latin script for experiment one.

The second software study is an empirical study on
software defects in both cloned and non-cloned methods in
a software system, which is actually the motivating example
presented in Section II.
Required data: This analysis requires the following data for
every file at every revision:

1) is the revision related to a bug?
2) (for every method in the file) is the method new or

has it been deleted?
3) source code for every method.
4) (for every method) is the method cloned?

Implementation:
Because of the modular programming style of Pig, we

re-used program units 1, 2, 3, 4, 5, 6 from experiment one
without any modification. In addition, we also need program
units for:

1) Checking which methods have been added or deleted
in every version of every source code file.

2) Generating every method’s content.
3) Clone detection on all method content.
4) Ruling out falsely reported cloned methods.
Running clone detection on all source code files that ever

existed may falsely report code clones between parts of the

source code that never existed at the same point in time.
Program unit 4 filters out those false the code clones.

Moreover, the intermediate data, e.g., variable CODE in
line 8 of the Pig Latin source code of experiment one, can
be stored in HDFS and re-used in the other experiments.
The Pig Latin script for experiment two, which re-uses the
existing variables from experiment one is shown in Figure 5.

1 METHODEVO= foreach XMLS generate
EvoAnalysisMethod($0);

2 METHODCONTENTS= foreach CODE generate
GetMethod($0);

3
4 METHODPAIRS= cross METHODCONTENTS,

METHODCONTENTS;
5
6 CLONES= foreach METHODPAIRS generate

CloneDetection($0);
7
8 CLONES= filter CLONES by TimeOverlap(

$0);
9

10 BUGRESULT= join BUGCHANGES by $0.$0,
CLONES by $0.$0, METHODEVO by $0.
$0;

11 NOBUGRESULT= join NOBUGCHANGES by $0.
$0, CLONES by $0.$0, METHODEVO by
$0.$0;

12
13 dump BUGRESULT;
14 dump NOBUGRESULT;

Experiment three:

In the third experiment, we prepare data to calculate the
complexity of the changes in periods . Hassan uses this data
to predict software defects [29].
Required data: This analysis requires the number of changed
LOC in Feature Introduction Modification (FI) changes, i.e.,
changes that introduce new features, for:

1) every quarter.
2) 1000 consecutive modifications.

Implementation:
Experiment three re-uses program units 1, 2 and 3 in

experiment one. Three more program units are required.
1) Checking for every change if the change is an FI

change.
2) Grouping changes in every quarter.
3) Grouping 1000 consecutive changes.
4) Counting changed #LOC.
The corresponding Pig Latin script, which uses the vari-

ables from experiment one and two is shown in Figure 6.
In the Pig Latin script of experiment three, line 2 uses 120

days as a parameter of evolution period and line 3 groups

6

Figure 4. Pig Latin script for experiment two.

re-used program units 1, 2, 3, 4, 5, 6 from experiment one
without any modification. In addition, we also need program
units for:

1) Checking which methods have been added or deleted
in every version of every source code file.

2) Generating every method’s content.
3) Clone detection on all method content.
4) Ruling out falsely reported cloned methods.

Running clone detection on all source code files that ever
existed may falsely report code clones between parts of the
source code that never existed at the same point in time.
Program unit 4 filters out those false the code clones.

Moreover, the intermediate data, e.g., variable CODE in
line 8 of the Pig Latin source code of experiment one, can
be stored in HDFS and re-used in the other experiments.
The Pig Latin script for experiment two, which re-uses the
existing variables from experiment one is shown in Figure 4.

Experiment three:

In the third experiment, we prepare data to calculate the
complexity of the changes in periods . Hassan uses this data
to predict software defects [29].
Required data: This analysis requires the number of changed
LOC in Feature Introduction Modification (FI) changes, i.e.,
changes that introduce new features, for every time span.
Implementation:

Experiment three re-uses program units 1, 2 and 3 in
experiment one. Three more program units are required.

6

Figure 5.1: Pig Latin script for study one.

line 5 consists of the changes related to bugs and the variable “NOBUGCHANGES”

generated in line 6 consists of the changes not related to bugs. Line 8 extracts every

snapshot of all the source code files from the input data by the historical versions

generated in line 3. These snapshots of source code files are transformed to XML files

by line 9. Line 10 analyzes the evolution of comments of of every source code file.

Line 11 and line 12 join the evolution of comments, i.e., output of line 10, with the

changes related and not related to bugs respectively.

Study two:

Chapter 5: Large-Scale MSR Studies with Pig 79

The second MSR study is an empirical study on software defects in both cloned and

non-cloned methods in a software system, which is actually the motivating example

presented in Section 5.1.

Required data: This analysis requires the following data for every file at every revision:

1. is the revision related to a bug?

2. (for every method in the file) is the method new or has it been deleted?

3. source code for every method.

4. (for every method) is the method cloned?

Implementation:

Because of the modular programming style of Pig, we re-used program units 1, 2,

3, 4, 5, 6 from study one without any modification. In addition, we also need program

units for:

1. Checking which methods have been added or deleted in every version of every

source code file.

2. Generating every method’s content.

3. Clone detection on all method content.

4. Ruling out falsely reported cloned methods.

Moreover, the intermediate data, e.g., variable CODE in line 8 of the Pig Latin

source code of study one shown in Figure 5.1, can be stored in HDFS and re-used

in the other studies. The Pig Latin script for study two, which re-uses the existing

Chapter 5: Large-Scale MSR Studies with Pig 80

1) if the change is related to bug?
2) if there is comment updating?

Implementation: The first step of implementing a Pig pro-
gram is to break down the process into a number of program
units. The following program units are used:

1) Loading data from CVS repository into Pig storage as
a (filename, file content) pair.

2) Generating log data of every source code file.
3) Generating version information for every source code

file.
4) Using heuristics to check if a change is related to bugs.
5) Extracting every version of source code for every

source code files.
6) Transforming every snapshot of source code files into

XML format.
7) Checking comment change for every version of every

source code file.
The Pig Latin source code for experiment one is shown

as following.

1 CVSMETADATA = load ’EclipseCvsData’
using ExtPigStorage() as (
filename:chararray, filecontent:
chararray);

2 HISTORYLOG = foreach RAWDATA generate
ExtractLog(filename, filecontent

);
3 HISTORYVERSIONS = foreach HISTORYLOG

generate ExtractVersions($0);
4
5 BUGCHANGES= filter HISTORYVERSIONS by

IsBug{$0};
6 NOBUGCHANGES=filter HISTORYVERSIONS

by not IsBug{$0};
7
8 CODE = foreach HISTORYVERSIONS

generate ExtractSourceCode($0);
9 XMLS = foreach CODE generate

ConvertSourceToXMLEval($0);
10 COMMENTEVO= foreach XMLS generate

EvoAnalysisComment($0);
11 BUGRESULT= join BUGCHANGES by $0.$0,

CommentEvolution by $0.$0;
12 NOBUGRESULT= join NOBUGCHANGES by $0.

$0, CommentEvolution by $0.$0;
13
14 dump BUGRESULT;
15 dump NOBUGRESULT;

Experiment two:

The second software study is an empirical study on
software defects in both cloned and non-cloned methods in

source code, which is the motivating example presented in
Section II.
Required data: This analysis requires the data for every file
at every revision:

1) if the revision is related to a bug?
2) for every method in the file, if the method is newly

added or deleted.
3) source code for every method.
4) for every method, if the method is cloned.

Implementation:
Because of the modular programming style of Pig, we

re-used program units 1, 2, 3, 4, 5, 6 from experiment one
without any modification. Additional program units required
in experiment two are: [Ian says: TODO: add the part that
we changed the indicator of bug from cvs log to bug report.]

1) Checking added and deleted methods for every version
of every source code file.

2) Generating every method contents.
3) Clone detection on all method content.
4) Ruling out falsely reported cloned methods.
Running clone detection on all source code files that ever

existed may falsely report code clones between parts of
source code that do not co-exist in the source code history.
Program unit 4 filters out the code clones that are falsely
generated.

Moreover, the intermediate data, e.g., variable CODE in
line 8 of the Pig Latin source code of experiment one, can
be stored in HDFS and used in other experiments. The Pig
Latin script with the existing variables from experiment one
is shown as following.

1
2 METHODEVO= foreach XMLS generate

EvoAnalysisMethod($0);
3 METHODCONTENTS= foreach CODES

generate GetMethod($0);
4
5 METHODPAIRS= cross MethodContents,

MethodContents;
6
7 CLONES= foreach METHODPAIRS generate

CloneDetection($0);
8
9 CLONES= filter CLONES by TimeOverlap(

$0);
10
11 BUGRESULT= join BUGCHANGES by $0.$0,

CLONES by $0.$0;
12 NOBUGRESULT= join NOBUGCHANGES by $0.

$0, CLONES by $0.$0;
13
14 dump BUGRESULT;
15 dump NOBUGRESULT

Figure 4. Pig Latin script for experiment one.

The second software study is an empirical study on
software defects in both cloned and non-cloned methods in
a software system, which is actually the motivating example
presented in Section II.
Required data: This analysis requires the following data for
every file at every revision:

1) is the revision related to a bug?
2) (for every method in the file) is the method new or

has it been deleted?
3) source code for every method.
4) (for every method) is the method cloned?

Implementation:
Because of the modular programming style of Pig, we

re-used program units 1, 2, 3, 4, 5, 6 from experiment one
without any modification. In addition, we also need program
units for:

1) Checking which methods have been added or deleted
in every version of every source code file.

2) Generating every method’s content.
3) Clone detection on all method content.
4) Ruling out falsely reported cloned methods.
Running clone detection on all source code files that ever

existed may falsely report code clones between parts of the

source code that never existed at the same point in time.
Program unit 4 filters out those false the code clones.

Moreover, the intermediate data, e.g., variable CODE in
line 8 of the Pig Latin source code of experiment one, can
be stored in HDFS and re-used in the other experiments.
The Pig Latin script for experiment two, which re-uses the
existing variables from experiment one is shown in Figure 5.

1 METHODEVO= foreach XMLS generate
EvoAnalysisMethod($0);

2 METHODCONTENTS= foreach CODE generate
GetMethod($0);

3
4 METHODPAIRS= cross METHODCONTENTS,

METHODCONTENTS;
5
6 CLONES= foreach METHODPAIRS generate

CloneDetection($0);
7
8 CLONES= filter CLONES by TimeOverlap(

$0);
9

10 BUGRESULT= join BUGCHANGES by $0.$0,
CLONES by $0.$0, METHODEVO by $0.
$0;

11 NOBUGRESULT= join NOBUGCHANGES by $0.
$0, CLONES by $0.$0, METHODEVO by
$0.$0;

12
13 dump BUGRESULT;
14 dump NOBUGRESULT;

Experiment three:

In the third experiment, we prepare data to calculate the
complexity of the changes in periods . Hassan uses this data
to predict software defects [29].
Required data: This analysis requires the number of changed
LOC in Feature Introduction Modification (FI) changes, i.e.,
changes that introduce new features, for:

1) every quarter.
2) 1000 consecutive modifications.

Implementation:
Experiment three re-uses program units 1, 2 and 3 in

experiment one. Three more program units are required.
1) Checking for every change if the change is an FI

change.
2) Grouping changes in every quarter.
3) Grouping 1000 consecutive changes.
4) Counting changed #LOC.
The corresponding Pig Latin script, which uses the vari-

ables from experiment one and two is shown in Figure 6.
In the Pig Latin script of experiment three, line 2 uses 120

days as a parameter of evolution period and line 3 groups

6

Figure 5.2: Pig Latin script for study two.

variables from study one is shown in Figure 5.2. The corresponding Java code for

every Pig program unit is shown in Appendix A.8, A.9, A.10 and A.11.

In the Pig Latin scripts of study two shown in Figure 5.2, line 1 analyzes the

evolution of methods in every source code file. Line 2 generates the source code

content of every method in all the source code files. To perform clone detection, line

4 generates cross product of method content and itself. The cross products consist

of pairs of method content, such that line 6 can perform clone detection on each pair

of method content. Running clone detection on all source code files that ever existed

may falsely report code clones between parts of the source code that never existed at

the same point in time. Line 8 filters out those false code clones. Line 10 and line 11

join the evolution data of methods, the result of code clone detection, and historical

Chapter 5: Large-Scale MSR Studies with Pig 81

versions related and not related to bugs respectively.

Study three:

In the third study, we prepare data to calculate the complexity of the changes in

periods. Hassan uses this data to predict software defects [38].

Required data: This study requires the number of changed LOC in Feature Introduc-

tion Modification (FI) changes, i.e., changes that introduce new features for every

time span.

Implementation:

Study three re-uses program units 1, 2 and 3 in study one. Three more program

units are required:

1. Checking for every change if it is an FI change.

2. Grouping changes in every time span. In particular, we use quarters in 2008 as

time spans.

3. Counting changed #LOC.

The corresponding Pig Latin script, which uses the variables from study one and

two is shown in Figure 5.3. And the corresponding Java code for every Pig program

unit is shown in Appendix A.14, A.12 and A.6.

In the Pig Latin scripts of study three shown in Figure 5.3, line 2 uses five specific

days to indicate the four quarters in 2008 as time spans and line 4 uses the key value

generated by line 2 as “$8” to group the commits into time spans. Line 5 counts the

changed #LOC of every group of changes generated by line 4.

Chapter 5: Large-Scale MSR Studies with Pig 82

1 FIVERSIONS= filter HISTORYVERSIONS by
IsFI($0);

2 TIMESPANS = foreach FIVERSIONS
generate TimeSpan($0, (
"2008/01/01" , "2008/04/01" ,
"2008/07/01" , "2008/10/01" ,
"2009/01/01"));

3
4 TIMESPAN_GROUP = group TIMESPANS by

$8;
5 CHANGEDLOC_TIMESPAN= foreach

TIMESPAN_GROUP generate ChangeLOC
($0);

6 dump CHANGEDLOC_TIMESPAN;

In the Pig Latin script of experiment three, line 2 uses 120
days as a parameter of evolution period and line 3 groups
every concatenated 1000 modifications into one evolution
period.

B. Experience Report

We now discuss our experiences with Pig to perform data
preparation in the three three software studies.

Modular Design

Pig stimulates a modular design in which each Pig pro-
gram is decomposed into a number of small program units.
Pig Latin composes the whole program by combining the
program units together. With such modular programming
style, adding a new program unit or changing one program
unit does not affect other program units. Program units in
Pig are re-usable for data preparation of different software
studies.

The program units we identified for the three software
studies are summarized in Table II. Many program units
are re-used in all of the three case studies. Figure 6 shows
how we composed different program units into the data
preparation process of the three software studies. The most
widely re-used program units provide basic functionalities
of software studies.

Scalability

In our previous research, we verified the feasibility of
using MapReduce to prepare data for software studies [14].
Our experiments show that using Hadoop (an open source
MapReduce implementation) on a 4 machine-cluster im-
proves the computation time by 30-50% when analyzing the
CVS [30] source control repository of the Eclipse project.

The Pig platform runs on top of Hadoop. Pig programs
are compiled to MapReduce automatically. The running time
of a Pig program is only 1.3 times as long as the running

Table II
PROGRAM UNITS FOR CASE STUDIES.

Program
unit
number

Program unit name Description

1 ExtPigStorage Loading data into Pig.
2 ExtractLog Generating CVS repos-

itory log.
3 ExtractVersions Parsing CVS log to

generate historical ver-
sions.

4 ExtractSourceCode Extracting source code
files.

5 ConvertSourceToXMLEval Converting source code
to XML format.

6 ChangeLOC Counting number of
changed LOC for a
source code file.

7 EvoAnalysisComment Comment evolution
analysis.

8 EvoAnalysisMethod Method evolution anal-
ysis.

9 GetMethod Generating method
content.

10 CloneDetection Detecting clones on
program entity pairs.

11 TimeOverlap Ruling out false clones.
12 TimeSpan Checking if a change is

in a time period.
13 IsBug Checking if a change is

related to a bug.
14 IsFI Checking if a change

is a feature introducing
(FI) change.

time of native Hadoop [31]. We verified this finding for our
case.

Because of the iterative nature of large scale studies and
the thinking involved with converging to a composition of
program units that provides all required data extraction and
transformation, we did not time the total running time of
Pig in each of the three case studies. Instead, we directly
compared the performance of J-REX with MapReduce and
J-REX programmed by Pig on the jdt package of Eclipse,
which is one of the ”core” packages of Eclipse. The running
time of the Pig based J-REX turned out to be around 1.5
times the running time of the MapReduce based J-REX. The
Pig based J-REX still turned out to be much more scalable
than the original (undistributed) J-REX that was developed
in a general-purpose programming language.

Based on our experience with the scalability of the
MapReduce framework and the fact that Yahoo! uses Pig to
analyze extremely large data sets [27], we consider the Pig
platform to provide efficient scalability for data preparation
of large scale software studies.

Debuggability

In our case studies, Pig proved to be a debuggable
platform.

7

Figure 5.3: Pig Latin script for study three.

5.3.2 Experience Report

We now discuss our experiences with Pig to perform data preparation in the three

three MSR studies.

Modular Design

Pig stimulates a modular design in which each Pig program is decomposed into a

number of small program units. Pig Latin composes the whole program by combining

the program units together. With such modular programming style, adding a new

program unit or changing one program unit does not affect other program units.

Program units in Pig are re-usable for data preparation of different MSR studies.

The program units we identified for the three MSR studies are summarized in

Table 5.2. The source code details of these program units are shown in Appendix A.

Many program units are re-used in all of the three case studies. Figure 5.4 shows how

we composed different program units into the data preparation process of the three

MSR studies. The numbers in the program unit boxes in Figure 5.4 correspond to the

Chapter 5: Large-Scale MSR Studies with Pig 83

Table 5.2: Program units for case studies.

Appendix
number

Program unit name Description

Appendix A.1 ExtPigStorage Loading data into Pig.
Appendix A.2 ExtractLog Generating CVS repository log.
Appendix A.3 ExtractVersions Parsing CVS log to generate historical ver-

sions.
Appendix A.4 ExtractSourceCode Extracting source code files.
Appendix A.5 ConvertSourceToXML Converting source code to XML format.
Appendix A.6 ChangeLOC Counting number of changed LOC for a

source code file.
Appendix A.7 EvoAnalysisComment Comment evolution analysis.
Appendix A.8 EvoAnalysisMethod Method evolution analysis.
Appendix A.9 GetMethod Generating method content.
Appendix A.10 CloneDetection Detecting clones on program entity pairs.
Appendix A.11 TimeOverlap Ruling out false clones.
Appendix A.12 TimeSpan Checking if a change is in a time period.
Appendix A.13 IsBug Checking if a change is related to a bug.
Appendix A.14 IsFI Checking if a change is a feature introduc-

ing (FI) change.

appendix number in Appendix A. The most widely re-used program units provide

basic functionalities of MSR studies.

Scalability

In Chapter 3, we verified the feasibility of using MapReduce to prepare data for

MSR studies. Our experiments show that using Hadoop (an open-source MapReduce

implementation) on a four-machine cluster improves the computation time by 30-40%

when analyzing the CVS [2] source control repository of the Eclipse project.

Based on the two reasons of the requirement of scalability presented in Section 5.2,

Pig should decrease both the “raw” running time of MSR studies and the time spent

on iterative analysis. However, we want to examine the relative scalability of Pig

compared to MapReduce.

Chapter 5: Large-Scale MSR Studies with Pig 84

12
. T

im
eS

pa
n

13
. I

sB
ug

14
. I

sF
I

2.
 E

xt
ra

ct
Lo

g

6.
 C

ha
ng

e
LO

C

4.
 E

xt
ra

ct
S

ou
rc

eC
od

e

3.
 E

xt
ra

ct
V

er
si

on
s

11
. T

im
eO

ve
rla

p
10

. C
lo

ne

D
et

ec
tio

n

8.
 E

vo
A

na
ly

si
s

M
et

ho
d

9.
 G

et
M

et
ho

d

7.
 E

vo
A

na
ly

si
s

C
om

m
en

t

1.
 E

xt
P

ig
S

to
ra

ge

5.
 C

on
ve

rt
S

ou
rc

eT
o

X
M

L

P
re

pa
re

d
 D

at
a

 fo
r

S
tu

dy
O

ne

P
re

pa
re

d
 D

at
a

 fo
r

S
tu

dy
Tw

o

P
re

pa
re

d
 D

at
a

 f
or

 S
tu

dy
T

hr
ee

Figure 5.4: Composition of the data preparation process for the three MSR studies
performed with PIG.

Chapter 5: Large-Scale MSR Studies with Pig 85

Table 5.3: Configuration of the server machine and the distributed computing envi-
ronment.

Server machine distributed computing en-
vironment

Machines 1 5
CPU 16 × Intel(R) Xeon X5560

(2.80GHZ)
8 × Intel(R) Xeon E5540
(2.53GHz)

Memory 64GB 12GB

Network Gigabit Gigabit
OS Ubuntu 9.10 CentOS 9.10
Disk type SSD SATA

Table 5.4: Running time of J-REX on single machine, Hadoop platform and Pig plat-
form. The base line of the relative running time ratio is the running time
of J-REX on single machine.

Sub-folder name On single machine On Hadoop platform On Pig platform
runtime 12 min 2 min (0.167) 1.5 min (0.125)

e4 164 min 20 min (0.122) 23 min (0.140)
pde 240 min 16 min (0.067) 24 min (0.100)

To evaluate the scalability of Pig, we perform an MSR study on three pieces of

input data with the non-distributed MSR tool, the MapReduce platform and the

Pig platform. We first used J-REX to prepare data from three major sub-folders

of Eclipse CVS repositories on a powerful server machine (see Table 5.4). We then

ran J-REX on both the Hadoop platform and the Pig platform. The Hadoop and

Pig platforms are deployed in our private distributed computing environment. The

configuration of the distributed computing environment is shown in Table 5.3. The

performance of the MSR study is shown in Table 5.4. Using the running time of the

original J-REX as base line, the numbers in the brackets show the relative running

time ratio of both Hadoop J-REX and Pig J-REX.

The running time in Table 5.4 of the Pig-based J-REX turned out to be almost

the same as the running time of the MapReduce-based J-REX. Even though the

Chapter 5: Large-Scale MSR Studies with Pig 86

original J-REX ran on a very powerful server, the Pig-based J-REX is much faster

than the original J-REX. These findings seems to confirm recent research findings

that showed that the running time of a Pig program is around 1.3 times as long as

the running time of native Hadoop [26]. However, in our experiments, we found that

Pig sometimes could be more efficient than the original J-REX and the MapReduce-

based J-REX. This can be explained by the fact that additional I/O is introduced

when the original J-REX and the MapReduce-based J-REX store intermediate data,

while the Pig-based J-REX does not have to store intermediate data during the data

preparation.

As shown in the data pipeline in Section 2.2 and the motivating example in Sec-

tion 5.1, MSR studies require iterative analysis. Without Pig, MSR researchers may

need to run the whole experiment for MSR studies again and again for every itera-

tion or they have to design the formats and methods to load and store intermediate

data. With Pig, all intermediate data is stored as variables, which MSR researchers

can store and load without designing and implementing data formats and additional

methods. Based on our experience, the iterative analysis is well supported by Pig

and the time spent on iterative MSR is much shorter than performing MSR studies

with original MSR tools.

From the above experiences, we consider the Pig platform to provide efficient

scalability for data preparation of large-scale MSR studies.

Debuggability

In our case studies, Pig proved to be a debuggable platform.

When the result of data analysis seemed incorrect, we checked the intermediate

data generated by every program unit in the data preparation process. Pig stores

Chapter 5: Large-Scale MSR Studies with Pig 87

this intermediate data as variables in the cloud environment. The intermediate data

can easily be checked and used without additional effort.

Since MSR studies are performed on large-scale data and researchers mostly only

need a small sample of data to examine, data sampling and previewing is important.

Similar to SQL, Pig Latin has keywords LIMIT and SAMPLE to select a limited

sample of the data. Pigpen is a data previewing tool that is released together with

Pig [60]. Pigpen samples data in representative way and shows output of Pig program

on those sample data. We used Pigpen to check the correctness of Pig Latin script.

Once the script seemed to work on the Pigpen data, we did not have to run any more

test runs on it.

5.4 Discussion

In this section, we discuss about the other possible web scale data processing plat-

forms that can prepare data for large-scale MSR studies, and the limitation of Pig in

performing MSR studies.

5.4.1 Pig/MapReduce or Parallel DBMS

MapReduce is a distributed framework and is also a simple programming model that

processes massive amounts of data [24]. Pig is a high-level programming language on

top of MapReduce. Parallel DBMS are the database systems that are able to run on

computer clusters [61]. Storing data and performing query on a cluster of machines,

Parallel DBMS is much more scalable than normal DBMS that can only be deployed

on one machine. Two different opinions about Pig/MapReduce exist. One opinion

Chapter 5: Large-Scale MSR Studies with Pig 88

considers Pig/MapReduce to be a simple programming platform that allows program-

mers without parallel and distributed programming experience to build distributed

programs. A large number of programs have been built using Pig/MapReduce in

Google [25] and Hadoop [70], an open-source MapReduce implementation, has been

used widely in various fields.

However, as an opposite point of view, Dewitt et al. [8] posted a blog article to

criticize that Pig/MapReduce is a “major step backward”, because it does not provide

several essential advantages of databases. Comparative analysis of MapReduce to

Parallel DBMS has been performed [61, 67]. The comparison shows the trade-offs

between MapReduce and Parallel DBMS. One interesting finding is that the initial

data loading process of Parallel DBMS took much longer than loading data into the

distributed file system of MapReduce, while the observed analysis time of Parallel

DBMS was shorter than MapReduce. Researchers suggest that DBMS should be

used on data that is not changed or re-loaded often [61]. The iterative analysis MSR

studies may require data loading multiple times. The slow data loading process of

Parallel DBMS may become a bottle neck of the scalability of the MSR studies.

Dean et al., the authors of the first paper about MapReduce [24], claimed in [25]

that the comparison between MapReduce and Parallel DBMS in [61] is based on

flawed assumptions. One of the interesting issues Dean et al. pointed out is that

MapReduce is a flexible data processing tool that does not require loading data into

a database. The data analyzed by MapReduce does not require a schema. The

requirement of data schema explains why Parallel DBMS is faster in data analysis

but much slower in loading data.

Chapter 5: Large-Scale MSR Studies with Pig 89

5.4.2 Pig or MapReduce

In Chapter 3 and 4, we verified the feasibility of using MapReduce to support MSR

research as a general framework. As a high-level language on top of MapReduce, Pig

has several unique benefits.

1. Increasing productivity: The productivity of using Pig is much higher than

programming with the native MapReduce paradigm. Programmers of Yahoo!

claimed that 10 lines of Pig Latin code provided the functionality of 200 lines

of Java code. In our case studies, we used less than 20 lines of Pig script for

every MSR study and on average less than 100 lines of Java code for every

program unit, such that over 1,000 lines of code are developed for the three

studies in Section 5.3. In Chapter 3, only 400 lines of Java code are required to

migrate J-REX to MapReduce. To our knowledge, we are the first to report the

additional development effort involved to implement user-defined Pig program

units. However, this effort is not as high in practice, as the Java code of a

program unit contains a large part of boiler-plating code for Java class and

method declarations. In addition, reusing program units reduces the program

effort and increases the productivity of Pig.

2. Easy migration: Migrating an existing MSR study tool to MapReduce re-

quires fitting the existing algorithms and processes into the MapReduce pro-

gramming paradigm. Researchers may not want to change their way of solving

problems to the paradigm of MapReduce. However, instead of migrating exist-

ing tools to MapReduce, Pig co-ordinates tools as modules in a sequential way

that is more natural for programmers. Since researchers do not want to spend

effort in migrating, Pig is better than MapReduce for migrating.

Chapter 5: Large-Scale MSR Studies with Pig 90

According to our experiences shown in Section 5.3, Pig improves the maintainabil-

ity and reusability of MSR tools with minimal performance overhead. We consider

Pig a better choice to perform large-scale MSR studies.

5.4.3 Pig or Hive

Hive is a data warehouse on top of Hadoop [5]. As one of the most similar and

alternative techniques to Pig, Hive also uses the MapReduce infrastructure provided

by Hadoop. Hive uses an SQL-like language, while Pig uses a sequential language.

Database connection APIs, for example JDBC and ODBC, can connect to Hive and

perform analyses as clients.

Similar to using SQL on Parallel DBMS, the advantage of Hive is to put structure

into the data and query with a query language. However, to perform data preparation

(ETL) with unstructured and flexible software engineering data, Pig seems to be a

better solution than Hive.

5.4.4 Data loading and retrieving

Although Pig satisfies the three requirements for data preparation, it still has its

limitations. As Pig runs on top of Hadoop, the input data of a Pig program needs to

be loaded into HDFS and the data prepared by Pig needs to be copied from HDFS

to the local file system for further analyses. Because software engineering data is

typically large, loading and retrieving data is an important limitation of Pig for data

preparation of large-scale MSR studies with Pig.

However, this limitation is not unique to Pig. The main alternative to Pig, Parallel

DBMS, also has to perform data loading. Research shows that loading data into

Chapter 5: Large-Scale MSR Studies with Pig 91

MapReduce data storage, i.e. HDFS, is much faster than loading data into parallel

database [61,67]. As data generated by Pig can be stored in HDFS, it can be viewed

by the HDFS programming interfaces provided by Hadoop. Moreover, data retrieving

is not necessary if further analyses on the data are programmed in Pig or MapReduce.

Such that this limitation of Pig does not compromise the using of Pig to enable large-

scale MSR studies.

5.5 Chapter summary

Traditional software analysis platforms are used to perform large-scale MSR studies

with ever larger and more complex data. Even though MapReduce is capable to scale

MSR studies as a general platform, the migrating process requires additional design

and programming effort, and is hard to re-use in practice. In this chapter, we adopt

Pig, a high-level data processing programming language on top of MapReduce, to

improve the re-usability in scaling MSR studies using web-scale platforms. We used

Pig to prepare (i.e., Extract, Transform, and Load) software data for three MSR

studies. From our experience, Pig meets the requirements of data preparation for

studying software data because of its modular design, the scalability provided by

Pig’s underneath infrastructure (MapReduce) and its debuggability. We believe that

our experiences and our implementation of Pig program units for preparing data for

three MSR studies will be valuable for other researchers and practitioners.

Chapter 6

Conclusion

This chapter summarizes the main ideas presented in this thesis. In addition, we

propose some future work to ease the use of web-scale platforms for large-scale MSR

studies.

MSR research requires scaling to ever larger and more sophisticated analyses.

Existing solutions for scaling MSR research are mostly ad hoc and hard to maintain.

Given that need for scalable studies is very prominent in the MSR field. We believe

the MSR field can benefit from web-scale platforms to overcome the limitations of

current approaches. To evaluate our hypothesis, we perform large-scale MSR studies

using web-scale platforms such as MapReduce and Pig in this thesis. Through our

case studies, we conclude that MapReduce can effectively and efficiently scale MSR

studies as a general platform, despite several challenges. Moreover, Pig can be used to

improve the re-usability in practice. We documented the experiences and lessons we

learnt from scaling MSR study tools. These experiences, lessons learnt and our source

code are valuable for scaling MSR studies for other researchers and practitioners.

92

Chapter 6: Conclusion 93

6.1 Major topics addressed

Chapter 3 performs a study of the feasibility of using MapReduce, a web-scale plat-

form, to scale an MSR tool called J-REX. From our case study, we find that the

running time of J-REX on a four-machine cluster after migrated to Hadoop is 30% to

40% of the original J-REX’s running time on one machine. This chapter illustrates

that MapReduce platform, as an example of web-scale platforms, is feasible to enable

a large scale MSR study of software evolution.

Chapter 4 uses MapReduce as a general platform to scale MSR studies. From

the experience of Chapter 3, we generalize five challenges of scaling MSR studies by

MapReduce. We document our experience of addressing the challenges. Moreover,

we evaluate the standard guideline from the web field in our case studies and find

that the guidelines from the web field need to be changed in MSR studies to avoid

sub-optimal performance. This chapter shows that MapReduce, as an example of

web-scale platforms, can be used as a general platform to enable different types of

MSR studies.

Finally, Chapter 5 presents using Pig, a web-scale platform on top of Hadoop, to

improve the re-usability and maintainability of migrating MSR studies to web-scale

platforms. Through the case studies of perform data ETL in three MSR studies,

we show that Pig can make the scaling of MSR studies more re-usable and easier to

maintain. We document our code in the thesis and the appendix to assist other MSR

researchers and practitioners. This chapter shows that Pig platform can be used to

improve the re-usability and maintainability of using web-scale platforms to enable

large-scale MSR studies.

Chapter 6: Conclusion 94

6.2 Thesis contributions

The contributions of this thesis are as follows:

1. We verified the feasibility and benefits of scaling MSR experiments using the

MapReduce and Pig platforms. Our experiments show that running the MapRe-

duce version of J-REX on a small local area network with four machines requires

30% to 40% of the running time of the original J-REX. On a cluster of 10 ma-

chines (SHARCNET), the running time of MapReduce version of J-REX and

JACK is reduced by a factor 9 and 6 respectively. For CC-Finder, the running

time is also decreased significantly.

2. We documented our experiences in scaling MSR studies and provided code sam-

ples of program units in Pig, such that other researchers could benefit from our

experience and code samples. The code samples are documented in Appendix A.

Our experiences suggest that:

(a) Migrating local and semi-local analyses is much simpler than migrating

non-local analysis.

(b) We have explored the use of virtual machines on heterogeneous infras-

tructures to provide a homogeneous cluster. The virtual machine solution

works well as playground for analysis and debugging before deployment on

larger clusters.

(c) Large-scale MSR studies on balanced input data benefit more from more

machines in the cluster than small-scale MSR studies with unbalanced

input data.

Chapter 6: Conclusion 95

(d) We find that Hadoop’s error recovery mechanism enabled us to have agile

clusters with machines joining and leaving the cluster based on need.

(e) Pig platform can improve the re-usability and maintainability of the mi-

gration of MSR studies to web-scale platforms.

3. We also note that changes are needed to the Web community’s standard guide-

lines for the MapReduce platform when migrating MSR analyses to web-scale

platforms. These changes highlight the different characteristics of MSR anal-

yses and must be done to ensure that MSR researchers get the most benefits

from such web-scale platforms. In particular, the different characteristics noted

are as following.

(a) A majority of MapReduce uses in the web community are local in nature,

while for our case study we find that MSR studies may be non-local or

semi-local, which requires more efforts to migrate to MapReduce.

(b) Heterogeneous infrastructures are not frequently used in the web com-

munity. In the software engineering research community, heterogeneous

infrastructures are the norm rather than the exception.

(c) The standard guidelines for MapReduce platform works well for web anal-

ysis, which is traditionally fine-grained. Fine-grained MSR study tools

like J-REX, which have a large number of input key/value pairs, can

still adopt these recommendations. Coarse-grained MSR study tools like

JACK, which have a small number of input key/value pairs, should not

adopt these recommendations.

(d) HDFS is the default data storage of Hadoop for the web analyses, but

Chapter 6: Conclusion 96

was not designed with fast data writing speed, which may be necessary in

saving MSR studies result data. From our experience, we recommend: 1)

the use of the local file system if the result data of an MSR tool consists of

a large amount of data; and 2) the use of HDFS if the result data is small

in size.

6.3 Future research

Our first future plan is to perform more case studies of different types of software

engineering studies on web-scale platforms. Based on our case studies, we plan to

build a Java library of MapReduce strategies and Pig program units, which provides

various MSR algorithms and techniques readily to use on top of Hadoop and Pig.

Second, we plan to find approaches that can assist in determining the most optimal

configurations for different MSR studies in different hardware environments.

Third, most of the “Map” phases of our MapReduce strategies only pass the data

to “Reduce” phases, but do not process the data. In our future work, we plan to find

out if we can use both “Map” and “Reduce” phases to improve the performance of

MSR studies or if MSR tools do not benefit from both “Map” and “Reduce” phases

conceptually.

In addition, since CC-Finder [47] was not open-source software when we performed

our case studies in Chapter 4 and became open-source recently, we plan to carefully

examine the source code of CC-Finder and develop CC-Finder using MapReduce or

Pig from scratch.

Finally, there are other web-scale platforms that can possibly support large-scale

MSR studies. We are interested in exploring the benefits and shortcomings of other

Chapter 6: Conclusion 97

web-scale platforms. We also plan to use SQL-like web-scale platforms, such as

Hive [5], to perform SQL-base MSR analysis after the data ETL is performed by

Hadoop.

Bibliography

[1] Amazon EC2. https://aws.amazon.com/ec2/.

[2] CVS. http://www.cvshome.org/.

[3] Eclipse JDT. http://www.eclipse.org/jdt.

[4] Hadoop distributed file system. http://hadoop.apache.org/hdfs/.

[5] Hive. http://hadoop.apache.org/hive/.

[6] How Many Maps And Reduces. http://wiki.apache.org/hadoop/HowManyMapsAndReduces.

[7] MAHOUT. http://lucene.apache.org/mahout/.

[8] MapReduce: A major step backwards. http://databasecolumn.vertica.com/database-

innovation/mapreduce-a-major-step-backwards/.

[9] Self-service, prorated super computing fun!

http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-

computing-fun/.

[10] SHARCNET. https://www.sharcnet.ca.

[11] Vertica home page. http://www.vertica.com.

98

Bibliography 99

[12] X-RIME home page. http://xrime.sourceforge.net/.

[13] Anurag Acharya, Guy Edjlali, and Joel Saltz. The utility of exploiting idle work-

stations for parallel computation. SIGMETRICS Perform. Eval. Rev., 25(1):225–

234, 1997.

[14] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. The

evolution of the linux build system. Electronic Communications of the ECE-

ASST, 8, February 2008.

[15] Giulio Antoniol, Massimiliano Di Penta, and Mark Harman. Search-based tech-

niques applied to optimization of project planning for a massive maintenance

project. In ICSM ’05: Proceedings of the 21st IEEE International Conference

on Software Maintenance, pages 240–249, Washington, DC, USA, 2005. IEEE

Computer Society.

[16] J. Armstrong, R. Virding, M. Williams, and C. Wikstroem. Concurrent pro-

gramming in ERLANG. Citeseer, 1993.

[17] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An internet-

scale software repository. In SUITE ’09: Proceedings of the 2009 ICSE Work-

shop on Search-Driven Development-Users, Infrastructure, Tools and Evaluation,

pages 1–4, Washington, DC, USA, 2009. IEEE Computer Society.

[18] Olga Baysal and Andrew J. Malton. Correlating social interactions to release

history during software evolution. In MSR ’07: Proceedings of the Fourth Inter-

national Workshop on Mining Software Repositories, page 7, Washington, DC,

USA, 2007. IEEE Computer Society.

Bibliography 100

[19] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim.

Extracting structural information from bug reports. In MSR ’08: Proceedings

of the Fifth International Working Conference on Mining Software Repositories,

May 2008.

[20] Jennifer Bevan, E. James Whitehead, Jr., Sunghun Kim, and Michael Godfrey.

Facilitating software evolution research with kenyon. In ESEC/FSE ’05: Pro-

ceedings of the 10th European Software Engineering Conference, 2005.

[21] F. Cesarini and S. Thompson. Erlang programming. O’Reilly Media, 2009.

[22] Ronnie Chaiken, Bob Jenkins, Per-Larson, Bill Ramsey, Darren Shakib, Simon

Weaver, and Jingren Zhou. SCOPE: easy and efficient parallel processing of

massive data sets. Proc. VLDB Endow., 1(2):1265–1276, 2008.

[23] R. Chandra. Parallel programming in OpenMP. Morgan Kaufmann, 2001.

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. Commun. ACM, 51, 2008.

[25] Jeffrey Dean and Sanjay Ghemawat. MapReduce: a flexible data processing tool.

Commun. ACM, 53(1):72–77, 2010.

[26] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M.

Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and

Utkarsh Srivastava. Building a high-level dataflow system on top of Map-Reduce:

the Pig experience. Proc. VLDB Endow., 2(2):1414–1425, 2009.

Bibliography 101

[27] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-

tem. In SOSP ’03: Proceedings of the 19th ACM symposium on Operating Sys-

tems Principles, 2003.

[28] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing.

Technical report, MS-TR-2007-58, Microsoft, May 2007.

[29] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case

study. In ICSM ’00: Proceedings of the International Conference on Software

Maintenance, page 131, Washington, DC, USA, 2000. IEEE Computer Society.

[30] Jesus M. Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr, Juan José

Amor, and Daniel M. German. Macro-level software evolution: a case study of

a large software compilation. Empirical Softw. Engg., 14(3):262–285, 2009.

[31] Carsten Görg and Peter Weißgerber. Error detection by refactoring reconstruc-

tion. In MSR ’05: Proceedings of the 2005 international workshop on Mining

Software Repositories, pages 1–5, New York, NY, USA, 2005. ACM.

[32] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming

with the message-passing interface. MIT press, 1999.

[33] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. The WEKA data mining software: an update.

SIGKDD Explor. Newsl., 11(1):10–18, 2009.

[34] Mark Harman. The current state and future of search based software engineering.

In FOSE ’07: 2007 Future of Software Engineering, pages 342–357, Washington,

DC, USA, 2007. IEEE Computer Society.

Bibliography 102

[35] Mark Harman and Bryan F. Jones. Search-based software engineering. Informa-

tion and Software Technology, 43(14):833 – 839, 2001.

[36] Ahmed E. Hassan. Mining software repositories to assist developers and support

managers. PhD thesis, University of Waterloo, 2005.

[37] Ahmed E. Hassan. The road ahead for mining software repositories. In FoSM:

Frontiers of Software Maintenance, pages 48–57, October 2008.

[38] Ahmed E. Hassan. Predicting faults using the complexity of code changes. In

ICSE ’09: Proceedings of the 2009 IEEE 31st International Conference on Soft-

ware Engineering, pages 78–88, Washington, DC, USA, 2009. IEEE Computer

Society.

[39] Ahmed E. Hassan and Ric C. Holt. Using development history sticky notes to

understand software architecture. In IWPC ’04: Proceedings of the 12th IEEE

International Workshop on Program Comprehension, 2004.

[40] Ahmed E. Hassan and Richard C. Holt. Studying the evolution of software sys-

tems using evolutionary code extractors. In IWPSE ’04: Proceedings of the Prin-

ciples of Software Evolution, 7th International Workshop, pages 76–81, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

[41] Ahmed E. Hassan and Richard C. Holt. Using development history sticky notes

to understand software architecture. In IWPC ’04: Proceedings of the 12th IEEE

International Workshop on Program Comprehension, page 183, Washington, DC,

USA, 2004. IEEE Computer Society.

Bibliography 103

[42] Ross Ihaka and Robert Gentleman. R: A Language for Data Analysis and Graph-

ics. Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

[43] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: distributed data-parallel programs from sequential building blocks.

SIGOPS Oper. Syst. Rev., 41(3):59–72, 2007.

[44] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora.

An automated approach for abstracting execution logs to execution events. J.

Softw. Maint. Evol., 20(4):249–267, 2008.

[45] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora.

Automatic identification of load testing problems. In ICSM ’08: Proceedings of

24th IEEE International Conference on Software Maintenance, pages 307–316,

Beijing, China, 2008. IEEE.

[46] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and tax-

onomy of approaches for mining software repositories in the context of software

evolution. J. Softw. Maint. Evol., 19(2):77–131, 2007.

[47] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: A multilin-

guistic token-based code clone detection system for large scale source code. IEEE

Transactions on Software Engineering, 28(7):654–670, 2002.

[48] C.J. Kapser and M.W. Godfrey. Cloning considered harmful considered harmful:

patterns of cloning in software. Empirical Software Engineering, 13(6):645–692,

2008.

Bibliography 104

[49] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical

study of code clone genealogies. In ESEC/FSE-13: Proceedings of the 10th

European software engineering conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software engineering, pages 187–196,

New York, NY, USA, 2005. ACM.

[50] Colin Kirsopp, Martin J. Shepperd, and John Hart. Search heuristics, case-based

reasoning and software project effort prediction. In GECCO ’02: Proceedings of

the Genetic and Evolutionary Computation Conference, pages 1367–1374, San

Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[51] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux

virtual machine monitor. In OLS ’07: The 2007 Ottwa Linux Symposium, pages

225–230, 2007.

[52] Meir M. Lehman and Juan F. Ramil. Software evolution–background, theory,

practice. Information Processing Letters, 88(1-2):33 – 44, 2003. To honour

Professor W.M. Turski’s Contribution to Computing Science on the Occasion of

his 65th Birthday.

[53] Simone Livieri, Yoshiki Higo, Makoto Matushita, and Katsuro Inoue. Very-

Large Scale Code Clone Analysis and Visualization of Open Source Programs

Using Distributed CCFinder: D-CCFinder. In ICSE ’07: Proceedings of the

29th International conference on Software Engineering, 2007.

[54] Angela Lozano and Michel Wermelinger. Assessing the effect of clones on change-

ability. In ICSM ’08: Proceedings of 24th IEEE International Conference on

Software Maintenance, pages 227–236, Beijing, China, October 2008. IEEE.

Bibliography 105

[55] Walid Maalej and Hans-Jorg Happel. From work to word: How do software

developers describe their work? In MSR ’09: Proceedings of the 2009 6th IEEE

International Working Conference on Mining Software Repositories, pages 121–

130, Washington, DC, USA, 2009. IEEE Computer Society.

[56] K. Maruyama and S. Yamamoto. A tool platform using an XML representation

of source code information. IEICE Transactions on Information and System E

Series D, 89(7):2214, 2006.

[57] Audris Mockus. Amassing and indexing a large sample of version control systems:

Towards the census of public source code history. In MSR ’09: 6th IEEE In-

ternational Working Conference on Mining Software Repositories, pages 11–20,

2009.

[58] Leon Moonen. Generating robust parsers using island grammars. In WCRE ’01:

Proceedings of the Eighth Working Conference on Reverse Engineering, page 13,

Washington, DC, USA, 2001. IEEE Computer Society.

[59] Allen P. Nikora and John C. Munson. Understanding the nature of software

evolution. In ICSM ’03: Proceedings of the International Conference on Software

Maintenance, page 83, Washington, DC, USA, 2003. IEEE Computer Society.

[60] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-

drew Tomkins. Pig latin: a not-so-foreign language for data processing. In

SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, pages 1099–1110, New York, NY, USA, 2008. ACM.

Bibliography 106

[61] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. De-

Witt, Samuel Madden, and Michael Stonebraker. A comparison of approaches

to large-scale data analysis. In SIGMOD ’09: Proceedings of the 35th SIGMOD

international conference on Management of data, pages 165–178, New York, NY,

USA, 2009. ACM.

[62] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the

data: Parallel analysis with Sawzall. Sci. Program., 13(4):277–298, 2005.

[63] Gregorio Robles and Jesus M. Gonzalez-Barahona. Developer identification

methods for integrated data from various sources. SIGSOFT Softw. Eng. Notes,

30(4):1–5, 2005.

[64] Gregorio Robles, Jesus M. Gonzalez-Barahona, Martin Michlmayr, and

Juan Jose Amor. Mining large software compilations over time: another per-

spective of software evolution. In MSR ’06: Proceedings of the 3rd International

workshop on Mining software repositories, 2006.

[65] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and evalu-

ation of code clone detection techniques and tools: A qualitative approach. Sci.

Comput. Program., 74(7):470–495, 2009.

[66] Yonghee Shin, Robert Bell, Thomas Ostrand, and Elaine Weyuker. Does call-

ing structure information improve the accuracy of fault prediction? In MSR

’09: Proceedings of the 2009 6th IEEE International Working Conference on

Mining Software Repositories, pages 61–70, Washington, DC, USA, 2009. IEEE

Computer Society.

Bibliography 107

[67] Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik Paul-

son, Andrew Pavlo, and Alexander Rasin. MapReduce and parallel DBMSs:

friends or foes? Commun. ACM, 53(1):64–71, 2010.

[68] E. Van Emden and L. Moonen. Java quality assurance by detecting code smells.

In WCRE ’02: Proceedings of the Ninth Working Conference on Reverse Engi-

neering, page 97, Washington, DC, USA, 2002. IEEE Computer Society.

[69] Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual modeling

for ETL processes. In DOLAP ’02: Proceedings of the 5th ACM international

workshop on Data Warehousing and OLAP, pages 14–21, New York, NY, USA,

2002. ACM.

[70] T. White. Hadoop: The Definitive Guide. Oreilly & Associates Inc, 2009.

Appendix A

Sample Source Code of Pig

Programming Units

A.1 ExtPigStorage

1 import java . i o . ByteArrayOutputStream ;

2 import java . i o . IOException ;

3 import java . u t i l . ArrayList ;

4 import java . u t i l . L i s t ;

5 import org . apache . p ig . b u i l t i n . PigStorage ;

6 import org . apache . p ig . data . DataByteArray ;

7 import org . apache . p ig . data . Tuple ;

8 import org . apache . p ig . impl . i o . Buf feredPos i t ionedInputStream ;

9

10 /∗∗

11 ∗ @author Ian Shang

12 ∗ @version 1.0

108

Appendix A: Sample Source Code of Pig Programming Units 109

13 ∗ Pig Storage Class to read content o f every f i l e . .

14 ∗/

15 public class ExtPigStorage extends PigStorage {

16

17 private St r ing c u r r e n t F i l e ;

18 private long o f f s e t ;

19 private long end ;

20 ByteArrayOutputStream mBuf = null ;

21 /∗∗

22 ∗ @author Ian Shang

23 ∗ @version 1.0

24 ∗ @param f i l ename : the name o f the input f i l e .

25 ∗ @param in : input stream

26 ∗ @param o f f s e t : o f f s e t

27 ∗ @param end : end

28 ∗ @return nu l l

29 ∗ bind input f i l e to input stream

30 ∗/

31 public void bindTo (St r ing fi leName ,

Buf feredPos i t ionedInputStream in ,

32 long o f f s e t , long end) throws IOException {

33 c u r r e n t F i l e = fi leName ;

34 this . o f f s e t = o f f s e t ;

35 this . end = end ;

36 super . bindTo (fi leName , in , o f f s e t , end) ;

37 }

38 /∗∗

39 ∗ @author Ian Shang

40 ∗ @version 1.0

Appendix A: Sample Source Code of Pig Programming Units 110

41 ∗ @return Tuple o f next data record

42 ∗/

43 public Tuple getNext () throws IOException {

44 i f (in == null | | in . g e t P o s i t i o n () > end) {

45 return null ;

46 }

47 // only g e t java , v f i l e

48 i f (! c u r r e n t F i l e . endsWith (” java , v”))

49 return null ;

50 List<Object> newList = new ArrayList<Object >() ;

51 newList . add (c u r r e n t F i l e) ;

52

53 byte [] array = new byte [(int) (end − o f f s e t)] ;

54 in . read (array) ;

55 in = null ;

56 ArrayList<Object> mProtoTuple = new ArrayList () ;

57 mProtoTuple . add (new DataByteArray (array)) ;

58

59 newList . add (mProtoTuple . t oS t r i ng ()) ;

60 Tuple tup l e = mTupleFactory . newTupleNoCopy (newList) ;

61 return tup l e ;

62 }

63 }

A.2 ExtractLog

1 import java . i o . F i l e ;

2 import java . i o . F i l eWr i t e r ;

Appendix A: Sample Source Code of Pig Programming Units 111

3 import java . i o . IOException ;

4 import org . apache . p ig . EvalFunc ;

5 import org . apache . p ig . data . DefaultTupleFactory ;

6 import org . apache . p ig . data . Tuple ;

7 import org . apache . p ig . impl . u t i l . WrappedIOException ;

8

9 /∗∗

10 ∗ @author Ian Shang

11 ∗ @version 1.0

12 ∗ e va l ua t i on UDF to use r l o g to e x t r a c t change l o g o f CVS

r e p o s i t o r i e s .

13 ∗/

14 public class ExtractLog extends EvalFunc<Tuple> {

15 /∗∗

16 ∗ @author Ian Shang

17 ∗ @version 1.0

18 ∗ @param Tuple wi th a , v f i l e

19 ∗ @return Tuple wi th CVS l o g o f , v f i l e .

20 ∗/

21 public Tuple exec (Tuple input) throws IOException {

22 i f (input == null | | input . s i z e () == 0)

23 return null ;

24 try {

25 St r ing name = (St r ing) input . get (0) ;

26 St r ing content = (St r ing) input . get (1) ;

27 i f (content . s tartsWith (” [”))

28 content = content . s u b s t r i ng (1) ;

29 i f (content . endsWith (”] ”))

Appendix A: Sample Source Code of Pig Programming Units 112

30 content = content . s u b s t r i ng (0 ,

content . l ength () − 1) ;

31

32 // s t o r e the content to l o c a l

33 //hack wi th hd f s data naming schema

34 St r ing home = System . getProperty (” user . home”

) ;

35 i f (name . startsWith (” f i l e : ”))

36 name = name . s ub s t r i n g (6) ;

37 i f (name . startsWith (” hdfs ”))

38 name = name . s ub s t r i n g (name . indexOf (”

9000”) + 4) ;

39 i f (name . startsWith (”/”))

40 name = name . s ub s t r i n g (1) ;

41 name = home + name ;

42 F i l e f i l e = new F i l e (name) ;

43 F i l e parent = new F i l e (f i l e . getParent ()) ;

44 parent . mkdirs () ;

45 Fi l eWr i t e r fw = new Fi l eWr i t e r (f i l e) ;

46 fw . wr i t e (content) ;

47 fw . c l o s e () ;

48 // use J−REX l i b r a r y to e x t r a c t CVS l o g

49 St r ing r l o g = JrexUt i l . J r exUt i l . ext ractRlog (

name) ;

50 Tuple tname = DefaultTupleFactory .

g e t In s tance () . newTuple () ;

51 tname . append (name) ;

52 tname . append (r l o g) ;

53 return tname ;

Appendix A: Sample Source Code of Pig Programming Units 113

54 } catch (Exception e) {

55 throw WrappedIOException . wrap (

56 ”Caught except ion p r o c e s s i n g

input row ” , e) ;

57 }

58 }

59 }

A.3 ExtractVersions

1 import java . i o . IOException ;

2 import java . u t i l . L i s t ;

3 import org . apache . p ig . EvalFunc ;

4 import org . apache . p ig . data . DataBag ;

5 import org . apache . p ig . data . DefaultBagFactory ;

6 import org . apache . p ig . data . DefaultTupleFactory ;

7 import org . apache . p ig . data . Tuple ;

8 import org . apache . p ig . impl . u t i l . WrappedIOException ;

9

10 /∗∗

11 ∗ @author Ian Shang

12 ∗ @version 1.0

13 ∗ e va l ua t i on UDF to e x t r a c t commits from the CVS l o g .

14 ∗/

15 public class ExtractVers ions extends EvalFunc<DataBag> {

16 /∗∗

17 ∗ @author Ian Shang

18 ∗ @version 1.0

Appendix A: Sample Source Code of Pig Programming Units 114

19 ∗ @param Tuple wi th CVS l o g o f a Java source code f i l e

20 ∗ @return Tuple wi th commits o f a Java source code f i l e

21 ∗/

22 public DataBag exec (Tuple input) throws IOException {

23 i f (input == null | | input . s i z e () == 0)

24 return null ;

25 try {

26 Tuple input tup l e = (Tuple) input . get (0) ;

27 St r ing name = (St r ing) input tup l e . get (0) ;

28 St r ing content = (St r ing) input tup l e . get (1) ;

29 // use J−REX l i b r a r y to e x t r a c t commits from

the CVS l o g

30 List<St r ing [] > r l o g = JrexUt i l . J r exUt i l

31 . ExtractCommitsbyRlog (

content) ;

32 DataBag commits = DefaultBagFactory .

g e t In s tance () . newDefaultBag () ;

33 for (S t r ing [] commit : r l o g) {

34 Tuple committuple =

DefaultTupleFactory . g e t In s tance ()

35 . newTuple () ;

36 for (S t r ing s : commit) {

37 committuple . append (s) ;

38 }

39 commits . add (committuple) ;

40 }

41 Tuple tname = DefaultTupleFactory .

g e t In s tance () . newTuple (name) ;

42

Appendix A: Sample Source Code of Pig Programming Units 115

43 DataBag output = DefaultBagFactory .

g e t In s tance () . newDefaultBag () ;

44 output . add (tname) ;

45 output . addAll (commits) ;

46 return output ;

47 } catch (Exception e) {

48 throw WrappedIOException . wrap (

49 ”Caught except ion p r o c e s s i n g

input row ” , e) ;

50 }

51

52 }

53 }

A.4 ExtractSourceCode

1 import java . i o . IOException ;

2 import java . u t i l . I t e r a t o r ;

3 import org . apache . p ig . EvalFunc ;

4 import org . apache . p ig . data . DataBag ;

5 import org . apache . p ig . data . DefaultBagFactory ;

6 import org . apache . p ig . data . DefaultTupleFactory ;

7 import org . apache . p ig . data . Tuple ;

8

9 /∗∗

10 ∗ @author Ian Shang

11 ∗ @version 1.0

12 ∗ e va l ua t i on UDF to e x t r a c t source code from CVS r e p o s i t o r i e s .

Appendix A: Sample Source Code of Pig Programming Units 116

13 ∗/

14 public class ExtractSourceCode extends EvalFunc <DataBag>

15 {

16 /∗∗

17 ∗ @author Ian Shang

18 ∗ @version 1.0

19 ∗ @param Tuple wi th a databag o f every commits o f a Java

f i l e .

20 ∗ @return Tuple wi th e x t r a c t e d source code snapshot s o f a

Java f i l e .

21 ∗/

22 public DataBag exec (Tuple input) throws IOException {

23 I t e r a t o r <Tuple> databag = ((DataBag) input . get (0)) .

i t e r a t o r () ;

24

25 Tuple tname = (Tuple) databag . next () ;

26 St r ing f i l ename = (St r ing) tname . get (0) ;

27 // cacu l a t e c v s roo t

28 St r ing [] tmp = f i l ename . s p l i t (”/”) ;

29 St r ing cvs roo t = new St r ing () ;

30 for (int i = 0 ; i < tmp . l ength ; ++i) {

31 cvs roo t = cvs roo t + tmp [i] + ”/” ;

32 i f (tmp [i] . equa l s (” cvs ”)) {

33 cvs roo t = cvs roo t + tmp [(i + 1)] ;

34 break ;

35 }

36 }

37

Appendix A: Sample Source Code of Pig Programming Units 117

38 DataBag output = DefaultBagFactory . g e t In s tance () .

newDefaultBag () ;

39 output . add (tname) ;

40

41 while (databag . hasNext ()) {// f o r every snapshot

42 Tuple commit = databag . next () ;

43 St r ing v e r s i on = (St r ing) commit . get (0) ;

44 // use J−REX l i b r a r y to e x t r a c t source code

45 St r ing content = JrexUt i l . J r exUt i l .

callCvsGetCode (vers ion ,

46 f i l ename , cv s roo t) ;

47 i f (content != null && content != ””) {

48 Tuple sou r c e tup l e =

DefaultTupleFactory . g e t In s tance ()

49 . newTuple () ;

50 s ou r c e tup l e . append (v e r s i on) ;

51 s ou r c e tup l e . append (content) ;

52 output . add (sou r c e tup l e) ;

53 }

54 }

55 return output ;

56 }

57 }

A.5 CovertSourceToXML

1 import java . i o . IOException ;

2 import java . i o . St r ingWri te r ;

Appendix A: Sample Source Code of Pig Programming Units 118

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . L i s t ;

5 import javax . xml . trans form . OutputKeys ;

6 import javax . xml . trans form . Transformer ;

7 import javax . xml . trans form . TransformerFactory ;

8 import javax . xml . trans form . dom . DOMSource ;

9 import javax . xml . trans form . stream . StreamResult ;

10 import org . apache . p ig . EvalFunc ;

11 import org . apache . p ig . data . DataBag ;

12 import org . apache . p ig . data . DefaultBagFactory ;

13 import org . apache . p ig . data . DefaultTupleFactory ;

14 import org . apache . p ig . data . Tuple ;

15 import org . w3c . dom . Document ;

16 import J r exUt i l . JavaFi l e ;

17

18 /∗∗

19 ∗ @author Ian Shang

20 ∗ @version 1.0

21 ∗ e va l ua t i on UDF to conver t Java source code to XML r e p r e s e n t a t i v e .

22 ∗/

23 public class ConvertSourceToXML extends EvalFunc <DataBag>

24 {

25 /∗∗

26 ∗ @author Ian Shang

27 ∗ @version 1.0

28 ∗ @param Tuple wi th a databag o f Java source code .

29 ∗ @return Tuple wi th conver ted XML data o f java source code

.

30 ∗/

Appendix A: Sample Source Code of Pig Programming Units 119

31 public DataBag exec (Tuple input) throws IOException {

32 I t e r a t o r <Tuple> databag = ((DataBag) input . get (0)) .

i t e r a t o r () ;

33 Tuple sub = null ;

34 List<Object> s u b l i s t = null ;

35 i f (input . s i z e () > 1) {

36 sub = (Tuple) input . get (1) ;

37 s u b l i s t = sub . g e tA l l () ;

38 }

39

40 Tuple tname = (Tuple) databag . next () ;

41 St r ing f i l ename = (St r ing) tname . get (0) ;

42

43 DataBag output = DefaultBagFactory . g e t In s tance () .

newDefaultBag () ;

44 output . add (tname) ;

45

46 Tuple xmltuples = DefaultTupleFactory . g e t In s tance () .

newTuple () ;

47

48 while (databag . hasNext ()) {

49 Tuple commit = databag . next () ;

50 // ge t source code o f every commit o f the

Java f i l e

51 St r ing v e r s i on = (St r ing) commit . get (0) ;

52 St r ing sourcecode = (St r ing) commit . get (1) ;

53 // use J−REX l i b r a r y to parse Java source

code to a Java Class

Appendix A: Sample Source Code of Pig Programming Units 120

54 JavaFi l e j f = JrexUt i l . ParseJava .

parseJavaCode (sourcecode ,

55 f i l ename , s u b l i s t) ;

56 i f (j f == null) {

57 return null ;

58 }

59

60 j f . setDocument () ;

61 Document document = j f . getDocument () ;

62 // transform the Java source code in format ion

to XML format

63 TransformerFactory t f = TransformerFactory .

newInstance () ;

64 Transformer t rans fo rmer ;

65 try {

66 t rans fo rmer = t f . newTransformer () ;

67

68 DOMSource source = new DOMSource(

document) ;

69 t rans fo rmer . setOutputProperty (

OutputKeys .ENCODING, ”UTF−8”) ;

70 t rans fo rmer . setOutputProperty (

OutputKeys .INDENT, ” yes ”) ;

71

72 Str ingWri te r s t r ingw = new

Str ingWri te r () ;

73 StreamResult r e s u l t = new

StreamResult (s t r ingw) ;

Appendix A: Sample Source Code of Pig Programming Units 121

74 t rans fo rmer . trans form (source , r e s u l t

) ;

75 document = null ;

76 St r ing returnS = str ingw . t oS t r i ng () ;

77 // use the XML data to c r ea t e t u p l e

78 Tuple xmltuple = DefaultTupleFactory

. g e t In s tance () . newTuple () ;

79 xmltuple . append (ve r s i o n) ;

80 xmltuple . append (returnS) ;

81 xmltuples . append (xmltuple) ;

82 } catch (Exception e) {

83 e . pr intStackTrace () ;

84 }

85 }

86 output . add (xmltuples) ;

87 return output ;

88 }

89 }

A.6 ChangeLOC

1 import java . i o . IOException ;

2 import java . u t i l . I t e r a t o r ;

3 import org . apache . p ig . EvalFunc ;

4 import org . apache . p ig . data . DataBag ;

5 import org . apache . p ig . data . DefaultTupleFactory ;

6 import org . apache . p ig . data . Tuple ;

7

Appendix A: Sample Source Code of Pig Programming Units 122

8 /∗∗

9 ∗ @author Ian Shang

10 ∗ @version 1.0

11 ∗ e va l ua t i on UDF to genera te the changed LOC of every commit

12 ∗/

13 public class ChangeLOC extends EvalFunc<Tuple> {

14

15 /∗∗

16 ∗ @author Ian Shang

17 ∗ @version 1.0

18 ∗ @param Tuple wi th a databag o f commits .

19 ∗ @return Tuple wi th changed LOC of every commit .

20 ∗/

21 public Tuple exec (Tuple input) throws IOException {

22 I t e r a t o r <Tuple> databag = ((DataBag) input . get (0)) .

i t e r a t o r () ;

23 Tuple output = DefaultTupleFactory . g e t In s tance () .

newTuple () ;

24 Tuple tname = databag . next () ;

25 output . append ((S t r ing) tname . get (0)) ;

26 int count = 0 ;

27 while (databag . hasNext ()) {// f o r every commit

28 Tuple commit = databag . next () ;

29 St r ing add = (St r ing) commit . get (5) ; //added

LOC of t h i s commit

30 St r ing de l = (St r ing) commit . get (6) ; //

d e l e t e d LOC of t h i s commit

31

32 // conver t S t r ing format o f LOC to i n t e g e r

Appendix A: Sample Source Code of Pig Programming Units 123

33 int addi = 0 ;

34 i f (add != null && add != ””)

35 addi = I n t e g e r . pa r s e In t (add) ;

36 int d e l i = 0 ;

37 i f (de l != null && add != ””)

38 d e l i = I n t e g e r . pa r s e In t (de l) ;

39 i f (addi > d e l i)

40 count += addi ;

41 else

42 count += d e l i ;

43 }

44 output . append (count) ; // accumulate the LOC

45 return output ;

46 }

47 }

A.7 EvoAnalysisComment

1 import java . i o . IOException ;

2 import java . i o . Str ingReader ;

3 import java . u t i l . ArrayList ;

4 import java . u t i l . I t e r a t o r ;

5 import java . u t i l . L i s t ;

6 import javax . xml . p a r s e r s . DocumentBuilder ;

7 import javax . xml . p a r s e r s . DocumentBuilderFactory ;

8 import org . apache . p ig . EvalFunc ;

9 import org . apache . p ig . data . DataBag ;

10 import org . apache . p ig . data . DefaultTupleFactory ;

Appendix A: Sample Source Code of Pig Programming Units 124

11 import org . apache . p ig . data . Tuple ;

12 import org . w3c . dom . Document ;

13 import org . xml . sax . InputSource ;

14 import J r exUt i l . ChangeUnit ;

15 import J r exUt i l . ParseCvs ;

16

17 /∗∗

18 ∗ @author Ian Shang

19 ∗ @version 1.0

20 ∗ e va l ua t i on UDF to perform evo l u t i ona ry ana l y s i s f o r on ly comment

data .

21 ∗/

22 public class EvoAnalysisComment extends EvalFunc<Tuple> {

23 St r ing f i l ename = ”” ;

24

25 /∗∗

26 ∗ @author Ian Shang

27 ∗ @version 1.0

28 ∗ @param Tuple

29 ∗ with a databag o f every snapshot o f XML

rep r e s en t a t i on o f Java

30 ∗ source code .

31 ∗ @return Tuple wi th e vo l u t i ona ry r e s u l t s o f comments o f

the Java source

32 ∗ code f i l e .

33 ∗/

34 public Tuple exec (Tuple input) throws IOException {

35

Appendix A: Sample Source Code of Pig Programming Units 125

36 Tuple r e tu rn tup l e = DefaultTupleFactory . g e t In s tance

() . newTuple () ;

37 I t e r a t o r <Tuple> databag = ((DataBag) input . get (0)) .

i t e r a t o r () ;

38

39 Tuple tname = (Tuple) databag . next () ;

40 f i l ename = (St r ing) tname . get (0) ;

41

42 Tuple changeun i t tup l e s = DefaultTupleFactory .

g e t In s tance () . newTuple () ;

43 Tuple commits = databag . next () ;

44

45 // ge t xml data o f every commit

46 List<St r ing [] > xmlList = new ArrayList<St r ing [] > () ;

47

48 for (int i = 0 ; i < commits . s i z e () ; i++) {

49 Tuple commit = (Tuple) commits . get (i) ;

50 St r ing v e r s i on = (St r ing) commit . get (0) ;

51 St r ing xmlcode = (St r ing) commit . get (1) ;

52 St r ing [] temp = { vers ion , xmlcode } ;

53 xmlList . add (temp) ;

54 }

55 for (int i = xmlList . s i z e () − 1 ; i > 0 ; i−−) {

56 St r ing l a t e = xmlList . get (i) [1] ;

57 St r ing newone = xmlList . get (i − 1) [1] ;

58 Document l a t edoc = null ;

59 Document newdoc = null ;

60

61 try {

Appendix A: Sample Source Code of Pig Programming Units 126

62 DocumentBuilderFactory

d o c b u i l d e r f a c t o r y =

DocumentBuilderFactory

63 . newInstance () ;

64 DocumentBuilder docbu i lde r =

d o c b u i l d e r f a c t o r y

65 . newDocumentBuilder

() ;

66 InputSource source = new InputSource

(new Str ingReader (l a t e)) ;

67 l a t edoc = docbu i lde r . parse (source) ;

68 } catch (Exception e) {

69 System . out . p r i n t l n (e . getMessage ()) ;

70 }

71 try {

72 DocumentBuilderFactory

d o c b u i l d e r f a c t o r y =

DocumentBuilderFactory

73 . newInstance () ;

74 DocumentBuilder docbu i lde r =

d o c b u i l d e r f a c t o r y

75 . newDocumentBuilder

() ;

76 InputSource source = new InputSource

(new Str ingReader (newone)) ;

77 newdoc = docbu i lde r . parse (source) ;

78

79 } catch (Exception e) {

80 System . out . p r i n t l n (e . getMessage ()) ;

Appendix A: Sample Source Code of Pig Programming Units 127

81 }

82 // use J−REX l i b r a r y to d i f f the two xml data

83 List<ChangeUnit> changes = ParseCvs . d i f f (

newdoc , l a t edoc) ;

84 List<St r ing [] > c h a n g e u n i t l i s t =

CUtoStringArrayAndFilter (changes) ;

85

86 i f (c h a n g e u n i t l i s t != null && c h a n g e u n i t l i s t

. s i z e () != 0) {

87

88 for (S t r ing [] changeunit :

c h a n g e u n i t l i s t) {

89 Tuple cutup le =

DefaultTupleFactory .

g e t In s tance ()

90 . newTuple () ;

91

92 cutup le . append (xmlList . get (i

− 1) [0]) ;

93 for (S t r ing s : changeunit)

{

94 cutup le . append (s) ;

95 }

96 changeun i t tup l e s . append (

cutup le) ;

97 }

98 }

99

100 }

Appendix A: Sample Source Code of Pig Programming Units 128

101 i f (changeun i t tup l e s . s i z e () != 0) {

102 r e tu rn tup l e . append (f i l ename) ;

103 r e tu rn tup l e . append (changeun i t tup l e s) ;

104 }

105 return r e tu rn tup l e ;

106

107 }

108 /∗∗

109 ∗ @author Ian Shang

110 ∗ @version 1.0

111 ∗ @param a l i s t o f changed code un i t

112 ∗ @return turn change un i t to s t r i n g array and only keep

comment changes

113 ∗/

114 private List<St r ing [] > CUtoStringArrayAndFilter (L i s t<

ChangeUnit> c u l i s t) {

115 List<St r ing [] > r e t u r n l i s t = new ArrayList<St r ing

[] > () ;

116 for (ChangeUnit cu : c u l i s t) {

117 i f (cu . getEntityType () . toLowerCase () .

conta in s (”comment”)) {

118 St r ing [] changeunit = {

119 cu . ge tEnt i ty () . r e p l a c e (”#document () /

F i l e (” + f i l ename + ”) ” , ””) ,

120 cu . getEntityType () ,

121 cu . getChangeType () } ;

122 r e t u r n l i s t . add (changeunit) ;

123 }

Appendix A: Sample Source Code of Pig Programming Units 129

124 r e t u r n l i s t . addAll (CUtoStringArrayAndFilter (

cu . getChi ldchanges ())) ;

125 }

126 return r e t u r n l i s t ;

127 }

128 }

A.8 EvoAnalysisMethod

1 import java . i o . IOException ;

2 import java . i o . Str ingReader ;

3 import java . u t i l . ArrayList ;

4 import java . u t i l . I t e r a t o r ;

5 import java . u t i l . L i s t ;

6 import javax . xml . p a r s e r s . DocumentBuilder ;

7 import javax . xml . p a r s e r s . DocumentBuilderFactory ;

8 import org . apache . p ig . EvalFunc ;

9 import org . apache . p ig . data . DataBag ;

10 import org . apache . p ig . data . DefaultTupleFactory ;

11 import org . apache . p ig . data . Tuple ;

12 import org . w3c . dom . Document ;

13 import org . xml . sax . InputSource ;

14 import J r exUt i l . ChangeUnit ;

15 import J r exUt i l . ParseCvs ;

16

17 /∗∗

18 ∗ @author Ian Shang

19 ∗ @version 1.0

Appendix A: Sample Source Code of Pig Programming Units 130

20 ∗ e va l ua t i on UDF to perform evo l u t i ona ry ana l y s i s f o r on ly method

data .

21 ∗/

22 public class EvoAnalysisMethod extends EvalFunc <Tuple>

23 {

24 St r ing f i l ename=”” ;

25 /∗∗

26 ∗ @author Ian Shang

27 ∗ @version 1.0

28 ∗ @param Tuple

29 ∗ with a databag o f every snapshot o f XML

rep r e s en t a t i on o f Java

30 ∗ source code .

31 ∗ @return Tuple wi th e vo l u t i ona ry r e s u l t s o f methods o f the

Java source

32 ∗ code f i l e .

33 ∗/

34 public Tuple exec (Tuple input) throws IOException {

35 Tuple r e tu rn tup l e = DefaultTupleFactory . g e t In s tance

() . newTuple () ;

36 I t e r a t o r <Tuple> databag = ((DataBag) input . get (0)) .

i t e r a t o r () ;

37

38 Tuple tname = (Tuple) databag . next () ;

39 f i l ename = (St r ing) tname . get (0) ;

40 Tuple changeun i t tup l e s = DefaultTupleFactory .

g e t In s tance () . newTuple () ;

41 Tuple commits = databag . next () ;

42 // ge t xml data o f every commit

Appendix A: Sample Source Code of Pig Programming Units 131

43 List<St r ing [] > xmlList = new ArrayList<St r ing [] > () ;

44 for (int i = 0 ; i < commits . s i z e () ; i++) {

45 Tuple commit = (Tuple) commits . get (i) ;

46 St r ing v e r s i on = (St r ing) commit . get (0) ;

47 St r ing xmlcode = (St r ing) commit . get (1) ;

48 St r ing [] temp = { vers ion , xmlcode } ;

49 xmlList . add (temp) ;

50 }

51 for (int i = xmlList . s i z e () − 1 ; i > 0 ; i−−) {

52 St r ing l a t e = xmlList . get (i) [1] ;

53 St r ing newone = xmlList . get (i − 1) [1] ;

54 Document l a t edoc = null ;

55 Document newdoc = null ;

56 try {

57 DocumentBuilderFactory

d o c b u i l d e r f a c t o r y =

DocumentBuilderFactory

58 . newInstance () ;

59 DocumentBuilder docbu i lde r =

d o c b u i l d e r f a c t o r y

60 . newDocumentBuilder

() ;

61 InputSource source = new InputSource

(new Str ingReader (l a t e)) ;

62 l a t edoc = docbu i lde r . parse (source) ;

63 } catch (Exception e) {

64 System . out . p r i n t l n (e . getMessage ()) ;

65 }

66 try {

Appendix A: Sample Source Code of Pig Programming Units 132

67 DocumentBuilderFactory

d o c b u i l d e r f a c t o r y =

DocumentBuilderFactory

68 . newInstance () ;

69 DocumentBuilder docbu i lde r =

d o c b u i l d e r f a c t o r y

70 . newDocumentBuilder

() ;

71 InputSource source = new InputSource

(new Str ingReader (newone)) ;

72 newdoc = docbu i lde r . parse (source) ;

73

74 } catch (Exception e) {

75 System . out . p r i n t l n (e . getMessage ()) ;

76 }

77 // use J−REX l i b r a r y to d i f f the two xml

data

78 List<ChangeUnit> changes = ParseCvs . d i f f (

newdoc , l a t edoc) ;

79 List<St r ing [] > c h a n g e u n i t l i s t =

CUtoStringArrayAndFilter (changes) ;

80

81 i f (c h a n g e u n i t l i s t != null && c h a n g e u n i t l i s t

. s i z e () != 0) {

82

83 for (S t r ing [] changeunit :

c h a n g e u n i t l i s t) {

Appendix A: Sample Source Code of Pig Programming Units 133

84 Tuple cutup le =

DefaultTupleFactory .

g e t In s tance ()

85 . newTuple () ;

86

87 cutup le . append (xmlList . get (i

− 1) [0]) ;

88 for (S t r ing s : changeunit)

{

89 cutup le . append (s) ;

90 }

91 changeun i t tup l e s . append (

cutup le) ;

92 }

93 }

94

95 }

96 i f (changeun i t tup l e s . s i z e () != 0) {

97 r e tu rn tup l e . append (f i l ename) ;

98 r e tu rn tup l e . append (changeun i t tup l e s) ;

99 }

100 return r e tu rn tup l e ;

101

102 }

103 /∗∗

104 ∗ @author Ian Shang

105 ∗ @version 1.0

106 ∗ @param a l i s t o f changed code un i t

Appendix A: Sample Source Code of Pig Programming Units 134

107 ∗ @return turn change un i t to s t r i n g array and only keep

method changes

108 ∗/

109 private List<St r ing [] > CUtoStringArrayAndFilter (L i s t<

ChangeUnit> c u l i s t) {

110 List<St r ing [] > r e t u r n l i s t = new ArrayList<St r ing

[] > () ;

111 for (ChangeUnit cu : c u l i s t) {

112 i f (cu . getEntityType () . toLowerCase () .

conta in s (”method”)) {

113 St r ing [] changeunit = {

114 cu . ge tEnt i ty () . r e p l a c e (”#document () /

F i l e (” + f i l ename + ”) ” , ””) ,

115 cu . getEntityType () ,

116 cu . getChangeType () } ;

117 r e t u r n l i s t . add (changeunit) ;

118 }

119 r e t u r n l i s t . addAll (CUtoStringArrayAndFilter (

cu . getChi ldchanges ())) ;

120 }

121 return r e t u r n l i s t ;

122 }

123 }

A.9 GetMethod

1 import java . i o . IOException ;

2 import java . u t i l . ArrayList ;

Appendix A: Sample Source Code of Pig Programming Units 135

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . L i s t ;

5 import org . apache . p ig . EvalFunc ;

6 import org . apache . p ig . data . DataBag ;

7 import org . apache . p ig . data . DefaultBagFactory ;

8 import org . apache . p ig . data . DefaultTupleFactory ;

9 import org . apache . p ig . data . Tuple ;

10 import J r exUt i l . JavaFi l e ;

11 import J r exUt i l . ClassUnit ;

12 import J r exUt i l . Method ;

13

14 /∗∗

15 ∗ @author Ian Shang

16 ∗ @version 1.0

17 ∗ e va l ua t i on UDF to e x t r a c t method from source code .

18 ∗/

19 public class GetMethod extends EvalFunc<DataBag> {

20 /∗∗

21 ∗ @author Ian Shang

22 ∗ @version 1.0

23 ∗ @param Tuple wi th snapshot s o f a Java source code f i l e .

24 ∗ @return Databag wi th methods content .

25 ∗/

26 public DataBag exec (Tuple input) throws IOException {

27 I t e r a t o r <Tuple> databag = ((DataBag) input . get (0)) .

i t e r a t o r () ;

28 Tuple sub = null ;

29 List<Object> s u b l i s t = null ;

30 i f (input . s i z e () > 1) {

Appendix A: Sample Source Code of Pig Programming Units 136

31 sub = (Tuple) input . get (1) ;

32 s u b l i s t = sub . g e tA l l () ;

33 }

34 Tuple tname = (Tuple) databag . next () ;

35 St r ing f i l ename = (St r ing) tname . get (0) ;

36

37 DataBag output = DefaultBagFactory . g e t In s tance () .

newDefaultBag () ;

38 output . add (tname) ;

39 // ge t java f i l e snapshot s

40 Tuple j a v a f i l e t u p l e s = DefaultTupleFactory .

g e t In s tance () . newTuple () ;

41 List<Tuple> t emp l i s t = new ArrayList<Tuple >() ;

42

43 while (databag . hasNext ()) {

44 t emp l i s t . add (databag . next ()) ;

45 }

46 // f o r every commit

47 for (int i = 0 ; i < t emp l i s t . s i z e () ; i++) {

48 Tuple commit = temp l i s t . get (i) ;

49 St r ing sourcecode = (St r ing) commit . get (1) ;

50 St r ing s t a r t d a t e = (St r ing) commit . get (3) ;

51 St r ing enddate = s t a r t d a t e ;

52 i f (i != t emp l i s t . s i z e () − 1)

53 enddate = (St r ing) t emp l i s t . get (i +

1) . get (3) ;

54 JavaFi l e j f = JrexUt i l . ParseJava .

parseJavaCode (sourcecode ,

55 f i l ename , s u b l i s t) ;

Appendix A: Sample Source Code of Pig Programming Units 137

56 i f (j f == null) {

57 return null ;

58 }

59 // f o r every c l a s s un i t in the java f i l e

60 for (ClassUnit cu : j f . g e tC la s sUn i t s ()) {

61 for (Method m : cu . getMethodList ())

{

62 Tuple methodtuples =

DefaultTupleFactory .

g e t In s tance ()

63 . newTuple () ;

64

65 methodtuples . append (m.

getName ()) ;

66 methodtuples . append (m.

ge tMod i f i e r ()) ;

67 methodtuples . append (m.

getReturnType ()) ;

68 methodtuples . append (

s t a r t d a t e) ;

69 methodtuples . append (enddate)

;

70 Tuple para tup l e s =

DefaultTupleFactory .

g e t In s tance ()

71 . newTuple () ;

72 for (S t r ing [] parameter : m.

getParameterList ()) {

Appendix A: Sample Source Code of Pig Programming Units 138

73 paratup l e s . append (

parameter [0]) ;

74 }

75 methodtuples . append (

para tup l e s) ;

76 methodtuples . append (m.

getContent ()) ;

77 }

78 }

79

80 }

81 output . add (j a v a f i l e t u p l e s) ;

82 return output ;

83 }

84 }

A.10 CloneDetection

1 import java . i o . F i l e ;

2 import java . i o . Fi leReader ;

3 import java . i o . F i l eWr i t e r ;

4 import java . i o . IOException ;

5 import org . apache . p ig . EvalFunc ;

6 import org . apache . p ig . data . DefaultTupleFactory ;

7 import org . apache . p ig . data . Tuple ;

8

9 /∗∗

10 ∗ @author Ian Shang

Appendix A: Sample Source Code of Pig Programming Units 139

11 ∗ @version 1.0

12 ∗ e va l ua t i on UDF to d e t e c t c lone by us ing CC−Finder . This UDF

r e l i e s on the e x t e rna l CC−Finder t o o l .

13 ∗/

14 public class CloneDetect ion extends EvalFunc <Tuple>

15 {

16 /∗∗

17 ∗ @author Ian Shang

18 ∗ @version 1.0

19 ∗ @param Tuple wi th a databag o f method pa i r s .

20 ∗ @return Tuple wi th c lone d e t e c t i on r e s u l t by CC−Finder .

21 ∗/

22 public Tuple exec (Tuple input) throws IOException {

23 Tuple methodpair = (Tuple) input . get (1) ;

24 Tuple methodA = (Tuple) methodpair . get (0) ;

25 Tuple methodB = (Tuple) methodpair . get (1) ;

26

27 // ge t method con ten t s

28 St r ing contentA = (St r ing) methodA . get (6) ;

29 St r ing contentB = (St r ing) methodB . get (6) ;

30

31 Proce s sBu i lde r pb = null ;

32 // save content to temp f i l e

33 F i l e a = new F i l e (”tempA”) ;

34 F i l e b = new F i l e (”tempB”) ;

35 a . createNewFi le () ;

36 b . createNewFi le () ;

37 Fi l eWr i t e r fwa = new Fi l eWr i t e r (a) ;

38 fwa . append (contentA) ;

Appendix A: Sample Source Code of Pig Programming Units 140

39 fwa . f l u s h () ;

40 fwa . c l o s e () ;

41

42 Fi l eWr i t e r fwb = new Fi l eWr i t e r (b) ;

43 fwb . append (contentB) ;

44 fwb . f l u s h () ;

45 fwb . c l o s e () ;

46

47 // use program wrapper to c a l l CC−Finder

48 pb = new Proce s sBu i lde r (” . / c c fx ” , ”d” , ”cpp” , ”−d

tempA ” , ”− i s ” ,

49 ”−d tempB” , ”−w” , ” f−w−g+” , ”−k” , ”

1024M” , ”−b” , ”150” , ”−o” ,

50 ” tempresu l t . cc fxd ”) ;

51 // save r e s u l t to a temp f i l e

52 F i l e r e s u l t = new F i l e (” tempresu l t . cc fxd ”) ;

53 // read the output o f c lone d e t e c t i on from the temp

f i l e

54 Fi leReader f r = new Fi leReader (r e s u l t) ;

55 St r ing l o g S t r = ”” ;

56 char [] r e a d b u f f e r = new char [5 1 2 0 0] ;

57 while ((f r . read (r e a d b u f f e r)) > 0) {

58 l o g S t r = l o g S t r . concat (new St r ing (r e a d b u f f e r

) . r e p l a c e A l l (”\0” , ””)) ;

59 r e a d b u f f e r = new char [5 1 2 0 0] ;

60 }

61 r e a d b u f f e r = null ;

62 f r . c l o s e () ;

Appendix A: Sample Source Code of Pig Programming Units 141

63 Tuple r e tu rn tup l e = DefaultTupleFactory . g e t In s tance

() . newTuple () ;

64 r e tu rn tup l e . append (input . get (0)) ;

65 r e tu rn tup l e . append (l o g S t r) ;

66 return r e tu rn tup l e ;

67 }

68 }

A.11 TimeOverlap

1 import java . i o . IOException ;

2 import java . t ex t . ParseException ;

3 import java . t ex t . SimpleDateFormat ;

4 import java . u t i l . Date ;

5 import org . apache . p ig . F i l t e rFunc ;

6 import org . apache . p ig . data . Tuple ;

7

8 /∗∗

9 ∗ @author Ian Shang

10 ∗ @version 1.0

11 ∗ f i l t e r UDF to check i f two methods have time over l ap .

12 ∗/

13 public class TimeOverlap extends Fi l t e rFunc {

14 /∗∗

15 ∗ @author Ian Shang

16 ∗ @version 1.0

17 ∗ @param Tuple wi th two methods .

Appendix A: Sample Source Code of Pig Programming Units 142

18 ∗ @return boo lean va lue to i n d i c a t e i f two methods have

time over l ap .

19 ∗/

20 public Boolean exec (Tuple input) throws IOException {

21 // ge t two method

22 Tuple methodpair = (Tuple) input . get (1) ;

23 Tuple methodA = (Tuple) methodpair . get (0) ;

24 Tuple methodB = (Tuple) methodpair . get (1) ;

25 // ge t the time span o f two methods

26 St r ing startA = (St r ing) methodA . get (3) ;

27 St r ing endA = (St r ing) methodA . get (4) ;

28

29 St r ing startB = (St r ing) methodB . get (3) ;

30 St r ing endB = (St r ing) methodB . get (4) ;

31 // parse date time

32 SimpleDateFormat datepar s e r = new SimpleDateFormat (”

yyyy/MM/dd”) ;

33 Date startdateA = new Date () ;

34 Date enddateA = new Date () ;

35 try {

36 s tartdateA = datepar s e r . parse (startA) ;

37 enddateA = datepar s e r . parse (endA) ;

38 } catch (ParseException e) {

39 e . pr intStackTrace () ;

40 }

41

42 Date star tdateB = new Date () ;

43 Date enddateB = new Date () ;

44 try {

Appendix A: Sample Source Code of Pig Programming Units 143

45 s tar tdateB = datepar s e r . parse (s tartB) ;

46 enddateB = datepar s e r . parse (endB) ;

47 } catch (ParseException e) {

48 e . pr intStackTrace () ;

49 }

50 i f (s tartdateA . a f t e r (enddateB) | | s tar tdateB . a f t e r (

enddateA))

51 return fa l se ;

52 else

53 return true ;

54 }

55 }

A.12 TimeSpan

1 import java . i o . IOException ;

2 import java . t ex t . ParseException ;

3 import java . t ex t . SimpleDateFormat ;

4 import java . u t i l . Date ;

5 import java . u t i l . I t e r a t o r ;

6 import org . apache . p ig . EvalFunc ;

7 import org . apache . p ig . data . DataBag ;

8 import org . apache . p ig . data . DefaultBagFactory ;

9 import org . apache . p ig . data . Tuple ;

10

11 /∗∗

12 ∗ @author Ian Shang

13 ∗ @version 1.0

Appendix A: Sample Source Code of Pig Programming Units 144

14 ∗ e va l ua t i on UDF to to group commits by time span .

15 ∗/

16 public class TimeSpan extends EvalFunc<DataBag> {

17 /∗∗

18 ∗ @author Ian Shang

19 ∗ @version 1.0

20 ∗ @param Tuple wi th commits .

21 ∗ @return Databag wi th commits , which are g iven time span

as key va lue .

22 ∗/

23 public DataBag exec (Tuple input) throws IOException {

24 I t e r a t o r <Tuple> databag = ((DataBag) input . get (0)) .

i t e r a t o r () ;

25

26 Tuple tname = databag . next () ;

27 DataBag output = DefaultBagFactory . g e t In s tance () .

newDefaultBag () ;

28 output . add (tname) ;

29 int t imespans i z e =((Tuple) input . get (1)) . s i z e () ;

30 // ge t the time span

31 St r ing [] t imespans= new St r ing [t imespans i z e] ;

32 for (int i =0; i<t imespans i z e ; i++)

33 {

34 t imespans [i]=(St r ing) ((Tuple) input . get (1))

. get (i) ;

35 }

36

37 while (databag . hasNext ()) {

38 Tuple commit = databag . next () ;

Appendix A: Sample Source Code of Pig Programming Units 145

39 St r ing t imes t r = (St r ing) commit . get (3) ;

40 SimpleDateFormat formatDate = new

SimpleDateFormat (

41 ”yyyy/MM/dd hh :mm: s s ”) ;

42 Date date = new Date () ;

43 try {

44 date = formatDate . parse (t imes t r) ;

45 } catch (ParseException e) {

46 e . pr intStackTrace () ;

47 }

48 // check time span

49

50 SimpleDateFormat datepar s e r = new

SimpleDateFormat (”yyyy/MM/dd”) ;

51 // f o r every time span , check t h i s change i s

in which one

52 for (int i =0; i<t imespans ize −1; i++)

53 {

54 Date s t a r t d a t e = new Date () ;

55 Date enddate = new Date () ;

56 try {

57 s t a r t d a t e = datepar s e r . parse

(t imespans [i]) ;

58 enddate = datepar s e r . parse (

t imespans [i +1]) ;

59 } catch (ParseException e) {

60 e . pr intStackTrace () ;

61 }

Appendix A: Sample Source Code of Pig Programming Units 146

62 // i f f i n d a corresponding time span ,

use the date to be the key to be

grouped

63 i f (date . b e f o r e (enddate) && date .

a f t e r (s t a r t d a t e)) {

64 commit . append (t imespans [i]+”

−”+timespans [+1]) ;

65 output . add (commit) ;

66 break ;

67 }

68 }

69 }

70 return output ;

71 }

72 }

A.13 IsBug

1 import java . i o . IOException ;

2 import org . apache . p ig . F i l t e rFunc ;

3 import org . apache . p ig . data . Tuple ;

4

5 /∗∗

6 ∗ @author Ian Shang

7 ∗ @version 1.0

8 ∗ f i l t e r UDF to check i f a change i n d i c a t e s a bug .

9 ∗/

10 public class IsBug extends Fi l t e rFunc {

Appendix A: Sample Source Code of Pig Programming Units 147

11 /∗∗

12 ∗ @author Ian Shang

13 ∗ @version 1.0

14 ∗ @param Tuple wi th commits .

15 ∗ @return boo lean va lue to i n d i c a t e i f a commit i n d i c a t e s

bug .

16 ∗/

17 public Boolean exec (Tuple input) throws IOException {

18

19 Tuple commit = input ;

20 St r ing comment = (St r ing) commit . get (7) ;

21 St r ing type = ”UNKNOWN” ;

22

23 comment = comment . toLowerCase () ;

24 // use commit l o g to check

25 i f (comment . conta in s (” copyr ight ”)) {

26 type = ”COPYRIGHT” ;

27 } else i f (comment . conta in s (”HEAD”) | | comment .

conta in s (” sync ”)

28 | | comment . conta in s (” f sync ”) | |

comment . conta in s (” cur rent ”)

29 | | comment . conta in s (”branch”) | |

comment . conta in s (”merge”)

30 | | comment . conta in s (” changes ”) | |

comment . conta in s (” p u l l up”)

31 | | comment . conta in s (” rev ”) | |

comment . conta in s (” br ing ”)

32 | | comment . conta in s (” changes ”)) {

33 type = ”BRANCH SYNC” ;

Appendix A: Sample Source Code of Pig Programming Units 148

34 } else i f (comment . conta in s (” f i x ”) | | comment .

conta in s (”bug”)

35 | | comment . conta in s (” r e p a i r ”) | |

comment . conta in s (”problem”)

36 | | comment . conta in s (” crash ”) | |

comment . conta in s (” e l i m i n a t e ”)) {

37 type = ”BUG” ;

38 } else i f (comment . conta in s (”add”)) {

39 type = ”NEW” ;

40 } else i f (comment . conta in s (” indent ”) | | comment .

conta in s (”RCS”)

41 | | comment . conta in s (”Wall”) | |

comment . conta in s (” c l ean up”)

42 | | comment . conta in s (” c l ean up”)) {

43 type = ”INDENT” ;

44 }

45

46 i f (type == ”BUG”)

47 return true ;

48 else

49 return fa l se ;

50 }

51 }

A.14 IsFI

1 import java . i o . IOException ;

2 import org . apache . p ig . F i l t e rFunc ;

Appendix A: Sample Source Code of Pig Programming Units 149

3 import org . apache . p ig . data . Tuple ;

4

5 /∗∗

6 ∗ @author Ian Shang

7 ∗ @version 1.0

8 ∗ f i l t e r UDF to check i f a change in t roduce s new f e a t u r e s .

9 ∗/

10 public class I sFI extends Fi l t e rFunc {

11 /∗∗

12 ∗ @author Ian Shang

13 ∗ @version 1.0

14 ∗ @param Tuple wi th commits .

15 ∗ @return boo lean va lue to i n d i c a t e i f a commit in t roduce s

new f e a t u r e s .

16 ∗/

17 public Boolean exec (Tuple input) throws IOException {

18

19 Tuple commit = input ;

20 St r ing comment = (St r ing) commit . get (7) ;

21 St r ing type = ”UNKNOWN” ;

22 comment = comment . toLowerCase () ;

23 // use commit l o g to check

24 i f (comment . conta in s (” copyr ight ”)) {

25 type = ”COPYRIGHT” ;

26 } else i f (comment . conta in s (”HEAD”) | | comment .

conta in s (” sync ”)

27 | | comment . conta in s (” f sync ”) | |

comment . conta in s (” cur rent ”)

Appendix A: Sample Source Code of Pig Programming Units 150

28 | | comment . conta in s (”branch”) | |

comment . conta in s (”merge”)

29 | | comment . conta in s (” changes ”) | |

comment . conta in s (” p u l l up”)

30 | | comment . conta in s (” rev ”) | |

comment . conta in s (” br ing ”)

31 | | comment . conta in s (” changes ”)) {

32 type = ”BRANCH SYNC” ;

33 } else i f (comment . conta in s (” f i x ”) | | comment .

conta in s (”bug”)

34 | | comment . conta in s (” r e p a i r ”) | |

comment . conta in s (”problem”)

35 | | comment . conta in s (” crash ”) | |

comment . conta in s (” e l i m i n a t e ”)) {

36 type = ”BUG” ;

37 } else i f (comment . conta in s (”add”)) {

38 type = ”NEW” ;

39 } else i f (comment . conta in s (” indent ”) | | comment .

conta in s (”RCS”)

40 | | comment . conta in s (”Wall”) | |

comment . conta in s (” c l ean up”)

41 | | comment . conta in s (” c l ean up”)) {

42 type = ”INDENT” ;

43 }

44

45 i f (type == ”NEW”)

46 return true ;

47 else

48 return fa l se ;

Appendix A: Sample Source Code of Pig Programming Units 151

49 }

50 }

