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Abstract—Highly configurable systems enable customers to
flexibly configure the systems in diverse deployment environ-
ments. The flexibility of configurations also poses challenges
for performance testing. On one hand, there exist a massive
number of possible configurations; while on the other hand, the
time and resources are limited for performance testing, which is
already a costly process during software development. Modeling
the performance of configurations is one of the solutions to
reduce the cost of configuration performance testing. Although
prior research proposes various modeling and sampling tech-
niques to build configuration performance models, the sampling
approaches used in the model typically do not consider the
accuracy of the performance models, leading to potential sub-
optimal performance modeling results in practice. In this paper,
we present a modeling-driven sampling approach (CoMSA)
to improve the performance modeling of highly configurable
systems. The intuition of CoMSA is to select samples based on
their uncertainties to the performance models. In other words,
the configurations that have the more uncertain performance
prediction results by the performance models are more likely to
be selected as further training samples to improve the model.
CoMSA is designed by considering both scenarios where 1) the
software projects do not have historical performance testing
results (cold start) and 2) there exist historical performance
testing results (warm start). We evaluate the performance of
our approach in four subjects, namely LRZIP, LLVM, x264, and
SQLite. Through the evaluation result, we can conclude that our
sampling approaches could highly enhance the accuracy of the
prediction models and the efficiency of configuration performance
testing compared to other baseline sampling approaches.

I. INTRODUCTION

Modern software is often highly configurable, which pro-
vides flexible running options for customers [34], [38]. Exam-
ples of the available configurations of the software include the
choices of the algorithm, the value of parameters as thresholds,
and the deployment number of the threads. The complexity
of the configurations has become ever more challenging for
developers to deliver high-quality software systems [19], [46]–
[48]. In particular, the choice of configurations can have a
high impact on the performance of the software, such as its
processing time and memory usage, which may directly affect
the experience of end users [1], [2].

Testing the performance of software with different config-
urations is crucial for highly configurable software [11], [14],
[39]. However, large software systems may contain thousands
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(or even higher) of different combinations of configuration
options. A naive approach to conducting performance testing
with combinations of configuration options is not just simply
time-consuming, but rather impossible. Moreover, as modern
software evolves rapidly, testing all the configurations in the
software in each update is even more unrealistic.

In order to ensure the performance of highly configurable
systems in an efficient matter, one may select a sample of
configurations for performance testing. The performance test-
ing results from the samples are used to build a performance
model, which can be later used to predict the performance
of the configurations that are not tested. Hence, numerous
approaches have been developed to construct configuration
performance models [8], [11], [13], [14], [25], [39]–[41] such
as linear regression, and random forest, which are based on
traditional machine learning models. Recently, the use of deep
learning models for configuration performance modeling, e.g.,
DeepPerf [14] and Perf-AL [39], has also seen a significant
increase [40], [41].

One of the common challenges of building configuration
performance models is how to select samples of configurations
as training data. Besides widely using random sampling in the
training process of performance models in prior research [11],
[13]–[15], [18], [23], [31], [32], [39], prior research has pro-
posed various sampling techniques for configurations. For ex-
ample, Kaltenecker et al. [20] developed a diversified distance-
based sampling approach, which aims to increase the diversity
of samples. Meanwhile, numerous sampling approaches [12],
[24], [45] aim to cover a broader range of configuration
categories. However, none of the existing sampling approaches
are driven by the modeling of performance. In other words,
the prediction accuracy of the performance models that are
built from the samples is not in consideration of the sampling
approaches. Such a discrepancy highlights the potential risk
where the performance models that are built from the samples
are sub-optimal to provide an accurate prediction of the
performance of configurations that are not tested.

In this paper, we propose a modeling-driven sampling
approach named CoMSA based on the uncertainty of their
predictions in performance models. In particular, we design
the approach in two scenarios:

• Cold-start scenario. Not all software projects maintain
historical performance testing results. As a result, we



designed a cold-start approach for selecting samples of
configurations without any historical data. Our cold-
start approach consists of four parts, which are selector
initialization, uncertainty measurement, selector update,
and performance model training. We first randomly select
small sets of configurations for initializing the selector.
Then, the selector measures the uncertainty of sam-
ples untested and selects the most uncertain samples of
configurations for testing. After repeatedly updating the
selector, we use all the tested samples for training a
performance model.

• Warm-start scenario. During software development, the
historical measurements (i.e., testing results) from previ-
ous performance testings consist of valuable knowledge
of the software performance [18], [23], [28]. Therefore,
we leverage the historical measurements to initialize
selectors. Furthermore, the training data are augmented
with historical measurements.

We evaluate our approaches with four open-source projects,
namely LRZIP, LLVM, x264 and SQLite, which are highly
configurable and contain development history in their version
control repository.

Before conducting the evaluation, we first conduct a prelimi-
nary study on the selected uncertain configurations of different
performance models (cf. PQ1) and their modeling accuracy
(cf. PQ2). We find that the uncertainty of configurations is
often related to the performance models. Therefore, the choice
of performance models would be important in our evaluation.
The study results further show that XGBoost produces the best
performance model, hence is later used in our evaluation.

Building on the insights from our preliminary study, we
evaluate our approach CoMSA in both cold-start and warm-
start scenarios, respectively:

• Cold-start scenario. We compare our approach with
other sampling approaches in prior researches [6], [16],
[27], [31], [40], [45] and a strong random sampling
baseline [33] based on the fitness of the performance
models that are built from the samples and the prediction
accuracy for the configurations that are not tested.

• Warm-start scenario. We evaluate our approach by
using performance testing results from 1) only one past
commit and 2) all past commits in order to assess the
value of utilizing historical measurements on configura-
tion sampling and model training.

The results show that our sampling approach produces better
performance models than sampling approaches from prior re-
search, in terms of both model fitness and prediction accuracy.
Furthermore, the historical measurements can considerably
improve the efficiency of configuration performance testing
during software development.

Paper organization. The remainder of the paper is orga-
nized as follows. Section II introduces the background and
related work of our paper. Section III presents our approach in
both cold-start and warm-start scenarios. Section IV presents
our evaluation settings. Section V presents the results of

our preliminary study. Section VI evaluates our approach.
Section VII discuss the threats that may influence the validity
of our research. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we present the background and related prior
research of this paper. Prior studies of highly configurable
systems demonstrate the challenge of choosing values from a
large number of configurations and the performance variance
among the choices of these configurations [20], [30], [34],
[48]. Building performance models for these highly config-
urable systems is one of the common approaches of addressing
such challenges [11], [13], [14], [34], [39]. Therefore, in
the rest of this section, we first present the purposes of
building configuration performance models. Then we present
the sampling approaches that are used in prior research to build
performance models. Afterwards, we discuss the relationship
between the sampling approaches and the purposes in order
to finally motivate our approach. We summarize the modeling
methods, sampling approaches and the purposes from prior
research in Table I.

A. The purposes of configuration performance modeling

In this sub-section, we present the purpose of the configu-
ration performance modeling.

Finding optimal configurations. Some researchers have
directed their effort towards finding the optimal deployment
configurations for a system [31], [32], while others have
focused on identifying the optimal configuration for a specific
environment [4], [26], [29]. These approaches may employ
statistical recursive searching algorithm [32] or fast sequential
model-based method [31].

Test reduction. A common purpose of configuration per-
formance modeling is to reduce the number of configurations
that need to be tested. Different modeling approaches, such
as decision tree [11], [13] and deep learning models [14],
[39], [44] have been leveraged to improve the accuracy of
the prediction, In addition, research also focuses on improving
the prediction model by enhancing sampling techniques [20],
[45]. The purpose of this paper is also to reduce the cost of
configuration performance testing by proposing a modeling-
driven sampling approach.

Improving interpretability. Prior research develops ap-
proaches to reveal the relationship between configurations
and to interpret performance testing results. For example,
Fourier learning [15] and feature’s influence [40], [41] are
used to improve the interpretability of performance models.
On the other hand, in order to enhance the interpretability of
performance models, researchers often use simple regression
techniques like linear regressions. However, this may come at
the cost of decreased prediction accuracy.

Performance model reuse. Ensuring the reusability of per-
formance models across different versions and environments
is crucial in the field of configuration performance prediction.
To enhance reusability, transfer learning techniques have been
widely applied in performance modeling [18], [23].



TABLE I: The summary of the modeling methods and sampling approaches

Reference (Name) Modeling method Sampling approach Purpose

Guo et al. [11]( CART) Classification and Regression Trees (CART) Feature-size heuristic Test reduction
Guo et al. [13] (DECART) Classification and Regression Trees (CART) Feature-size heuristic Test reduction
Ha et al. [15] Fourier learning and Lasso regression Random Improving interpretability
Ha et al. [14] (DeepPerf) Feedforward Neural Networks(FNN) Feature-size heuristic Test reduction
Shu et al. [39] (Perf-AL) Generative adversarial network(GAN) Feature-size heuristic Test reduction
Oh et al. [32] Recursive searching Random Finding optimal configurations
Nair et al. [31] (FLASH) Classification and Regression Trees (CART) Feature-size heuristic Finding optimal configurations
Valov et al. [44] Support Vector Machine(SVM) Feature-size heuristic Test reduction
Bao et al. [4] (AutoConfig) Random Forest Weighted Latin hypercube sampling Finding optimal configurations
Queiroz et al. [35] Naive Bayes/Random Forest/C4.5 Arbitrarily chosen Finding optimal configurations/Detecting anomalies

Lillack et al. [26] Linear Regression Feature-coverage heuristic Finding optimal configurations/Feature-size heuristic
Chen et al. [7] Linear Regression Arbitrarily chosen Test reduction
Siegmund et al. [41] Feature’s Influence Delta Knowledge-wise heuristic Test reduction/Increasing interpretability

Siegmund et al. [40] Feature’s Influence Delta Feature-coverage heuristic Test reduction/Increasing interpretability/Feature-size heuristic
Henard [16] - Solver based -
Xiang et al. [45] (NSbS) - Solver based Test reduction

Kaltenecker et al. [20] SPL machine learning approach Diversified distance based Test reduction/SPL sampling approach
Luo et al. [27] - Genetic sampling Detecting anomalies
Lemieux et al. [24] - Genetic sampling -
Guo et al. [12] - Genetic sampling Finding optimal configurations
Martinez et al. [29] Data mining interpolation technique Genetic sampling Finding optimal configurations
Jamshidi et al. [18] Step-wise multiple linear Regression Random Performance model reuse
Krishna et al. [23] (BEETLE) Regression tree Random Performance model reuse

Detecting anomalies. Similar to searching for optimal
configurations, another purpose of configuration performance
modeling is to detect performance anomalies. Queiroz et
al. [35] present a technique for finding anomalies and the
optimal configuration using multiple modeling methods, such
as Random Forest and C4.5.

B. Sampling approaches of configuration performance mod-
eling

In this sub-section, we present the sampling approach in the
state-of-art configuration performance modeling approaches. A
summary of the approaches is presented in Table I.

Random sampling. Random sampling is the most prevalent
sampling approach in the configuration performance field.
Prior research widely uses random sampling in the implemen-
tation of their approaches. We can distinguish random sam-
pling used in prior research as simple random sampling [15],
[18], [23], [32] and feature-size heuristic sampling [11], [13],
[14], [31], [39]. The shortcomings of random sampling are ap-
parent. Random sampling cannot truly determine the selection
of the samples by the developers, and the randomness of the
selection may cause the instability of prediction.

Distance-based sampling. Distance-based sampling is a
large set of sampling approaches that utilize different mea-
surements to measure the distance between the configurations.
All the distance-based sampling approaches leverage different
selection patterns for covering all the configurations. The
Manhattan distance [22] is particularly widely used in prior
research [4], [20], [26], [40].

Solver-based sampling. In the context of solver-based
sampling, the solver algorithm searches for the optimal com-
bination of the configuration mathematically based on the
deployed solvers. We can find the application of solver-based
sampling in several previous works [16], [41], [45].

Genetic sampling. Genetic sampling is a search-based
method that simulates the process of natural selection to find
an optimal solution to a problem, which is widely used in
performance testing [24], [27]. Such algorithm is also used for
sampling in configuration performance modeling [12], [29].

C. The relationship between sampling approaches and pur-
poses

In this sub-section, we discuss the relationship between
the purpose and the sampling approaches for configuration
performance models. In particular, the studies from prior
research show that the sampling approaches are often driven by
the purposes of the configuration performance modeling. For
example, to find optimal samples or anomalies, the researchers
can use a search-based method to search for the configuration
with the best or worst performance [4], [12], [26], [29], [31],
[32]. To address the need for model interpretability, developer
require to comprehend all the features’ connection from source
code in the software for the initial building. Therefore, prior re-
search may select samples by feature-coverage heuristics [40].
Similar to this paper, reducing performance tests is one of
the most common purposes in prior studies. Almost all the
sampling approaches are in use from prior research, depending
on their particular purposes. For example, in order to cover
all the features of the configurations in tests, distance-based
or solver-based sampling approaches are leveraged [20], [45].

Our motivation. The sampling approaches from prior re-
search do not focus on building a better performance model.
These approaches rather aim to search for samples to increase
the test coverage of the configurations. As a result, random
sampling has been found to have a similar performance com-
pared to other sampling approaches [14], [20]. Such findings
from prior research indicate that the range of the sample



configurations may not truly reflect the performance behaviour
of the model.

To address this limitation, we propose sampling approaches
for better configuration performance models by measuring
the uncertainties of each sample and leveraging historical
performance measurement. Instead of trying to achieve a
higher coverage on the combinations of the configurations,
our approach directly aims to improve the accuracy of the
configuration performance models that are built from these
selected samples.

III. COMSA: OUR MODELING-DRIVEN SAMPLING
APPROACH

In this section, we present our approach named CoMSA
(Configuration performance Modeling Sampling Approach) in
three parts. We first describe the problem that we attempt to
solve. Afterwards, we present our approach in two scenarios,
the cold-start scenario, and the warm-start scenario. Our code
is available in a supplementary website1 for more details.

A. Problem statement

For a configurable software system, let X be the set of
configurations formed by combining various configuration
options. For each configuration x ∈ X , it usually leads
to a certain measurement value that indicates performance
(e.g., response time), i.e., y ∈ Y . In this paper, our main
task is to propose a selector S that can effectively select
m configurations to measure/test (i.e., XM ⊆ X ). Based
on the measured performance of XM , combined with prior
knowledge of the system performance, we train a performance
model to accurately predict the performance of the unmea-
sured/untested configurations.

Formally, the optimization problem of the configuration
selection can be expressed as follows:

argmin
{XM ,YM}⊆{X ,Y}

Error(x,y)∈{XU ,YU} [fθ] (1)

where, fθ : X → Y is the model with parameters, θ,
trained on the measured configurations, {XM ,YM}, which
is selected by a selector S, and Error is the error between
the actual performance and the predicted performance on the
unmeasured configurations, XU = X \XM and |XM | ≪ |XU |.
The goal is to select m most appropriate configurations as
the training set to ensure the trained performance model has
the smallest error on the unmeasured configurations. In the
following subsections, we introduce the approaches on how to
select m configurations to build the training set.

B. Cold-start scenario

A software project (especially the new one) may not have
a historical repository of its performance testing results. For
a project that would like to start testing the performance of
different configurations, one first needs to select a sample of
configurations for performance testing. We call such a scenario
as Cold-start scenario.

1https://github.com/Yuanjie-Xia/CoMSA

In the cold-start scenario, different sampling approaches
(cf. Section II-B) have been proposed to select a representa-
tive set of configurations for training a performance model.
However, sampling approaches from prior research barely
consider the uncertainty of the configurations with regard
to the performance model. Intuitively, the sample selection
process and the performance model should be influenced by
each other. On one hand, different selections of configurations
can lead to different performance models. On the other hand,
to have more accurate prediction results, different models may
favour different configurations for training, and thus the model
should also guide the configuration selection process, e.g.,
selecting the most uncertain configurations (i.e., of which the
performance is difficult to predict) to measure.

Therefore, we propose to model the uncertainty of the
configurations, w.r.t. the performance model, fθ, by employing
an ensemble approach where a collection of δ models (i.e.,
f1, . . . , fδ , δ ≥ 2) are trained independently. The δ models
constitute the selector S, which has the same architecture with
fθ, but different parameters. Below we discuss the details of
how we build the selector S (i.e., a collection of δ models
with different parameters) and select the most uncertain con-
figurations to measure.

The overview of the configuration selection process is
shown in Figure 1 Part 1, where we follow an active learning
paradigm to iteratively select the most uncertain configuration.

Step 1.1: Selector initialization. To initialize our selector
S (i.e., train an ensemble of δ models, f1, . . . , fδ), we first
randomly select δ distinct sets of configurations as the training
data. By using different training sets, we can have δ models
with the same architecture, but different parameters. Note that
the initial training set is relatively small for a more convincing
evaluation since our approach tends to reduce the influence
from random selection(i.e., a total of six configurations for
LRZIP, LLVM, three for x264, and 15 for SQLite, respec-
tively.).

Step 1.2: Uncertainty measurement. After having the
selector S, we start to select the most uncertain configuration
for further measurement. Specifically, we apply the δ trained
models on the unmeasured configurations and predict the
performance separately. As a result, we have δ predictions
for each unmeasured configuration. We use the standard devi-
ation as a measure of the uncertainty for each configuration.
The configuration of which the predictions have the highest
standard deviation is considered as the most uncertain config-
uration and then is selected for measurement.

Step 1.3: Selector update. We augment each of the δ
training sets with the newly measured configuration, and
update the selector S by re-training each of the δ models with
the δ augmented training sets, respectively.

Step 1.4: Performance model training. We repeat Step
1.2 and Step 1.3 until we reach the pre-defined measurement
budget (i.e., a total of m measurements). Finally, we use all
the m measurements as the data set for training a performance
model fθ.
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Subject
System

Step 2.1: Selector initialization with historical
measurements.

Step 1.1:
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Step 2.2:
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model training.

Step 2.1.1: Configuration option importance
calculation. 

Step 2.1.2: Weighted k-means clustering.

Step 2.1.3: Uncertainty measurement and
selector update.

Fig. 1: Overview of approach.

C. Warm-start scenario
In the previous subsection (i.e., cold-start scenario), given

a limited budget for performance testing (i.e., a maximum
number of m configurations to measure) of a certain version
of a software system, we propose to select the most uncertain
configurations w.r.t. the performance model, aiming to reduce
the prediction errors on the unmeasured configurations.

However, software systems usually evolve rapidly with
frequent code commits, the performance testing would be
costly if we still measure a group of m configurations for
each commit. On the other hand, historical performance testing
results are typically available during the software quality
control process. Although a commit may change the source
code and impact the performance (i.e., the same configuration
has different performances between two consecutive commits),
with frequent testing in each commit, such impact can be
alleviated by only measuring a relatively small set of configu-
rations of the new commit. Therefore, it is intuitive to consider
reusing the historical measurements from previous commits to
reduce the number of configurations that need to be measured
for new commits, while also maintaining an acceptable level
of prediction accuracy [18], [23], [28], [30]. We call such a
scenario a Warm-start scenario.

In this subsection, we propose an information augmentation-
based approach to introduce additional information 1) not
only into the configuration sampling process, 2) but also
into the performance model training, aiming to reduce the
measurement cost of building an accurate performance model.
The overview of this part is shown in Figure 1 in Part 2.

Step 2.1: Selector initialization with historical mea-
surements. In the cold-start scenario (cf. Section III-B), we
initialize the selector S in a random manner. However, the ran-
domness of the selector initialization imposes a non-negligible
effect on the following iterative new configuration selection
process, making the trained performance model unstable,
especially when the sample size is small.

Therefore, in this part, to avoid the (negative) effects of
random initialization and better guide the selection of config-
urations of a new commit, we utilize historical measurements
to initialize the selector in a warm start manner. Specifically, in
the previous section, we have measured a total of m configura-

tions. Instead of simply separating the m measurements into
δ distinct sets as the training data for selector initialization,
we use weighted k-means clustering to divide the historical
measurements into δ distinct training sets. Below, we detail
the steps for constructing the initialization sets and updating
the selector:

Step 2.1.1: Configuration option importance calculation.
Considering the different impacts of configuration options on
the software’s performance, we calculate the importance of
each configuration option based on the feature importance of
the trained model, which is used as the weight for clustering.
In our experiments, we use the performance model trained in
the previous section to extract the importance of each option.

Step 2.1.2: Weighted k-means clustering. We then perform
clustering on the collected historical measurements based on
the weighted distance of the configuration options. Following
previous work [4], [20], we use the Manhattan distance to mea-
sure the distance between configurations. Finally, the historical
measurements are clustered into δ groups for initializing the
selector, of which δ different models are trained.

Step 2.1.3: Uncertainty measurement and selector update.
Once we have the initialized selector, we follow Steps 1.2 and
1.3 to iteratively select the most uncertain configurations for
the new commit. Note that when the newly selected configu-
ration appears in the historical measurements, we replace the
historical measurement with the new measurement.

Step 2.2: Training data augmentation with historical
measurements. Besides initializing the selector with the his-
torical measurements, we also adopt the transfer-based data
augmentation strategy to enlarge the newly measured configu-
rations. Specifically, during the performance model training
step, we combine all the historical measurements and the
newly measured configurations as the data set for training a
performance model fθ.

By utilizing the historical measurements for both the se-
lector initialization and performance model training, we aim
to reduce the number of configurations needed for measuring
the new commit, while still maintaining an acceptable level of
accuracy of the trained performance model.



TABLE II: An overview of our subject systems.
Subject Domain |B| |N | |C| Performance value |H|
LRZIP File Archive Utility 5 4 1000 Compression time 61
LLVM Compiler 9 0 512 Running time 55
x264 Video Encoder 16 2 1535 Encoding time 48
SQLite Database System 20 5 3456 Response time 52

|B|: the number of the binary configuration options. |N |: the number of
numeric configuration options. |C|: Total number of the configurations. |H|:
number of the used commits.

IV. EVALUATION SETUP

In this section, we present the setup of the evaluation of our
approach.

A. Subject systems

To evaluate our proposed approach, we consider four
highly configurable software systems: LRZIP, LLVM, x264
and SQLite. We choose the four subject projects for several
reasons: 1) they are from different domains, including file
archive utility, compiler, video encoder, and database, 2) the
four selected systems have been widely used in previous re-
search [14], [20], and 3) they have been rapidly evolving over a
long period of time and provided a complete commit history
tracking changes and updates. Table II further details each
considered subject system, in which the values of the binary
options in the same configuration are inversely dependent on
each other.

B. Experimental environment

For LRZIP, LLVM and x264, we measure their performance
on a virtual machine with 4 vCPU and 8 GB memory, and
for SQLite, as it requires more memory, we use a virtual
machine with 2 vCPU and 16 GB memory. All experiments
are conducted on Amazon Web Services (AWS). To reduce the
influence of the noise during the measurement of performance,
we measure the performance of each configuration 10 times
and then use the average as the final performance of the
configuration.

C. Evaluation metrics of performance models

Our sampling approach CoMSA is a modeling-driven ap-
proach, i.e., the purpose of CoMSA is to build better per-
formance models. Therefore, to evaluate the corresponding
performance model, we utilize two metrics, R-Squared (R2),
and Root Mean Square Error (RMSE) [17]. Both of them
have been commonly used for evaluating the performance of
a regression model [10], [37].
R2 is a statistical measure used to assess how well the

unseen samples (in our context, the unmeasured configura-
tions) are likely to be predicted by the model and provides an
indication of the goodness of fit. In general, the higher the R2,
the better the model fits the data. RMSE is another commonly
used metric for evaluating performance models [10]. RMSE
computes the deviation of the prediction from the actual value,
which quantifies the difference between the prediction and the
actual value directly. A lower RMSE indicates a smaller error
and higher prediction accuracy.

V. PRELIMINARY STUDY

Before the evaluation of our approach, in this section, we
aim to conduct a preliminary study by answering the following
two preliminary questions (PQs). The answer to the two PQs
further guides the evaluation of our approach.
PQ1: Are selected uncertain configurations specific to the
performance models?
Motivation. If the uncertain configurations that are selected
by our approach are not specific to the performance models,
the choice of performance models would not be important
in our evaluation. Otherwise, we need to carefully select the
performance models used in our evaluation.
Approach. We apply our sampling approach CoMSA in a cold
start manner on the latest version of all subject systems (at the
time of the study) with four different performance models,
i.e., Random Forest (RF), XGBoost, DeepPerf, and Perf-
AL. Random Forest and XGBoost are traditional machine-
learning methods that are widely used for many regression
tasks. DeepPerf and Perf-AL are recent advanced methods,
which achieve higher prediction accuracy than others2 [11],
[13], [44]. Following prior research [14], [45], we conduct
the experiment with different configuration sizes (i.e., m ∈
{n, 2n, ...}, where n is the number of the binary configuration
options.). Meanwhile, we repeat the experiments 20 times
with different random seeds to avoid the influence of the
randomness of selector initialization.

We count the overlapping configurations that are selected
by CoMSA among the performance models. The lower the
number of overlapping configurations that are selected by
CoMSA, the more specific the selected configurations are to
the performance models.
Result. Different models may select different uncertain
configurations. The last column in Table III shows the average
number of overlaps of configurations over the 20 runs. We find
that the overlap is relatively small across different performance
models. For example, when selecting n configurations, the
average number tends to be zero for almost all the performance
models. The small number of overlaps demonstrates the high
specificness of the selected configurations for each model. The
results indicate that when building a performance prediction
model, we should consider selecting different configurations
for different modeling methods. More pragmatically, the re-
sults of this PQ lead us to PQ2, which concerns which
performance model provides the best modeling results.
PQ2: How do different models perform with our sampling
approach?
Motivation. The results of PQ1 show that the uncertain con-
figurations that are selected by our approach are specific to
the performance models. Therefore, we need to select the best
performance models to use in our evaluation.
Approach. We evaluate the performance of different models
with our sampling approach. We use R2 and RMSE, which
are presented in Section IV-C as the evaluation metrics.

2For XGBoost, Random Forest (RF), and Perf-AL, we use the default
parameters and perform parameter tuning on DeepPerf.



TABLE III: Details of the mean of R2, RMSE, and overlap-
ping configurations over the 20 repeated experiments using
different models.

Subject Sample RF XGBoost DeepPerf Perf-AL Overlap
size (%) RMSE R2 RMSE R2 RMSE R2 RMSE R2

LRZIP

n (0.9%) 123.71 0.32 117.46 0.04 120.21 0.17 159.68 0.28 0
2n (1.8%) 47.62 0.90 41.37 0.92 77.38 0.84 128.22 0.26 0.4
3n (2.7%) 24.76 0.92 18.46 0.98 70.35 0.89 113.13 0.36 0.4
4n (3.6%) 19.48 0.93 15.85 0.99 53.11 0.89 113.27 0.25 1.8
5n (4.5%) 18.84 0.93 10.93 0.99 35.97 0.96 95.02 0.58 2
6n (5.4%) 18.69 0.93 10.77 1.00 29.06 0.99 110.08 0.77 2.4

LLVM

2n (3.9%) 1.52 -0.02 1.41 0.08 1.60 -0.15 1.77 -0.21 0.6
4n (7.8%) 1.30 0.13 1.26 0.25 1.45 0.18 1.68 -0.03 2.6
6n (11.7%) 1.28 0.27 1.19 0.32 1.42 0.19 1.61 0.04 2.8
8n (15.6%) 1.22 0.32 1.13 0.42 1.28 0.36 1.59 0.07 3.8
10n (19.5%) 1.16 0.34 1.07 0.48 1.20 0.44 1.58 0.16 6.2
12n (23.4%) 1.13 0.37 1.03 0.52 1.20 0.45 1.55 0.16 7.8
14n (27.3%) 1.07 0.38 0.99 0.54 1.14 0.38 1.54 0.24 10
16n (31.3%) 1.02 0.37 0.96 0.56 1.10 0.49 1.47 0.23 16.8
18n (35.2%) 1.01 0.39 0.94 0.58 1.09 0.42 1.44 0.22 18.6
20n (39.1%) 0.99 0.40 0.91 0.60 1.04 0.52 1.51 0.25 25.8

x264

0.5n (0.3%) 17.43 0.09 11.36 0.70 15.65 0.41 25.42 -0.30 0
n (0.7%) 10.16 0.66 6.82 0.90 9.73 0.79 21.93 -0.05 0
1.5n (1.0%) 6.70 0.81 4.20 0.94 5.27 0.85 19.87 0.35 0.2
2n (1.3%) 5.59 0.85 3.56 0.95 3.76 0.92 18.35 0.34 0.2
2.5n (1.6%) 5.18 0.86 2.96 0.96 2.47 0.95 18.03 0.27 0.6
3n (2.0%) 5.06 0.86 2.59 0.96 2.34 0.99 16.82 0.38 0.8
3.5n (2.3%) 4.92 0.87 2.46 0.96 2.10 0.99 15.88 0.54 1.2
4n (2.6%) 4.72 0.87 2.34 0.97 1.55 0.99 15.86 0.52 1.2

SQLite

n (0.7%) 9.73 -0.19 9.92 0.84 10.13 0.11 25.50 -0.37 0
2n (1.4%) 2.99 0.71 4.98 0.99 4.58 0.54 24.01 -0.41 0.2
3n (2.2%) 2.26 0.96 2.79 1.00 2.19 0.74 23.09 -0.23 0.4
4n (2.9%) 2.21 0.97 1.49 1.00 1.81 0.85 21.22 -0.11 0.8
5n (3.6%) 1.94 0.97 1.05 1.00 1.46 0.99 18.87 -0.06 1.8

Result. XGBoost has an overall best result among the four
evaluated modeling approaches. Table III shows the results
of Random Forest, XGBoost, DeepPerf, and Perf-AL, with the
best results highlighted in bold. By comparing XGBoost with
the other three models, we find that XGBoost achieves better
performance for most of the subject systems across different
configuration sizes. For example, in terms of R2, XGBoost
always has the best performance for systems LRZIP, SQLite,
and LLVM. Besides, as shown in Table IV, we also find that
XGBoost requires less training time, which makes it more
suitable to be adopted in practice. These results also confirm
the previous findings that simpler baselines run faster and may
outperform complex techniques [9], [21].

TABLE IV: Training time of different performance models.

Models Training time (seconds)

Random Forest 2.49
XGBoost 2.18

DeepPerf (boost with GPU) 111.57
Perf-AL (boost with GPU) 33.20

VI. EVALUATION

In this section, we present a detailed evaluation of our
approach CoMSA. In particular, we evaluate CoMSA in the
cold-start and the warm-start scenarios, respectively.

A. Evaluation of CoMSA in the cold-start scenario

In this subsection, we evaluate CoMSA in comparison with
other sampling approaches in the cold-start scenario.

Motivation. As presented in Section II, many configuration
sampling approaches have been proposed to select represen-
tative configurations for building a performance prediction
model in the cold-start scenario. We then propose CoMSA
to select the most uncertain configurations for measurement,
aiming to improve the model performance on the unmeasured
configurations. Therefore, in this section, we would like to
explore whether our modeling-driven approach CoMSA can
have a better performance on the unmeasured configurations
than the existing sampling approaches.
Approach. Based on the findings from our preliminary study
(cf. Section V), we opt to use XGBoost in our evaluation
as the modeling method. We select a total of nine sampling
approaches as baselines, including distance-based sampling,
solver-based sampling, etc. Similar to the evaluation approach
in Section PQ1, we conduct experiments with different config-
uration sizes and repeat the experiments 20 times. We compare
the performance of CoMSA with baselines using R2 and
RMSE.

To provide a more comprehensive evaluation, we also utilize
the ScottKnott Effect Size Difference (ESD) test [42] to cluster
and rank the performance of all the sampling approaches. The
ESD test incorporates multiple statistical parameters to provide
a more objective result. In particular, The ESD test cluster
the approaches using the mean and sum of squares. Then, it
utilizes the likelihood ratio test, Chi-square distribution, and
Cohen’s effect size to split and merge the cluster. Through the
ESD test, we can obtain the clusters of approaches that have a
set of approaches with negligible differences and the ranking
of the clusters.

To further understand our results, we also calculate the
relative standard deviation (RSD) of each subject system per-
formance measurements [3], which is widely used to estimate
the variance of a dataset [36], [43]. A higher RSD means that
the values of the measurements are more widely spread from
the average, and thus more difficult to model [5]. We discuss
our results by considering the RSD of each subject.
Results. CoMSA builds better performance models com-
pared to all baselines in general. The results of the sampling
approaches are shown in Table V. Based on the results, we
find that the performance model built with CoMSA exhibits
higher R2 and lower RMSE compared to other baseline
approaches in general. Specifically, CoMSA has the highest
R2 in 21 out of 30 experiments, which is much larger than the
second best-performing approaches, FLASH and Gentic. The
result demonstrates the high suitability of using a modeling-
driven approach such as CoMSA to build better configuration
performance models with smaller samples.

Other sampling approaches may sometimes have slightly
better results than CoMSA. For example, the Genetic method
has better performance when the number of samples is small
in LRZIP and LLVM. The genetic sampling approach aggres-
sively mutates samples, leading to diverse performance model
results. Hence, some high-performing samples that are selected
by the genetic search may have a significant influence on the
mean R2 value, particularly in cases with small sample sizes.



TABLE V: Details of the mean of R2 and mean of RMSE among all repeated tests of using different selection approaches in
different subjects.

Subject Sample CoMSA Random Genetic [27] DistBased [45] divDistBased [45] henard [16] NsbS [45] solverBased [6] coverBased [40] FLASH [31]

size RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

LRZIP

n 117.46 0.04 138.64 0.29 146.99 0.70 89.26 -0.08 136.13 0.00 97.73 0.53 132.77 -0.00 95.78 0.07 76.47 -0.22 173.71 0.16
2n 41.37 0.92 86.67 0.90 48.15 0.87 82.28 0.39 54.76 0.82 37.19 0.71 67.67 0.59 70.01 0.70 67.33 -0.23 96.53 0.63
3n 18.46 0.98 71.18 0.92 33.68 0.94 102.47 0.38 37.94 0.82 37.33 0.78 44.14 0.51 59.75 0.78 80.14 -0.23 98.34 0.59
4n 15.85 0.99 55.11 0.95 29.08 0.94 64.92 0.52 21.50 0.93 28.07 0.90 29.42 0.59 44.90 0.75 56.40 -0.24 129.30 0.25
5n 10.93 0.99 46.83 0.96 27.06 0.94 63.58 0.57 13.81 0.94 18.88 0.92 15.77 0.62 31.56 0.76 75.32 -0.24 157.39 -0.10
6n 10.77 1.00 25.47 0.99 26.22 0.94 64.22 0.63 12.01 0.95 24.51 0.97 15.42 0.69 35.41 0.76 75.16 -0.25 138.99 0.01

LLVM

2n 1.41 0.08 1.35 0.10 1.43 0.11 2.36 -0.05 2.33 -1.44 2.15 -5.09 2.74 -1.33 2.61 -0.95 2.22 -1.95 1.57 -1.06
4n 1.26 0.25 1.24 0.15 1.41 0.27 2.57 0.08 2.55 -2.05 2.65 -4.05 2.68 -1.97 2.25 -2.23 2.38 -1.22 1.46 -1.54
6n 1.19 0.32 1.16 0.29 1.42 0.36 2.15 0.13 2.18 -1.17 2.29 -2.81 2.44 -1.25 2.08 -1.34 2.30 -0.94 1.41 -1.30
8n 1.13 0.42 1.11 0.36 1.39 0.41 1.85 0.14 1.80 -0.59 2.45 -2.54 2.41 -0.53 1.86 -1.89 2.18 -0.57 1.39 -0.99
10n 1.07 0.48 1.05 0.43 1.35 0.45 1.49 0.10 1.29 -0.03 1.97 -2.56 2.44 0.22 1.72 -0.90 2.26 -0.35 1.41 -1.29
12n 1.03 0.52 1.04 0.44 1.30 0.46 1.48 0.16 1.30 0.01 1.95 -2.97 2.49 0.22 1.45 -0.79 2.45 0.04 1.35 -2.02
14n 0.99 0.54 1.02 0.45 1.28 0.48 1.45 0.19 1.32 0.06 1.61 -1.64 2.13 0.20 1.34 -0.32 2.44 0.18 1.31 -2.02
16n 0.96 0.56 1.00 0.47 1.26 0.50 1.25 0.21 1.15 0.28 1.68 -1.37 2.07 0.38 1.32 -0.38 2.44 0.24 1.30 -2.02
18n 0.94 0.58 0.98 0.48 1.23 0.50 1.27 0.22 1.16 0.24 1.57 -1.20 2.06 0.35 1.14 -0.20 2.44 0.42 1.29 -2.02
20n 0.91 0.60 0.98 0.49 1.20 0.51 1.27 0.22 1.16 0.24 1.57 -1.14 2.07 0.35 1.14 -0.20 2.44 0.42 1.29 -2.02

x264

0.5n 11.36 0.70 17.63 -0.79 12.81 0.55 20.74 0.69 17.96 -0.20 22.60 -0.77 27.34 0.02 26.73 -0.34 30.30 -0.71 14.02 -1.17
n 6.82 0.90 9.57 0.53 9.24 0.72 16.70 0.70 9.49 0.13 6.74 -0.39 22.89 0.70 11.37 0.89 30.71 0.52 13.36 -1.25
1.5n 4.20 0.94 6.36 0.84 7.80 0.78 16.21 0.70 7.25 0.11 6.18 0.14 16.59 0.85 11.28 0.91 30.23 0.52 11.13 -1.18
2n 3.56 0.95 5.04 0.91 5.91 0.85 14.02 0.70 5.88 0.28 5.99 0.41 12.97 0.91 8.09 0.91 27.96 0.78 11.07 -0.87
2.5n 2.96 0.96 4.06 0.93 5.65 0.86 11.01 0.70 4.46 0.48 6.06 0.77 7.68 0.94 8.03 0.91 3.61 0.78 11.09 0.97
3n 2.59 0.96 3.41 0.96 5.37 0.87 8.55 0.70 3.57 0.69 5.94 0.89 5.66 0.96 7.52 0.91 2.08 0.80 11.00 0.99
3.5n 2.46 0.96 3.08 0.97 4.74 0.88 6.03 0.70 3.13 0.82 5.97 0.95 3.76 0.97 7.51 0.91 2.14 0.80 11.02 0.99
4n 2.34 0.97 2.70 0.98 4.32 0.89 4.85 0.70 2.82 0.86 6.00 0.96 3.68 0.98 7.96 0.91 1.56 0.79 11.04 0.99

SQLite

n 5.58 0.84 9.92 -0.53 14.00 0.41 10.86 0.82 9.99 -1.01 10.56 0.87 6.90 0.73 10.93 0.74 10.84 0.36 7.75 0.71
2n 2.02 0.99 4.98 0.79 13.52 0.43 11.04 0.90 8.56 0.56 2.99 0.96 2.96 0.79 10.96 0.98 9.73 0.55 5.53 0.76
3n 1.23 1.00 2.79 0.94 12.20 0.46 10.65 0.96 7.21 0.50 1.14 1.00 1.15 0.83 8.61 0.99 9.76 0.63 3.27 0.76
4n 0.95 1.00 1.49 0.97 11.89 0.47 8.69 0.97 4.53 0.56 1.10 1.00 0.87 0.91 7.11 0.99 9.68 0.67 2.84 0.77
5n 0.91 1.00 1.05 0.99 11.84 0.47 7.24 0.98 3.10 0.62 1.04 1.00 0.80 0.96 5.57 1.00 9.76 0.76 2.09 0.76

The negative R2 can cause by overfitting or extremely poor training.

However, with the increase in sample sizes, the negative effect
of genetic sampling would start to appear. Therefore, due to the
selector random initialization, we do see that CoMSA may not
build the best performance models when randomly starting the
first iteration of small samples. This finding helps us recognize
the importance of selector initialization and motivate us to
design a more reliable selector initialization (cf. Section III-C
step 2.1) by utilizing historical measurements.

Although there are a few cases where other sampling
approaches have better performance than CoMSA, the dif-
ferences are small. For example, the FLASH sampling ap-
proach [31] achieves the best performance in terms of R2 for
project x264 when the sample size is larger than 2.5n, but the
performance gap is negligible compared to that of CoMSA
(e.g., 0.96 vs. 0.97 when size is 2.5n). However, when the
sample size is smaller than 2.5n for the same project x264, the
FLASH even has a negative R2. The diverse optimal values of
the baseline sampling approaches indicate that these sampling
approaches have high instability in building high-accuracy
performance models and further demonstrate the dominance
of CoMSA across different projects and configuration sizes.

CoMSA remains at the Top 3 list in ScottKnott Effect
Size Difference (ESD) test3. Table VI shows the Top-3
ranking results of the ESD test. Although some sampling
approaches may perform better in specific conditions, we can
observe that CoMSA consistently remains in the Top 3 list.

3Due to the limited space, we only show the results in R2. The results in
RMSE is shared in our replication package.

TABLE VI: Top 3 clusters in the ScottKnott Effect Size
Difference (ESD) test.

Subject Sample Rank of sampling approaches
size Top 1 Top 2 Top 3

LRZIP

n Genetic CoMSA divDistBased
2n CoMSA Genetic FLASH
3n CoMSA Genetic FLASH
4n CoMSA Genetic divDistBased
5n CoMSA Genetic divDistBased
6n CoMSA Nsbs divDistBased

LLVM

2n CoMSA Genetic Random
4n CoMSA Genetic Random
6n CoMSA Genetic Random
8n CoMSA Genetic Random
10n CoMSA Genetic Random
12n CoMSA Random Genetic
14n CoMSA Genetic Random
16n CoMSA Genetic Random
18n CoMSA Genetic solverBased
20n CoMSA Genetic solverBased

x264

0.5n FLASH divDistBased CoMSA
n solverBased Genetic CoMSA
1.5n CoMSA Genetic divDistBased
2n CoMSA Genetic divDistBased
2.5n CoMSA divDistBased NsbS
3n coverBased CoMSA divDistBased
3.5n coverBased CoMSA divDistBased
4n coverBased CoMSA divDistBased

SQLite

n CoMSA NsbS Genetic
2n CoMSA divDistBased NsbS
3n CoMSA NsbS henard
4n CoMSA NsbS henard
5n NsbS CoMSA henard



In particular, CoMSA always ranks in the Top 1 for LRZIP
and LLVM. Unlike other approaches, the CoMSA method
demonstrates higher stability across different subjects and
sampling sizes.

CoMSA builds better performance models than the
baseline, especially with more widely spread performance
measurements. We calculate the RSD of our four subject
systems. In particular, the RSD values of LRZIP, LLVM,
x264, and SQLite are 185, 36, 78, and 19, respectively. The
RSD values show that the performance of LRZIP is mostly
diversified, potentially the most difficult to model, while
SQLite is the easiest. In fact, CoMSA performs very well when
building performance models for LRZIP, which has the highest
RSD. The high variance of performance among different
configurations causes higher uncertainty measurements for
the selector’s update, which helps CoMSA achieve a higher
accuracy due to the awareness of uncertainty by CoMSA.
On the other hand, in SQLite, we can observe that the low
RSD may cause more baseline sampling approaches also to
perform well. Even in such cases, CoMSA still outperforms
the baseline sampling approaches by achieving nearly optimal
performance modeling results.

CoMSA presents an outstanding performance in the cold-
start scenario than the baseline approaches. The result
demonstrates the high suitability of using modeling-driven
approaches such as CoMSA to build better configuration
performance models with smaller sample sizes.

B. Evaluation of CoMSA in the warm-start scenario

In this subsection, we evaluate CoMA in the warm-start
scenario. In other words, we would like to see if CoMCA
can leverage historical measurements from previous commits
to reduce the number of samples required for new commits
while maintaining the accuracy of performance models.
Motivation. In the last subsection, we evaluate CoMSA in the
cold-start scenario that mainly serves applications that do not
store historical performance testing results. Once it is possible
to obtain historical performance testing results, i.e., warm-start
scenario, we would like to explore whether we can possibly
reduce the performance testing efforts for a rapidly evolving
software environment with such historical information.
Approach. To evaluate the effect of utilizing historical mea-
surements in different ranges, we divide our evaluation into
two steps: 1) using historical measurements from only one
past commit, and 2) using all the historical measurements.

Using only one most recent commit. Intuitively, the
performance of software from the one most recent commit
may be the most similar to the current commit. Therefore, we
first only leverage the information from the one most recent
commit in our warm-start scenario.

Before starting our experiment in the warm-start scenario,
we use the performance models that are built in the cold-start
scenario (see Table V) to determine the acceptable level of
accuracy for the performance model of a new commit. To

TABLE VII: The mean of required configurations over all
commits in the cold-start and warm-start scenarios.

Subject
Results of Mean (95th percentile) of results of warm-start scenario
cold-start Original w/o selector w/o training data
scenario initialization augmentation

LRZIP 18 3.78 (6) 16.65 (25) 5.93 (18)
LLVM 40 0.32 (4) 33.15 (35) 1.23 (27)
x264 15 0.11 (4) 6.63 (11) 0.49 (8)
SQLite 50 0.06 (17) 29.09 (46) 16.70 (36)

determine such accuracy, we search for the inflection points
of performance in each subject. Mathematically, the inflection
point can be defined as the point where the second derivative
of a function changes its sign, indicating a decrease in the
rate of increase of R2. Based on the evaluation results in
Section VI-A, we identified the inflection point of LRZIP in
2n, LLVM in 4n, x264 in 1.5n, and SQLite in 2n.

For each commit, we leverage our approach to iteratively
select samples of configurations, until the performance models
built from these samples have a higher R2 than the values
identified in the inflection points of each subject. For example,
for LRZIP, for each commit, we keep adding samples of con-
figurations until the R2 of the model surpasses the R2 value
at the inflection point sample size. Our goal is to evaluate,
to achieve a performance model with similar accuracy as in
the cold-start scenario, how many samples we can save if we
just consider the performance test results from one most recent
commit. Therefore, we compare the number of samples needed
in the warm-start scenario (based on only one recent commit),
to the number of samples needed in the cold-start scenario.

Furthermore, we have designed two ablation experiments to
assess the impact of utilizing historical measurements on 1)
selector initialization and 2) training data augmentation. The
first ablation experiment disables the selector’s initialization
with historical measurements (i.e., Step 2.1 in Section III-C).
In addition, another ablation experiment disables the training
data augmentation with historical measurements (i.e., Step 2.2
in Section III-C).

Using all historical commits. One may also consider using
all historical performance testing results from all historical
commits in the warm-start scenario. In particular, starting from
the second commit of each subject (since the first commit does
not have historical information), we use all the performance
testing results from their prior commits with the approach
described in Section III-C. In order to determine the number of
samples needed for each commit, we opt for an overestimation
by choosing a very high number of samples based on the
results from our last step (using only one most recent commit).
We choose the 95th percentile (almost the highest) of the
number of samples of all commits of each subject as the
number of samples needed for each commit. We use such an
overestimation to avoid bias benefiting the warm-start scenario
results. Finally, we use R2 to compare the cold-start scenario
and warm-start scenario that leverages all historical commits.
Results of using one most recent commit. CoMSA can fur-
ther reduce configuration performance testing efforts with
historical measurements. Table VII shows that in the warm-
start scenario, considering only one most recent commits, one



can already expect a high reduction in the needed samples for
configuration performance testing. In particular, in many cases,
the mean number of needed tests is nearly zero, meaning that
just adopting the existing performance data can already build
a good performance model. When considering a more extreme
case by looking at the 95th percentile, we can still have up
to 90% reduction compared with the cold-start scenario. In
addition, in the results of cold-start scenarios (see Table V,
we can see that due to the random samples picked in the first
iteration in cold-start scenarios, the models built with the initial
samples are often with low accuracy; while in the warm-start
scenario, we can avoid having a random sample and can start
the iterations with already a relatively accurate model.

Both selector initialization and training data augmen-
tation with historical measurements play important roles
in reducing the samples for configuration performance
models. Table VII presents the results of the ablation ex-
periments. We find that either the selector initialization step
or the training data augmentation step would result in a
negative impact on our results. For example, without the
selector initialization step, CoMSA would still retest some
samples that have been tested in the past commit even though
the configuration performance of these samples has negligible
changes. For example, in the case of LRZIP without selector
initialization, the numbers of configurations needed to be
tested in the new commits are even closer to the cold-start
scenario, illustrating that the sampling approach waste too
much time on rebuilding the performance model. Similarly,
without training data augmentation, some subjects, such as
LLVM, SQLite, also experience a significant increase in the
number of configurations needed to be tested in the new
commits. Compared with the impact of selector initialization,
the effect of training data augmentation is relatively smaller,
highlighting the bigger importance of selector initialization.
The effectiveness of the selector initialization in the warm-
start scenario complements the results where CoMSA may
not have optimal results with small initial random samples in
the cold-start scenario.

In the warm-start scenario, considering only one most
recent commit, CoMSA can already reduce the number
of samples required for new commits. The ablation exper-
iments illustrate the importance of both steps from CoMSA
in the warm-start scenario.

Results of using all historical commits. Using more his-
torical commits further improves the accuracy of perfor-
mance models with fewer needed samples, compared with
the cold-start-scenario. Figure 2 provides a visualization of
the improvement in performance model accuracy4 for each
commit, comparing the accuracy of the performance model
with and without historical measurements. The green line
represents the accuracy of the performance model that utilizes

4Due to the limited space, we only show the results in R2. The results in
RMSE are shared in our replication package.
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Fig. 2: The comparison between using historical measurements
cumulatively (green line) and without using historical mea-
surements (red line). The horizontal axis is the commit and
the vertical axis represents the R2.

all historical measurements for every commit, while the red
line represents the accuracy of the performance model built
in the cold-start scenario. Our results show that in the cold-
start scenario, the accuracy of performance models can vary
significantly even with the same number of samples across
different commits. On the contrary, in the warm-start scenario
with all historical measurements can maintain a consistently
higher performance accuracy across commits.

Compared with the stable accuracy of the performance
models in LRZIP, x264 and SQLite, the results of LLVM
are rather unstable. We consider the reason for the instability
is the relatively lower accuracy in the performance models
built for LLVM. We find in the cold-start scenario that the
performance models built for LLVM have R2 values around
0.6 (see Table V); while other subjects’ R2 are much higher.
Even with such instability of LLVM, the models build in the



warm-start scenario still outperform the ones from cold-start
scenarios throughout all commits during development.

Our approach demonstrates the effectiveness of incorporat-
ing historical measurements in selector initialization and
performance model training, particularly in maintaining
consistency and reliability across different commits.

VII. THREATS TO VALIDITY

External Validity. In our study, we used four subject systems
in different domains for the configuration performance predic-
tion in previous works [14], [20]. These systems have an open-
source development history based on the Git version control,
and execution of the configuration is convenient. However, we
cannot ensure our results cover all the domains of the software,
especially the closed-source and unconfigurable software.
Internal Validity. Even though we have repeated our ex-
periment several times, we can not avoid the randomness
influencing our results. In addition, the tuning of the parameter
in other sampling approaches may influence the comparison
of the approaches.
Construct Validity. In our study, we mainly test the process-
ing time of the subject systems and do not cover other metrics,
such as CPU usage or memory usage. We will extend our
approach into more scenarios in the future.

VIII. CONCLUSION

In this paper, we present CoMSA, a modeling-driven sam-
pling approach for configuration performance testing. CoMSA
is designed in scenarios where there does not exist historical
performance testing results (code start) and when there exists
historical information (warm start). Our evaluation results
show that CoMSA outperforms other baseline sampling ap-
proaches in building performance models with higher accu-
racy. The results also demonstrate the benefit of leveraging
historical performance testing results in the warm-start sce-
narios. This paper provides the following contribution:

• We propose a sampling approach CoMSA to reduce the
cost of configuration performance testing.

• CoMSA can utilize historical performance testing results
to further reduce the code of configuration performance
testing during software development.
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