Are They All Good? Studying Practitioners’
Expectations on the Readability of Log Messages

Zhenhao Li
Concordia University
Montreal, Canada
1_zhenha@encs.concordia.ca

An Ran Chen

Edmonton, Canada
anran6 @ualberta.ca

Tse-Hsun (Peter) Chen
Concordia University
Montreal, Canada
peterc @encs.concordia.ca

Abstract—Developers write logging statements to generate
logs that provide run-time information for various tasks. The
readability of log messages in the logging statements (i.e., the
descriptive text) is rather crucial to the value of the generated
logs. Immature log messages may slow down or even obstruct the
process of log analysis. Despite the importance of log messages,
there is still a lack of standards on what constitutes good
readability of log messages and how to write them. In this
paper, we conduct a series of interviews with 17 industrial
practitioners to investigate their expectations on the readability
of log messages. Through the interviews, we derive three aspects
related to the readability of log messages, including Structure,
Information, and Wording, along with several specific practices to
improve each aspect. We validate our findings through a series of
online questionnaire surveys and receive positive feedback from
the participants. We then manually investigate the readability of
log messages in large-scale open source systems and find that
a large portion (38.1%) of the log messages have inadequate
readability. Motivated by such observation, we further explore
the potential of automatically classifying the readability of log
messages using deep learning and machine learning models.
We find that both deep learning and machine learning models
can effectively classify the readability of log messages with a
balanced accuracy above 80.0% on average. Our study provides
comprehensive guidelines for composing log messages to further
improve practitioners’ logging practices.

Index Terms—software logging, log messages, empirical study

I. INTRODUCTION

Software logs are important source of information in soft-
ware systems that record system run-time behaviors. Devel-
opers can leverage the valuable information in logs to assist
in many tasks, such as program comprehension [1], [2], [3],
anomaly detection [4], [5], [6], and failure diagnosis [7], [8],
[9], [10], [11], [12]. Logs are generated from logging state-
ments inserted by the developers. For example, in a logging
statement from Elasticsearch [13]: logger.info(”Successfully
updated remote job [{}]”, update.getobld()); the logging
statement is written in Java using Log4j [14] framework,

* Corresponding author.

University of Alberta

Xin Xia
Zhejiang University
Hangzhou, China
xin.xia@acm.org

Xing Hu*
Zhejiang University
Ningbo, China
xinghu@zju.edu.cn

Weiyi Shang
University of Waterloo
Waterloo, Canada
wshang @uwaterloo.ca

the verbosity level is Info, the log message is “Successfully
updated remote job [{}]”, and the dynamic variable is the
value of update.getJobId().

The value of logs highly relies on the quality of log mes-
sages (i.e., the part of ”Successfully updated remote job [{}]”
in the example above). Developers leverage the information
in log messages as clues for debugging and failure diagnosis,
unclear log messages may confuse developers and further slow
down or even obstruct the process of log analysis [15]. For
example, if the log message is only “Shutting down.”, it is
still difficult to know what is shutting down.

Prior studies provide some supports on composing logging
statements, e.g., where to insert logging statements [16], [17],
[18], [19], [20], how to choose the verbosity level [21], [22],
[23], and generating logging statements by learning from
existing data [24], [25]. However, to the best of our knowledge,
there is still a lack of practical standards or systematical
investigation on what are “good” log messages that record
valuable information and are easy to comprehend. Therefore,
how to compose log messages with good readability that
can clearly and sufficiently record system run-time behaviors
is still an on-going challenge. The reliability of automated
recommendations learned from log messages with inadequate
readability might also be decreased.

In this paper, we conduct a comprehensive study to in-
vestigate practitioners’ expectations on the readability of log
messages and seek possible improvements: 1) We first conduct
a series of semi-structured interviews with 17 industrial practi-
tioners from 11 companies worldwide to gain insights on their
perspectives of log messages’ readability; 2) We manually
study the readability of log messages in nine large-scale open
source software systems; 3) We validate our findings from the
interviews and manual studies through an online questionnaire
survey with 56 participants; 4) We further explore the potential
of automatically classifying the readability of log messages
using deep learning and machine learning approaches.

In particular, we study the following three research ques-
tions:

RQ1: What are practitioners’ expectations on the readabil-
ity of log messages and how to improve it? By analyzing the
interview records, we derive three aspects that are related to the
readability of log messages, including Structure, Information,
and Wording. For each aspect, we also derive several specific
practices that can be used to improve the readability. Our
survey participants acknowledge the importance of these as-
pects and the effectiveness of improvement practices. Among
the three aspects, Information is considered as the most
important aspect: 87.5% of the participants consider it is “Very
important” and 12.5% consider it is “Important”.

RQ2: How is the readability of log messages in large-
scale open source software systems? We use the data set of
logging statements provided by a prior study [22] to manually
investigate the readability of log messages based on the three
aspects discussed in RQ1. We find that only 61.9% of the
log messages on average have adequate readability in all three
aspects, meaning that a large portion of the log messages (i.e.,
38.1%) in these systems have inadequacy in terms of their
readability, e.g., 21.7% of the log messages are inadequate in
the aspect of Information.

RQ3: Can we automatically classify the readability of
log messages? We explore the potential of automatically
classifying whether a log message has readability issue or not
using several deep learning and machine learning approaches
(e.g., Bi-LSTM, Random Forest, and Decision Tree). We find
that both deep learning and machine learning approaches can
effectively classify the readability of log messages (e.g., Bi-
LSTM and Random Forest achieve a balanced accuracy of
82.1% and 86.3% on average, respectively).

The contributions of this paper are as follows:

o We are the first study that investigates the readability of
log messages by conducting interviews with industrial
practitioners. We derive three aspects that are related to
the readability of log messages and several corresponding
practices to improve the readability for each aspect.

o We find that a large portion of the log messages in
large-scale open source systems actually have inadequate
readability. Future works should consider this issue when
leveraging existing data for automated recommendation
or generation.

o We explore the potential of automatically classifying the
log messages whose readability might need improvement
and achieve encouraging results.

Overall, our study provides a systematic comprehension on
the readability of log messages and sheds light for future
studies on uncovering empirically-derived standards to guide
developers’ logging practices.

Paper Organization. Section II summarizes the related work.
Section III describes the research methodology of our study.
Section IV presents the results by answering three research
questions. Section V discusses the implications of our study.
Section VI discusses the threats to validity of our study.
Section VII concludes the paper.

II. RELATED WORK

Empirical Studies on Logging Practices. Yuan et al. [26]
studied the logging practices in C/C++ applications and found
that developers often improve log messages as after-thoughts.
Chen et al. [27] further studied the logging practices in Java
applications and pointed out the similarities and differences
of logging practices compared to C/C++ applications. Some
prior studies also empirically studied the logging practice
in Android applications [28], Linux kernel [29], and test
code [30]. Other prior studies focused on assisting develop-
ers in making logging decisions and improving the logging
practices [31], [32]. For example, Fu et al. [17] and Li et
al. [18] investigated where logging statements were placed to
identify the common categories of logging locations. Zhu et
al. [16] proposed an automated tool for suggesting logging
locations. Several prior studies [21], [22], [23] proposed auto-
mated approaches to help developers select the appropriate
verbosity level. Li et al. detected the logging code smells
related to duplicate logging statements [33] and studied their
relationships with code clones [34]. These studies focus on
empirically studying logging practices or provide supports for
deciding the logging locations or verbosity levels. In our study,
we investigate practitioners’ expectations on the readability of
log messages, which complement prior studies on improving
logging practices.

Studies on Log Messages in Logging Statements. He et
al. [35] empirically studied the n-gram patterns of log mes-
sages and proposed an information retrieval based approach
that generates log messages from similar code snippets. Ding
et al. [25] formed the process of log message generation as
neutral machine translations and achieved promising results
in such generations. Mastropaolo et al. [24] proposed a deep
learning based approach that can generate complete logging
statements, including log messages for Java methods. Despite
the extensive studies on log messages in logging statements,
the readability of those log messages has not been investi-
gated thoroughly. In this paper, we systematically study the
readability of log messages and derive three aspects related
to the readability. For each aspect, we also derive several
improvement practices based on our interviews with industrial
practitioners.

III. RESEARCH METHODOLOGY

As shown in Figure 1, our research methodology consists of
four stages. Stage 1: Semi-structured interviews [36], [37] with
practitioners from industry on their experiences in reading log
messages, their perspective on the readability of log messages
and how to improve it. Stage 2: Manually study how prevalent
are log messages that may need improvement based on the
aspects of readability derived from the interview results. Stage
3: A questionnaire survey [38], [39] for confirming the aspects
of log message’s readability with the corresponding improve-
ment practices that are summarized from the interview, and
verifying the manual investigation results in the prior stage.
Stage 4: Exploring the potential of automatically classifying
the readability of log messages.

= o = =
w— & —EBE—-i| B
Stage 3 Survey Classification
Survey Results Results

Stage 1
Interview

2 —_— E_ —_— -1 b
=N :
Stage 2 Manually Labelled Stage 4
Manual Investigation Results Automatic Classification

N
RQ3: Automatically classifying
the readability of log messages

Aspects of Readability

Improvement Practices

Open Source
Log Messages

Y
ility of log

on the ility of log in larg: le open source
and the improvement practices J software systems

Fig. 1. Overview of our study.

A. Stage 1: Interview

In our interview with industrial practitioners, we investigate
their perspective on the readability of log messages and their
expectations on the specific practices that can improve the
readability.

Interview Process. We first develop an interview guideline
by gathering all the authors of this paper and brainstorming a
set of open-ended questions. All of the authors have industrial
experience and are proficient in the knowledge of logging.
The first author of this paper then follows the guideline and
conducts a series of individual interviews using online video-
conferencing tools with 17 software practitioners. Before the
start of each interview, we first send the introduction part of the
guideline to the interviewees to let them know the background
information of our study, ensure that they are aware of the
interview being recorded, and emphasize that we will protect
the participants’ identities. Each interview takes 30-40 minutes
and is semi-structured with three parts of questions'.
Part 1: We ask some questions about the interviewees’ back-
ground information (e.g., years of experiences, role of respon-
sibility, and programming languages used in daily job).
Part 2: We ask open-ended questions about their experiences
in reading and analyzing log messages (e.g., “What kind of
information provided by the log messages is important to
you?”, “Have you ever seen some log messages that are
confusing or not helpful?”).
Part 3: We ask the interviewees about their expectations on
log messages with good readability and what practices can
practitioners do to improve the readability of log messages.
At the end of each interview, we thank the interviewee
and verify there is no sensitive information mentioned in the
process of the interview.

Interviewees. We invite full-time employees working in soft-
ware engineering related roles (e.g., software engineer, soft-
ware architect, and test engineer) from 11 companies world-
wide that are leading in their domains as our interviewees. The
domain of those companies includes software development,
internet services, telecommunications, electronics, investment

IThe interview guideline can be found in our replication package [40].

TABLE 1
AN OVERVIEW OF THE DATA SET. LOC: LINES OF CODE, NOL: NUMBER
OF LOGGING STATEMENTS.

System LOC NOL Sample
Cassandra 432K 1,316 298
ElasticSearch 1.50M 2,619 337
Flink 177K 2,455 333
HBase 1.26M 5,524 360
JMeter 143K 1,848 319
Kafka 267K 1,563 308
Karaf 133K 706 251
Wicket 216K 413 201
Zookeeper 97K 1,245 295
Total 4.2M 17,689 2,702

management, and digital currency management. In total, 17
interviewees accepted our interview invitations. Their years of
experience in software development and maintenance is 7.5
on average, ranging from 4 to 18 years. The interviewees are
denoted as -1 to I-17 when discussing their answers.

Data Analysis. After we complete all the interviews, the
first author transcribes the interview record and performs
open coding to generate an initial set of codes from the
transcripts. The second author then verifies the codes and
provides suggestions for improvement. We generate a total of
792 coded sentences from the transcripts. We further remove
the codes that are not directly related to the readability of log
messages (e.g., some interviewees mention that the timestamp
of logs should have a consistent time zone setting, which
is more related to the configuration of logging framework
compared to the composition of log messages). A total of
161 coded sentences are removed in this step, with a total
of 631 codes are preserved for further analysis. We then
perform open card sorting [41] on the generated codes to
analyze the thematic similarity. Specifically, the first two
authors independently analyze the codes and sort the generated
codes into potential themes that indicate the expected practices
on the readability of log messages. We use Cohen’s Kappa [42]
to measure the agreement between the two authors. Overall,
we have a Cohen’s Kappa value of 0.76, which indicates a
substantial agreement. The first two authors then discuss the
disagreements until a consensus is reached. Eventually, we
derive three aspects that are related to the readability of the
log message, including Structure, Information, and Wording.
Each aspect corresponds to several specific improvement prac-
tices that can be used to improve the readability. Some of the
improvement practices are corrective practices, which are to
improve the inadequacy of readability in log messages. Some
are enhancing practices, developers may decide whether to
apply them or not based on the situations and needs. We
discuss each aspect and the corresponding practices in the
results of RQ1 (Section IV).

B. Stage 2: Manual Investigation

In this stage, we manually investigate the readability of
log messages in real-world open source systems based on the
aspects derived from the interviews. Specifically, we use the
data set of logging statements provided by a prior study [22] to
manually investigate the readability of log messages. Table I

shows an overview of the data set. For each system, we
randomly sample a set of logging statements to conduct the
manual investigation based on 95% confidence level and 5%
confidence interval [43]. In total, we randomly sample 2,702
logging statements from the nine systems. The sample size of
each system varies from 201 in Wicket to 360 in HBase.

Manual Investigation Process. The first two authors of this
paper examine the sampled logging statements (i.e., 2,702
logging statements in total) with their surrounding code snip-
pets. For each sampled logging statement, the two authors
independently label whether the readability of its log message
is adequate for each of the three aspects (i.e., Structure,
Information, and Wording). When the labeling is finished, the
first two authors then compare their results and discuss each
disagreement until reaching a consensus. We have a Cohen’s
Kappa [42] value of 0.83 in this process, which indicates a
substantial agreement.

C. Stage 3: Survey

To quantify the findings derived from our interviews and
verify the manually investigated results, we conduct an online
questionnaire survey with a larger number of participants.

Survey Design. The survey has five parts: Part 1 to Part 4
include multiple-choice questions, and Part 5 includes an open-
ended question”.

Part 1: We ask some background information related to the
role and experience of the participants.

Part 2: We ask the participants for their perspective on the
three aspects of readability derived from our prior interviews.
We illustrate each aspect by providing two real-world exam-
ples randomly selected from our manual investigation results
(i.e., Stage 2) which violate and comply the readability in
the corresponding aspect, respectively. The participants then
choose their consideration on the importance of the aspect to
the readability of log messages from “Very important”, “Im-
portant”, “Neutral”, “Unimportant”, and “Very unimportant”.
At the end of this part, we further ask the participant for their
overall perspective on the three aspects.

Part 3: We ask the participants for their perspective on the
practices that can improve the readability of log messages
from the corresponding aspect. We illustrate each practice
by using a set of examples randomly selected from our
manual investigation results (i.e., Stage 2). We then provide a
statement indicating the effectiveness of each practice and ask
the participant to choose their agreement level on the state-
ment following a 5-point Likert scale (i.e., “Strongly agree”,
“Agree”, “Neutral”, “Disagree”, and “Strongly disagree”).
Part 4: We randomly select seven logging statements from our
manual investigation results (i.e., Stage 2 in Section III-B)
and ask the participants to examine their readability. The
participant can choose whether the log message of each
logging statement is good or bad in terms of each of the three
derived readability aspects. The main purpose of this part is to
verify our manually labelled log messages in Stage 2. Note that

2Complete design of the survey is included in our replication package [40].

the randomly selected logging statements for each participant
are unique and do not have an overlap with other participants.
Part 5: We ask if the participants have other comments or
ideas regarding the readability of log messages.

Due to the randomness of Part 4, we use online document
platform (e.g., Google Doc) to design the surveys. Specifically,
we prepare a series of survey documents in which Part 4
has unique logging statements and other parts have identical
questions. Each participant has a unique link to the survey
where the participants can directly write their answers.

In each multiple-choice question, we also provide an addi-
tional option “Not sure” if the participant cannot understand
the question or does not have a clear answer. We also provide
a comment field for each question where the participants are
free to leave their comments related to the question.

We conduct a pilot survey with a small number of prac-
titioners first to collect their feedback on the overall design
of our survey. We made minor modifications to adjust the
format of our survey and refine the description of questions
based on their feedback and then have a final version of the
survey. We then distribute our final version of the survey to
the participants. Note that we exclude the responses collected
from the participants in the pilot survey when we analyze and
present the survey results.

Participants. We contact professionals in leading IT com-
panies worldwide from our networks and ask their help to
disseminate our survey to their colleagues. In total, we send
out 80 surveys and receive 56 responses from the participants.
Their years of experiences vary from 1 to 17 years, with an
average of 5.4 years. The top two role of the participants
are software engineer (38 participants) and test engineer (9
participants).

Data Analysis. We discard all the answers that select “Not
sure”. For the answers in Part 2 and Part 3, we report the
percentage of each selected option. For the answers in Part
4, we analyze the results labelled by the participants and
compare with our manual study results in Stage 2 to examine
the agreement level. We discuss the comments and feedback
that we receive from the participants in Section IV.

D. Stage 4: Automatic Classification

As the first step to help improve the quality of log messages,
in this stage, we seek to explore the potential of automatically
classifying the readability of log messages. Specifically, for
each aspect of readability (i.e., Structure, Information, and
Wording), we classify whether a log message’s readability is
adequate or not in such aspect.

Data Preparation. We use the manually labelled log messages
in Stage 2 to train the models for automatic classification.
For each log message, we tokenize it by space and attach its
verbosity level (e.g., info or error) as the input feature, and
use the labelled results as the target to predict.

Note that there are two steps for verifying the manually
labelled log messages: 1) The first two authors independently
label the log messages and discuss any disagreement until

a consensus is reached. The Cohen’s Kappa value of this
process is 0.83, which is a substantial agreement; 2) In our
survey discussed in Stage 3, we also ask the participants to
label seven randomly sampled log messages. We receive 392
labelled log messages from the 56 participants. We further
exclude the results of log messages with answers that are “Not
sure”. We then have 366 available log messages labelled by
the survey participants, which is larger than the statistically
significant sample size of 337, computed from the 2,702
log messages based on a 95% confidence level and a 5%
confidence interval [43]. In this process, we find that a large
number of the log messages labelled by the participants (81%)
are exactly consistent with ours (i.e., the labels of all the
three aspects are the same), which indicates that the results
of manual investigation have high agreement with the survey
participants.

Classification Process. Deep learning and machine learning
approaches are widely used in the tasks of Software En-
gineering [44], [45], [46], [47]. We use one deep learning
and four machine learning approaches to explore the po-
tential of automatic classification. We follow a prior study
on classifying good commit messages [48] for the selection
of approaches and the hyper-parameter values. For deep
learning, we use Bi-LSTM [49]; for machine learning, we
use Logistic Regression [50], Decision Tree [51], Random
Forest [52], and SVM [53]. We use Keras [54] and Scikit-
learn [55] to implement the deep learning approach and
machine learning approaches, respectively. We also use a state-
of-the-art oversampling technique on the training data, namely
ADASYN [56], to mitigate the potential impact of imbalanced
data. For the vectorization of input features, we use Skip-
gram from Word2vec [57] to train the word embeddings and
transform the input features into numeric vectors. We then
use each approach to train the models and evaluate their
performance.

IV. RESULTS

In this section, we discuss the results of each RQ.

A. RQI: What are Practitioners’ Expectations on the Read-
ability of Log Messages and How to Improve It?

In this RQ, we discuss the three aspects that are related to
the readability of the log message derived from our interviews
with practitioners, including Structure, Information, and Word-
ing. For each aspect, we discuss: 1) Real-world example log
messages that comply and violate the corresponding aspect,
respectively; 2) Discussion of the interview and survey results;
3) Practices that can improve the readability. Some of the
practices are ‘“corrective practices”, which are practices to
improve the inadequacy of readability in log messages. Some
of the practices are “enhancing practices”, where developers
can decide whether to apply them or not based on the situations
and needs.

1) Aspect 1 - Structure: Format and organization of words
and variables that a log message presents its information.

100 — —
804 .
60

404 .

= Very important
Important

20- ™= Neutral

== Unimportant

mmm Very unimportant
—

Percentage

. |
Wording

Information
Aspect of Readability

Structure

Fig. 2. Survey participants’ rating for the importance of the three aspects.

Example. Below, we discuss two examples that violate and
comply the aspect of Structure, respectively.

//Example 1 - VIOLATE the aspect of Structure

logger.debug ("Bootstrap variables: {} {} {} {}",
DatabaseDescriptor.isAutoBootstrap (),
SystemKeyspace.bootstrapInProgress (),
SystemKeyspace.bootstrapComplete (),
DatabaseDescriptor.getSeeds());

//Example 2 - COMPLY the aspect of Structure

logger.debug (" [repair #{}] Repair completed between {}
and {} on {}", getId(), nodes.endpointl,
nodes.endpoint2, desc.columnFamily);

In Example 1, four variables are directly presented one
by one. It might be difficult to distinguish the meaning of
each variable in the generated logs. While in Example 2, the
variables are presented together with descriptive words, which
makes the meaning of variables easier to comprehend.

Discussion. Below, we discuss the interview results and survey
results related to the aspect of Structure, respectively.
Interview Results. Among the 17 participants, 9 participants
mention that Structure is important to the readability of log
messages. For example, interviewee I-8 expects that the log
message should be “well structured so it is easy to read by
human”. Interviewee I-3 also mentions that:

“Log message with good readability should have clear struc-
ture. For example, log messages that clearly separates vari-
ables could be easier to read. Don’t present variables closely
that are hard to judge boundaries.”

Survey Results. In our survey, we ask the participants for
their perspective on the importance of each aspect. Figure 2
presents the percentage of each rate of importance given by
the survey participants. We exclude three answers which are
“Not sure” in all the three aspects and compute the percentage
based on the remaining answers. Overall, more than half
of the participants (55.3%) consider that Structure is “Very
important” to the readability of log messages, and 39.3%
of the participants consider it is “Important”. Some survey
participants also comment their perspective on this aspect. For
example, one participant mentions that:

“The aspect of Structure affects how the message is formu-
lated. Better formulated log messages are always easier to
read than unformulated ones” .

Improvement Practices. We derive three practices related

to the aspect of Structure, including one corrective practice
(i.e., practices to improve the inadequacy of readability in
log messages) and two enhancing practices (i.e., practices that
developers can decide whether to apply them or not based on
the situations and needs). Below, we discuss each practice with
corresponding examples.

SP1 (Corrective): Have clear boundaries and distinctions
among items.

Different items in the log messages (e.g., variables) should
have clear boundaries and descriptions to be easily distin-
guished. As shown in the example below, similar to the
examples that we discussed in the aspect of Structure, the
four variables in Example 1 are presented one by one which
might be difficult to understand the meaning of each variable.
Example 2 shows the log message that adopts this corrective
practice, where each variable is added with a description of its
meaning. In our interviews, S out of the 17 participants men-
tion that this practice can be used to improve the readability
of log message.

//Example 1 — WITHOUT SP1

LOG.debug ("Reading from {} {} {}
tableDesc.getTableName (),
region.getRegionNameAsString(),
column.getNameAsString (),
Bytes.toStringBinary (startKey));

("

//Example 2 WITH SP1

LOG.debug ("Reading from table: {}, region:
{}, key: {}", tableDesc.getTableName (),
region.getRegionNameAsString (),
column.getNameAsString (),
Bytes.toStringBinary (startKey)) ;

{}, column:

SP2 (Enhancing): Use an easy-to-parse structure if needed
and possible.

Five interviewees mention that developers could consider
formatting the log message that is easy to be automatically
parsed by scripts for further analysis. For example, the code
snippet shown below uses a comma (“,”) to separate each
part. The ideal situation is to have log messages that are both

human-readable and machine-readable.

//Example — WITH SP2

logger.info ("Summary of the change, term: {}, version:
{}, reason: {}", newClusterState.term(),
newClusterState.version(), task.source);

SP3 (Enhancing): Use parameterized logging to present the
variables.

Two interviewees mention that the log message in the
logging statement with parameterized logging is easier to
revisit and revise. Moreover, though not related to readability,
parameterized logging costs less computing resource com-
pared to simply concatenating the strings (according to the
documentation of Log4j2 [14]).

//Example 1 - WITHOUT SP3
LOG.error ("Exception when formatting: ’'" + dateStr + "’/
from: " + fromFormat + "’ to: '" + toFormat + "’'",

e);

//Example 2 — WITH SP3
logger.info ("Exception when formatting:
to "{}’ ", dateStr,

iy

"{}" from
fromFormat, toFormat, e);

2) Aspect 2 - Information: Semantic information conveyed
by the log message to record system execution behaviors.

Example. Below, we discuss two examples that violate and
comply the aspect of Information, respectively.

//Example 1 - VIOLATE the aspect of Information
LOG.info ("Started.");

//Example 2 - COMPLY the aspect of Information
LOG.info ("Quota support disabled, not starting space
quota manager.");

In Example 1, the log message is “Started”, but it is unclear
what was started. In Example 2, the log message records the
reason and consequence of a system event: due to the disabled
quota support, the space quota manager is not starting.

Discussion. Below, we discuss the interview results and survey
results related to the aspect of Information, respectively.
Interview Results. All of our 17 interviewees consider that the
actual information that a log message conveys is important to
its readability. For example, interviewee /-9 mentions that:
“The context of the log is important. When diagnosing the log,
I would like to know how it happened. Like is it caused by
an incorrect path or failed creation of files. It’s also useful
to know what is the consequence. Such as the consequence of
the missing file. Will the system use the default configuration
file or handle it with a different procedure.”

Survey Results. As shown in Figure 2, most of the participants
(87.5%) consider that Information is “Very important” to the
readability of log messages, and the remaining participants
consider it is “Important”. The results show that the partici-
pants highly acknowledge the importance of Information to the
readability of log messages. For example, a survey participant
comments that:

“With more accurate information, the information aspect helps
readers to better understand the message communicated by
developers”.

Improvement Practices. From our interviews, we derive three
practices related to the aspect of Information, including two
corrective practices and one enhancing practice. Below, we
discuss each practice with corresponding examples.

IP1 (Corrective): Provide proper context for the run-time
behaviors.

As shown in the examples below, the system execution
behavior is the interruption of a current thread. In Example 1,
the log message is just “Interrupted”, while it’s unclear what
is interrupted. In Example 2, some context information of the
execution behavior (i.e., the current thread) is added to the log
message. It would be even better to include the thread ID if
available.

//Example 1 — WITHOUT IP1
Thread.currentThread () .interrupt () ;
LOG.info ("Interrupted");

//Example 2 WITH IP1

Thread.currentThread () .interrupt () ;

LOG.info ("The current thread is interrupted");
add thread ID if available)

// (also

In our interviews, the participants suggest some context
information that can be added into the log messages. We
summarize the information into the following categories:

« Intention of this log message (clearly show whether it

needs instant attention or not).

o Traceable information (e.g., thread and application ID).

o Clear “main character” of what happened from or what

happened fo.

o What is happening at the time.

o What is the consequence of this event.

« Possible reason of an unexpected event.

Note that it is not necessary to always include all of the
context information every time, but our interviewees mention
that the log messages should at least provide useful informa-
tion and important events should include as sufficient context
information as possible.

IP2 (Corrective): Write a self-explanatory log message that is
independent of other log messages.

Six interviewees mention that the log message should be
self-explanatory that does not depend on other log messages.
As shown in Example 1 below, the log message in debug
level is “Full exception”. However, these two info and debug
logs may not always be generated closely together (i.e., other
logs may be generated in between). If there are other logs
that appear before the debug log, it can be confusing to only
see “Full exception” without the prior message. Hence, in
Example 2, complete information is added to the debug level
log to make it self-explanatory and avoid potential confusion.

//Example 1 WITHOUT IP2

} catch (final AmazonClientException e) {

logger.info ("Exception while retrieving instance list
from AWS API: {}", e.getMessage());

logger.debug ("Full exception:", e); //depending on the
prior info log

//Example 2 - WITH IP2
} catch (final AmazonClientException e) {
logger.info ("Exception while retrieving instance list

from AWS API: {}", e.getMessage());
logger.debug ("Exception while retrieving instance list
from AWS API, full exception: ", e); //provides

complete information that does not depend on other
log messages

IP3 (Enhancing): Minimize noise, emphasize the key informa-
tion.

Four interviewees mention that they want to concisely see
the key information without too much noise. As shown in
Example 1, the log message gives the instruction first and
only mentions the error code and error message at the end.
In Example 2, we simplify the log message to emphasize
the error code and error message. Developers could consider
adding another log or use another way to provide additional
instructions if needed.

//Example 1 — WITHOUT IP3

LOG.warn ("An HTTP error response in WebSocket
communication would not be processed by the
browser! If you need to send the error code and
message to the client then configure custom
WebSocketResponse via
WebSocketSettings#newWebSocketResponse () factory
method and override #sendError () method to write

them in an appropriate format for your application.
The ignored error code is ’{}’ and the message:
“{}r.", sc, msg);

//Example2 - WITH IP3

LOG.warn ("An HTTP error response in WebSocket
communication would not be processed by the
browser. Ignored error code: ’{}’, message:
", sc, msqg);

/+*mention the key information first, can add another
log, or use another way to write the additional
instruction if it’s necessaryx/

Oy

3) Aspect 3 - Wording: Lexical usage of words and

punctuation in the log message.

Example. Below, we discuss two examples that are violate
and comply the aspect of Wording, respectively.

//Example 1 - VIOLATE the aspect of Wording
LOG.info ("Added to offline, CURRENTLY NEVER CLEARED!!!");

//Example 2 - COMPLY the aspect of Wording
LOG.info ("No family specified, will execute for all
families.");

In Example 1, the log message uses an emotional wording
(e.g., many exclamation marks and capitalization) to present
a normal event. This may attract unnecessary attentions and
confuses developers. While in Example 2, the log message
uses standard wording to record an info level event.

Discussion. Below, we discuss the interview results and survey
results related to the aspect of Wording, respectively.
Interview Results. Among the 17 participants, 7 participants
mention that Wording is important to the readability of log
messages. Some interviewees describe the scenarios where the
wording affects the readability of log messages. For example,
interviewees I-/ and I-13 mention that:

“Similar to writing source code, we should have consistent
naming conventions for the words of log messages too. Oth-
erwise it might be confusing to the users”.

“I've read some logs that have weird names included, hard
to understand their meaning. Like are they identifiers or the
abbreviations of anything”.

Survey Results. As shown in Figure 2, 50.0% of the partici-
pants consider that Wording is “Important” to the readability of
log messages, and 26.8% of the participants consider it’s “Very
important”. There are also 17.9% of the participants consider
the importance of Wording is “Neutral”. The survey results
show that participants generally acknowledge the importance
of Wording, but the priority is lower than Information and
Structure. Some participants also provide comments to this
aspect, for example:

“Wording is important, but to a certain extend. Like tiny lexical
mistakes can be acceptable.”

“If the log message uses very emotional wording, I will
obviously pay more attention to it and unhappy to see if it’s
just a trivial event”.

Improvement Practices. We derive five practices related to
the aspect of Wording, including three corrective practices and
two enhancing practices. Below, we discuss each practice with
corresponding examples.

WPI (Corrective): Use standard English words (e.g., avoid
typos and incomplete words).

Four interviewees mention that we should avoid typos and
incomplete words when writing the log messages. As shown
in the example below, the word “preform” is a typo and should
be “perform”.

//Example — WITHOUT WP1

LOG.debug ("Failed to preform reroute after cluster
settings were updated."); //"preform" is a typo and
should be "perform"

WP2 (Corrective): Follow the convention of written language
(e.g., correct grammar and not too oral).

Three interviewees mention that log messages are better to
follow the convention of written language. As shown in the
example below, we do not “exists” is incorrect and should be
“exist”.

//Example WITHOUT WP2

LOG.debug ("Pinging a master {}
it, act as if its master failure");
"exists" should be "exist"

but we do not exists on
//we do not

WP3 (Corrective): Try to use impartial and neutral wording
(e.g., avoid being too emotional or abusing capitalization).

Three interviewees mention that the emotion of log mes-
sages should try to be neutral and objective. The examples
shown below are both log messages with improper emotional
wording. In Example 1, the log message is informal and uses
many exclamation marks, which does not help with under-
standing the log message. Example 2 abuses the capitalization
for a non-critical system event (i.e., info level).

//Example 1 - WITHOUT WP3

//Example 2 — WITHOUT WP3

LOG.info ("Added to offline, CURRENTLY NEVER CLEARED!!!");

WP4 (Enhancing): Be careful on using Abbreviations and
Acronyms.

Four interviewees mention that proper usage of abbrevia-
tions and acronyms is important. Developers should ensure
that the users can understand the meaning of abbreviations
and acronyms before writing them into the log message. As
shown in the example, the abbreviation “TGT” is not a well-
known word. Probably only users with corresponding domain
knowledge can understand the meaning.

//Example

LOG.warn ("No TGT found: will try again at {}");

WP5 (Enhancing): Consistent on the wording of domain-
specific terms.

Six interviewees mention that the use of domain-specific
terms should be consistent, otherwise it might be confusing
for the users to understand their meaning. As shown in the
example, “Incident ID” and “IncID” refer to the same thing.
If possible, developers should consider keeping a consistent

W Strongly disagree Disagree Neutral Agreemmm Strongly agree

25 15 5 5 15 25 35 45 55 65 75 85 95
Percentage of Valid Responses - Effectiveness of Each Practice

Fig. 3. Survey participants’ rating for each improvement practice.

convention on the wording of domain terms to mitigate po-
tential confusion.

//Example — WITHOUT WP5
LOG.info ("Incident ID {}:
incID);

a new incident is reported.",

LOG.info("IncID {}: the incident is closed.", incID);

4) Overall Perspectives on the Aspects and Improvement
Practices: In our survey, we also ask the participants for their
overall perspectives on the three aspects above. Particularly,
we ask for their perspectives on if these three aspects can
reflect the readability of log messages. Participants can choose
from “Very positive”, “Positive”, “Neutral”, “Negative”, “Very
negative”, and “Not sure”. Overall, 51.8% of the participants’
responses are “Very positive”, and the remaining responses
are “Positive”. The results show that our survey participants
acknowledge that the three aspects we derive based on the
interviews can reflect the readability of log messages.

We also ask the survey participants for their agreement on
the effectiveness for each improvement practice. For example
in Information Practice 1 (IPI), we provide a statement:
“This practice can improve the readability of log messages
from the aspect of Information”. Participants can choose their
agreement level based on a 5-point Likert scale (i.e., “Strongly
agree”, “Agree”, “Neutral”, “Disagree”, “Strongly disagree”),
and an additional option of “Not sure”. We exclude the
answers that are “Not sure” (1.3% of the total answers) and
present the distribution of results in Figure 3.

We find that for all the improvement practices, most of
the responses have positive ratings (i.e., “Strongly agree” and
“Agree”). In total, there are 1.5% of the responses that are
negative (i.e., “ Strongly Disagree” or “Disagree”) regarding
the specific improvement practices. For example, the partici-
pant who rates “Strongly Disagree” for WP2 mentions “I think
people can still understand the message even if such mistakes
are not corrected”. Among the improvement practices for each
aspect, Information Practices have the highest percentage of
positive ratings, with an average of 97.7% for the effectiveness.
For example, one participant who rates “Strongly Agree”
for IP2 mentions “Context is important, “proper” context
information is also very important, not too much and not too
little.”.

TABLE II
PERCENTAGE (%) OF LOG MESSAGES IN EACH SYSTEM THAT HAVE
ADEQUATE READABILITY FOR ALL THE THREE ASPECTS, OR INADEQUATE
IN EACH OF THE ASPECT.

Inadequate
Data set Adequate Structure Infon;]alion Wording
Cassandra 60.1 16.7 232 26.2
Elasticsearch 46.9 14.5 22.8 49.9
Flink 76.3 12.3 17.7 14.7
HBase 55.6 25.0 24.7 30.0
JMeter 52.0 27.0 30.7 36.4
Kafka 67.5 237 159 11.0
Karaf 757 12.0 16.7 21.1
Wicket 70.1 129 17.9 24.9
Zookeeper 60.0 15.6 23.1 34.6
Overall 61.9 18.2 21.7 28.1

We derive three aspects that are related to the readability of
log messages and several practices to improve each aspect.
Among the three aspects, Information is considered as the
most important aspect.

B. RQ2: How is the Readability of Log Messages in large-
scale Open Source Software Systems?

In this RQ, we present the results of our manual investiga-
tion on the readability of 2,702 logging statements sampled
from nine large-scale open source systems, following the pro-
cess discussed in Stage 2 of Section III. We analyze the manual
investigation results and present the results for: 1) Readability
for log messages in different systems; 2) Readability for
different lengths of log messages.

Readability for Log Messages in Different Systems. Table II
presents the percentage of log messages in each data set that
have adequate readability for all the three aspects (i.e., the
column of Adequate), or inadequate in each of the aspect
(i.e., Structure, Information, and Wording under the column of
Inadequate). The row of Overall shows the overall percentage
computed from all the data combined together. We find that the
percentage of log messages with adequate readability varies
in different systems, from 46.9% in Elasticsearch to 76.3%
in Flink. We also find that the distribution of aspects is
different for log messages with inadequate readability among
the systems. For example, 49.9% of the log messages in
Elasticsearch have inadequate readability in the aspect of
Wording, while for Structure and Information the percentages
are 14.5% and 22.8%, respectively.

Readability for Log Messages with Different Lengths.
Figure 4 presents the percentage of log messages with ad-
equate or inadequate readability for different lengths. We
compute the length of a log message based on its number
of words. Adequate refers to the percentage of log messages
that have adequate readability in all the three aspects, Inadeq-
S, Inadeq-1, and Inadeq-W refer to log messages that have
inadequate readability in the aspect of Structure, Information,
and Wording, respectively. We find that when the log messages
are very short (i.e., length<2), only 7.4% of the log messages
have adequate readability in all the three aspects, with a
very high percentage of Inadeqg-I1 (89.4%). In contrast, log
messages whose length is within the range between 6 to 10
words have the highest percentage with adequate readability
(80.6%). When the log messages have more than 10 words,

< —e— Adequate

Inadeg-S
=&— Inadeq-|
=&+ |Inadeq-W

~

80

60

Percentage

204 N ——._
. S — . —— ;"-c
| N N— /
~
04 \-———0-———9——“

[6,10] [11,15] 16,24 [25,34] =35

Length of Log Messages

=2 (35

Fig. 4. Percentage of log messages with adequate or inadequate readability
for different lengths. Length refers to the number of words of a log message.

we then find that the readability has a downward trend as the
length increases. For example, we find that the percentage of
Adequate drops from 76.2% (log messages with number of
words between 25 and 34) to 62.5% when the log messages
have more than 35 words. Overall, the results show that the
length of a log message might be an indicator of its readability,
especially when the length is very short.

Moreover, we also ask the interviewees for their expec-
tations on the length of log messages in the interviews. In
total, 6 out of the 17 interviewees expect that the log message
should be neither too short nor too long. Four interviewees
consider that the log message should not be too short and 2
interviewees consider it should not be too long. There are also
5 interviewees do not have a specific expectation on the length
itself, but the log message should provide clear and useful
information. We find that our results in this RQ confirm the
expectations from the interviewees. Compared to extremely
short or long, log messages with a proper length tend to be
more readable and are preferred by the practitioners.

We find that only 61.9% of the log messages in our studied
data set have adequate readability in all the three aspects,
meaning that readability of a large portion of the log
messages (i.e., 38.1%) in these systems are inadequate.

C. RQ3: Can We Automatically Classify the Readability of
Log Messages?

We take a preliminary step to help developers improve log
message by classifying whether a message has readability
issue or not. In this RQ, we present the results of automatic
classification for the readability of log messages. We use the
2,702 manually labelled log messages to train and test the
models using each approach discussed in Section III. We
then perform a stratified 10-fold cross validation to estimate
the performance of each approach and report the average
results. Specifically, we randomly split the data set into ten
subsets, with stratified random sampling [58] to ensure the
same distribution of readability for each subset. The validation
has ten rounds in total. For each round of validation, we use
one subset for testing, and the remaining subsets for training.

TABLE III
BALANCED ACCURACY (%) OF DIFFERENT APPROACHES ON
CLASSIFYING THE READABILITY FOR EACH ASPECT.

Structure Information Wording Average
Bi-LSTM 82.5 88.1 75.7 82.1
Random Forest 87.2 92.8 79.0 86.3
Decision Tree 78.8 86.5 752 79.5
Logistic Regression 65.0 78.3 60.1 67.8
SVM 67.9 853 724 75.2

TABLE IV
PRECISION, RECALL, AND F1 SCORE (%) OF CLASSIFYING EACH ASPECT
OF READABILITY USING RANDOM FOREST.

Metric Structure Information Wording Average
Precision 95.4 97.1 87.5 93.3
Adequate Recall 95.2 96.0 91.7 94.3
F1 95.3 96.6 89.5 93.8
Precision 78.8 86.4 759 80.4
Inadequate Recall 79.2 89.6 66.4 78.4
F1 78.9 87.9 70.7 79.2

Balanced Accuracy of Different Approaches. We first exam-
ine the balanced accuracy of each approach on classifying the
three aspects of readability. Balanced accuracy is widely used
by prior studies to evaluate the performance of binary classi-
fication on imbalanced data [59], [18], [20]. Table III shows
the balanced accuracy of different approaches on classifying
the readability for each aspect, the highest result is marked in
bold. We find that Random Forest achieves the best balanced
accuracy in all the three aspects of readability, with an average
of 86.3%. Other approaches achieve a balanced accuracy from
67.8% by Logistic Regression to 82.1% by Bi-LSTM. Overall,
we find that deep learning and machine learning approaches
can both achieve promising classification results. Among them,
Random Forest achieves the best balanced accuracy (i.e.,
86.3% on average).

Precision, Recall, and F1 score of Random Forest. We
further examine the performance of Random Forest on classi-
fying the adequacy and inadequacy of each aspect. Table IV
shows the Precision, Recall, and F1 score of classifying each
aspect of readability using Random Forest. When Adequate
readability in each aspect is considered as the positive class,
Random Forest achieves an average precision, recall, and F1
score of 93.3%, and 94.3%, and 93.8%, respectively. When
Inadequate readability in each aspect is considered as the
positive class, the average precision, recall, and F1 score are
80.4%, and 78.4%, and 79.2%, respectively. Overall, we find
that Random Forest can effectively classify each aspect of
the readability. Our findings shed light on the possibility of
automatically classifying readable log messages, future studies
may consider leverage other state-of-the-art techniques (e.g.,
pre-trained large language models) to explore the potential of
a better performance.

Deep learning and machine learning approaches can both
achieve promising results in the classification. Our findings
take a preliminary step on automatically classifying the
readability of log messages.

V. IMPLICATIONS

We discuss the implications of our study for practitioners
and researchers, respectively.

Implication for Practitioners. Due to the lack of well-defined
guidelines on writing the log message, it is a challenging task
to write log messages with good readability that can clearly
and sufficiently record system run-time behaviors. Moreover,
it is also difficult to decide what are log messages with “good
readability”. In our study, we conduct a series of interviews
with industrial practitioners and derive three aspects that are
related to the readability of log messages (i.e., Structure,
Information, and Wording). For each aspect, we also discuss
several specific practices that may improve the readability in
such aspect. Practitioners can consider to refer our findings
to have a clearer comprehension of the readability when
composing and revising the log messages.

We also explore the potential of automatically classify-
ing the readability of log messages. We find that several
widely used deep learning approaches and machine learning
approaches (e.g., Bi-LSTM, Random Forest, and Decision
Tree) are effective in such classifications. Practitioners can
leverage the automated approach to examine the readability of
log messages they compose and obtain a suggestion of whether
any aspects of the readability can be improved.

Implication for Researchers. In RQ2, we find that 38.1% of
the studied log messages in large-scale open source systems
have inadequate readability, meaning that there is still a
large portion of the log messages of which readability may
need improvement. Some prior studies work on automatically
generating log messages using existing source code and log
messages [35], [25]. However, we observe that these studies
directly use the log messages to train and evaluate the models
without a verification on the quality of those log messages.
As a consequence, log messages with poor readability may be
generated and thus decrease the reliability of such approaches.
Future studies may leverage the findings in our study to
examine the readability of log messages and prompt automated
generation using more well-verified log messages.

Recently, large language models (e.g., GPT-3 [60]) have
made remarkable progress in the comprehension and genera-
tion of natural languages. In this paper, we use classic deep
learning and machine learning models (e.g., Bi-LSTM [49]
and Random Forest [52]) to uncover the potential of automat-
ically classifying the readability of log messages and achieve
promising results. Future studies may consider explore the
improvement of such classification by leveraging the large
language models and further assist in logging practices.

VI. THREATS TO VALIDITY

Internal Validity. We manually label the readability of log
messages for each aspect. To mitigate the potential subjectiv-
ity, the first two authors label the log messages independently,
and discuss each disagreement until a consensus is reached.
The Cohen’s Kappa value in this process is 0.83, which
shows a substantial agreement. Involving the original authors
of the logging statements who have contextual knowledge

of the project could further verify the results of labelling.
However, identifying and contacting the original author of
each logging statement can be extremely challenging. In our
survey discussed in Stage 3, we ask the participants to label
seven randomly sampled log messages to further verify the
manually labeled results instead. We find that 81% of the log
messages labelled by the participants are exactly consistent
with ours. For the results that are not consistent, the two
authors who label the log messages discuss such cases and
resolve the disagreements. The randomness while splitting the
training and testing data sets may affect the results. To mitigate
such threats, we use a stratified 10-fold cross validation to
evaluate the results of each approach.

External Validity. We derive three aspects of readability and
the corresponding improvement practices from the interviews.
The logging practices might vary in different companies and
thus the interview results may be different. To mitigate such
threat, we invite participants from a variety of large companies
to participate in our study, and the domain of their companies
range from software development to digital currency manage-
ment. These participants represent a variety of roles and level
of software development and maintenance expertise.

VII. CONCLUSION

In this paper, we investigate practitioners’ expectations on
the readability of log messages by conducting a series of in-
terviews with industrial practitioners. We derive three aspects
related to the readability of log messages along with several
improvement practices for each aspect. Our findings receive
encouraging feedback from subsequent online questionnaire
surveys. We also find that a considerable proportion of the log
messages in large-scale open source systems have inadequate
readability. Therefore, we further explore the potential of
automatically classifying the readability of log messages and
find that both deep learning and machine learning approaches
can effectively perform such classifications. The findings of
our study provide a systematic understanding of the readability
of log messages and shed light for future studies on provid-
ing comprehensive and automated supports for practitioners’
logging practices.

REFERENCES

[1] S. Ma, X. Zhang, D. Xu et al., “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in NDSS, vol. 2,
2016, p. 4.

[2] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting opera-
tional profiles from execution logs using suffix arrays,” in ISSRE’09:
Proceedings of the 20th IEEE International Conference on Software
Reliability Engineering, 2009, pp. 41-50.

[3] Z. Ding, Y. Tang, Y. Li, H. Li, and W. Shang, “On the temporal relations
between logging and code,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). 1EEE, 2023, pp. 843—
854.

[4] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019, 2019, p.
807-817.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Plelog: Semi-supervised log-based anomaly detection via probabilistic
label estimation,” in 43rd IEEE/ACM International Conference on
Software Engineering: Companion Proceedings, ICSE Companion 2021,
Madrid, Spain, May 25-28, 2021, 2021, pp. 230-231.

Z. Li, C. Luo, T. Chen, W. Shang, S. He, Q. Lin, and D. Zhang, “Did
we miss something important? studying and exploring variable-aware
log abstraction,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), 2023, pp. 830-842.

X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He, “La-
tent error prediction and fault localization for microservice applications
by learning from system trace logs,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
2019, pp. 683-694.

D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” in ASPLOS ’11: Proceedings of the
16th international conference on Architectural support for programming
languages and operating systems. ACM, 2011, pp. 3-14.

A.R. Chen, T.-H. Chen, and S. Wang, “Pathidea: Improving information
retrieval-based bug localization by re-constructing execution paths using
logs,” IEEE Transactions on Software Engineering, pp. 2905-2919,
2021.

Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). 1EEE, 2016, pp. 102-111.

D. Schipper, M. F. Aniche, and A. van Deursen, “Tracing back log data
to its log statement: from research to practice,” in Proceedings of the
16th International Conference on Mining Software Repositories, MSR
2019, 2019, pp. 545-549.

A. R. Chen, T.-H. Chen, and S. Wang, “Demystifying the challenges
and benefits of analyzing user-reported logs in bug reports,” Empirical
Software Engineering, pp. 1-30, 2021.

“Elasticsearch github page,” https://github.com/elastic/elasticsearch,
2023, last accessed August 2023.

Apache, “log4j2,” https://logging.apache.org/log4j/2.x/manual/messages.
html, 2023, last accessed May 2023.

H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan, “A qualitative
study of the benefits and costs of logging from developers’ perspectives,”
IEEE Transactions on Software Engineering, 2020.

J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning to
log: Helping developers make informed logging decisions,” in Proceed-
ings of the 37th International Conference on Software Engineering, ser.
ICSE ’15, 2015, pp. 415-425.

Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices
in industry,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE-SEIP *14, 2014, pp. 24-33.

Z. Li, T. Chen, and W. Shang, “Where shall we log? studying and
suggesting logging locations in code blocks,” in 35th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2020,
2020, pp. 361-372.

J. Candido, J. Haesen, M. Aniche, and A. van Deursen, “An exploratory
study of log placement recommendation in an enterprise system,” in
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), 2021, pp. 143-154.

H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time
suggestions for log changes,” Empirical Software Engineering, pp.
1831-1865, 2017.

H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering,
vol. 22, no. 4, pp. 1684-1716, Aug 2017.

Z. Li, H. Li, T.-H. P. Chen, and W. Shang, “Deeplv: Suggesting log
levels using ordinal based neural networks,” in 202/ IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). 1EEE, 2021,
pp. 1461-1472.

J. Liu, J. Zeng, X. Wang, K. Ji, and Z. Liang, “Tell: log level
suggestions via modeling multi-level code block information,” in ISSTA
’22: 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, S. Ryu and Y. Smaragdakis, Eds., 2022, pp. 27-38.

A. Mastropaolo, L. Pascarella, and G. Bavota, “Using deep learning
to generate complete log statements,” in Proceedings of the 44th

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

International Conference on Software Engineering, ser. ICSE °22, 2022,
p. 2279-2290.

Z. Ding, H. Li, and W. Shang, “Logentext: Automatically generating
logging texts using neural machine translation,” in 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2022, pp. 349-360.

D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in ICSE 2012: Proceedings of the 2012
International Conference on Software Engineering, 2012, pp. 102-112.
B. Chen and Z. M. (Jack) Jiang, “Characterizing logging practices in
java-based open source software projects — a replication study in apache
software foundation,” Empirical Software Engineering, pp. 330-374,
2017.

Y. Zeng, J. Chen, W. Shang, and T.-H. P. Chen, “Studying the charac-
teristics of logging practices in mobile apps: a case study on f-droid,”
Empirical Software Engineering, pp. 1-41, 2019.

K. Patel, J. Faccin, A. Hamou-Lhadj, and I. Nunes, “The sense of
logging in the linux kernel,” Empirical Software Engineering, pp. 1—
47, 2022.

H. Zhang, Y. Tang, M. Lamothe, H. Li, and W. Shang, “Studying logging
practice in test code,” Empirical Software Engineering, p. 83, 2022.

S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey
on automated log analysis for reliability engineering,” ACM computing
surveys (CSUR), vol. 54, no. 6, pp. 1-37, 2021.

Z. Li, “Towards providing automated supports to developers on writing
logging statements,” in Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering: Companion Proceedings,
2020, pp. 198-201.

Z. Li, T. P. Chen, J. Yang, and W. Shang, “DLFinder: characterizing
and detecting duplicate logging code smells,” in Proceedings of the 41st
International Conference on Software Engineering, ICSE 2019, 2019,
pp. 152-163.

Z. Li, T.-H. Chen, J. Yang, and W. Shang, “Studying duplicate logging
statements and their relationships with code clones,” IEEE Transactions
on Software Engineering, pp. 2476-2494, 2021.

H. Pinjia, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings
of the 33rd IEEE international conference on Automated software
engineering, 2018, pp. 1-11.

Z. Masood, R. Hoda, and K. Blincoe, “What drives and sustains self-
assignment in agile teams,” IEEE Transactions on Software Engineering,
2021.

E. Kalliamvakou, C. Bird, T. Zimmermann, A. Begel, R. DeLine, and
D. M. German, “What makes a great manager of software engineers?”
IEEE Transactions on Software Engineering, pp. 87-106, 2017.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories, 2014,
pp. 92-101.

X. Hu, X. Xia, D. Lo, Z. Wan, Q. Chen, and T. Zimmermann,
“Practitioners’ expectations on automated code comment generation,”
in Proceedings of the 44th International Conference on Software Engi-
neering, 2022, pp. 1693-1705.

“Link to our replication package.” https://github.com/ginolzh/ASE2023_
Log_Message_Readability, last accessed May 2023.

D. Spencer, Card sorting: Designing usable categories.
Media, 2009.

M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
Medica, vol. 22, no. 3, pp. 276-282, 2012.

S. Boslaugh and P. Watters, Statistics in a Nutshell: A Desktop Quick
Reference, ser. In a Nutshell (O’Reilly). O’Reilly Media, 2008.

C. Watson, N. Cooper, D. N. Palacio, K. Moran, and D. Poshyvanyk,
“A systematic literature review on the use of deep learning in software
engineering research,” ACM Transactions on Software Engineering and
Methodology (TOSEM), pp. 1-58, 2022.

A. Mastropaolo, N. Cooper, D. N. Palacio, S. Scalabrino, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Using transfer learning for code-
related tasks,” IEEE Transactions on Software Engineering, 2022.

T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), 2019, pp. 34-45.

D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: are we

Rosenfeld

(48]

[49]

[50]
(51]

[52]
(53]

[54]
[55]

[56]

(571

[58]

[59]

[60]

there yet?” in 2018 ieee 25th international conference on software
analysis, evolution and reengineering (saner), 2018, pp. 612-621.

Y. Tian, Y. Zhang, K. Stol, L. Jiang, and H. Liu, “What makes a good
commit message?” in 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, 2022, pp. 2389-2401.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing, pp. 2673-2681, 1997.
S. Menard, Applied logistic regression analysis. Sage, 2002, no. 106.
J. R. Quinlan, “Induction of decision trees,” Machine learning, pp. 81—
106, 1986.

L. Breiman, “Random forests,” Machine learning, pp. 5-32, 2001.

J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in large
margin classifiers, pp. 61-74, 1999.

“Keras: The python deep learning library,” https://keras.io/, last accessed
May 2023.

“scikit-learn: Machine learning in python,” https://scikit-learn.org, last
accessed May 2023.

H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in 2008 IEEE interna-
tional joint conference on neural networks (IEEE world congress on
computational intelligence). 1EEE, 2008, pp. 1322-1328.

“gensim Word2vec embeddings,” https://radimrehurek.com/gensim/
models/word2vec.html, last accessed May 2023.

H. Pirzadeh, S. Shanian, A. Hamou-Lhadj, and A. Mehrabian, “The
concept of stratified sampling of execution traces,” in The 19th IEEE
International Conference on Program Comprehension, ICPC 2011,
2011, pp. 225-226.

J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning to
log: Helping developers make informed logging decisions,” in Proceed-
ings of the 37th International Conference on Software Engineering, ser.
ICSE °15, 2015, pp. 415-425.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, 2020.

