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Abstract—Vertical federated learning (VFL) is an increasingly
popular, yet understudied, collaborative learning technique.
In VFL, features and labels are distributed among different
participants allowing for various innovative applications in
business domains, e.g., online marketing. When deploying VFL,
training data (labels and features) from each participant ought
to be protected; however, very few studies have investigated
the vulnerability of data protection in the VFL training stage.
In this paper, we propose a posterior-difference-based data
attack, VFLRecon, reconstructing labels and features to examine
this problem. Our experiments show that standard VFL is
highly vulnerable to serious privacy threats, with reconstruction
achieving up to 92% label accuracy and 0.05 feature MSE,
compared to our baseline with 55% label accuracy and 0.19 feature
MSE. Even worse, this privacy risk remains during standard
operations (e.g., encrypted aggregation) that appear to be safe. We
also systematically analyze data leakage risks in the VFL training
stage across diverse data modalities (i.e., tabular data and images),
different training frameworks (i.e., with or without encryption
techniques), and a wide range of training hyperparameters.
To mitigate this risk, we design a novel defense mechanism,
VFLDefender, dedicated to obfuscating the correlation between
bottom model changes and labels (features) during training. The
experimental results demonstrate that VFLDefender prevents
reconstruction attacks during standard encryption operations
(around 17% more effective than standard encryption operations).

Index Terms—Privacy-preserving machine learning, vertical
federated learning, privacy leakage, data safety, privacy.

I. INTRODUCTION
Machine learning techniques are increasingly integrated

into daily routines, e.g., with recommendation systems [10]
or medical diagnosis techniques [26], to improve quality of
life. However, the success of machine learning techniques
relies on the availability of data, and human-level machine
intelligence cannot be achieved without big data as training sets.
Accordingly, there is an increasing demand for data sharing to
improve model performance. For example, financial companies
can dramatically improve their customer risk prediction models
with customer data from other banks. However, accessing such
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data from other organizations is very difficult [36], [50], since
data is regarded as a key asset by every organization. In addition,
governments are issuing more and stricter policies, e.g., GDPR,
that decrease the flow of information across organizational
boundaries.

In early 2016, Google proposed a new artificial intelligence
(AI) technique, federated learning (FL), to address the data
sharing problem [25]. FL is a collaborative learning tech-
nique that trains a global model using data from multiple
participants [25]. Unlike traditional collaborative learning, the
training of FL models does not require a centralized server to
collect the data stored by each participant. Instead, to train FL
models, the participants keep data locally, and only intermediate
data, e.g., gradients, are shared. Therefore, FL promotes the
cooperative training of models among different organizations
without requiring each organization to share original data.
However, even though the original data is not shared during
FL model training, significant data leakage risks exist [32].

FL has two important variants, horizontal FL (HFL) and
vertical FL (VFL), which differ with regard to label ownership.
In HFL, each participant can access the entire model and their
own labels, while in VFL, the participants can only access part
of the model and only one participant owns labels. Previous
studies [14], [15], [58] investigated the risks of leakage of
training data in FL, focusing on HFL. In contrast, only a small
number of articles have examined the risks of training data
leakage in VFL. These risks turn out to be more problematic
in the VFL setting compared to the HFL setting [47], [50].
Not only is VFL more widely used than HFL [51], VFL
applications are usually associated with highly sensitive data,
e.g., financial and government data, where data leakage is
a serious concern [17], [27]. To the best of our knowledge,
no comprehensive privacy risk analysis, including leakage of
labels and features, has been conducted in the context of VFL
training. Additionally, all related studies were conducted in
non-encryption-based VFL training frameworks [7], [13], [29].
However, it is critical to understand how much data from each
participant may be leaked during the VFL training process using
practically relevant encryption-based training frameworks.

To fill this research gap, we conduct a systematic analysis of
data leakage risks in the VFL training stage. In particular, we
propose a simple yet efficient posterior-difference-based attack
approach, VFLRecon, to reconstruct labels and features during
VFL training. An adversarial participant can apply the posterior
difference of a bottom model between two consecutive training
steps to reconstruct the labels or features owned by other partic-
ipants. Following practical threat model assumptions [35], [40],
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[58], we assume that the adversarial participants are “honest-
but-curious”, which means that they contribute truthfully to
the VFL training. However, the adversarial participants are
capable of recording any intermediate information related to
their bottom model updates during VFL training, which can
be considered the most realistic scenario [40].

To ensure the practical relevance of our work, we evaluate
VFLRecon on diverse open-source benchmark datasets ranging
from tabular data to images, namely, Sensorless Drive Diagno-
sis [6], Criteo [3], CIFAR-10 [30], BHI [48], Avazu [2], and
CelebA [4]. The experiments are conducted using VFL training
frameworks including non-encryption-based and encryption-
based operations (encrypted aggregation) [56]. The experimen-
tal results show that VFLRecon achieves consistent effectiveness
in reconstructing training samples during VFL training. We find
that the adversarial participants can reconstruct labels with very
high accuracy (i.e., >92% in Criteo) in neural-network-based
(NN-based) VFL model training without encryption-based
operations when they have half of the features of the training
samples. Furthermore, VFLRecon can efficiently reconstruct
the features of tabular data from other participants with a very
small mean square error (MSE), e.g., 0.05 in Criteo, in the
same setting. Besides tabular data, we also demonstrate that
VFLRecon can effectively reconstruct the images held by other
participants, with an MSE of 0.04 and 0.03 in CIFAR-10 and
BHI, respectively. Surprisingly, similar results are reached
in VFL model training with encryption-based aggregation
protection. As such, our study reveals that encryption operations
are not effective in preventing data leakage in VFL training,
thereby highlighting the necessity of designing a more dedicated
defense method.

While standard encryption aggregation in VFL training is
shown to be ineffective against VFLRecon, we propose a
gradients-obfuscation-based approach, VFLDefender, to mis-
lead adversaries. Indeed, the experimental results demonstrate
that we can effectively reduce the correlation between model
updates and the input samples. Specifically, the accuracy of
reconstructed labels decreases substantially from 0.86 to 0.69,
while the MSE increases from 0.01 to 0.14 (shown in Table VI).

Our paper makes the following contributions:
• We present the first comprehensive analysis of data leakage

risks in VFL training. In particular, we propose a novel
simple yet effective attack, VFLRecon, to demonstrate the
serious leakage risks with regard to labels and features
in VFL training.

• Moreover, our work highlights that standard encryption-
based aggregation techniques are not capable of prevent-
ing data leakage during NN-based VFL training.

• Based on our findings, we propose a gradients-
obfuscation-based defense approach, VFLDefender,
which can effectively protect each VFL participant’s
training data privacy.

The rest of this paper is organized as follows: Section II
introduces the background of this work, and Section III
discusses prior research. Section IV details our methodology,
and Section V presents our experimental setup and data
collection. Section VI reports the results and a discussion of
our attack evaluation. Section VII demonstrates the approaches,
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Fig. 1: Neural-network-based VFL model architecture [55],
[56]

which mitigate the data leakage risks. Section VIII analyzes
and discusses the defense performance. Section IX discusses
potential limitations, and Section X presents the threats to
validity of our study. Finally, Section XI concludes this paper.

II. BACKGROUND

In this section, we introduce the background of our work
considering primarily two aspects: vertical federated learning,
and encryption-based vertical federated learning training.

A. Vertical Federated Learning (VFL)

Vertical federated learning is a distributed machine learning
framework, which aims at training an AI model across different
participants who share the same sample spaces rather than
feature spaces [54]. Figure 1 shows a general architecture of
NN-based VFL models. In the VFL setting, each participant
holds different features or labels belonging to the same samples.
Participants are divided into two groups based on whether they
own labels. In general, a participant with labels is categorized
as an active participant; otherwise, as a passive participant.
Suppose that we have two participants, A and B, where only
participant B owns labels. The general NN-based VFL model
is then defined as:

Y = h(g(XA; θA), g(X B; θB); θt) (1)

where XA and X B are the features owned by participants A and
B, respectively. θA and θB are the parameters of bottom models
g owned by participant A and participant B, respectively. θt
are the parameters of the top model h. Note that the top model
is only owned by participant B with data labels.

In general, NN-based VFL models can be trained with the
following steps. First, each bottom model takes their local data’s
features as input to run a forward pass calculation and output the
representations of their local features. After that, they upload
those representations (refer to embedding) to the top model.
Next, the top model aggregates all uploaded representations
from each bottom model to compute the final predictions.
Comparing the predictions with ground-truth labels, the top
model further calculates the gradients with respect to the loss.
Then, the gradients are back-propagated to each bottom model
from the top model, enabling the VFL model to make an
update.
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TABLE I: Summary of Notations

Notation Description

αA Participant A’s output
αB Participant B’s output
σ Activation function, e.g., Relu, Tanh, etc.

WA Weights that connect αA and first layer of top model
WB Weights that connect αB and first layer of top model

B. Encryption-based Vertical Federated Learning Training

In general, during the VFL training, each participant sends
their local data representations (output of the bottom model) to
the top model via plaintext. However, embedding-sharing has
been shown to lead to the leakage of original data [11], [43]. As
the output of a bottom model is an embedding of the local data
from one participant, it is risky to send those outputs to the top
model directly without applying any protection mechanisms.
As a solution to this problem, encryption techniques, such as
additively homomorphic encryption, can protect the bottom
model output, allowing the top model to calculate loss and
gradients without using the plaintext output from the bottom
models [56].

With the notation from Table I, we can introduce the
encryption mechanisms applied in VFL training. We use [·] to
represent an encryption operation. The working process can be
described as follows. z is the first layer output of the top model,
which is associated with each bottom model’s output. The goal
of privacy preservation is to calculate z without knowing the
value of a bottom model’s output. First, participant A encrypts
its bottom model output, [αA], and then uploads it to the
top model. Second, the top model generates a noise ϵB and
computes [zA] = [αA] ∗WA and zB = αB ∗WB. Next, the top
model sends [zA + ϵB] = [zA] + ϵB to participant A in order to
decrypt zA; meanwhile WA is protected from being seen by
participant A. Next, participant A decrypts [zA + ϵB] and sends
zA + ϵB + αA ∗ ϵacc, where ϵacc is a hyper-parameter ranging
from 0 to 1, to the top model. Afterwards, since the noise ϵB
can be eliminated, the top model can calculate its first layer
output z = σ(zB + zA +αA ∗ ϵacc). Then, the top model uses z
as input to run its forward pass to compute the final prediction.

III. RELATED WORK

In this section, we present related prior research regarding
two aspects: 1) privacy attacks in federated learning, and 2)
privacy protections in federated learning.

A. Privacy Attacks in Federated Learning

The training of AI models typically relies on a larger amount
of collected data raising heightened concerns about training data
leakage. Several works explore data leakage of training data in
the HFL setting [41], [58], as well as attacks to identify whether
an example is used in the HFL model’s training set [35]. In
particular, many successful data inversion attacks to reconstruct
the HFL model’s input data with only the gradients’ information
have been reported [21], [22].

Further, various privacy attacks have been proposed against
HFL, including membership inference, and properties inference,

etc. In membership inference [34], [35], [42], the attacker aims
to infer whether a data sample is included in another partic-
ipant’s training dataset. Properties inference [34] focuses on
reconstructing the data samples belonging to other participants
via the intermediate information exchanged.

In contrast to HFL, very few studies have explored the
privacy risks in VFL focusing primarily on data leakage
in the VFL inference phase. Yang et al. [52] construct a
feature reconstruction attack based on trained VFL models by
minimizing the distance between the predictions from recon-
structed features and target features using zeroth-order gradient
estimation. Luo et al. [31] study the feature reconstruction
attacks during VFL inference, focusing on logistic, tree-based,
and NN-based models, while Fu et al. [13] proposed a label
reconstruction attack by fine-tuning a trained bottom model
in a semi-supervised manner to predict the sample labels.
Importantly, these approaches can only be applied after the
VFL model has been trained and are not feasible during the
model training phase.

In addition, Fu et al. [13] have also presented several attempts
to analyze the potential label leakage risk in the VFL training
phase. However, their work is only applicable for reconstructing
training labels when the top model (server) is non-trainable or
when assuming non-honest adversary participants. Although
these situations might arise in extreme cases, they are generally
deemed impractical as the common practice requires the top
model to be trainable and the participants to be honest, i.e., to
faithfully adhere to the training protocol under performance
supervision. Besides, Li et al. [29] exploit the norm of gradients
in split learning to reconstruct labels during model training.
The key limitation of [29] is that they solely support two-
party scenarios in which one participant only holds labels, and
the other only holds features. Moreover, [29] is restricted to
binary classification tasks. Finally, Ye et al. [53] investigate
binary feature reconstructing by solving the linear equations
in training, but it is only applicable for scenarios in which the
feature-holding participants contain at most one layer of neural
network trainable parameters, rendering it an unrealistic setup.

To the best of our knowledge, no comprehensive privacy
risk analysis, including leakage of labels and features, has
been conducted in the context of VFL training. Additionally,
all existing related studies are conducted in non-encryption-
based VFL training frameworks. Note that data leakage in VFL
training is generally regarded as a more serious issue than
data leakage during VFL model inference [23]. Furthermore,
although recent work [13], [29], [53] attempted to assess
label or feature leakage risks in VFL training, the authors
concentrated on particular cases of VFL models for very narrow
application scenarios, e.g., binary classification, and binary
features. Different from prior works on VFL leakage risk
analysis, this paper explores label and feature leakage risks in
the VFL training process, that applies to any NN-based model.

B. Privacy Protections in Federated Learning

Many prior approaches have been introduced to prevent
training data leakage in federated learning. The approaches
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can be categorized into two categories. The first category is
data satinization [28], [33], e.g., k-anonymization, to remove
sensitive information from the training data to reduce the capa-
bility of an adversary to obtain or infer sensitive information
about the training data. The other category aims to protect the
training data from AI model training by adding random noise
in the model training process, e.g., differential privacy (DP) [5],
[46]. Ranbaduge et al. [38] study the trade-off between model
utility and privacy loss in a (ϵ, δ)-differential privacy setting
for VFL model training. The DP-based noise can be added
to the model input, gradients, and loss functions [46], [49].
Complementing the DP-based defense strategy, Ye et al. [53]
propose a protocol to add Gaussian-based noise to the output
of each bottom model. However, their defense strategies only
protect categorical features.

FL training requires gradients-related information to be
exchanged between each participant. However, prior research
has shown that the information exchanged can lead to privacy
leakage [37], [44], [34], [45]. Encryption-based exchange is a
solution for protecting information exchanged. Secure multi-
party computation (SMC) is one type of encryption technique
that runs secret computations among multiple participants [16].
In early 2016, Google proposed a gradient aggregation al-
gorithm based on SMC to prevent data leakage from HFL
training [8]. This prevents the server from obtaining the exact
gradient value of each participant. Furthermore, SMC combined
with differential privacy allows for HFL training with better
privacy protection guarantees [8], [46].

SMC can also be applied to train different VFL models,
e.g., tree-based models. A tree-based VFL model can be
trained using secure aggregation to calculate each candidate
node’s information loss, while the statistics about each node
are kept secret to each participant [9]. Prior studies also
proposed a solution to aggregate bottom model output with
homomorphic encryption for NN-based VFL training to prevent
data leakage [56]. However, our study finds that the existing
encryption solutions cannot prevent data leakage from NN-
based VFL training. Therefore, our work proposes a gradient-
perturbation-based defense technique to protect data privacy
during VFL training.

IV. VFLRECON: DATA RECONSTRUCTION ATTACKS

In this section, we analyze the vulnerability of training
data protection in the VFL training stage and present our
attack, VFLRecon, to better understand the potential impact
of adversarial participants in reconstructing training data, i.e.,
labels and features, from other participants during the VFL
training process.

A. Training Data Leakage Risks in Vertical Federated Learning

In the VFL setting, each participant is not able to directly
obtain the features or labels of the records with identical sample
IDs from other participants. However, it does not mean it is
impossible that one participant can reconstruct the features
or labels from other participants in the model training phase.
Suppose that L refers to the loss function of the NN-based VFL
model, while the adversarial participants hold features X adv

and bottom model g with parameters θadv. Eq. 2 represents
the gradient calculation of the adversarial bottom model. It
clearly shows that those gradients, i.e., ∂L

∂θadv
with respect to

adversarial participants’ bottom model, are associated with the
other participants’ bottom model output (b2), top model output
and ground-truth label. In other words, the distribution (model
parameters) changes in the bottom model are correlated with
the features and labels from other participants. This offers an
attack surface for the adversarial participants to reconstruct
other participants’ data samples (features or labels). Therefore,
this may lead to serious training data leakage in the VFL
training stage.

∇θadvL =
∂L
∂h

∇θadvh(badv, bvict; θtop)|badv=g(X adv;θadv);bvict=g(X vict;θvict)

(2)
Additionally, VFL models are widely deployed between

large entities with a significant share of overlapping user
populations, e.g., banks and e-commerce companies [51]. At
the same time, customer data is not only subject to strict
government regulations, but it is also an important component
of entities’ core competitiveness strength. Therefore, it is crucial
to analyze the potential training data leakage risks during VFL
training. This also enables us to design better privacy-preserving
mechanisms for VFL training protection.

B. Threat Model

Similar to prior studies [29], [31], [40], we assume the
adversaries to be honest-but-curious participants who can hold
the data label or not. In this context, “honest-but-curious”
means that the adversarial participants may exploit the known
information related to their own bottom model update to
conduct a data reconstruction attack without deviating from
the prescribed training protocols. To carry out VFLRecon, the
adversaries train an additional model (i.e., a shadow model)
with the assumptions categorized by different attack goals, i.e.,
label and feature reconstructions.

Threat model: In label and feature reconstruction scenarios,
the adversaries have the following common requirements and
knowledge:

• Only exploit the known information related to the updates
of the self-owned bottom models, i.e., inputs, parameters,
and gradients w.r.t the self-owned bottom models.

• Knowledge about the whole VFL model architecture,
which adheres to the typical training protocols adopted in
real-world VFL training pipelines.

• A small dataset consisting of complete data samples (all
features and labels), which follow the same distribution
as the training dataset. We refer to this dataset as shadow
data. In Subsection VI-C, we discuss practical solutions
to acquire these data.

In a real-world scenario, e.g., loan risk assessment, a bank,
and an e-commerce company may want to collaborate to train
a model to assess the potential risk associated with granting
a loan to a customer. The personal information held by the
bank (i.e., the features) represents a valuable asset that might
be of keen interest to the e-commerce company. In addition,
the e-commerce company may also be interested in the label
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Fig. 2: An overview of VFLRecon.

information from the bank. As such, it is reasonable to consider
the e-commerce company as a potential adversary with the
capability of using VFLRecon. More generally, any vertical
federated learning application, where data is vertically split, is
a candidate for feature and label reconstruction attacks during
model training.

C. Algorithm

In this work, we propose an NN-based reconstruction model,
R(·), to reconstruct labels or features from other participants.
During VFL model training, the adversarial participants run
R(·) by measuring the posterior difference of the bottom
model distributions. We represent the posterior difference
of the bottom model distribution using the bottom model
output’s gradients (δadv

g ), as well as the weights and bottom
model outputs before (θadv, g(X adv; θadv)) and after (θ′adv,
g(X adv; θ′adv)) bottom model update. In order to model the
correlation between those posterior differences and their
training samples in two consecutive training steps, we first
simulate the VFL shadow model training process to collect the
necessary data that depicts the correlation between features or
labels of training samples and the bottom model’s distribution
changes during VFL training. Then, we use the collected data
to train an NN-based reconstruction model R(·) as attackers.
The reconstruction loss is defined as:

Lf
r=∥R(δadv

g , g(X adv; θadv), g(X adv; θ′adv), θadv, θ
′
adv,X

adv)−X vict∥22
(3)

where R(·) is the reconstruction model that can be an arbitrary
NN-based model. Moreover, X adv and X vict are the raw
features of the adversarial participants and victim participants,
respectively. Note that Eq. 3 is not suitable for measuring the

success of classification tasks. Therefore, in label reconstruction,
the loss function is changed as follows:

Ll
r=−Ey(y logR(δadv

g , g(X adv; θadv), g(X adv; θ′adv), θadv, θ
′
adv,X

adv))
(4)

D. Data Reconstruction Attacks

To simplify, we adopt the commonly used framework where
adversarial participants own at least one bottom model. Note
that VFLRecon can be seamlessly adapted to reconstruct
features or labels when the adversarial participants only hold
the top model. Algorithm 1 describes the whole process
of constructing VFLRecon to run a specific attack task,
reconstructing labels or features from the victim participants.
First, the adversarial participants train the VFL shadow model
from scratch using the shadow data samples, including complete
features and labels. Furthermore, they intentionally record the
required information related to the bottom models’ distribution
change during the shadow model training. After that, the
adversarial participants train a reconstruction model, R(·),
using the data collected during the VFL shadow model training.
The reconstruction model, R(·), can be applied to reconstruct
training samples’ features or labels in realistic VFL training.
More specifically, the whole process of the construction and
application of R(·) can be structured into three steps, which
are shown in Figure 2.

Step 1: Collecting data for training the reconstruction
model. To collect the data for training reconstruction models,
the initial step is to collect the data related to the bottom
model’s distribution changes and reconstruction target. Those
data are generated during the shadow VFL model training. We
construct a VFL shadow model to mimic the realistic VFL
training process and employ the shadow data as training data.
Algorithm 1 demonstrates the details of constructing VFLRecon.
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Algorithm 1 VFLRecon Construction
Input: g: Shadow bottom models. θadv and θvict are parameters
of adversarial and victim participants’ bottom models, respec-
tively;
h: Shadow top model, with parameters, θt;
X : Shadow data with complete features and labels, which is a
list of tuples (X adv, X vict, y);
γ: Learning rate.
Output: R(·): MLP-based reconstruction model.

1: samples = ∅
2: while (X adv,X vict, y) ∈ X do
3: badv = g(X adv; θadv)
4: bvict = g(X vict; θvict)
5: o = h(badv, bvict; θt)
6: L = Loss(o, y)
7: δadv = ∂L

∂θadv

8: θ′adv = θadv − γ · δadv
9: b′adv = g(X adv; θ′adv)

10: if reconstruction model target is label then
11: one record = { ∂L

∂badv
, badv, b

′
adv, θadv, θadv

′,X adv, y}
12: else
13: one record = { ∂L

∂badv
, badv, b

′
adv, θadv, θadv

′,X adv,X vict}
14: end if
15: samples = samples ∪ one record
16: Applying SGD to update θadv, θvict and θt
17: end while
18: R ← MLPModel(samples)
19: return R(·)

We first define an empty set of samples to store all training
records of reconstruction models (Line 1). Next, we iteratively
train the VFL shadow model using the complete features and
labels (shadow data) (Lines 2 to 17). During model training, we
feed the same input X adv to the bottom model with parameters
before (line 3) and after updating the model (line 9). In addition,
we record the data generated during the training process and
save them in samples (lines 10 to 15).

Step 2: Training the reconstruction model. After we finish
the data collection, we use the collected samples from step 1
to train an NN-based R(·) for reconstructing labels or features
from other participants during VFL model training (Line 18).
We adjust the model output based on the different attack tasks,
reconstructing labels or features. As a general rule of thumb,
reconstructing the label task takes a sparse vector as the output
layer, whereas we take a dense vector as the output layer for
reconstructing feature tasks.

Step 3: Executing reconstruction attacks. During the actual
VFL model training, the adversarial participants record the data
related to their bottom models’ changes at each training step to
compose the input for R(·). As VFLRecon exploits the changes
in the bottom model during training, the adversarial participants
are capable of reconstructing training data samples, including
features and labels from other participants after participating
only in one epoch of training.

TABLE II: Overview of datasets.

Dataset Total samples Features Labels
S. Drive Diagnosis 58K 48 11
Criteo 45M 39 2
CIFAR-10 60K 1024 10
BHI 270K 2500 2
Avazu 40M 24 2
CelebA 202K 1024 2

V. EVALUATION SETUP
In this section, we present the experimental setup and metrics

to measure the success of VFLRecon in reconstructing training
samples’ features and labels. We further evaluate VFLRecon on
various datasets ranging from tabular data to images. Moreover,
we discuss and analyze the vulnerability of training data
protection during VFL training in the last subsection.

A. Experimental Setup

We implement VFLRecon with Pytorch and conduct ex-
periments on a server with four 24GB Quadro RTX 6000
GPUs and 512GB RAM running Ubuntu 20.04 LTS. We
train the NN-based VFL model in both a general VFL
training framework [39] and an encryption-based VFL training
framework [56]. The NN-based VFL model consists of bottom
models with two hidden layers for each participant, where
each hidden layer has 50 units. The top model has two hidden
layers, each with 100 units. To reconstruct labels, VFLRecon
consists of three hidden layers with 1000, 600, and 200 units,
respectively. Moreover, VFLRecon has three hidden layers
with 800, 500, and 100 units, respectively, when it is applied
to reconstruct features. To train the NN-based VFL model
and VFLRecon, we use Adam [24] as an optimizer and “He
Uniform” [18] as the initializer. The initial learning rate is
set to 0.001. We conduct our label and feature reconstruction
experiments on six well-known benchmark datasets, including
three tabular datasets (Sensorless Drive Diagnosis, Avazu and
Criteo) and three image datasets (CIFAR-10, BHI and CelebA).
The overview of our datasets is shown in Table II. We separate
the original datasets into two disjointed parts, i.e., a small partial
dataset (shadow data) and a large partial dataset (normal VFL
model training). The VFL shadow model simulates the training
process of the VFL model to generate data for VFLRecon
training using the small amount of shadow data. The larger
partial dataset is employed for VFL model training, which
serves as the target that VFLRecon aims to reconstruct.

To better understand the vulnerability of training data
protection during a VFL training process, we conduct further
experiments in a setting with encryption-based privacy-
preserving VFL training algorithms [55]. The experiments
are conducted with the open-source FATE platform [1].

B. Datasets

In this subsection, we give a brief description of the datasets
listed in Table II.

Sensorless Drive Diagnosis is a dataset containing 58,509
data records related to drive signals. Each record has 48 features.
The records are categorized into 11 classes.
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Avazu is a benchmark dataset for click-through rate (CTR)
prediction tasks. It contains around 40 million online ad
impressions, each labeled as clicked (1) or not clicked (0).
The dataset includes 24 features. In this work, we conduct
empirical experiments on 500k data records with balanced
sampling from the original data.

CelebA is a large-scale face attributes dataset containing
200k RGB images, which are aligned using facial landmarks.
This involves randomly selecting a subset of images, center-
cropping them, and resizing them to a resolution of 32×32 for
training the models and evaluating the attacks.

Criteo is a public dataset that contains user click histories,
which is used for recommendation system tasks. The recom-
mendation scenario is a practical application of VFL. The
original dataset contains billions of user records. Limited by
our computing resources, we sample 500,000 data records from
the original dataset to conduct our analysis.

CIFAR-10 is a well-known label-balanced dataset and
contains 60,000 images categorized into 10 classes, each of
which consists of 6,000 images.

BHI is a medical dataset that only includes breast cancer
images. Each patient’s X-rays are distributed among multiple
hospitals. We conduct image reconstruction tasks on this
dataset.

To conduct reconstruction attacks using VFLRecon, we
sample a very small amount of data from each dataset, e.g.,
1000 records, to generate shadow data that can be accessed by
adversarial participants.

C. Evaluation Metrics

To understand the vulnerability of training data protection
in VFL training, we use the following metrics to measure how
successfully the adversarial participants can apply VFLRecon
to reconstruct labels or features owned by other participants
during VFL model training.

Accuracy is applied to evaluate the performance of label
reconstruction. Accuracy calculates the percentage of correctly
reconstructed labels from the whole training set.

Accuracy =
the number of correctly classified labels

the number of all labels
(5)

Mean Square Error (MSE) is a metric to compare the
difference between training features and reconstructed features.
We use MSE to measure the performance of the feature
reconstruction attack. Suppose that yi is a ground-truth value,
ŷi is the predicted value, n is the number of records, then the
MSE can be calculated as:

MSE =

∑
(yi − ŷi)

2

n
(6)

VI. ATTACK EVALUATION

In this section, we evaluate how successfully VFLRecon can
reconstruct other participants’ partial features and labels during
VFL model training. In addition, we provide a comprehensive
understanding of the vulnerability of training data protection
at the VFL training stage. We start by assessing the success
of reconstruction attacks on features and labels with six very

different benchmark datasets, ranging from tabular data to
images. After that, we analyze the potentially significant
factors that led to the success of VFLRecon. The data and
code are available at https://sites.google.com/view/vflrecon/vfl-
reconstruct.

A. VFLRecon for Reconstructing Labels

To determine how much label information can be leaked
during VFL training, we first randomly sampled a small amount
of data from the whole dataset as shadow data. After that,
we locally trained an NN-based VFL shadow model and
collected the data containing the bottom model snapshots and
gradients during model updates. In particular, to discover the
vulnerability of training data protection in general VFL training,
we conducted experiments on both non-encryption-based and
encryption-based VFL training settings.

To evaluate the effectiveness of VFLRecon, we ran our
label reconstruction attack experiments on NN-based VFL
models on the six datasets presented in Subsection V-B. We
utilized accuracy as the metric to evaluate the success of the
label reconstruction attacks. Due to the relative absence of
related work in VFL privacy research on protecting training
data, we employed a common and intuitive approach to
formulating a baseline. That is, we reconstruct labels from
other participants based on a prediction model trained using
shadow data. Specifically, we train a baseline attacker model
to predict the labels of the training samples using shadow data
as training data. The adversary’s features serve as input for
this baseline attacker, while the training samples’ labels are
the output. We also compare our approach to prior studies [13]
and [29]. [13] proposes one attack approach related to label
reconstruction during model training, focusing on the scenario
where the top model serves as an aggregation function without
any trainable parameters. Similarly, [29] can only be applied
to two-party scenarios in which one participant holds labels
only, and the other holds features only. To demonstrate the
effectiveness of our approach and make a fair comparison, we
tailor our approach to their scenarios.
Results: VFLRecon can effectively reconstruct labels in
different types of datasets, e.g., tabular data and images.
Figure 3 shows that VFLRecon performs significantly better
than the baseline attacks across all datasets, regardless of the
data type. The adversarial participants, only owning half of the
samples’ features, can create a VFL shadow model with 100
complete data samples (including all features). When the batch
size is 16 for the VFL shadow model training, the accuracy of
label reconstruction is over 85% for all six datasets. Especially,
in the two common benchmark datasets Avazu and CelebA,
VFLRecon can achieve an accuracy of around 90% in label
reconstruction. However, as can be seen in the figure, with the
increasing complexity of the dataset, the label reconstruction
accuracy decreases from 92% (Criteo) to 85% (CIFAR-10).

VFLRecon can effectively reconstruct labels in both
encryption-based and non-encryption-based VFL training
frameworks. Note that encryption-based training frameworks
are considered secure methods to prevent data leakage in the
model training stage [44], [58]. However, Figure 3 shows that
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Fig. 3: The label reconstruction attacks on different datasets.
S.Diagnosis refers to the Sensorless Drive Diagnosis dataset.
“w.en.” is the target model trained in an encryption-based VFL
training framework, and “w/o.” is the model trained in a non-
encryption-based VFL training framework.

our approach achieves a very similar performance when recon-
structing labels in the encryption-based VFL training setting
(i.e., an average accuracy of 87.75%) and the non-encryption-
based VFL training setting (i.e., an average accuracy of
87.75%) for both tabular and image data. The results indicate
that encryption-based VFL frameworks are not capable of
preventing label leakage during training. VFLRecon effectively
reconstructs the labels from other participants. Additionally,
VFLRecon shows that the existing encryption-based frameworks
also suffer from weak training data protection in the VFL
training stage.

TABLE III: Label reconstructions over Criteo, Avazu, and
CelebA datasets during VFL training.

Criteo Avazu CelebA Average

Li et al. [29] 88.62% 82.64% 86.49% 85.92%
Ours 91.24% 89.45% 90.08% 90.26%

VFLRecon is a more generic approach to measuring
the leakage risks of training sample labels. Table III
presents the experimental results for the approach from prior
work [29] and our approach. The results show that VFLRecon
achieves a better accuracy of 91.24%, 89.45%, and 90.08%
compared to [29] with an accuracy of 88.62%, 82.64%, and
86.49% in datasets Criteo, Avazu, and CelebA, respectively.
Additionally, compared with [13] in the Sensorless Drive
Diagnosis dataset, when the top models are non-trainable (only
aggregation), the label reconstruction accuracy of [13] can
reach 100% while VFLRecon reaches 96%. However, when the
top models are trainable (which is the common practice), the
label reconstruction accuracy from [13] decreases from 100%
to 56%, while VFLRecon still reaches an accuracy of 92%.
We find that when increasing the number of layers in the top
model, [13] shows gradually diminishing effectiveness.

Remark: The labels of training samples are prone to leakage
to other participants during VFL training. The standard
encryption mechanisms applied in VFL training cannot
protect those labels.

B. VFLRecon for Reconstructing Features

Training samples, including features and labels, are regarded
as a key asset for many organizations. We have shown that our
proposed approach, VFLRecon, is capable of reconstructing the
labels of training samples from other participants during VFL
training. Besides effective label reconstruction, to understand
how much information about samples’ features may be leaked
during VFL training, we investigate whether VFLRecon can
effectively reconstruct the training data features from other
participants during VFL training. In other words, we focus
on studying whether the bottom model changes disclose
information about features from other participants.

To investigate how well the adversarial participants can
reconstruct the training data features, we first trained a VFL
shadow model to collect the required data introduced in
Section IV as the training data of VFLRecon. In particular,
we assumed that the adversarial participants own half of
the features of the training samples during VFL training.
Moreover, to examine the essential weakness of training data
feature protection in VFL training, we also ran the feature
reconstruction in both encryption-based and non-encryption-
based training settings.

The features in the original dataset might be independent
or correlated to each other. The correlation between features
contains sensitive information about the training samples and
poses serious privacy leakage risks. For example, the income
feature may have a positive correlation with age features in a
company dataset owned by a VFL participant. If adversaries
have prior knowledge about the individuals’ age, it is easy to
infer who earns more than others in that company. Therefore,
we also evaluated whether VFLRecon can reveal the correlation
between features.

Similar to label reconstruction, we assessed feature recon-
struction on NN-based VFL models in six different datasets.
For the experiments on CIFAR-10, each participant possessed
one part of an image. The participants then collaborated to
predict the content of the images. The adversaries can apply
VFLRecon during the collaboration. We used MSE as a metric
to measure the success of feature reconstruction attacks.

In line with the label reconstruction evaluation in Subsec-
tion VI-A, we took the model that reconstructed the features
of other participants based only on the features possessed
by the adversarial participants as the baseline. Furthermore,
to investigate whether the reconstructed features retained
the correlation between features in the original samples, we
separately calculated the correlation scores between each pair
of features for the original and reconstructed samples.
Results: VFLRecon can effectively reconstruct features in
both tabular and image data in both encryption-based and
non-encryption-based frameworks. Figure 5 shows that our
approach has a much lower MSE than the baseline approach in
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both VFL training frameworks, indicating the high quality of
the reconstructed features. In addition, VFLRecon performs well
across different datasets, ranging from tabular to image data
(see Figure 5), and it performed similarly for encryption-based
(i.e., an average MSE of 0.03) and non-encryption-based (i.e.,
an average MSE of 0.04) frameworks. The minimum MSE
(0.01) is achieved for the Sensorless Drive Diagnosis dataset,
in both settings.

Original 
Images

Reconstructed
Images

Original 
Images

Reconstructed 
Images

Fig. 4: The visualization of image reconstruction in CelebA.

In general, image reconstruction is more challenging than
tabular data reconstruction due to the inherent complexity intro-
duced by the increased feature dimensionality. Nevertheless, our
experiments show that VFLRecon can faithfully recover images
up to a high degree of similarity to their original counterparts.
The feature reconstruction MSEs in the encryption-based
environment are 0.04, 0.03 and 0.01, with the baseline being
0.23, 0.25 and 0.22, in the CIFAR-10, BHI and CelebA datasets,
respectively. Figure. 4 visualizes the reconstructed images for
the CelebA dataset when adversaries hold half of each image.
The models were trained without encryption techniques.
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Fig. 5: The feature reconstruction attacks on different datasets.
S.Diagnosis refers to the Sensorless Drive Diagnosis dataset.
“w.en.” is the target model trained in an encryption-based VFL
training framework, and “w/o.” is the model trained in a non-
encryption-based VFL training framework.

VFLRecon is able to reconstruct the hidden correlation
between features. Figure 6 depicts the correlation (using the
Pearson correlation coefficient) between features in the original
dataset and the reconstructed features using VFLRecon. As
shown in Figure 6, VFLRecon can effectively reconstruct the
correlations between features. For example, feature 3 has a
correlation of -0.45 to feature 4 in the original dataset. In

our reconstructed features, the corresponding correlation is
-0.25. These results suggest a high utility of the reconstructed
features for downstream tasks by the adversary. Furthermore,
the reconstructed features provide a potential attack surface
for model property inference attacks.

Remark: Training data features can easily leak to adversar-
ial participants during VFL training, and standard encryption
mechanisms may be insufficient to prevent such leakage.
Additionally, the correlation between the features can be
reconstructed with high accuracy.

C. Discussion
In this subsection, we investigate further influencing factors

impacting the vulnerability of training data protection in VFL
training. The previously illustrated experimental results already
reveal that VFLRecon can successfully reconstruct labels and
features from other participants during VFL training. By more
deeply investigating factors influencing such data reconstruction
(vulnerability in training data protection), practitioners can
better understand the characteristics of training data leakage.
Such characteristics can be used to proactively design improved
privacy-preserving mechanisms to protect their training data
during VFL training.

Potential impacts on the vulnerability of training data
protection in VFL training. A prior study [13] reports that
the percentage of features, batch size, feature partition strategy,
shadow data size, and model update process might impact
the label reconstruction performance on a trained VFL model.
Therefore, we conducted experiments to investigate if these
factors affect the effectiveness of VFLRecon on reconstructing
labels and features from other participants during model
training.

Ablation experiment setup. We first ran our experiments in
the NN-based VFL model on the Sensorless Drive Diagnosis
dataset. Next, we allowed the adversarial participants to own
half of the features. To study how the percentage of features
affects the weakness of training data protection, we increased
the percentage of features owned by the adversarial participants
from 5% to 15%, 25%, 50%, and 75% of complete features.
For batch size, we set up the batch size ranging from 1 to 128.
In terms of number of participants, we consider multiple
participants, i.e., 2, 3, and 4 participants in our experiment.
For feature partition strategy, we use three different feature
partition strategies, i.e., random, Gaussian, and Gibbs partitions.
Regarding the model update process, we consider three
different common optimizations in our experiment, i.e., Adam,
SGD and AdaDelta. For shadow data size, we conduct further
experiments to examine the correlation between our proposed
reconstruction attacks and shadow data size. The experiments
otherwise use the same setting as reported in Section VI-A.
We also applied a similar process to evaluate how success-
fully VFLRecon reconstructs labels and features. Finally, we
compared the performance of label and feature reconstruction
to understand which factors are important in determining the
weakness of training data protection during VFL training in
terms of the metrics introduced in Subsection V-C.
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TABLE IV: The experiments to explore the effectiveness of VFLRecon with different factors, i.e., the number of participants,
feature partition strategy, and model updates process in the Sensorless Drive Diagnosis dataset. “w. en.” is the model trained
in the encryption-based VFL training framework, and “w/o.” is the model trained in the non-encryption-based VFL training
framework. Recon. refers to reconstruction.

Number of Participants

2 3 4

Label Recon.
Accuracy

Feature Recon.
MSE

Label Recon.
Accuracy

Feature Recon.
MSE

Label Recon.
Accuracy

Feature Recon.
MSE

NN based VFL(w. en.) 87.32% 0.01 87.11% 0.01 86.99% 0.01
NN based VFL(w/o. en.) 86.22% 0.01 85.98% 0.01 85.77% 0.01

Feature Partitions Strategy

Radom Gaussian Gibbs

Label Recon.
Accuracy

Feature Recon.
MSE

Label Recon.
Accuracy

Feature Recon.
MSE

Label Recon.
Accuracy

Feature Recon.
MSE

NN based VFL(w. en.) 87.32% 0.01 86.99% 0.01 81.61% 0.03
NN based VFL(w/o. en.) 86.22% 0.01 87.49% 0.01 80.98% 0.03

Model Update Process

Adam SGD AdaDelta

Label Recon.
Accuracy

Feature Recon.
MSE

Label Recon.
Accuracy

Feature Recon.
MSE

Label Recons.
Accuracy

Feature Recon.
MSE

NN based VFL(w. en.) 87.32% 0.01 88.12% 0.01 86.78% 0.01
NN based VFL(w/o. en.) 86.22% 0.01 87.49% 0.01 86.96% 0.01

1) Percentage of features: The experimental results demon-
strate that the more features the adversarial participants
hold, the easier they can reconstruct the labels or features
of training samples from other participants. Figure 7 (left
part) shows that, when the adversarial participant holds 75% of
the features of the complete samples, our approach can achieve
an accuracy of 91% with encryption-based VFL training. More
importantly, such a high accuracy can be achieved without the
need to have a large portion of features. Having only 25% of

the features stored by adversarial participants, our approach
still achieves a highly efficient attack accuracy of 81%.

Figure 7 (right part) shows the impact of using different
percentages of features to conduct feature reconstruction. As
expected, if an adversarial participant owns more features
during VFL model training, it is easier for the attacker to steal
the feature values from other participants. However, the quality
of reconstructed features remains stable when the percentage
of features held by adversarial participants is higher than 25%.
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Fig. 6: Visualization of Pearson correlation coefficient for 10 randomly selected features in the Sensorless Drive Diagnosis
dataset. The left figure refers to the Pearson coefficient of the features in the original data, while the right figure is the Pearson
coefficient of the features in the reconstructed data.
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Fig. 7: Effect of adversarial participant’s features percentage on feature reconstruction attacks in VFL training on the Sensorless
Drive Diagnosis dataset. “w. en.” is the model trained in the encryption-based VFL framework, while “w/o.” is the model
trained in the non-encryption-based VFL training framework.

Even when adversarial participants only hold 25% of the total
features, our approach achieves a very low MSE (0.08). As
such, without needing a large portion of features at hand,
VFLRecon can successfully and effectively reconstruct other
participants’ feature values.

2) Batch size: Batch size does not play an important role
in data reconstruction attacks. Regarding the different choice
of batch sizes (Figure 8), our results show that the success
of VFLRecon is rather unaffected by this factor. The majority
of the MSE in our approach is less than 0.05 across different
batch sizes. For example, VFLRecon still achieves an MSE of
0.04 when using a batch size of 128 in the encryption-based
VFL model training stage.

3) Number of participants: Table IV shows experimental
results in label reconstruction attacks on the setting with
different participants in the Sensorless Drive Diagnosis dataset.
The results show that the number of participants has no signif-
icant impact on our label reconstruction attack performance in
encryption- and non-encryption-based VFL model training.

4) Feature partition strategy: Table IV shows the perfor-
mance results using different feature partition strategies. The
results show that using an exponential partition strategy, VFLRe-
con achieves the best label reconstruction attack accuracy, i.e.,
87.49%, in non-encryption-based VFL model training. There-
fore, reasoning about feature partition strategies is important
when designing privacy-preserving VFL applications.

5) Model update process: Table IV shows the results for
attack accuracy using three different optimizations. We find that
VFLRecon achieves a similar attack accuracy, i.e., about 87%,
for the three optimizers. Such results imply that the model
update process has little impact on VFLRecon.

6) Shadow data size: The experimental results demonstrate
that our approach only requires a very small amount of shadow
data to conduct effective reconstruction attacks, e.g., 1000
samples (0.2%) in the Criteo dataset containing 500,000 records.
It is important to note that as adversaries access more shadow
data, the effectiveness of reconstruction attacks increases. When
the amount of shadow data surpasses a certain threshold,

the improvement of reconstruction effectiveness becomes less
pronounced. As previously shown, 1000 samples are enough
during attack experiments (Figure 3 and Figure 5) for the six
studied datasets with sizes ranging from 58,509 to 500,000.
In fact, the actual needed shadow data that can conduct an
effective attack maybe even less, as illustrated in Figure 9. It
is practical and straightforward to collect such an extremely
small amount of shadow data [42], e.g., via model-based
synthesis and statistics-based synthesis [12], [57]. Specifically,
the adversary can generate a small number of samples without
labels based on some strategies and use the inference service
to call the trained VFL model (target model) to generate the
labels. Moreover, the adversary may also use non-technical
strategies such as purchasing a small amount of data from
other participants or data brokers directly.

Remark: Several configuration factors, i.e., percentage of
features, feature partition strategy and amount of shadow
data available to adversarial participants, have a considerable
impact on the leakage risks of training samples in the
VFL training stage. In contrast, the number of participants
and choice of optimizers exert minimal impact on the
effectiveness of VFLRecon.

VII. DEFENSES AGAINST TRAINING DATA
LEAKAGE

Section VI has shown the high potential for leakage of
training data in the VFL training stage. In this section, we
propose a practical defense strategy.

A. VFLDefender: Preventing Training Data Leakage during
VFL Training

To defend against data leakage, we propose a gradients-
obfuscation-based approach. With gradients-based model up-
dates, the training samples guide the VFL model to learn the
distribution of the training data. Gradients are an effective
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Fig. 8: Labels and features reconstruction in different batch sizes in Sensorless Drive Diagnosis Datasets. S. Diagnosis refers to
Sensorless Drive Diagnosis dataset. “w. en.” is the model trained in the encryption-based VFL training framework, and “w/o.”
is the model trained in the non-encryption-based VFL training framework.
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Fig. 9: Label and feature reconstruction in settings with different amounts of necessary shadow data in Sensorless Drive Diagnosis
dataset. S. Diagnosis refers to the Sensorless Drive Diagnosis dataset. w. en. is the model trained in an encryption-based VFL
training framework, and w/o. is the model trained in a non-encryption-based VFL training framework.

metric to measure how much the distribution changes were
caused by the training samples. If two or more samples
produce the same gradients, the correlation between model
changes and the training samples becomes weak. Therefore,
we aim to perturb the back-propagated gradients to decrease the
correlation between the bottom model’s distribution changes
and the training samples. Adding random noise to gradients
is one of the most common approaches to protecting the
information contained in gradients [19], [58]. However, the
magnitude of the noise scale has a significant impact on model
utility [13], [58]. To ensure model utility, we designed a simple
mechanism, VFLDefender, to add as little noise as possible to
the gradients of the output layer. Our approach is to randomize
the norm of the gradients without changing their direction
dramatically.

In VFLDefender, we employed the same symbols in Eq. 2
to represent the gradients of the output layer: δo = ∂L

∂h . Before
adding noise to δo, we clip and normalize δo to δ̂o, then reset

δ̂o in terms of Eq. 7. Note that δ̂o is a vector, and δ̂i is the
i-th element in δ̂o. tmax and tmin are maximum and minimum
clipping thresholds, respectively.

∀δ̂i ∈ δ̂o; δ̂i =

{
rand(0, tmax), if δ̂i >= 0

rand(tmin, 0), if δ̂i < 0
(7)

Algo. 2 shows the details of our proposed defense algorithm.
During VFL model training, each bottom model’s owner first
feeds their self-owned samples to the models and uploads the
output to the top model (lines 1-3). The top model aggregates
all bottom model outputs to make a final prediction (line 4).
After that, the top model calculates the output layer’s gradients
(δo) in terms of the selected loss function and the ground-truth
labels (line 5). Furthermore, the top model clips the δo and
applies l2-norm-based normalization to transform it into δ̂o
(lines 6-7). Then, the top model randomizes the norm of δ̂o
while keeping the gradients’ direction unchanged (lines 8-14).
After that, the randomized gradients, δ̂o, are back-propagated
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Algorithm 2 VFLDefender
Input: K: The number of bottom models;
g: Bottom models. Each bottom model’s parameters are
θi, i = 1, ...,K;
h: Top model, with parameters, θt;
XK

1 : Training data features; it consists of (X1, ..., XK); Xi is
the features owned by bottom model i;
y: Ground truth label;
γ: Learning rate;
tmax, tmin: Maximum and minimum clipping thresholds, respec-
tively.
Output: θK1 , θt.

1: for k = 1 to K do
2: bk = g(Xk; θk)
3: end for
4: o = h(bK1 ; θt)
5: L = Loss(o, y)
6: δo = Clipping(∂L∂o ; tmax, tmin)

7: δ̂o = Normalize(δo)
8: for all δ̂ ∈ δ̂o do
9: if δ̂ > 0 then

10: δ̂oi = rand(0, tmax)
11: else
12: δ̂oi = rand(tmin, 0)
13: end if
14: end for
15: for k = 1 to K do
16: θk = θk − γ · δ̂o · ∂o

∂θk
17: end for
18: θt = θt − γ · δ̂o · ∂o

∂θt
19: return θK1 , θt

to each model layer. The bottom and top models update their
parameters using the perturbed gradients (lines 15-18).

VIII. DEFENSE EVALUATION

In this section, we present and discuss the evaluation results
against training data leakage during VFL model training.
A. Defense Evaluation

We evaluate our defense approach using the Sensorless
Drive Diagnosis, CIFAR-10 and Criteo datasets. Specifically,
we first apply VFLDefender to train the VFL model. During
model training, we conduct label and feature reconstruction
attacks using the same setting as in Subsection VI-A and
Subsection VI-B, respectively. Additionally, to highlight the
effectiveness of VFLDefender, we first assess the success of
VFLRecon on label and feature reconstruction with different
random noise variance.

Furthermore, we examine whether differential privacy and
other privacy-preserving technologies can be applied to prevent
data leakage during model training. Specifically, we compare
VFLDefender with DP-SGD [5] with different privacy budgets
(10, 100), and Marvell [29].

Results: Random noise solutions cannot prevent training
data leakage from VFL training without substantial model

utility loss. Table V shows the results when random noise is
added to the output of a top model for the Sensorless Drive
Diagnosis dataset. We observe a noticeable relationship between
the noise variance and attack performance in the two attack
tasks (i.e., label and feature reconstruction). For example, when
adding random Gaussian noise with a variance of 0.1, the
accuracy of label reconstruction is only 14% and the MSE
of feature reconstruction is 1.5. However, the more noise is
added, the worse the model’s utility becomes. Consequently, the
random-noise-based solutions have to be considered ineffective
given the increasing model utility loss.

TABLE V: Results of labels and features reconstruction under
the protection of random noise solutions for Sensorless Drive
Diagnosis dataset. Perf. refers to performance; Acc. refers to
accuracy; and MSE refers to mean square error.

Label Reconstruction Feature Reconstruction

Attacker Perf.
(baseline) 62% 0.22

Attacker Perf.
(our attack, w/o. defence) 86% 0.01

Noise Var. 0.001 0.01 0.1 0.001 0.01 0.1
VFL Model
Acc. Loss -1% -30% -73% -1% -30% -73%

Metrics Accuracy MSE
Attacker Perf.

(our attack, w. defence) 85% 57% 14% 0.019 0.26 1.5

Limiting a bottom model’s change decreases the vul-
nerability of training data in VFL training. Applying the
VFLDefender protection approach, Table VI shows that the at-
tack performance decreases dramatically for the studied datasets.
For example, in the dataset of Sensorless Drive Diagnosis, the
attack accuracy decreases from 86.22% to 69.48% in terms
of label reconstruction. Regarding feature reconstruction, the
MSE changes from 0.01 to 0.14. Furthermore, it is important to
note that these figures are even close to the attack performance
of the baseline approach. These results strongly suggest that
VFLDefender can decrease the vulnerability of training data.
At the same time, limiting a bottom model’s change might
be expected to decrease the model’s utility. However, in our
experiments, the VFL model accuracy loss is only around
1%. In contrast, while the experimental results also show that
DP is likewise able to protect the privacy of training data,
the approach would decrease the model accuracy dramatically
(about 35% when privacy budget ϵ = 10).

Remark: Obfuscating the gradients adds uncertainty to the
correlation between bottom|top models’ distribution change
and training samples. VFLDefender can efficiently protect
the training data during VFL training while maintaining
model utility.

B. Discussion

The experimental results in Table V and Table VI show
that following the basic approach to add random noise into
gradients is possible to prevent training data leakage at the
VFL training stage. Such a result is expected since generally
injecting noise is a way to perturb the correlation between
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TABLE VI: Result of labels and features reconstruction under the protection of VFLDefender for Sensorless Drive Diagnosis,
Criteo and CIFAR-10 datasets. Recon. refers to reconstruction; Acc. refers to accuracy; and MSE refers to mean square error.

Sensorless Drive Diagnosis Criteo CIFAR-10

Methods Acc. Loss Label
Recon. Acc.

Feature
Recon. MSE Acc. Loss Label

Recon. Acc.
Feature

Recon. MSE Acc. Loss Label
Recon. Acc.

Feature
Recon. MSE

Baseline - 62.19% 0.22 - 55.39% 0.19 - 62.49% 0.23
w/o defense - 86.22% 0.01 - 91.24% 0.07 - 87.18% 0.03
DP-SGD[5] (ϵ = 10) -34.13% 55.28% 0.21 -38.21% 53.13% 0.18 -35.26% 63.12% 0.22
DP-SGD[5] (ϵ = 100) -27.55% 57.18% 0.19 -29.29% 56.72% 0.17 -26.39% 64.09% 0.22
Marvell [29] -2.30% 78.44% 0.09 -2.44% 82.41% 0.09 -3.74% 77.29% 0.07
Our approach -1.04% 69.48% 0.14 -1.31% 58.27% 0.17 -0.45% 64.47% 0.19

the self-owned bottom model’s changes and features or labels
of training samples. However, a small amount of noise is not
enough to obfuscate those correlations, while a large amount of
noise leads to a dramatic model utility decrease (see Table V).
Differing from adding random noise, VFLDefender aims to add
an adaptive noise to the clipped gradients while keeping the
gradients’ direction unchanged. Therefore, VFLDefender can
largely preserve the most informative signals in model training
while obfuscating the correlation between model changes and
target features or labels.

Apart from the abovementioned defense strategies, there are
also other possible defenses against training data leakage, e.g.,
DP. In our defense evaluation, we find that DP can protect
the privacy of the training data. However, model accuracy
decreases dramatically by 34.13% and 27.55% using DP with
a privacy budget of 10 and 100, respectively, in the context
of the Sensorless Drive Diagnosis dataset. The performance
results for the other studied datasets, Criteo and CIFAR-10,
are similar. Such results imply that the DP-based algorithms
are not suitable for the studied settings.

Furthermore, our results in Figure 7 show that the accuracy
of label reconstruction decreases by about 57% when the
percentage of features held by the adversarial participant
drops from 25% to 15%. Inspired by this observation, we
conjecture that influencing the percentage of features held
by the participants may be used to increase the difficulty of
reconstruction attacks during VFL training. A possible approach
is that the victim participants construct additional useless
features within their local data. As these features would not be
related to the learning task, their impact on the performance
of the final NN-based VFL model would be negligible.

IX. LIMITATIONS

Our evaluation is conducted with six benchmarking datasets
with diverse characteristics using NN-based VFL models.
Although our studied datasets cover different domains and sizes,
our evaluation results may still not generalize to other datasets
and other models. Our results in the ablation experiments
show that it is easier for adversarial participants who hold
more features to reconstruct labels from other participants.
Therefore, the success of the attack approach may necessitate a
considerable percentage of features. Finally, when participants
do not work together to design the final VFL architecture,
participants might have no information about the final model
architecture. Such missing information may disturb the attack
surface. While our approach is both data- and model-agnostic

(i.e., it can be seamlessly applied to any type of model and data),
further performance advancement may be achieved through
a more dedicated design that is tailored for specific model
architectures and data modalities.

X. THREATS TO VALIDITY
External threat. A threat to external validity is the gener-
alizability of our approach to statistical-based VFL models.
Our study is evaluated on the general NN-based VFL model
architecture, i.e., the feed-forward models and six benchmark
public datasets. More case studies on other datasets and
other non-NN-based VFL models would further improve the
evaluation of our approach.
Internal threat. Our work relies on prior knowledge of a
small amount of data with the same distribution as the training
data. Though we propose a variety of strategies to obtain
the shadow data, there are many other feasible approaches.
Different shadow data collection approaches may lead to
different attack performances and may impact the vulnerability
of training data protection.
Construct threat. In the evaluation of possible approaches
for mitigating data leakage risks during VFL training, we only
study three viable defense strategies. Other possible defense
strategies could be explored in future research to complement
our evaluation.

XI. CONCLUSION
VFL [20] is an increasingly popular approach to collaborative

learning. However, our work offers further evidence that VFL
suffers from significant data leakage risks during model training.
More specifically, we demonstrate that VFLRecon achieves a
high accuracy in label reconstruction and a low MSE in feature
reconstruction across several studied datasets even against
encryption-based VFL training. We also illustrate the impact
of various factors including the amount of features available
to the adversarial participants, batch size, shadow data size,
and the different domains of datasets. Furthermore, we show
that adversarial participants can efficiently train VFLRecon
with a very small amount of shadow data. To mitigate the
vulnerability of training data during VFL training, we propose
a defense strategy, VFLDefender, to perturb the correlation
between model updates (gradients) and training samples. The
experimental results reveal that VFLDefender is highly effective
in preventing training data leakage during VFL training, with
an accuracy loss of only around 1%. Moreover, our work
provides valuable insights for VFL system designers on the
critical importance of privacy-preserving VFL.
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