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Developers insert logging statements in the source code to collect important runtime information about software systems.

The textual descriptions in logging statements (i.e., logging texts) are printed during system executions and exposed to

multiple stakeholders including developers, operators, users, and regulatory authorities. Writing proper logging texts is an

important but often challenging task for developers. Prior studies ind that developers spend signiicant eforts modifying

their logging texts. However, despite extensive research on automated logging suggestions, research on suggesting logging

texts rarely exists. To ill this knowledge gap, we irst propose LoGenText, reported in our conference paper (Ding et al., 2022),

an automated approach that uses neural machine translation models to generate logging texts by translating the related

source code into short textual descriptions. LoGenText takes the preceding source code of a logging text as the input and

considers other context information such as the location of the logging statement, to automatically generate the logging text.

The LoGenText’s evaluation on 10 open-source projects indicates that the approach is promising for automatic logging text

generation and signiicantly outperforms the state-of-the-art approach. Furthermore, we extend LoGenText to LoGenText-Plus

by incorporating the syntactic templates of the logging texts. Diferent from LoGenText, LoGenText-Plus decomposes the

logging text generation process into two stages. LoGenText-Plus irst adopts a neural machine translation model to generate

the syntactic template of the target logging text. Then LoGenText-Plus feeds the source code and the generated template as the

input to another neural machine translation model for logging text generation. We also evaluate LoGenText-Plus on the same

10 projects and observe that it outperforms LoGenText on nine of them. According to a human evaluation from developers’

perspectives, the logging texts generated by LoGenText-Plus have a higher quality than those generated by LoGenText and the

prior baseline approach. By manually examining the generated logging texts, we then identify ive aspects that can serve as

guidance for writing or generating good logging texts. Our work is an important step towards the automated generation

of logging statements, which can potentially save developers’ eforts and improve the quality of software logging. Our

indings shed light on research opportunities that leverage advances in neural machine translation techniques for automated

generation and suggestion of logging statements.
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1 INTRODUCTION

Developers insert logging statements in the source code to collect valuable runtime information about software
systems. Logging statements produce execution logs at runtime, which play important roles in the daily tasks of
developers and other software practitioners [4, 40]. An example logging statement from HBase, LOG.warn("Failed
to create dir {}", dst), has a verbosity level of warn, a dynamic variable dst whose value will be dynamically
determined at runtime, and a logging text Failed to create dir which will be directly outputted during software ex-
ecution. Prior work has leveraged the rich information in logs to support diferent software engineering activities,
including system comprehension [20, 71], anomaly detection [21, 33, 48, 55, 88, 89], and failure diagnosis [61, 73].
In particular, logs are usually the only available resource for diagnosing ield failures [94].
Extensive prior research has shown that writing proper logging statements is an important and challenging

task [9, 70, 96, 97]. Besides the typical challenges of deciding where to log [15, 16, 44, 104] and how to choose
verbosity levels [41, 74], deciding the textual information in the logging statement is even more challenging [29].
Prior studies ind that developers spend signiicant eforts modifying the textual information in their logging
statements [9, 42, 70, 96, 97]. A recent study has shown that developers rely heavily on reading the text in the
logging statement while misleading textual information often makes the use of logs counterproductive [40].

Despite the importance of logging texts, there exists a rare research efort that devotes to assisting developers
in writing logging texts. A recent study by He et al. [29] proposes an approach that reuses the texts in the
logging statements from similar code snippets. However, since only existing logging texts are directly reused, the
texts generated by the prior approach may still require signiicant revisions by practitioners. Nevertheless, prior
work [29] has demonstrated the potential possibility of automatically generating logging texts.

In order to help developers address the challenges of writing logging texts, we propose LoGenText [14], a neural-
machine-translation-based approach. LoGenText automatically generates the textual description of a logging
statement by translating the related source code into logging texts. Speciically, we adopt a Transformer-based
Sequence-to-Sequence model which leverages an encoder-decoder architecture to automate translations and uses
the attention mechanism to boost its performance [77]. In LoGenText, the target sequence of the Transformer-
based model is a logging text, and the source sequence is its related source code. We consider the source code
preceding the logging text as the source input. We also consider incorporating other contexts that may provide
relevant information about the logging texts to be generated, including the location of the logging statement, the
succeeding source code, and the logging texts in similar code snippets. To incorporate such contexts, we further
extend the Transformer by adding additional encoders that integrate the context information into the model [38].
The outputs of these encoders are then formed as a new input to the decoder which generates the logging text as
the inal output of LoGenText.

We evaluate LoGenText on 10 open-source Java projects from diferent domains. We irst evaluate the automati-
cally generated logging texts by comparing them with the original logging texts inserted by developers using
quantitative metrics such as BLEU and ROUGE-L. LoGenText achieves BLEU scores of 23.3 to 41.8 and ROUGE-L
scores of 42.1 to 53.9, which outperforms the baseline approach from prior research [29] by a large margin. On
the other hand, our evaluation results show that incorporating other context information (e.g., the location of the
logging statement) can further improve LoGenText. In order to further understand the efectiveness of LoGenText,
we conduct a human-based evaluation that involved 42 participants. The results conirm that LoGenText can
provide high-quality logging texts and it signiicantly outperforms the baseline approach in generating logging
texts.

Although LoGenText has achieved superior performance over the baseline approach, it still has limitations. For
example, in our previous work [14], we ind that there exists a non-negligible gap between the automatically
generated logging texts and that written by developers, as LoGenText may generate logging texts that have
similar meanings but diferent syntactic structures from the developer-written logging texts. Meanwhile, recent
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studies [18, 27, 81, 85, 90] on text generation tasks (e.g., text summarization, sentence generation) show that
incorporating the templates of the target sentences can produce promising results in generating better translations,
as templates can provide a positive impact for guiding the translation process [90].
Therefore, we further extend our previous work, LoGenText, which was published in SANER 2022 [14], to

LoGenText-Plus to incorporate the template information (i.e., syntactic structures) of the logging texts, which
may guide the generation of the logging text. In this work, we use constituency-based parse trees of logging
texts from the training set to train an NMT-based model to generate templates. Then, the generated templates
are used to guide the generation of the logging texts. Figure 1 illustrates the process of generating logging texts
based on the source code and templates. In this example, the source code (i.e., Figure 1(a)) is used to generate the
coarse syntactic template (i.e., Figure 1(b)) which contains diferent levels of information, including the syntactic
symbols (i.e., łVBDž, verb with past tense and łVPž, verb phrase) and tokens (i.e., łtož) of the target logging text.
Then, the template together with the source code is fed into a Transformer-based model for generating the target
logging text. We assume that by using the templates, we are breaking down the task of logging text generation
into several stages in a coarse-to-ine manner and the coarse syntactic templates can guide the generation of the
target logging texts.

VBD to VP

(a) Source code. (c) Target logging text.

Failed to close an unneeded session

void replaceSession(SessionType oldSession) throws Exception {

...

try {

newSession.close(false);

} catch (Exception ex) {

LOG.error( <logging text to generate> )

}

}

(b) Template.

Fig. 1. An example of the process of generating logging texts based on the source code and templates. łVBDž represents a
verb with the past tense, and łVPž represents a verb phrase.

To assess the performance of our newly proposed LoGenText-Plus, we evaluate it on the same 10 projects that
were previously used to evaluate LoGenText. We irst compare the logging texts generated by LoGenText-Plus with
that generated by LoGenText as well as the baseline approach [29] using quantitative metrics. Experiments show
that LoGenText-Plus outperforms the baseline approach as well as the best performing version of LoGenText in
nine out of the 10 projects. Besides, we conduct another human evaluation to qualitatively evaluate the quality of
the generated logging texts. The results further conirm that LoGenText-Plus can provide higher-quality logging
texts.
The contributions of this paper include (the new contributions compared to that of previous work [14] are

highlighted with *.) :

• Our automated approach LoGenText signiicantly outperforms the baseline approach in generating logging
texts.

• The newly extended approach, LoGenText-Plus, which incorporates the syntactic templates of logging texts
further advances the state-of-the-art.*

• Our work suggests that automated approaches for logging text generation should not only focus on the
preceding code of a logging statement (as done in prior work) but also consider other context information
to further improve the performance.*

• Our work demonstrates the promising direction of leveraging advances in neural machine translation
techniques to generate logging texts.

ACM Trans. Softw. Eng. Methodol.
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• Based on the manual evaluation results, we identify ive aspects that can be used to generate better logging
texts.*

Our work is an important step towards the automated generation of logging statements. Our indings shed
light on future research opportunities that apply up-to-date neural machine translation techniques in automated
generation and suggestion of logging statements. We share our extracted datasets from the 10 open-source
projects and the source code used for training our models1.
Paper Organization. Section 2 presents the details of our approach: LoGenText and its extension LoGenText-Plus.
Section 3 presents the setup of the experiment for evaluating LoGenText and LoGenText-Plus. Section 4 and
Section 5 present the results of evaluating LoGenText and LoGenText-Plus through quantitative metrics and human
evaluation. Section 6 discusses threats to the validity. Section 7 presents the related work. Finally, Section 8
concludes the paper.

2 APPROACH

In this section, we describe the details of LoGenText and its extension LoGenText-Plus that leverage neural machine
translation (NMT) to automatically generate logging texts.

2.1 Approach Overview

2.1.1 LoGenText. LoGenText is an NMT-based approach that uses deep neural networks to translate source code
into logging texts. The bottom half of Figure 2 (i.e., the part delimited by the black dashed lines) illustrates the
overall approach of LoGenText which consists of three phases. First, for each logging statement in the source
code, LoGenText extracts its logging text, the source code preceding the logging text (i.e., the pre-log code), and
the context information from the source code (i.e., data preparation). Then, LoGenText feeds the extracted
logging text, the pre-log code (i.e., the source), and the context information into a Transformer-based Sequence-to-
Sequence (Seq2Seq) model [77] that consists of embedding layers, encoders, and decoders (i.e., model training).
Finally, the trained model takes the source (the pre-log code) and the context information as input and translates
it into the corresponding logging text (i.e., model inference).

In the base form of LoGenText, we use the pre-log code of a logging statement to generate its logging text. We
evaluate the base form of LoGenText in RQ1 (Section 4-RQ1). In RQ2 (Section 4-RQ2) and RQ3 (Section 4-RQ3), we
propose a context-aware form of LoGenText and discuss the impact of adding the context information, including
the location of the logging statement in the abstract syntax tree (AST) (i.e., the structural (AST) context), the
source code succeeding the logging statement (i.e., the post-log code), and the logging text in the most similar code
snippet, on the performance of LoGenText. The pre-log code is fed as the source, while other context information
is fed as the context to the model.

2.1.2 LoGenText-Plus. Besides, we extend LoGenText to LoGenText-Plus by incorporating the template of the
target logging text. Diferent from LoGenText, LoGenText-Plus contains two stages:
Stage 1: template generation, where LoGenText-Plus adopts a Transformer-based model to predict the

templates. As shown in Figure 2, during data preparation, for each logging statement in the source code,
LoGenText-Plus irst extracts four types of information (i.e., the target logging text, the pre-log code, the structural
(AST) context information and the logging text in the most similar code (cf. Section 4-RQ3)) [14] which are
also used in LoGenText. Then LoGenText-Plus extracts the syntactic template from the logging text as the target
sequence for training and from the logging text in similar code which is concatenated with pre-log code as the
source sequence. Duringmodel training, LoGenText-Plus feeds the template from the target logging text (i.e.,
target sequence), the pre-log code together with the template from the logging text in the similar code (i.e.,

1Replication package: https://tinyurl.com/4njsbu9m
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Fig. 2. An overview of LoGenText and its extension (LoGenText-Plus) which is delimited by the blue dashed lines and
highlighted with *. In LoGenText-Plus, to train the template generation model, the templates extracted logging texts are used
as the target sequence, the templates extracted from logging texts in similar code (highlighted in blue) are concatenated with
the pre-log code as the source, and the structural (AST) context is used as the context; To train the logging generation model,
the logging texts are used as the target sequence, the templates extracted from logging texts in similar code (highlighted in
blue) are concatenated with the pre-log code as the source, and the structural (AST) context is used as the context. During
inference, the generated templates are concatenated with the pre-log code as the source, and the structural (AST) context is
used as the context.

the source sequence) and the structural (AST) context into a Transformer-based model. Finally, duringmodel

inference, the trained model (i.e., Template generator) takes the source sequence (i.e., the pre-log code together
with the template from the logging text in the similar code) and the structural (AST) context information as input
and translates it into the corresponding template (i.e., Generated template).

Stage 2: template-based logging text generation, where LoGenText-Plus adopts another Transformer-based
model to predict the inal logging text based on the generated template in stage 1. As shown in Figure 2, during
data preparation, similar to that of template generation stage, for each logging statement in the source code,
LoGenText-Plus irst extracts four types of information (i.e., the target logging text, the pre-log code, the structural
(AST) context information and the logging text in the most similar code). Then LoGenText-Plus extracts the
syntactic template from the logging text in similar code which is concatenated with pre-log code as the source
sequence. Duringmodel training, LoGenText-Plus feeds the target logging text (i.e., target sequence), the pre-log
code together with the template from the logging text in the similar code (i.e., the source sequence) and the
structural (AST) context into the Transformer-based model. Finally, during model inference, the trained model

ACM Trans. Softw. Eng. Methodol.
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(i.e., Logging text generator) takes the source sequence (i.e., the pre-log code together with the generated template
in the template generation stage) and the structural (AST) context information as input and translates it into the
corresponding logging text (i.e., Generated logging text).

In RQ4 (Section 4-RQ4) and RQ5 (Section 4-RQ4), we detail LoGenText-Plus and discuss the impact of incorpo-
rating diferent templates on its performance.

2.2 Data Preparation

In this part, we describe the steps for preparing data that are required by both LoGenText and LoGenText-Plus.
Data preparation involves three types of information: 1) logging text, which refers to the static plain text

in the logging statement, 2) (part) source, which contains the pre-log code, and 3) context, which includes the
structural (AST) context, the post-log code, and the logging text in similar code.
The steps for preparing data that are required by both LoGenText and LoGenText-Plus are as follows. Details

for step template extraction speciic to LoGenText-Plus can be found in Section 4-RQ4, in which we evaluate
LoGenText-Plus.
Extracting the logging text. We irst extract the complete logging message (including the logging text and
variables) from the logging statement. Since our focus is on the logging text, we then replace the variables with a
wildcard (<vid>). For example, given the following logging statement from Hadoop, the extracted logging text is
łRemoved child queue: <vid>ž.

// Original logging statement:

LOG.debug("Removed child queue: {}",

cs.getQueueName())
−→

// Extracted logging text:

"Removed child queue: <vid>"

Extracting (part of) the source data. We use the pre-log code as the main input (i.e., the source data) for
LoGenText. Speciically, the source data includes the code from the method start point to the location right before
the logging text of the logging statement. We consider the pre-log code as our main input for logging text
generation because a logging statement usually communicates the runtime behavior of the system before the
execution of the logging statement [22, 40].
Extracting the context data. We consider three types of data as the context input of our neural translation
model, including the structural (AST) context, the post-log code context, and the logging text in similar code. We
discuss the details of extracting the structural context and the post-log code context in RQ2 where we discuss the
impact of such contexts. Similarly, we discuss the details of extracting the logging text in similar code in RQ3.
Pre-processing the logging text and source data. Following the previous approaches for pre-processing the
input text data [29, 31, 39], we convert the logging text and source code text into lower cases and tokenize them
into token units. We also remove all the non-identiiers (e.g., quotation marks).
A potential challenge is the out-of-vocabulary (OOV) tokens of the source code and logging texts [30, 32].

At testing time, there would be tokens that have never occurred in the training data, which may lead to the
poor translation of the NMT systems [54]. One way to alleviate the OOV problem is to enlarge the dictionary
size to include more rare tokens. However, due to the fact that user-deined identiiers (i.e., not reserved by
the programming language) take up the majority of code tokens, they have a non-negligible inluence on
the vocabulary of translation dictionary [32]. Thus, using a large dictionary to cover the user-deined tokens
would increase the diiculty of training the translation model, as it requires more training data and hardware
resources [32]. To address this problem, we employ byte pair encoding (BPE), a data compression technique,
to segment the code tokens into subword units [23, 69]. This is based on the intuition that users often deine
identiiers via combining smaller word units. For example, the token łgetQueueNamež is a combination of three

ACM Trans. Softw. Eng. Methodol.
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subwords, i.e., łgetž, łqueuež and łnamež. In this way, our approach can encode all tokens as sequences of subword
units.
Note that sometimes, preserving the original case of the source code provides more information, which can

be useful for certain code-related tasks. For example, in the task of logging variables recommendation (i.e.,
which variable in the source code should be logged), the capitalization information can be a strong signal for
identifying the variables. However, the authors of BERT also note that typically, the uncased model is better2 for
a range of downstream tasks. In our experiments, our goal is to generate the textual description in the logging
statements. Although using BPE tokenization allows us to have relatively good coverage with small vocabularies,
unknown tokens still exist. Therefore, we lowercase the source code and logging text to further reduce the
out-of-vocabulary (OOV) tokens, especially considering the fact that the capitalization might be inconsistent
between the source code and logging text. For example, in the project ActiveMQ3, the source code contains a
variable named łsendShutdownž, but in the logging statement the token łshutdownž is used.

We set the maximum length of both the logging text sequences and the source code sequences to 1,024 (the
default value of our Transformer-based model). The tokens of the sequences beyond the maximum length will be
truncated; the sequences shorter than the maximum length are padded. 0% of the logging text sequences are
truncated and 3.7% to 3.8% of the source code sequences are truncated in the studied projects.

2.3 NMT-based log generation

In this work, we consider the logging text generation task as a machine translation task, i.e., translating a code
snippet into logging text that communicates the internal behavior of the code snippet. Thus, we can apply neural
machine translation (NMT) techniques to solve the logging text generation problem. Formally, given a source
sequence � = (�1, �2, . . . , �� ), our goal is to predict tokens in the target logging text � = (�1, �2, . . . , �� ). Most
NMT models use an encoder-decoder architecture. The input to the encoder is the source sequence � , and the
output of the encoder is a sequence of distributed representations. The generated representations are then fed
into the decoder part, where the tokens in the target sequence are generated one by one [79]. Hence, the objective
of the models is to approximate the conditional distribution log � (� |� ;� ) over the given source-target pairs and
model parameters � .
Our model is also based on an encoder-decoder model, in particular, the Transformer model proposed by

Vaswani et al. [77], which has shown outstanding performance in many software engineering tasks (e.g., source
code summarization [2] and code completion [50]). Figure 3 illustrates the structure of the Transformer translation
model that is implemented in LoGenText and LoGenText-Plus. Note that the two models used in the diferent stages
of LoGenText-Plus are both based on the Transformer model. Like many other sequence to sequence models, the
Transformer utilizes an encoder-decoder structure, which is explained in detail in the rest of this section.

Source encoder: As Figure 3 shows, the source encoder component makes use of N stacked layers. Each layer
is broken down into two sub-layers. The irst sub-layer is a self attention layer:

��������� (�,�,� ) = �� � ���� (��
�

√
��

)� (1)

where �,�,� are the query, key, and value vectors,
√
�� is a normalization factor and �� is the dimension of the

key/query vector, ��������� is the output of the attention layer. The self attention mechanism allows the model
to look at other positions for extra information while encoding the current position.

2https://github.com/google-research/bert#pre-trained-models
3https://github.com/apache/activemq/blob/905f00c843b96996b25017e1b8646de15d703398/activemq-broker/src/main/java/org/apache/

activemq/network/DemandForwardingBridgeSupport.java#L324
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Fig. 3. An overview of the Transformer translation model.

The residual connection and layer normalization are then applied to the output of the attention layer:

��������� (��������� + � ) (2)

where� is the vector representation of the input token after positional encoding (explained in the next paragraph).
The output is then fed to the second sub-layer, a fully connected feed forward network. Note that the feed forward
network is point-wise, which means the network is applied independently to individual vectors generated by the
attention layer.

Positional encoding: The orders of the tokens in the source sequence are important for a machine translation
model. To address this, unlike RNN and its variances, Transformer adopts positional encoding to inject the
relative positional information into the token representations. Speciically, a positional vector is added to the
input embedding, where the positional vector �� for � th token is calculated as follows:

���� =

{
sin (�� · �) if � = 2�

cos (�� · �) if � = 2� + 1
(3)

where � is used for determining whether � is an odd or even number, � ∈ {0, . . . , � − 1} is the encoding index, � is
the dimensionality of the input embedding, and�� =

1
100002�/�

. The inal token representation that is fed into the

self attention layer is a sum of the token embedding and the positional encoding.
Context encoder: The structure of the context encoder is the same as the source encoder. As the context

inputs (i.e., the structural context, the post-log code context, and logging text in similar code) are only discussed
in RQ2 and RQ3, we describe the details about how we integrate the context into our model in RQ2.

Target decoder: The decoder in Transformer has a similar structure to the encoder. It also consists of N stacked
layers, with three sub-layers in each layer (slightly diferent from the two sub-layers in the source encoder). The
additional second sub-layer takes the source encoder’s output and the decoder’s states which are generated by
the irst self attention sub-layer. Besides, an attention masking is applied to the irst self attention sub-layer. This

ACM Trans. Softw. Eng. Methodol.
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masking prevents future information from being leaked to the decoder before the prediction and ensures that the
predictions only rely on the previous outputs.

Given a source code and logging text corpus � , the goal of training the Transformer model is to ind parameters
� that maximize the log-likelihood of the training data:

�̂ = argmax
�

︁

⟨�,� ⟩∈�
log � (� |� ;� ) (4)

where � is the conditional probability of the target sequence � (i.e., the logging text) given the source sequence
� (i.e., the source code).

Note that in LoGenText-Plus, we also consider the template generation as a machine translation task, i.e.,
translating a code snippet into a template that provide the syntactical information of the logging text. The model
shares the same structure as in Section 2.3, where the target sequence is changed to the template. As the template
information is only used in RQ4 and RQ5, we describe the details about how to generate templates in RQ4 and
RQ5.

3 EVALUATION SETUP

3.1 Subject projects

We evaluate our proposed LoGenText and LoGenText-Plus on 10 open-source Java projects. We choose the same
subject projects that are used in prior work [29] which studies the characteristics of logging texts. The details of
the studied versions of these projects are listed in Table 1. The source lines of code of the studied projects range
from 330K to 1.7M. These projects have about 2K to 12K logging statements, among which 76.2% to 95.8% have
logging texts. Similar to prior work [29], we evaluate LoGenText and LoGenText-Plus on the logging statements
with logging texts.

Table 1. Details of the studied projects.

Project Version SLOC
# of logging

statements

# of logging

statements with text

ActiveMQ 5.16.0 415k 2,185 2,093 (95.8%)
Ambari 2.7.5 490K 4,150 3,651 (88.0%)
Brooklyn 1.0.0 339K 2,937 2,813 (95.8%)
Camel 3.4.2 1.4M 7,046 6,366 (90.3%)
CloudStack 4.14.0 645K 12,015 10,613 (90.3%)
Hadoop 3.3.0 1.7M 12,471 11,270 (88.3%)
HBase 2.3.0 778K 5,534 5,071 (90.4%)
Hive 3.1.2 1.7M 6,845 6,290 (91.6%)
Ignite 2.8.1 1.1M 3,366 3,048 (90.6%)
Synapse 3.0.1 330K 1,978 1,508 (76.2%)

Avg. 890K 5853 5272 (90.1%)

3.2 Experimental setings

3.2.1 Model training setings. The goal of LoGenText and LoGenText-Plus is to use the Transformer-based model
to automatically generate logging texts with the source code as the input. Our LoGenText and LoGenText-Plus

are implemented based on Fairseq [38, 64], a sequence-to-sequence modeling toolkit. We use the same model
structure as in the original Transformer model: six stacked layers (i.e., � = 6), 512 embedding dimensions for
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both the source encoder and the target decoder, and 2,048 feed-forward embedding dimensions. We use the Adam
optimizer to optimize the model parameters (same as the original Transformer model). To prevent overitting, we
use a dropout rate of 0.1 [19, 25, 58ś60]. More details about the coniguration of hyperparameters can be found
in our replication package4.

For each subject project, we split all the instances into 80%/10%/10% training/validation/testing sub datasets5.
As the number of instances in each subject project is relatively small (i.e., about 1.5K to 11K), it is challenging to it
a Transformer model with more than forty million parameters. To overcome this problem, we adopt a two-stage
training strategy (a.k.a., transfer learning (TL)) [24, 63, 92]: for each subject project, 1) we irst pre-train a model
using all the training sets from 10 projects for 50 epochs, and 2) we then continue to ine-tune the pre-trained
model parameters using the target project’s training set for another 50 epochs. The idea is inspired by the work
of He et al. [29], where the authors have shown that the logging practices are quite diferent across diferent
projects, and the n-gram patterns in diferent projects vary a lot. Meanwhile, a large project usually has a long
development history (e.g., years). By ine-tuning a model for a speciic project using its existing data, we can
leverage the model to suggest logging text for its future development activities. Therefore, we intentionally train
separate models for each project, aiming to accurately capture the in-project language patterns while avoiding
the (negative) impact of other projects. The validation set is used to monitor the performance of the model during
training to avoid overitting.

For inference, we use the beam search with a width of eight, which means at each step, the top eight candidate
tokens with the highest scores are kept for the next step. However, the beam search algorithm favors shorter
sequences [6, 62]. To address this problem, we adopt the length penalty, which gives favor to longer sequences [86].
In our experiments, we set the value of the length penalty to 2.5. In addition, we set the maximum length and
minimum length of the generated logging text to be 100 and 3, respectively, as we ind that the lengths of 92.4%
to 98.4% of the logging texts in the studied projects fall in this range.

The training of our models is conducted in a cluster of machines each with an NVIDIA V100 Tensor Core GPU.

3.2.2 Model evaluation approaches. We evaluate the performance of LoGenText and LoGenText-Plus using a
combination of quantitative evaluation and human evaluation.
Quantitative evaluation: We use two widely used machine translation evaluation metrics, BLEU [65] and

ROUGE [49], to evaluate the quality of the generated logging text sequences in terms of their similarity to the
original logging texts inserted by the developers. The details of these evaluation metrics are described in the
research questions that apply these metrics.
Human evaluation: In order to evaluate how developers perceive the generated logging texts, we also

performed a human evaluation, which is detailed in Section 5.

3.3 Baseline approach

We compare our approach with prior work by He et al. [29], which is by far the state-of-the-art approach for
generating logging texts. Their method assumes that similar code snippets tend to have similar logging texts.
To generate the logging text for a given code snippet, He et al. [29] perform a search in the training corpus to
retrieve the most similar code snippet based on Levenshtein distance [37]. The logging text of the most similar
code snippet is used as the logging text for the given code snippet. We re-implement their method as a baseline
to compare with our approach.

4https://github.com/conf-202x/experimental-result
5The sizes of training datasets range from 1K to 9k.
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4 EVALUATION RESULTS

In this section, we discuss the results of evaluating LoGenText and LoGenText-Plus through answering six research
questions. More speciically, the irst three research questions (i.e., RQ1-RQ3) are related to LoGenText, and
RQ4-RQ6 are newly proposed research questions and related to our extension, LoGenText-Plus.
RQ1: How well can the base form of LoGenText automatically generate logging text?

Motivation.

Prior research [29] has observed that logging texts are predictable and proposes a simple approach (the baseline
approach in Section 3) based on the intuition that similar code snippets contains similar logging texts. Such a
simple approach has demonstrated a promising result. Therefore, in this RQ, we would like to explore whether
our NMT-based solution (i.e., LoGenText) can automatically generate logging texts with a better performance
than the baseline approach.
Approach.

We evaluate the base form of LoGenText, i.e., using only the source input (pre-log code) to generate the logging
texts, and compare it with the baseline approach [29]. Following prior work [29], we evaluate the quality of the
generated logging texts using two widely used metrics for machine translation evaluation, i.e., BLEU6 [65, 66]
and ROUGE7 [49]. Both BLEU and ROUGE take the automatically generated logging texts and the reference
logging texts (i.e., the original logging texts written by developers) as input and calculate the similarity between
them, which outputs a percentage score between 0 and 1. The higher the score, the better the generated logging
texts in terms of their similarity to the reference logging texts.

BLEU (Bilingual Evaluation Understudy) is used to evaluate the match between a generated text and a reference
text, which is calculated as follows:

BLEU = �� · exp
(

�︁

�=1

�� log��

)
(5)

�� =

{
1 � � � > �

� (1−�/� ) � � � ≤ � (6)

where �� is the modiied�-gram precision (i.e., the maximum number of�-grams co-occurring in the automatically
generated logging text and the reference logging text divided by the the total number of �-grams in the generated
logging text), �� are positive weights that can be conigured, �� is a brevity penalty, � is the length of the
generated logging text and � is the length of the reference logging text. In our evaluation, we choose � = 4 and
uniform weights�� = 1/� , same as prior work [29]. In addition to the overall BLUE score, we also consider the
speciic BLEU-n (n = 1, 2, 3 ,4) scores, which are the BLUE scores considering only one gram size.
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics for evaluating automated

generated texts in text summarization and translations. ROUGE is calculated as follows:

ROUGE-n =

∑
�����∈��� ���������ℎ (�����)∑

�����∈��� ����� (�����)
(7)

where � is the length of the �-gram (�����), and ���������ℎ (�����) is the number of �-grams co-occurring in
the automatically generated logging text and the reference logging text, �� � . We calculate ROUGE-1, ROUGE-2
and ROUGE-L. ROUGE-L measures the longest matching sequence of tokens using LCS (Longest Common
Subsequence).
Results.

6https://github.com/mjpost/sacrebleu
7https://github.com/pltrdy/rouge
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Table 2. Evaluation results of using LoGenText and the baseline approach to generate logging texts in the studied projects (RQ1).

Projects Methods BLEU(%) BLEU-1(%) BLEU-2(%) BLEU-3(%) BLEU-4(%) ROUGE-L(%) ROUGE-1(%) ROUGE-2(%)

ActiveMQ
Baseline 21.0 37.0 22.9 18.4 16.0 36.1 36.0 21.6

LoGenText 23.0(+9.5%) 44.6 26.0 19.6 16.0 43.4(+20.4%) 43.1 25.1

Ambari
Baseline 19.9 36.8 22.0 17.0 14.1 36.8 37.5 22.4

LoGenText 22.8(+14.6%) 44.0 25.6 17.8 13.4 42.9(+16.5%) 44.1 24.7

Brooklyn
Baseline 26.0 41.4 25.5 21.8 19.7 38.1 40.9 23.0

LoGenText 25.4(-2.1%) 48.7 28.4 20.8 16.8 43.6(+14.4%) 47.1 26.2

Camel
Baseline 37.9 51.5 39.2 35.6 33.8 47.5 47.9 33.0

LoGenText 39.0(+2.9%) 58.3 43.3 38.1 35.9 52.3(+10.2%) 52.5 35.3

CloudStack
Baseline 30.1 46.6 33.5 28.4 25.4 43.9 44.5 30.0

LoGenText 34.6(+14.7%) 52.4 37.3 30.0 25.6 50.1(+14.0%) 50.8 35.2

Hadoop
Baseline 19.6 37.2 22.8 18.7 16.8 34.1 34.9 20.1

LoGenText 21.8(+11.1%) 44.4 25.4 19.1 16.5 41.1(+20.5%) 42.3 23.0

HBase
Baseline 19.5 38.4 24.2 19.4 15.9 38.4 38.9 26.1

LoGenText 23.1(+18.5%) 46.1 28.2 21.6 17.2 46.5(+21.2%) 47.0 30.6

Hive
Baseline 28.2 42.9 29.8 26.2 24.0 42.4 42.9 28.9

LoGenText 28.0(-0.6%) 47.4 30.8 25.2 21.7 46.7(+10.2%) 47.2 29.8

Ignite
Baseline 21.5 38.5 23.4 18.4 14.8 37.1 38.0 22.9

LoGenText 24.9(+15.6%) 50.9 30.7 23.3 18.3 45.5(+22.8%) 47.2 27.1

Synapse
Baseline 34.1 46.7 36.7 31.7 27.2 46.9 46.8 36.9

LoGenText 28.9(-15.3%) 53.3 34.7 26.7 21.5 49.5(+5.7%) 50.2 32.0

Avg.
Baseline 25.8 41.7 28.0 23.6 20.8 40.1 40.8 26.5

LoGenText 27.1(+5.0%) 49.0 31.1 24.2 20.3 46.1(+15.0%) 47.2 28.9

Note: The numbers in the brackets indicate the relative change of LoGenText to the baseline approach.

Our base form of LoGenText generally outperforms the baseline approach. Our experimental results
of comparing LoGenText with the baseline on the 10 studied projects are presented in Table 2. The best results
are highlighted in the bold font. We can see that the base form of LoGenText provides a ROUGE-L score of 41.1
to 52.3 and a BLEU score of 21.8 to 39.0 for the studied projects. As shown in Table 2, LoGenText outperforms
the baseline approach for all the projects in terms of ROUGE-L by 5.7% to 22.8% and has a higher BLEU score
than the baseline approach by 2.9% to 18.5% in seven out 10 projects. In addition, besides the overall BLEU and
ROUGE-L, LoGenText performs better than the baseline approach in almost all diferent gram sizes (i.e., BLEU-n
and ROUGE-n). Our results indicate the promising research direction of using neural translation techniques in
automated generation of logging text.

On the other hand, we also observe that the base form of LoGenTextmay not always provide a better performance
in terms of BLEU scores (e.g, BLEU-4). As shown in Table 2, LoGenText performs better than the baseline approach
for seven out 10 projects in terms of BLEU but worse for the other three projects (Brooklyn, Synapse and
Hive). By examining the BLEU scores of diferent gram size (i.e., BLEU-n), we realized that the base form of
LoGenText always outperforms the baseline in terms of smaller gram sizes (i.e., BLEU-1 and BLEU-2); in some
cases (e.g., for the projects Brooklyn, Synapse, and Hive) , the base form of LoGenText may not perform better
than the baseline approach in terms of larger gram sizes (i.e., BLEU-3 and BLEU-4). This phenomenon can be
explained by the diferent working mechanisms of these two diferent approaches. The baseline approach simply
reuses logging texts from other code snippets [9], thus it tends to produce long sequence of identical tokens
between code snippets, which can result in relatively high larger-gram BLEU scores, especially when there are
many duplications of logging texts [45]. In contrast, LoGenText automatically generates new logging texts token
by token, thus it may not always produce long sequences of tokens that are identical to the ones written by
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developers, even though the generated ones may have similar semantic meanings with the written ones, as
discussed in our user study in Section 5.

Summary

The base form of our NMT-based approach LoGenText generally outperforms the baseline approach that
leverages the existing logging texts in similar code snippets. Our results illustrate the promising future
research opportunity of formulating automated logging text generation as neural machine translation
tasks.

RQ2: Can incorporating context information improve the base form of LoGenText in generating logging

texts?

Motivation. Prior studies [5, 36, 56, 57, 78, 79, 83, 98] on NMT show that incorporating the context information
(e.g., surrounding text) of the source input may provide promising results in generating better translations. In
addition, the context information (e.g., surrounding source code, AST structure of source code) of a particular
source code of interest has shown beneits in some software engineering (SE) tasks that rely on neural network-
based techniques [3, 7, 32, 76, 99]. Therefore, in this research question, we aim to understand whether the context
information (e.g., the post-log code and the structural (AST) information of a logging statement) can help further
improve LoGenText in automatically generating logging texts.
Approach.

We propose a context-aware form of LoGenText and consider two types of context information in this research
question: the post-log code and the structural (AST) information related to a logging statement. Below we discuss
how we extract such context information and incorporate it in LoGenText.

Extracting context information. Extracting the structural (AST) context: We use AST extracted by srcML [12]
to represent the location of a logging statement. The structural information represented by the AST has been
applied successfully in many SE tasks, including suggesting where to log [104] and how to choose log levels [41].
First, we extract the AST of the method containing the logging statement. Then, we convert the AST into a
sequence of AST node types (e.g., if statement) following a preorder traversal. We only keep the sequence of AST
node types prior to the logging statements.
Extracting the post-log code context: Although a logging statement is usually not directly related to the

subsequent code (i.e., post-log code), prior research [29] shows the post-log code may provide some extra
information relevant to the logging text. Therefore, we consider the post-log code as the context input instead of
the source input in our NMT-based model. Speciically, the post-log code contains the code from the location that
immediately follows the logging statement to the end of the containing method. We use the same approach as
the pre-log code (cf., Section 2) to convert the post-log code into a sequence of code tokens.
Integrating context information in our models. There are mainly two approaches for integrating the

context information in NMT-based models: (1) simply concatenating the context and the source as a new input
sequence [1, 75], and (2) utilizing a multi-encoder model, where additional neural networks are used to encode the
context [38, 79, 98]. Prior work [38, 79] shows that the multi-encoder approach is more efective for incorporating
context information in NMT tasks. We experimented with both approaches and we also found that the multi-
encoder approach shows better performance in our context. Therefore, we use the multi-encoder approach in
this paper.
The structure of our context integration approach is illustrated in Figure 4. The context encoder replicates

the original Transformer encoder and takes one type of context information (e.g., AST context, post-log code
context) as input. The output of the context encoder together with the output of the source encoder are then fed
into a self-attention layer. Then, the outputs of the attention layer and the source encoder are fused by a gated
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Source sequence

(pre-log code)

Target Decoder

...
EncoderC EncoderS

Context sequence

(e.g., Structural (AST) context)

Multi Encoders

...

Self Attention

Self Attention

Generated sequence 

(partial logging text)

Gated sum
Target sequence (logging text)

Fig. 4. An overview of the multi-encoder Transformer.

Table 3. Evaluation results of incorporating contexts (AST, post-log code) in LoGenText for logging text generation (RQ2).

BLEU(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Baseline 21.0 19.8 26.0 37.9 30.1 19.6 19.5 28.2 21.5 34.1 25.8

Base LoGenText (RQ1) 23.0 22.8 25.4 39.0 34.6 21.8 23.1 28.0 24.9 28.8 27.1

With

context

AST 24.1 23.8 27.8 41.8 34.6 23.3 23.5 29.6 28.8 37.2 29.5

Post-log code 24.1 24.5 28.4 39.9 34.3 23.1 24.3 29.6 28.2 34.8 29.1

ROUGE-L(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Baseline 36.1 36.8 38.1 47.4 43.9 34.1 38.4 42.4 37.1 46.9 40.1

Base LoGenText (RQ1) 43.4 42.9 43.6 52.3 50.1 41.1 46.5 46.7 45.5 49.5 46.2

With

context

AST 42.5 43.4 44.0 53.9 50.8 42.1 46.4 48.2 47.6 53.6 47.3

Post-log code 42.8 43.5 44.7 53.6 50.4 41.5 46.3 48.0 46.0 53.4 47.0

Note: Values in bold font indicate the best performing models.

sum. Formally, let � be the output of the source encoder and � be the output of the attention layer, the output of
the gated sum � is

� = � ⊙ � + (1 − �) ⊙ � (8)

where the gating weight � is calculated by

� = � (� [�, �] + �) (9)

where � (·) is the sigmoid function,� is the weight parameters of the model, and � is the bias.
In order to understand the impact of diferent types of context information, we evaluate the performance of the

models using each type of context. We use the same metrics used in RQ1 (i.e., BLEU and ROUGE-L) to evaluate
the quality of the generated logging texts.
Results.

Incorporating context information can improve the performance of the base form of LoGenText and

outperforms the baseline approach in all the studied projects. Table 3 shows the results of incorporating
diferent context information. By comparing the context-aware form of LoGenTextwith the base form, we ind that
by incorporating the context information using multi-encoders models, we can obtain a performance improvement
on almost all the projects. For example, by encoding the structural (AST) context into our LoGenText, we obtain a
29.2% relative (8.4% absolute) increase in terms of BLEU score in project Synapse over the base form of LoGenText.
Overall, as shown in Table 3, the context-aware form of LoGenText that incorporates the AST context provides a
BLEU score of 23.3 to 41.8 and a ROUGE-L score of 42.1 to 53.9 for the studied projects, which are 5.0% to 34.0%
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and 13.7% to 28.3% higher than the baseline approach, respectively. In addition, unlike the base form of LoGenText
which may underperform the baseline approach for certain projects (e.g, Brooklyn and Synapse) in terms of
BLEU scores, sizes (i.e., BLEU-3 and BLEU-4), our context-aware form of LoGenText can provide better BLEU
scores than the baseline approach for all the studied projects. The results demonstrate that LoGenText can beneit
from the extracted context information.

Meanwhile, we observe that for some projects (e.g., Synapse and Camel), diferent types of context can result in
diverse performance. In particular, for the Synapse project, incorporating AST and post-log code results in BLEU
scores of 37.2 and 34.8, respectively. This inding suggests that practitioners should be careful with the selection
of contexts for diferent projects, as they may produce diverse results. On the other hand, we also observe that
leveraging the AST context performs better than post-log context in seven out of the 10 projects and has the
largest improvement over the base form of LoGenText on average. This observation further conirms the success
of applying AST information in suggesting logging activities [41, 104].
We also ind that incorporating additional context may not always improve the performance of LoGenText

signiicantly. As shown in Table 3, by adding context using the multi-encoders model, the performance on the
project CloudStack (using AST context) remains the same as that without the context. This may be due to the fact
that CloudStack has a much higher number of pre-log code tokens for each generated logging text (information
used in the base form of LoGenText) than other projects, leading to less value of adding the context information.
Additionally, to gain a deeper understanding of why utilizing AST context is more beneicial, we conduct

a comprehensive manual analysis. First, we sort the cases in descending order based on the BLEU score gap
between utilizing the AST context and utilizing the post-log code. This sorting allows us to identify the cases
where the utilization of AST context has the most signiicant impact on performance improvement. Subsequently,
we select the top 10 cases from each project, resulting in a total of 100 cases.

We ind that most (i.e., 90%) of the logging statements, where utilizing AST outperforms relying on the post-log
code, are describing the preceding source code (i.e., pre-log code). As a result, the succeeding code (i.e., post-log
code) would be a source of noise and has a negative impact on the generation of the logging text.

Moreover, to understand how the post-log code would be a source of noise during the logging text generation
process, we further manually analyze the characteristics of the post-log code. We ind that the noise mainly
comes from two aspects: 1) For a testing case, there exist training cases that share exactly the same post-log code,
but a diferent pre-log code. Therefore, utilizing the post-log code would cause LoGenText to (partly) copy from
such existing logging texts. It is intuitive that the post-log codes are similar, as developers may put return or
exception statements at the end of a method; 2) The post-log code contains irrelevant tokens and thus misleads
the generation of the logging text.

In short, all the noisy information can be summarized as the introduction of irrelevant code to the source input.
As a result, LoGenText cannot efectively focus on the most important source code to generate the logging text.
Moreover, we ind that even though in some cases where the logging texts are describing the succeeding source
code, they are only related to one or two lines of post-log code. Therefore, using all the post-log code as the
context in LoGenText would sometimes decrease the performance of our approach.

Summary

Incorporating context information (AST and post-log code) can improve the performance of the base form
of LoGenText for generating logging texts, and diferent context information may have diverse impact on
the studied projects.

RQ3: Can incorporating logging text from similar code improve the base formof LoGenText in generating

logging texts?

ACM Trans. Softw. Eng. Methodol.



16 • Ding et al.

Table 4. Evaluation results of incorporating logging text from similar code in LoGenText for logging text generation (RQ3).

BLEU(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Baseline 21.0 19.8 26.0 37.9 30.1 19.6 19.5 28.2 21.5 34.1 25.8

Base LoGenText (RQ1) 23.0 22.8 25.4 39.0 34.6 21.8 23.1 28.0 24.9 28.8 27.1

With

context

Logging text from

similar code 25.8 25.3 27.5 41.6 34.4 22.8 24.0 29.2 26.6 34.0 29.1

ROUGE-L(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Baseline 36.1 36.8 38.1 47.4 43.9 34.1 38.4 42.4 37.1 46.9 40.1

Base LoGenText (RQ1) 43.4 42.9 43.6 52.3 50.1 41.1 46.5 46.7 45.5 49.5 46.2

With

context

Logging text from

similar code 44.8 44.1 43.9 53.9 50.7 41.8 46.6 47.5 46.4 53.1 47.3

Note: Values in bold font indicate the best performing models.

Motivation.

Prior work [29] proposes a preliminary logging text generation approach that simply reuses the logging
text from the most similar code snippet (i.e., our baseline approach) and achieves promising results. Their
results suggest that the logging in similar code may provide additional information about the logging text to be
generated. Although we demonstrate better performance of LoGenText than the baseline, it may be the case that
the information captured by LoGenText and that captured by the baseline approach do not overlap. Given that
including the information provided by the baseline may further improve the results, in this research question, we
aim to explore the impact of incorporating logging text in similar code on automated logging text generation and
examine whether we can improve the base form of LoGenText by utilizing such logging information.
Approach.

Similar to prior work [29], we leverage the logging texts from similar code snippets in the generation of logging
texts.
Extracting logging text from similar code. For each logging statement, we extract its pre-log code and

search for the most similar code snippet in the training dataset. Speciically, for a given pre-log code snippet, we
follow prior work [29] and use the Levenshtein distance [37] to calculate the similarity between it and other code
snippets in the training dataset. We then extract the logging text in the most similar code snippet.
Incorporating logging text from similar code.We adopt the same multi-encoder approach as in RQ2 to

incorporate the retrieved logging text from similar code. In particular, the logging text in the similar code snippet
is encoded using a context encoder, and then a gated sum is applied on the outputs of the context encoder and
the source encoder, the output of the gated sum is then fed to the target decoder.

Similar to RQ1 and RQ2, we evaluate the performance of LoGenText that incorporates the logging text from the
similar code using the BLEU and ROUGE-L metrics.
Results.

Incorporating logging text from similar code can improve the performance of the base form of

LoGenText. As shown in Table 4, we ind that by incorporating the retrieved logging text from similar code
using a context encoder, the performance of the base form of LoGenText can be increased in nine out of the
ten studied projects (e.g., the average BLEU score increases from 27.1 to 29.1). The results indicate that the
logging in similar code may contain useful knowledge for the logging text to be generated in the NMT model.
However, incorporating the logging text from similar code (with an average BLEU of 29.1) is less efective than
the LoGenText that incorporates the AST context (with an average BLEU of 29.5, cf. RQ2).
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Similar to our results in RQ2, incorporating logging text from similar does not improve the performance on the
CloudStack project over the base form of LoGenText. Similarly, this result may be due to the fact that CloudStack
has a large number of pre-log code tokens for each generated logging text (information used in the base form of
LoGenText), which may lead to less value of incorporating the additional logging information from similar code.

Summary

Incorporating logging text from similar code can provide additional information to the base form of
LoGenText. However, it cannot further improve the best performing version of LoGenText that incorporates
the AST context.

RQ4: Can incorporating the template information into LoGenText-Plus improve LoGenText in generating

logging texts?

Motivation.

Prior studies [18, 27, 81, 85, 90] on text generation tasks (e.g., text summation, sentences generation) show that
incorporating the template information of the target sentences can provide promising results in generating better
texts. For example, Yang et al. [90] use syntax-based templates to guide the translation procedure and outperform
the baseline models in the task of neural machine translation. In addition, based on the manual inspection of the
two generated logging texts in the section of human evaluation provided by Ding et al. [14], we ind that the
syntactic structures of the two logging texts are diferent from each other and carry distinct information for each
logging text. Such variety and speciicity raise the question of whether we can extract syntactic templates from
the syntactic structures and adopt templates to guide the automatic logging text generation process. Figure 5
are two diferent constituency-based parse trees produced by Stanza [67] for two logging texts. Based on these
two syntactic trees, we may construct two syntactic templates (the construction process is elaborated in the
following section Approach.), łcopying JJ NN IN NPž and łno beanstalks deined IN NPž, where JJ NN IN NP are
non-terminal symbols of the parse tree, representing diferent token syntactic abstractions (e.g., NP refers to noun
phrase and NN means noun). As illustrated in Figure 5, templates are abstract representations of logging texts
that encompass the syntactic characteristics of logging texts and may serve as a guide when generating logging
texts. Therefore, in this research question, we aim to understand whether the syntactic template information can
help further improve LoGenText in automatically generating logging texts.
Approach.

To answer our research question, we propose LoGenText-Plus, which uses the pre-log code and the logging
template as the source and AST as the context to generate the logging text. Unlike LoGenText, LoGenText-Plus not
only extracts the three types of information (i.e., logging text, the pre-log code and the context information) used
in LoGenText but also considers the syntactic template of logging texts. As stated in Section 2.1.2, LoGenText-Plus
contains two stages, (1) template generation and (2) template-based logging text generation.
Stage 1: template generation. LoGenText-Plus uses a Transformer-based Seq2Seq model to generate the

templates for the given source input. To efectively incorporate the template and AST information, LoGenText-Plus
considers concatenating the template from the logging text in the similar code with the pre-log code (i.e., the
source input in LoGenText) as the new input to the source encoder, and AST as the context to the context encoder.
Below, we describe how we extract the template and incorporate it into LoGenText-Plus.
Extracting the template from the logging text in the similar code. Similar to RQ3, in this step, we assume that

similar code snippets would have similar logging templates, and incorporating the logging template in similar
code would ease the process of predicting the target templates. For example, łfailed to unregister vidž is a logging
text from the project ActiveMQ, and the logging text in its similar code is łfailed to dispose of vidž. Both can
have the same syntactic template łfailed TO VPž. In RQ3, we have extracted logging text from similar code based
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(a) The constituency-based parse tree of the logging text,
łcopying localfile vid to hdfspath vidž.
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(b) The constituency-based parse tree of the logging text,
łno beanstalks defined for initializationž.

Fig. 5. Two constituency-based parse trees for the logging texts. The no-terminal (i.e., syntactic tags) and terminal (i.e.,
tokens in logging text) symbols delimited by the black lines can be selected to construct the templates.

on the given pre-log code snippet. In this step, we irst use Stanza [67], an open-source NLP library, to perform
constituency parsing for each logging text from similar code. Constituency parsing is the task of analyzing phrase
structures (e.g., simple declarative clauses, verb phrases, noun phrases, etc.) for a given sentence. Figure 5 shows
two parsed trees, where the terminal symbols (or, leaf nodes in the tree) are tokens in the logging text, and
non-terminal symbols are syntactic categories (e.g., łSž for simple declarative clause, łNPž for a noun phrase and
łVPž for a verb phrase).

After having the consistency-based parse tree, we choose a certain depth of the constituency-based parse
tree to construct the template. Then, all the symbols (including both terminal and non-terminal symbols) at the
pre-deined depth are collected as the template. For example, assuming the depth is four, then the template for
the logging text, łcopying localile vid to hdfspath vidž, is łcopying JJ NN IN NPž. The depth ranges from one to
the maximum depth of the generated tree (e.g., six for both examples in Figure 5), resulting in diferent templates
for the logging text. Among all the templates, one special case is that we set the depth to a number larger than
the maximum depth of the tree, the templates are exactly the same as the logging texts. With the decrease of the
depth, the complexity of the templates (e.g., the length of the template and the number of unique tokens in the
template) is also reduced.

In this research question, we start with the depth of one due to the following reasons: 1) each template contains
only one token and should be easier to predict, and 2) even though the template contains only one token, it still
can convey diferent syntactic information (e.g., łSž for simple declarative clause and łNPž for noun phrase as
shown in Figure 5). Note that this may be diferent from the text generation tasks (e.g., machine translation) in
NLP, where the target text is usually a complete sentence (that is if we set the depth to one, the template may
always be łSž.). On the contrary, for the logging text in the source code, some developers prefer to use noun
phrases while others may use complete sentences to monitor the status of the software. Moreover, the experiment
in RQ5 also demonstrates that our choice is optimal for automatic logging text generation.
Concatenating the pre-log code and the template. In previous research questions (i.e., RQ1-RQ3), the source is

the pre-log code. However, in this step, we consider concatenating the pre-log code and the template from the
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logging text in a similar code as the new source input to the source encoder of the Transformer-based model.
We adopt this incorporation strategy due to the following considerations: 1) by doing the input concatenation,
the newly formed input sequence is almost a complete code structure (i.e., the pre-log code and the template of
the logging text from similar code). In other words, in the newly formed input sequence, the template acts as a
placeholder, which needs to be reined or replaced by the output of the Transformer-based model. 2) Besides,
under this setting, we can still integrate the AST information using our multi-encoder strategy which has been
proven to be useful for generating the logging text [14].
Extracting the template from the target logging text. The goal of this stage is to predict the template based on

the source input, thus, we need to construct a new target sequence, which is the template of each logging text.
As we have already collected the logging text from each logging statement in Section 2.2, in this step, we share
the same way of extracting the template from the logging text in the similar code to extract the template from
the logging text.
By now, we have the source sequence (i.e., the concatenated pre-log code and the template from the logging

text in similar code), target sequence (i.e., the template from the target logging text) and context information (i.e.,
AST information extracted in RQ2). Next, we describe how we integrate the context information into the model
used for generating the template.

Integrating context information in our models. In RQ2, LoGenText utilizes another encoder to encode the context
information. As shown in Figure 4, the outputs of the context encoder and source encoder are converted into a
new representation by an attention layer, which is inally fused with the output of the source encoder by a gated
sum. The input of the target decoder, � , is a deep hybrid of both the source and the context inputs. However,
this design may have one limitation, that is the deep hybrid happens at the encoder part, as a result, the context
information may not be passed into the decoder part efectively and the inluence of the context may vanish after
the attention and gated sum operations. Hence, in this step, we adopt another design to incorporate the context
information at the decoder part [38, 98].

Source sequence

(concatenated pre-log code and template

from logging text in similar code)

Target Decoder

...EncoderS

...

Generated sequence 

(partial templates form logging text)

Gated sum

Self Attention Self Attention

EncoderC

Context sequence

(Structural (AST) context)

Target sequence (templates)

Fig. 6. An overview of the new multi-encoder Transformer used for template generation. The let łSelf Atentionž is the
source atention layer and the right łSelf Atentionž is the context atention layer.

The structure of our new context integration approach is illustrated in Figure 6. Similar to the context encoder
in the multi-encoder Transformer used in RQ2, the context encoder replicates the original encoder Transformer
and takes the AST as the input. The output of the context encoder and the output of the source encoder are then
passed to the target decoder separately, where the two outputs together with the previously generated template
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sequences are fed into self-attention layers (i.e., context attention layer and source attention layer as shown in
Figure 6), respectively. Then, the outputs of the attention layers are fused by a gated sum. Formally, let � ′ be the
output of the source attention layer and �′ be the output of the context attention layer, the output of the gated
sum � is

� = � ⊙ �′ + (1 − �) ⊙ � ′ (10)

where the gating weight � is calculated by

� = � (� [�′, � ′] + �) (11)

where � (·) is the sigmoid function,� is the weight parameters of the model and � is the bias.
Finally, the template generation stage produces a template for each of the newly constructed source input (i.e.,

Generated templates in Figure 2), which is later used for the template-based logging text generation (i.e., the
model inference in Figure 2).
Stage 2: template-based logging text generation. LoGenText-Plus adopts the same model structure as the

model used in template generation for template-based logging text generation. During the model training of
logging text generation, LoGenText-Plus concatenates the template from the logging text in the similar code with
the pre-log code (i.e., the source input in LoGenText) as the new input to the source encoder, and AST as the
context to the context encoder, while the target sequence is the logging text instead of the template. During the
model inference, LoGenText-Plus concatenates the pre-log code with the template produced in stage 1 as the new
input to the source encoder. The output is the inal prediction of the logging text. Note that during model training,
we intentionally use the template from the logging text in the similar code instead of the template from the
corresponding logging text, because the former contains noise that can be used to simulate the prediction errors
in the generated template. Otherwise, during model training, if we use the template from the corresponding
logging text, the model would pay more attention to the template part. However, during inference, the generated
template may contain errors, which would mislead the model, thus, resulting in a poor quality of the generated
logging text. Our experiment results also conirm our assumption.

In order to understand the impact of the syntactic template information, similar to previous RQs, we evaluate
the performance of LoGenText-Plus on all the subject projects, where we train separate models for each project
(cf. Section 3.2.1).

Besides, we conduct another experiment to study how the diversity across diferent projects would impact our
approach. We irst train a single model using the combined ten training datasets and evaluate its performance on
each of the ten individual projects. Furthermore, we extend the evaluation to include a new dataset from the
project Cassandra, allowing us to assess the generalizability of our approach to unseen data. We select Cassandra
as it is widely studied in the literature [45, 47, 52, 53, 93, 101].

We use the same metrics used in RQ1 (i.e., BLEU and ROUGE-L) to evaluate the quality of the generated logging
texts.
Results.

Overall, our newly proposed approach LoGenText-Plus outperforms the baseline approach as well as

the best performing version of LoGenText that incorporates the AST context. The experimental results on
the 10 studied projects are provided in Table 5 with the best results highlighted in bold. In particular, LoGenText-
Plus outperforms LoGenText in eight out of 10 projects in terms of BLEU score. For example, we obtain over 10%
relative increase (i.e., 12.3%) for the project Brooklyn in terms of BLEU score and a 5.9% increase in ROUGE-L
score. Our results indicate the efectiveness of incorporating templates in guiding the automated generation of
logging text.
In addition to the overall BLEU and ROUGE-L, LoGenText-Plus can provide relatively good performance for

relatively small projects. As shown in Table 5, LoGenText-Plus achieves a BLEU score of 25.5 to 37.9 for the
ActiveMQ, Ambari, Brooklyn and Synapse projects, which are the smallest projects with less than 500K SLOC.
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Table 5. Evaluation results of using LoGenText-Plus, LoGenText and the baseline approach to generate logging texts in the studied
projects (RQ4).

BLEU(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Baseline 21.0 19.8 26.0 37.9 30.1 19.6 19.5 28.2 21.5 34.1 25.8

Base LoGenText (RQ1) 23.0 22.8 25.4 39.0 34.6 21.8 23.1 28.0 24.9 28.8 27.1

LoGenText with AST (RQ2) 24.1 23.8 27.8 41.8 34.6 23.3 23.5 29.6 28.8 37.2 29.5

LoGenText-Plus 26.6 25.5 31.2 40.1 35.0 23.8 23.7 30.3 28.8 37.9 30.3

ROUGE-L(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Baseline 36.1 36.8 38.1 47.4 43.9 34.1 38.4 42.4 37.1 46.9 40.1

Base LoGenText (RQ1) 43.4 42.9 43.6 52.3 50.1 41.1 46.5 46.7 45.5 49.5 46.2

LoGenText with AST (RQ2) 42.5 43.4 44.0 53.9 50.8 42.1 46.4 48.2 47.6 53.6 47.3

LoGenText-Plus 44.4 44.0 46.6 54.0 50.1 42.5 46.2 47.6 47.3 54.3 47.7

Note: Values in bold font indicate the best performing models.

Table 6. Evaluation results of incorporating templates with diferent multi-encoder Transformers for logging text generation (RQ4).

BLEU(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Integrating context at decoder 26.6 25.5 31.2 40.1 35.0 23.8 23.7 30.3 28.8 37.9 30.3

Integrating context at encoder 26.0 23.3 31.0 42.3 35.1 23.6 23.3 30.6 29.4 36.0 30.1

ROUGE-L(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

Integrating context at decoder 44.4 44.0 46.6 54.0 50.1 42.5 46.2 47.6 47.3 54.3 47.7

Integrating context at encoder 43.5 43.3 46.5 54.5 50.7 41.7 46.4 48.8 48.2 53.5 47.7

Note: Values in bold font indicate the best performing models.

LoGenText-Plus has the largest BLEU improvements on three of these four smallest projects (i.e., 10.3%, 7.1%,
12.3% relative increases on projects ActiveMQ, Ambari, Brooklyn respectively) over the best performing form of
LoGenText. It is widely recognized that deep neural networks usually require larger training data to generalize
better [24, 43]. However, our results indicate that our LoGenText-Plus could alleviate the (negative) impact of
limited training data and efectively generate logging texts for smaller projects.
However, we also observe that LoGenText-Plus may not always improve the performance signiicantly. For

example, as Table 5 shows, the improvement of BLEU score on some relatively larger projects (e.g., HBase,
Hadoop and Ignite) is limited, and LoGenText-Plus performs even worse than LoGenText on the project Camel.
This phenomenon may be explained from two aspects: 1) The size of the project: the project contains more
lines of source code, which provides more source information and training sets for learning a good model, as a
result, the impact of the template can be mitigated, and 2) The diferent context integration strategies: as we
stated in RQ4-Approach, we adopt another integration strategy, where we move the context integration from
the encoder part to the decoder, trying to enlarge the impact of the context. On the other hand, it should be
noted that the context may contain noise, as a result, the impact of the noise is also increased, which makes the
performance even worse. Thus, we further conduct another experiment on the 10 projects using the integration
strategy proposed by LoGenText. The results are presented in Table 6. The results conirm that the integration
strategy does have an impact on the performance of logging text generation. Speciically, we get a BLEU score
of 42.3 on project Camel, which is higher than LoGenText-Plus and LoGenText (i.e., 40.1 and 41.8, respectively).
This observation also matches previous studies that show that enlarging the context may lead to performance
degradation of NMT models due to the noise introduced by the enlarged context [98, 102].
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Table 7. Evaluation results of diferent training strategies for logging text generation in the studied projects and a new project (RQ4).

BLEU(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg. Cassandra

Separate models 26.6 25.5 31.2 40.1 35.0 23.8 23.7 30.3 28.8 37.9 30.3 20.1

Single model 22.1 21.9 27.2 36.9 32.8 20.9 22.0 27.5 26.5 34.1 27.2 11.3

ROUGE-L(%)

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg. Cassandra

Separate models 44.4 44.0 46.6 54.0 50.1 42.5 46.2 47.6 47.3 54.3 47.7 42.0

Single model 41.5 42.1 42.9 50.1 49.1 40.2 45.4 46.4 46.5 51.5 45.6 31.2

Note: Values in bold font indicate the best performing models. The single model of Cassandra is trained on the 10 studied projects.

Additionally, we ind that training separatemodels for each project (cf. Section 3.2.1) can beneit the performance
of our approach. Table 7 shows the results of the diferent training strategies, as well as the performance of
the model trained on the 10 studied projects, when applied to the new project, Cassandra. As the table shows,
by training only one single model on all the training datasets, the performance of LoGenText-Plus decreases
on almost all the projects and reaches an average BLEU score of 27.2, which is lower than that of the separate
models (i.e., 30.3). The results may be due to the fact that the training data from other projects would bring
some noise, and thus may negatively impact the performance of the model. Furthermore, when evaluating the
single trained model on the unseen dataset (i.e., Cassandra), the model gives a BLEU score of 11.3. Meanwhile,
we also evaluate the model that is trained on the project Casandra and the model has a BLEU score of 20.1. For
comparison, we further evaluate the baseline approach under these two settings, which gives BLEU scores of
8.8 and 15.7 respectively. On the one hand, the results conirm the indings from previous work [29] that the
language patterns in diferent projects vary a lot. On the other hand, the results reveal one of the limitations of
our approach: although our approach has better performance than the baseline, there is still a non-negligible
performance drop when the training and testing datasets are drawn from diferent distributions. The results call
for future research that can alleviate such performance decreases across diferent distributions.

Although LoGenText-Plus exhibits improved performance compared to LoGenText, and both approaches surpass
the baseline approach, it is important to acknowledge that there is still potential for further improvement in
both approaches. To better understand the limitations and instances requiring enhancement, we conduct another
manual analysis on instances where both LoGenText and LoGenText-Plus do not achieve satisfactory performance.
By closely examining these cases, we aim to identify the speciic challenges and factors contributing to suboptimal
outputs.
In particular, we check the distribution of the BLEU scores for the generated logging texts and ind that, on

average, approximately 35 cases yield a BLEU or ROUGH score of zero. To gain further insights into these cases,
we randomly selected 10 cases for each project, which we would thoroughly analyze.

We have categorized the characteristics of the cases into two main categories, each with several subcategories8:

Limited source input. Both LoGenText and LoGenText-Plus rely on the pre-log code as the source input, and in
some cases, the pre-log code may lack suicient information for logging text generation, resulting in unsatisfactory
outputs. We have identiied two common scenarios: 1) The logging statement is put at the beginning of the
method of which the method name is very simple and common and does not provide meaningful information.
For instance, Figure 7a presents an example where the corresponding code (i.e., lines 2 and 3) only contains a few
tokens and does not provide much information. 2) The logging statement describes the post-log code, while in
our approaches, we use the preceding code as the input, which would result in the wrong output. As shown in

8Note that these categories may not be strictly exclusive. For instance, in Example (a), the code (i.e., lines 2 and 3) is very common and there

is a high possibility that it appears in the training set.
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1 @Override

2 public void run() {

3   try {

4 ---------------Candidate log start----------------

5 Original log: LOG.debug("Executing task #{}", taskId)

6 Generated log-ast: logsearchfilenamerequestrunnable starting

7 Generated log-plus: persisting metric metadata

8 ---------------Candidate log end----------------

9 ...

(a)

1 ...

2 try {

3 ---------------Candidate log start ----------------

4 Original log: LOG.debug("Setting subscriptions: {}", ...)

5 Generated log-ast: dispose old state

6 Generated log-plus: disposition disconnect

7 ---------------Candidate log end ----------------

8 connected.putSubscriptions(this.subscriptions);

9 ...

(b)

1 p������ �v�� p�� ����p	
 �

2     ...

3     logger.info("��
���� �������");

4         

5 ---------------Candidate log start----------------

6 O���� �� �v�� �v�����info(DOUBLE_INDENT + "HOST_OR_IP

7                                     =" + DFLT_HOST)

8 Generated log-ast: default values

9 Generated log-plus: default values

10 ---------------Candidate log end----------------

11 ...

(c)

1 ...

2 if (jobScheduler != null) {

3     jobScheduler.removeJob(jobId);

4     LOG.info("Removed scheduled Job " + jobId);

5 } else {

6 ---------------Candidate log start----------------

7 Original log: LOG.warn("Scheduler not configured")

8 Generated log-ast: removed scheduled job vid

9 Generated log-plus: removed scheduled job vid

10 ---------------Candidate log end----------------

11 ...

(d)

Fig. 7. An illustration of error cases generated by LoGenText and LoGenText-Plus.

Figure 7b, line 8 is the corresponding code that the logging statement (i.e., line 4) is describing, but our approaches
ignore such information.

Similar source input in the training set. There are some test cases that share a very similar input with the
training cases, where both approaches may simply copy the logging texts from the training cases. Speciically, 1)
There are two consecutive logging statements in the original source code and one of them is used as the training
case. For example, line 3 of Figure 7c appears in the training set and has the same source input as line 4 (i.e., the
logging text to generate). 2) There are two logging statements that are close to each other in the original code.
For example, in Figure 7d, the logging statement in the if block (i.e., line 4) is used as the training set, and when
generating the logging statement in the else block (i.e, line 7), our approaches may simply copy the logging text
from line 4, due to the minimal diference in source input.

Based on these indings, future work may consider 1) incorporating the data low information to discriminate
similar source input, 2) utilizing the method call graph to identify more context for the logging text at the
beginning of a method, and 3) identifying more relevant source code, while avoiding the introducing of noise.

Summary

LoGenText-Plus generally outperforms the baseline approach that leverages the existing logging texts
in similar code snippets as well as the best performing version of LoGenText that incorporates the AST
context. Our results illustrate the efectiveness of using templates for guiding the generation of the logging
text.

ACM Trans. Softw. Eng. Methodol.



24 • Ding et al.

Table 8. Evaluation results of incorporating templates constructed with diferent depth in LoGenText-Plus for logging text
generation (RQ5).

BLEU(%)

Depth ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

1 26.6 25.5 31.2 40.1 35.0 23.8 23.7 30.3 28.8 37.9 30.3

2 28.9 24.4 31.5 40.8 34.2 22.9 24.2 29.0 28.9 36.4 30.1

3 28.2 24.6 29.3 40.6 34.5 22.1 24.1 29.1 30.5 37.4 30.0

4 24.8 23.4 28.2 40.2 35.0 21.9 24.3 29.0 29.2 35.0 29.1

5 25.9 23.2 30.5 39.6 33.2 22.3 22.7 28.8 28.1 38.0 29.2

6 26.4 23.2 29.0 40.8 34.0 21.9 23.7 28.4 27.7 33.4 28.9

7 25.6 23.9 30.4 39.3 33.8 21.8 24.2 28.9 27.6 34.6 29.0

8 26.1 22.2 27.6 39.6 33.7 21.2 23.3 28.8 28.5 34.1 28.5

9 27.8 23.6 27.3 38.9 33.2 21.5 24.6 29.0 26.9 35.7 28.8

Best 28.9 25.5 31.5 40.8 35.0 23.8 24.6 30.3 30.5 38.0 30.9

ROUGE(%)

Depth ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse Avg.

1 44.4 44.0 46.6 54.0 50.1 42.5 46.2 47.6 47.3 54.3 47.7

2 44.6 42.2 46.7 52.3 50.8 41.0 46.6 47.3 48.3 52.4 47.2

3 44.8 43.2 45.9 53.3 50.2 41.2 47.0 47.4 48.6 55.2 47.7

4 43.5 42.7 45.5 52.1 50.4 41.5 46.9 47.3 47.7 53.6 47.1

5 42.4 43.5 44.4 53.0 48.9 40.7 45.2 48.0 47.2 54.0 46.7

6 43.5 42.4 45.1 53.2 49.9 40.1 46.8 47.2 47.0 53.6 46.9

7 42.7 43.8 45.8 52.4 49.9 41.3 47.7 47.7 46.5 52.3 47.0

8 42.7 42.4 44.7 53.0 50.0 40.2 46.2 47.2 48.5 51.7 46.7

9 44.5 43.3 43.5 52.5 49.8 40.7 47.7 47.5 46.3 53.5 46.9

Best 44.8 44.0 46.7 54.0 50.8 42.5 47.7 48.0 48.6 55.2 48.2

Note: Values in bold font indicate the best performing models.

RQ5: How does the granularity of logging templates impact the performance of LoGenText-Plus in

generating logging texts?

Motivation.

In RQ4, we have introduced the approach of how to build the templates from the consistency-based parse tree
and have shown the efectiveness of using these templates. On one hand, we start building the templates with
the depth of one, which produces simple yet efective templates. On the other hand, choosing diferent depths
can result in diverse templates, which may convey diferent levels of information for guiding the generation of
logging texts. For example, as shown in Figure 5b, if we set the depth to one, the template only has one symbol
łNPž, which means that the logging text is a noun phrase. The template is very short and cannot capture too
much information. Meanwhile, if we set the depth to six (or a larger number), the template is exactly the same
as the logging text, which violates our assumption. Therefore, in this research question, we aim to explore the
impact of incorporating diferent templates derived from the tree with diferent depths on automated logging
text generation.
Approach.

In this RQ, we adopt the same approach as in RQ4 to construct and incorporate the templates. In particular, we
extract the templates with depths from one to nine and concatenate them with the pre-log code, separately. Based
on the newly constructed source input, we train diferent models and evaluate the performance of LoGenText-Plus
that incorporates diferent templates using the BLEU and ROUGE-L metrics.
Results.
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ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse

25

30

35

40

BLEU(%)

5.0% 3.5% 2.5%2.0%5.2% 3.7% 4.7%1.7%4.0% 1.8%

ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse
40

45

50

55

ROUGE(%)

1.7%2.3% 1.0%1.1% 1.8%1.5% 2.1%2.1% 0��� 1���

Fig. 8. The distribution of the results produced by LoGenText-Plus with diferent templates. The horizontal axis represents all
the studied projects; the vertical axis is the performance (i.e., BLEU or ROUGE) in diferent projects. The numbers on top of
each box are the corresponding coeficient of variance.

The performance of LoGenText-Plus on the subject systems can be further improved by incorporating

templates with diferent depths compared to that of LoGenText-Plus using templates with a depth of

one. As shown in Table 8, we ind that by incorporating the new templates constructed with diferent depths, the
performance of LoGenText-Plus can be increased in half of the 10 studied projects (e.g., the average BLEU score
increases from 29.5 (i.e., LoGenText with AST, cf. RQ2) to 30.9 (i.e., the best performing depths)). The biggest
improvement is observed in the project ActiveMQ. When setting the depth to two, LoGenText-Plus achieves a
BLEU score of 28.9, which is 19.9% and 8.7% higher than LoGenText (i.e., 24.1, cf. RQ2) and LoGenText-Plus with
the depth of one (i.e., 26.2, cf. RQ4). The results indicate that the templates constructed with diferent depths
may capture various types of knowledge to help with automatic logging text generation. With proper depth, the
template can further improve LoGenText-Plus for the studied projects.
However, similar to our indings in RQ2, incorporating templates with diferent depths can result in diverse

performance for each project. Figure 8 shows the distribution of performance results produced by LoGenText-Plus

with diferent templates. To quantify the variance of the diferences, we also calculate the coeicient of variation
(CV) for each project. The results show that the projects with a relatively small size (SLOC), are more sensitive to
the templates. As Figure 8 shows, the four smallest projects, ActiveMQ, Ambari, Brooklyn, and Synapse projects
have the largest variances, 5.0%, 4.0%, 5.2%, 4.7%, respectively. While for large projects, the impact of utilizing
diferent templates is relatively weak. For example, for the project Synapse, using the template with a depth of
six can only have a BLEU score of 33.4, compared to a BLEU score of 38.0 when using the template with a depth
of ive, but for the project Hive, the biggest performance diferent is 1.9 (i.e., 30.3 when depth is one vs. 28.4 when
depth is six). One explanation for this phenomenon may be that larger projects may contain more source data,
and thus, produce more powerful models and mitigate the diferences between diferent templates.
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Fig. 9. The distribution of the length of templates (i.e., violin plot) constructed with diferent depths and the vocabulary
size (i.e., line plot). The horizontal axis represents the diferent depths; the let vertical axis is the template length (i.e., the
number of tokens in each template); the right vertical axis is the vocabulary size (i.e., the number of distinct tokens in all the
templates).

In addition, as shown in Table 8, with the increases in depth, the average BLEU score tends to decrease. In
particular, when the depth is one, LoGenText-Plus has the best BLEU and ROUGE scores on average. Besides, for
most of the projects, LoGenText-Plus achieves the best performance when the depth is less than ive. For example,
the BLEU scores on projects ActiveMQ, Brooklyn and Camel reach the highest with a depth of three. This is
reasonable given that with the increases in depth, more terminal symbols (tokens in logging text) are captured,
resulting in more complex templates. Figure 9 shows the distribution of the length of templates under diferent
depths as well as the vocabulary size (i.e., the number of unique tokens in templates). It is obvious that both the
length of templates and the vocabulary size increase signiicantly with the increases in depth. As a result, the
task of template generation becomes more diicult, which means that LoGenText-Plus may not generate accurate
templates, and thus negatively impacting the performance of generating the logging texts.
Discussion

In the above sections, we have quantitatively demonstrated the superiority of LoGenText-Plus on the 10 subjects.
Based on the extensive experimental results, in this part, we would like to elaborate more on the design choice as
well as the potential limitations of LoGenText-Plus.
Strengths and limitations

In LoGenText-Plus, we divide the logging text generation task into two stages: template generation and
template-based logging text generation. Therefore, the advantages of LoGenText-Plus can be discussed from two
aspects:

• Design paradigm: Instead of directly predicting the logging texts, we are trying to solve the problem with a
coarse-to-ine strategy. Intuitively, predicting the templates is a little easier compared to predicting the
logging texts directly, as 1) the size of the symbols (about 60 tags) in the templates is much smaller than
the number of tokens (i.e., natural language words plus source code tokens) in the logging texts, and 2) the
templates are relatively shorter than the corresponding logging texts. In particular, if the depth is set to one,
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the template only contains one element. As a result, we are actually converting the template generation
task to a multi-class classiication problem, which should be easier to tackle.

• Enriched information: By incorporating the templates of the logging texts, we are explicitly introducing
more knowledge into the model. Previous works [14, 29] mainly focus on the information extracted from the
source code, such as the abstract syntax trees, and code sequences, while few works consider utilizing the
information from the target sequence. In this work, the template is constructed from the constituency-based
parse tree of the logging text which provides a syntactical representation of the logging texts. The low-level
syntactic information (i.e., syntactic tags) with the high-level semantic information (i.e., some tokens in
the logging text) in the template complements the source code and thus may be useful for the generation
of the logging texts. This inding also explains the experimental results in RQ4 that LoGenText-Plus can
provide relatively good performance for relatively small projects, as LoGenText-Plus can bring more external
knowledge to the trained model.

However, LoGenText-Plus also has limitations. Although using the template may provide useful information,
there is still a chance that the generated templates contain noise, and thus may harm the performance of
LoGenText-Plus. As the experimental results in RQ5 show, with the increases in depths, predicting the templates
tends to be a more challenging task. As a result, the generated templates may be of poor quality with a risk
of misleading the generation process of the logging texts. Moreover, we also observe that for some projects,
LoGenText-Plus does not bring signiicant beneits, especially when the size of the projects is large enough. For
example, LoGenText-Plus has the same BLEU score on the Ignite project with LoGenText. This may be due to
the fact that larger datasets may produce more powerful models and mitigate the diferences caused by the
external information (i.e., syntactic information from the logging texts.). In future work, to further improve the
performance of LoGenText-Plus, we can focus on generating more accurate templates.
Another limitation may come from the fact that we use the pre-log code as the source input, while there

may exist some logging texts describing the succeeding source code. Due to the lack of information on the
corresponding source code, our approach may fall short of generating satisfactory logging texts. In this work, the
design choice of only considering the pre-log code as the main source input is based on the indings from previous
work by He et al. [29], where they ind that using the code surrounding (i.e., code preceding and succeeding) the
logging text would result in worse results, compared to only using the code preceding the logging text.

We also conduct another two experiments on LoGenText and LoGenText-Plus, where we concatenate the pre-log
code and post-log code as the source input and utilize the AST as the context. We ind that both LoGenText

and LoGenText-Plus have a performance degradation, with an average BLEU score of 27.6 and 26.7 respectively,
compared to the initial BLEU scores of 30.1 and 30.3 without the use of post-log code. The results show that
incorporating more contexts can not always guarantee a better model, which conforms to the results in the
work of He et al. [29]. This phenomenon can be explained by the fact that developers prefer to insert logging
statements to describe the actions in the preceding source code [17, 29], and thus, the use of post-log code may
bring in some noise. Especially for LoGenText-Plus, as it involves the use of post-log code in two stages: template
generation and logging text generation. The errors in the generated template may propagate to a later stage, and
mislead the generation of the logging texts. Meanwhile, there is a possibility that the use of all the pre-log code
might not be optimal, as the logging statements may only describe a few lines of code (e.g., the example in our
introduction section). Future work may consider improving the performance by identifying the most relevant
source code as input.
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Summary

The performance of LoGenText-Plus on the subject systems can be further improved by incorporating
diferent templates with diferent depths. However, the selection of the templates is a trade-of, as
incorporating templates with diferent depths can result in diverse performance for each project.

RQ6: Can we harmonize the wording in the generated logging text with the logging text written by

developers using �-gram dictionaries?

Motivation.

Prior work [14] proposes an NMT-based model to automatically generate the logging text based on the source
code (i.e., LoGenText) and achieves promising results. However, while reviewing the generated logging texts, they
ind that the generated text sequence and the text sequence in the developer-written logging text may not always
be consistent. For example, the logging text in Figure 5a uses the term łlocalilež, while the generated logging
text uses the noun phrase łlocal ilež. Although these two terms have a very similar meaning for developers, the
use of diferent words may cause inconsistency in the wording and afect downstream log-related tasks (e.g., log
parsing, log compression). Meanwhile, it is obvious that the term łlocalilež should be an identiier from source
code (e.g., method names, or variables) and is constructed by two natural language tokens (łlocalž and łilež).
Therefore, in this research question, we aim to explore whether we can reine the wording and make it consistent
with the original logging text written by developers based on the extracted identiiers in the source code.
Approach.

In this RQ, we irst build �-gram dictionaries from the source code and then extract the token sequences of
a certain length (i.e., �-grams) from the generated logging text. Then, we check whether we can compose the
extracted sequence into bigger units based on the dictionary. We here choose the �-gram model, as it has been
proven to be useful for processing log data [13].
Building �-gram dictionaries from the source code. Pre-processing source code. In this step, we try to

extract identiiers from the source code. We irst apply srcML9 to the method that contains the logging text.
srcML converts the source code into an XML tree, where the leaf nodes are the tokens in the source code. We
then use Beautiful Soup to select the nodes with a łnamež tag, which is used to mark the identiiers of the source
code. For example, Figure 10a shows a code snippet from the project Ambari and the extracted identiiers are
shown in Figure 10b. Then, we tokenize the identiiers based on the camel case convention. Figure 10c is the
tokenized token units of łretryHostRoleCommandž, which are later used for building the dictionaries.
Building �-gram dictionaries from tokens. In this step, we build �-gram dictionaries based on the extracted

token units. In our approach, an �-gram is a contiguous subsequence of � token units from a tokenized identiier.
For example, given the sequence of token units łretry, Host, Role, Commandž, we can build a dictionary with
three 2-grams or a dictionary with two 3-grams, as shown in Figure 10. We build such �-gram dictionaries for
each method that contains the logging text.
Composing �-grams in the generated logging text together into bigger units. Identifying �-grams in

generated logging text. Similar to the last step, we extract �-grams for each generated logging text. For each
�-gram from the logging text, we check whether it appears in the pre-constructed dictionary in the last step. If
the �-gram is found in the dictionary, we consider it as an �-gram that may be combined into one new token.
We ilter out the �-grams that never appear in the dictionaries. Figure 11a is the generated logging text based
on the given source code in Figure 10a. Based on the dictionary built from the source code (i.e., Figure 11c and
Figure 10d), we ilter out all the 3-grams except the łhost role commandž.

9https://www.srcml.org/
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void

retryHostRoleCommand

HostRoleCommandEntity

...

m_hostRoleCommandDAO

...

retry, Host, Role, Command

retry Host, Host Role, Role Command

(a) Code snippet from Ambari. (b) Extracted identifiers.

(c) Extracted unit tokens.

(c) 2-grams.

retry Host Role, Host Role Command

(d) 3-grams.

private void retryHostRoleCommand(HostRoleCommandEntity hrc) {

try {

hrc.setStatus(HostRoleStatus.PENDING);

hrc.setStartTime(-1L);

...

} catch (Exception e) {

LOG.error("Error while updating hostRoleCommand. Entity: {}", hrc, e)

throw e;

}

}

Fig. 10. An overview of the process of building �-gram dictionaries from the source code.

unable to set

to set host

host role command

...

(a) Generated logging text.

(b) Extracted 3-grams.

retry Host Role, Host Role Command

(c) 3-gram dictionary.

unable to set host role command original start time vid exception vid

(e) Original logging text.

(d) Refined logging text.

unable to set hostrolecommand original start time vid exception vid

error while updating hostrolecommand entity vid

Fig. 11. An overview of the process of composing �-grams in the generated logging text together into bigger units.

Composing identiied possible �-grams. From the last step, we have obtained a list of �-grams that may be
combined into new tokens. However, not all the �-grams are meaningful or frequently used in the logging text.
If we simply combine all these identiied �-grams, we may have a lot of False Positives, especially when � is
small (e.g., 2). For example, in Figure 11, if we use a 2-gram dictionary (i.e., Figure 10c), we may combine łhost
rolež or łrole commandž, which results in worse wording in the generated logging text. To avoid such improper
combinations, we deine two rules: 1) syntactic analysis, and 2) logging practice. The details are shown below:

• Syntactic analysis-based rule (rule 1): The �-gram to be combined should be the only siblings of the same
parent (e.g., łNPž, łVPž) in the consistency-based parse tree. Figure 12 illustrates the constraint that łhost,
role, commandž are siblings (i.e., three nouns) with the same parent node (i.e, łNPž), and their parent only
has these three children. Thus, they can be used together to compose a bigger token unit.

• Logging practice-based rule (rule 2): Meanwhile, some developers prefer to use separate tokens of identiiers
in the logging text. Therefore, to make the combined new tokens conform to the existing logging text
conventions, we propose our second rule: for a 2-gram, the newly composed bigger token unit in the
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existing logging texts (i.e. the training corpus) should be more frequently used than that of the 2-gram
(i.e., the number of occurrences of the newly composed bigger token unit should be larger than that of a
2-gram); for 3-grams, the newly combined token should appear at least once in the existing logging text.

Note that in our experiment, to balance the recall and precision, we further adjust the scope of the rules, that is
we limit the identiiers for building dictionaries to the method name.

TO

to

VP

VB

set

NP

NN

host

NN

role

NN

command

NP

JJ

original

NN

start

NN

time

NN

vid

NN

exception

Fig. 12. The constituency-based parse tree of the logging text in Figure 11a. The tokens delimited by the black lines are three
siblings and the only children of the node łNPž.

To examine the efect of our dictionary-based combination strategy, we irst compare the generated logging
texts and the logging texts written by developers, and then we manually study the results.

Table 9. Evaluation results of applying diferent constraints for composing �-grams in the generated logging text together
into bigger units (RQ6). Ground truth represents the number of the generated logging texts containing �-grams that should
be combined. Detected is the number of the detected logging texts by our strategy. Relevant represents the number of the
detected ground truth. Both, None, Rule 1, and Rule 2 represent when applying both constraints, no constraint, the first
constraint and the second constraint respectively.

Rules ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse

Ground truth 1 4 0 4 6 6 4 2 2 2

Both
Detected 1 1 0 0 0 3 2 1 0 1
Relevant 1 1 0 0 0 0 0 0 0 0

None
Detected 12 24 21 48 165 82 30 30 25 8
Relevant 1 2 0 1 4 4 2 1 1 0

Rule 1
Detected 5 13 9 16 96 42 20 16 7 4
Relevant 1 1 0 0 0 2 1 1 1 0

Rule 2
Detected 1 1 0 0 3 5 2 1 0 1
Relevant 1 1 0 0 0 1 0 0 0 0

Results.

Although we can reine the generated logging text with the post-processing strategy, the improve-

ment is limited. We irst manually check the generated logging texts and compare them with the original
logging texts extracted from the source code. For a generated logging text, if it contains a combined �-gram that
can be found in the original logging texts, then it is considered as a ground truth. We ind there do exist �-grams
in the generated logging text that can be possibly combined, but the number is relatively small (i.e., Ground truth
in Table 9). As shown in Table 9, the number of ground truth is small, which means that there are a few generated
logging texts containing a �-gram that should be combined to harmonize the wording (e.g., the generated logging
text in Figure 11a).

To examine the impact of our proposed two rules, we have conducted another three ablation experiments. First,
we remove the two rules and combine the �-grams only based on the dictionary (i.e., None in Table 9). As Table 9
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shows, a much larger size of the generated logging texts is detected, while a small number of the detected logging
texts are relevant to the ground truth (i.e., True Positives). To ilter out the irrelevant logging texts (i.e., False
Positives), we apply the two rules to the detected logging texts. As a result, we successfully detect two logging
texts that can be further reined. The results show that by using our proposed post-processing strategy we can
further improve the generated logging texts, but the improvement is incremental. Future research may consider
modifying the architecture of the Transformer-based model and incorporating the �-gram dictionary into the
model (e.g., � -Grammer [68]) during the training or inference stage to improve the quality of the generated
logging texts.
Finally, we manually study the detection results and identify two possible reasons for incorrectly detected

logging texts: 1) Inconsistent writing convention. For example, although this research question is motivated by
the logging text in Listing 5.1, we still fail to reine this generated logging text by combining the 2-gram łlocal
ilež. We check the method and ind both łlocalilež and łlocal ilež are used in the logging statements of this
method, but łlocalilež only appears once in this extracted logging text, thus the combination operation is ignored.
2) Missed �-grams in the dictionary. This is reasonable, as we limit the identiier to the method name for building
the dictionaries, we have the chance to miss some �-grams. However, selecting the identiiers is a trade-of. If
we chose more identiiers, as a result, we would produce more false positives. On the contrary, fewer identiiers
would cause the miss of the possible combinations.

Summary

It is possible to harmonize the wording in the generated logging text with the post-processing strategy
that leverages the token sequence (i.e., �-grams) in the source code, however, the improvement is limited.
Future research may consider incorporating the obtained �-grams from the source code into the logging
text generation model during the training or inference stage, to improve the quality of the generated
logging texts.

5 HUMAN EVALUATION

Our approach LoGenText and its extension LoGenText-Plus are evaluated in the last section based on quantitative
metrics (i.e., BLEU and ROUGE scores) that measure the similarity between the original and the generated
logging texts. However, the quantitative metrics may not directly relect how developers perceive the quality of
the generated logging texts. Therefore, in this section, we conduct two separate human evaluations to further
evaluate LoGenText and LoGenText-Plus.

5.1 Evaluation of LoGenText

We invited 42 participants in our human evaluation. The participants include a mix of 23 graduate students who
major in computer science or software engineering and 19 software developers who are employed in the software
industry across the globe. All the participants have at least ive years of experience in software development.
Our human evaluation for LoGenText contains two tasks: task 1) evaluating the similarity between the

automatically generated logging texts and the original logging texts extracted from source code. task 2) evaluating
the logging texts separately from three aspects [87], i.e., relevance, usefulness and adequacy based on the given
source code. For task 1, each participant was given 15 logging statements that were randomly sampled from the
10 projects to evaluate. We presented the participants with the original logging texts, the logging texts generated
by the baseline, and the logging texts generated by LoGenText. Since our results in Section 4 show that the
context-aware form of LoGenText incorporating the AST context has the best overall performance, we used it to
generate logging texts for our human evaluation. We named the logging text from the original logging statement
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as log-ref and the two generated logging texts as log-1 and log-2. We asked the participants to rate the similarity
between the generated logging texts (log-1 and log-2) and the original logging texts (log-ref ). In order to avoid
the bias caused by the order of the two generated logging texts, we randomly assigned the one generated by
LoGenText or by the baseline as log-1 or log-2. Each generated logging text is evaluated based on a scale from 0 to
4 where 0 means no similarity and 4 means perfect similarity. For task 2, each participant was randomly given
three logging statements to evaluate. We presented each participant with the original logging text, the logging
text generated by the baseline, the logging text generated by LoGenText, and the surrounding method of the
logging statement that highlights the location of the logging statement. We randomly assigned the three logging
texts as log-a, log-b and log-c. We asked the participant to rate the three logging texts based on the given code
snippet from three aspects, i.e., relevance, usefulness and adequacy. Relevance refers to how relevant the logging
text is to the given source code. Usefulness refers to how useful the logging text is for collecting valuable runtime
information of the source code. Adequacy refers to how the logging text is acceptable in quality or quantity
with regard to the given source code. Each logging text is evaluated based on a scale from 0 to 4 where 0 means
irrelevant/useless/unacceptable and 4 means perfect relevance/usefulness/adequacy.
LoGenText generates logging texts that are signiicantly more similar to the original logging texts

than that generated by the baseline approach. Figure 13 presents the distribution of the user ratings in our
evaluation. We ind that LoGenText generates more logging texts with the ratings of 3 and 4 while fewer logging
texts with the ratings of 0 and 1 than the baseline approach. We conducted a Wilcoxon signed-rank test [84] to
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Fig. 13. Distribution of the rating results (in task 1) in terms of the similarity between the generated logging texts and the
reference logging texts.

statistically compare the ratings of the logging texts generated by LoGenText and the baseline approach. With a
p-value ≪ 0.00001, we can conirm that the diference between the ratings of the logging texts generated by
the two approaches is statistically signiicant. On the other hand, despite the signiicant improvement over the
baseline approach, we still observe that more than one third of the automatically generated logging texts by
LoGenText receive a rating of 0 or 1. The results suggest opportunities for future research that further improves
the automated logging generation.

Table 10. Comparing the human ratings (in task 1) and the BLEU and ROUGE scores of the logging texts generated by
LoGenText.

Rating 0 1 2 3 4

BLEU 14.3 20.6 27.4 36.4 78.5

ROUGE-L 21.4 29.7 37.4 46.4 87.3
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In order to relect on the results of our research questions that leverage quantitative metrics BLEU and
ROUGE to evaluate LoGenText (cf., Section 4), we analyze the relationship between the results of the quantitative
measurement and the human evaluation. Speciically, we group the logging texts generated by LoGenText by
each rate, then evaluate the BLEU and ROUGE scores of the logging texts in each group. As shown in Table 10,
higher BLEU and ROUGE scores are both associated with higher user ratings. Such results conirm the validity of
our indings in our research questions that leverage the quantitative metrics.
We manually examine the generated logging texts for which the participants assigned a very high rating

(i.e., 3 or 4) while the BLEU and ROUGE values are relatively low (i.e., lower than the median), in order to
further understand the quality of the generated logging texts. In particular, there are 79 (12.5%) cases where the
human ratings are high (i.e., 3 or 4) while the BLEU scores are lower than the median. We ind two main reasons
contributing to such inconsistency: 1) Using shorter words. In the generated logging texts, the generated words
are often short and easy to follow. For example, in a logging statement from Ambari,

Listing 1. An example generated logging text from Ambari.

// Original logging statement:

LOG.info("copying localfile := " + sourceFilepath + " to hdfsPath := " + destFilePath)

y

// Extracted logging text after preprocessing:

"copying localfile <vid> to hdfspath <vid>"

��������
−−−−−−−→

// Generated logging text:

"copying local file <vid> to <vid>"

the original logging text uses the term łlocalilež; while our generated logging text uses the term łlocal ilež.
Although these two terms have a very low similarity in terms of BLEU and ROUGE, they have a very similar
meaning. 2) Using synonyms. Another reason for the inconsistency is the use of synonyms. For example,
a logging text from Hadoop says łno beanstalks deinedž while our generated logging text says łno beanstalk
deinitions foundž. Both logging texts have similar meanings but with diferent choices of words, which results in
a high human rating but low BLEU and ROUGE-L values.

Listing 2. An example generated logging text from Hadoop.

// Original logging statement:

log.debug("No beanstalks defined for initialization.")

y

// Extracted logging text after preprocessing:

"no beanstalks defined for initialization"

��������
−−−−−−−→

// Generated logging text:

"no beanstalk definitions found for

initialization"

LoGenText outperforms the baseline approach in all three aspects. Table 11 shows the mean and median
of relevance, usefulness and adequacy scores of the reference logging texts and the logging texts generated by
LoGenText and the baseline approach. We can see that LoGenText outperforms the baseline approach on all three
aspects with an average score of 2.67, 2.41 and 2.15, respectively. Similar to task 1, we also conducted a Wilcoxon
signed-rank test and the diference is statistically signiicant for each aspect.
However, there is still a non-negligible margin between the logging texts generated by LoGenText and the

reference logging texts. The results call for future research that narrows down the gap between the logging texts
written by developers and the automatically generated logging texts. On the other hand, the mean scores of the
reference logging texts are 3.37, 3.19 and 3.02 respectively, which indicate that some logging texts inserted by the
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Table 11. Comparing the mean and median ratings of the logging texts in task 2. The median ratings are in the brackets
following the mean ratings.

Relevance Usefulness Adequacy

Reference 3.37 (4) 3.19 (4) 3.02 (3)

Baseline 2.09 (2) 1.89 (2) 1.75 (2)

LoGenText 2.67 (3)*** 2.41 (3)*** 2.15 (2)**

Note: ***: p-value<0.001; **: 0.001<p-value<0.01.

developers can still be further improved and call for high-quality logging texts to record the software execution
information.

Summary

The logging texts generated by LoGenText have a higher quality than that generated by the baseline
approach in terms of relevance, usefulness, adequacy, and their similarity to the logging texts written
by developers. Our results also suggest future research opportunities for improving automated logging
generation.

5.2 Evaluation of LoGenText-Plus

In the last section, we have conducted a human evaluation to compare LoGenText and the baseline and the results
show that LoGenText outperforms the baseline approach in all aspects. Therefore, in this section, we conduct
another human evaluation to compare baseline and LoGenText with LoGenText-Plus. Considering the number
of cases to evaluate, we invited 10 out of the 42 participants and nine of them are from academia and one from
industry.
Our human evaluation for LoGenText-Plus contains two tasks: task 1) comparing the quality of the logging

texts generated by LoGenText with that of LoGenText-Plus based on the given source code, and task 2) comparing
the quality of the logging texts generated by the baseline approach with that of LoGenText-Plus. To be consistent
with the evaluation for LoGenText, we use the same dataset as that of task 2 in Section 5.1. In order to avoid
redundancy, we ilter the dataset to remove cases where LoGenText-Plus and LoGenText as well as the baseline
approach, generate the identical logging texts. As a result, approximately half of the samples are iltered out,
leaving us with 69 out of 126 samples for task 1 and 96 out of 126 samples for task 2. Similar to the methodology
used in task 2 in Section 5.1, each participant was presented with the two generated logging texts as log-1 and log-2
and the surrounding method of the logging statement that highlights the location of the logging statement. Note
that the names log-1 and log-2 were randomly assigned to avoid bias. Then each participant was asked to examine
whether log-1 is better than log-2 based on the given code snippet. We listed three options for each comparison,
TRUE, FALSE, and NA. TRUE means that log-1 is better than log-2, FALSE means that log-2 is better, and NAmeans
the two logging texts are hard to compare (e.g., both are similar or useless). Besides, each participant was asked
to provide reasons why they made the decision.
Overall, LoGenText-Plus generates better logging texts compared to that generated by LoGenText and the

baseline approach. Figure 14 presents the distribution of the user ratings in our evaluation, where łNeutralž
means that the two generated logging texts are hard to compare. We ind that LoGenText-Plus generates more
logging texts that are better than LoGenText (i.e., 53.6% vs. 34.8%) and the baseline approach (i.e., 57.3% vs. 28.1%),
which shows the improvement of LoGenText-Plus over LoGenText and the baseline. However, we still observe that
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around 30% of the automatically generated logging texts by LoGenText and the baseline approach receive a better
rating. The results suggest opportunities for future research to further improve LoGenText-Plus.
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Fig. 14. Comparing the human ratings of the logging texts generated by LoGenText-Plus, LoGenText and the baseline approach.
łNeutralž means that the two generated logging texts are hard to compare.

Besides, to uncover the reasons why LoGenText-Plus or LoGenText receives a higher rating, we further manually
examine the comments provided by participants as well as the generated logging texts. In other words, the goal
of this step is to ind out what kind of logging texts (i.e., the characteristics) are considered with a higher quality
by developers, aiming to provide guidance for writing or generating good logging texts.

We summarize ive main reasons that a developer may favor a logging text. The reasons together with examples
are presented in Table 12. We discuss each reason in detail in the rest of this section.
More relevant to the source code. The logging text should be more relevant to the source code, which

means that the actions that happened in the source code should be similar or the same as the described actions
in the logging text. For example, as shown in Table 12a, the method is about the action łshut downž, while the
generated log-2 is describing the action of łconnectionž, which is irrelevant to the source code, thus, log-1 is
selected as a better logging text.
More descriptive and useful information to the source code.We ind that some logging texts are very

short and simple, and thus cannot detailly describe what is happening in the software system. For example, as
shown in Table 12b, the generated log-1 provides more information, as it not only tells the action taken (i.e.,
łloadž) before the logging statement but also shows the result of this action (i.e., an exception occurs).

More succinct and less confusing/redundant words. On one hand, the logging text should provide enough
information for failure diagnosis. On the other hand, the logging text should also be more succinct and avoid
confusing or redundant descriptions. For example, in the generated logging text log-2 in Table 12c, the last few
words are a little meaningless and may confuse developers while analyzing the logs. Besides, our approach can
insert ł<vid>žs to the generated logging text as variable placeholders. However, one participant commented that
some ł<vid>žs may be unnecessary.
More accurate. Another important factor for a better logging text is to use more accurate descriptions. The

logging text should avoid providing the wrong information, which may mislead the developers. For example, as
shown in Table 12d, the generated log-1 uses łan oldž to describes the object łsessionž. However, based on the
source code in the łtryž block, the łsessionž should be a łnewž session, instead of the łoldž.
More speciic and focusing on critical actions in source code. We notice that there may exist several

statements inserted before the target logging statement in the source code. For such cases, the logging text should
focus on more critical statements and describe the speciic statements with less general words. For example, as
shown in Table 12e, there are a list of database-related actions, including łdoDropTablesž and łdoCreateTablesž,
which is exactly what the generated log-2 describes, łexecuting sql <vid>ž. However, based on the feedback from
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Table 12. The summary of the five main reasons that a developer may favor a logging text. The łGenerated log-1/2ž represents
two logging texts by either LoGenText-Plus or LoGenText. łOriginal logž denotes the logging statement writen by developers.
The beter logging text is highlighted in bold green.

Reason Example

public void shutdown() {
---------------Candidate log start----------------

Generated log-1: shutting down connection to zk <vid>

Generated log-2: connection to zookeeper <vid>

Original log: LOG.debug("CamelDestination shutdown()")

---------------Candidate log end----------------

...

(a) CamelDestination.java from Camel
...

load(key.file(), props);

} catch (IOException e) {

---------------Candidate log start----------------

Generated log-1: load of <vid> failure exception <vid>

Generated log-2: load of <vid>

Original log: LOG.error("Failed to load: " + key + ", reason:" + e.getLocalizedMessage())

---------------Candidate log end----------------

...

(b) ReloadableProperties.java from ActiveMQ
...

if(filterPart.size() != 2) {

---------------Candidate log start----------------

Generated log-1: invalid filter specification <vid> skipping

Generated log-2: invalid filter specification filters count <vid> skipping split s

Original log: LOG.warn("Invalid filter specification " + filterClass + " - skipping")

---------------Candidate log end----------------

} else {

...

(c) ThriftServer.java from HBase
...

try {

    newSession.close(false);

} catch (Exception ex) {

---------------Candidate log start----------------

Generated log-1: failed to close an old session ignoring

Generated log-2: failed to close session <vid>

Original log: LOG.error("Failed to close an unneeded session", ex)

---------------Candidate log end----------------

...

(d) TezSessionPool.java from Hive

public void deleteAllMessages() throws IOException {
...

    getAdapter().doDropTables(c);

    getAdapter().setUseExternalMessageReferences(isUseExternalMessageReferences());

    getAdapter().doCreateTables(c);

---------------Candidate log start----------------

Generated log-1: deleted apache activemq <vid>

Generated log-2: executing sql <vid>

Original log: LOG.info("Persistence store purged.")

---------------Candidate log end----------------

...

(e) JDBCPersistenceAdapter.java from ActiveMQ

More relevant to the source code

More descriptive and useful 

information to the source code

More succinct and less 

confusing/redundant words

More accurate

More specific and focusing on 

critical actions in source code

the participants as well as the original logging statement, the logging text łexecuting sqlž is too general, while
łdeletedž is more speciic and describes the more critical action łdoDropTablesž.

Besides, as shown in Table 14, there are also some cases where log-1 and log-2 are hard to compare. This
may be caused by two reasons: 1) The two generated logging texts are inaccurate or even wrong. For
example, in Listing 3, the actual action in the source code is łscanningž ile, instead of the generated łrestoringž
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or łdeletingž. 2) The two generated logging texts have a very similar meaning. For example, in Listing 4,
the two generated logging texts are almost the same, except for the missing preposition łtož in generated log-2,
of which the inluence can be ignored. Therefore, they are considered to convey the same information.

Listing 3. An example generated logging text from Synapse.

1 private void scanFileOrDirectory(final ...) {

2 FileObject fileObject = null;

3 if (log.isDebugEnabled()) {

4 ---------------Candidate log start----------------

5 Generated log-1: restoring the file <vid> at <vid>

6 Generated log-2: deleting temporary file <vid>

7 Original log: log.debug("Scanning directory or file :

" + VFSUtils.maskURLPassword(fileURI))

8 ---------------Candidate log end----------------

9 ...

Listing 4. An example generated logging text from Brooklyn.

1 ...

2 ---------------Candidate log start----------------

3 Generated log-1: failed to transfer <vid> to <vid>

retryable error attempt <vid> vid <vid>

4 Generated log-2: failed transfer <vid> to <vid>

retryable error attempt <vid> vid <vid>

5 Original log: log.warn("Failed to transfer " +

urlToInstall + " to " + machine + ", not a

retryable error so failing: " + e)

6 ---------------Candidate log end----------------

Summary

Overall, the logging texts generated by LoGenText-Plus have a higher quality than that generated by
LoGenText. Besides, we identify ive possible reasons that a developer may favor a logging text. The reasons
can be used as a guideline for practitioners to improve the process of automated logging generation.

6 THREATS TO VALIDITY

Internal Validity. In this work, we compare our approach with prior work by He et al. [29]. Meanwhile,
pre-trained models of code have achieved new state-of-the-art results for several code-related tasks, such as
clone detection, code search, and code completion [25]. Therefore, we also try to select UniXcoder [25] as a
comparison, which is most recently released and has shown to have better performance than CodeBERT [19],
CodeT5 [82], and GraphCodeBERT [26]. We conduct the experiments under two settings: 1) zero-shot logging
statement completion, and 2) ine-tuning the model on our training dataset. Similar to our experiments, we use
the pre-log code as input. Under the zero-shot setting, there is only an average of 26.6% logging statements
generated among all the test inputs, with an average BLEU score of 12.9. Besides, we also ine-tune UniXcoder on
our training dataset of each project, and there is an average of 34.7% logging statements generated among all
the test inputs, with an average BLEU score of 22.2, which is slightly worse than that of the baseline approach
and our proposed approaches. The reasons may come from 1) the lack of training data on logging statements
and 2) the lack of optimized training objectives for logging statement-related tasks. Future work may consider
designing logging statement-speciic pre-training objectives and pre-training the model using the dataset curated
for logging. Meanwhile, Mastropaolo et al. [59] propose to train a T5 model to support the automatic generation of
complete log statements, including the generation of logging texts, where to log, and which level to log. However,
as mentioned in the work of Mastropaolo et al. [59], the generated logging texts have a BLEU score of 15, which is
also lower than the average result (i.e., 30.3) reported in our paper. However, we believe that the performance of
the T5 model can be further improved by, for example, 1) training on a larger corpus (currently, it is only trained
with 6M Java methods) and 2) including the AST or other types of information extracted from source code, which
has shown to be useful for code-related tasks. In RQ2, we attempt to include two types of context information
to further improve LoGenText. Similarly, we design two strategies in RQ3 to incorporate logging texts from
similar code snippets. There could exist other context information and other strategies for integrating the context
information, while our indings do not in any way claim to generalize the usefulness of other types of context
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information nor other integration strategies. We evaluate the efectiveness of LoGenText and LoGenText-Plus

based on both quantitative metrics (i.e., BLEU and ROUGE) and human ratings. The quantitative metrics may
not relect the actual quality of the generated logging from developers’ perspective, while the human ratings
may include subjective bias introduced by the individual participants. However, to mitigate this efect, we try
our best to invite more than 40 participants. The number of participants is much larger than that of previous
research [80]. Future work should consider further evaluating LoGenText and LoGenText-Plus by using them in a
real-life industrial setting.
External Validity. In this paper, we evaluate LoGenText and LoGenText-Plus based on 10 subject systems. All
of the subject systems are open-source systems that are mainly written in Java. In addition, all of the subject
systems are server or desktop applications, while logging practices on mobile devices are found to be diferent [97].
Evaluating LoGenText and LoGenText-Plus on other systems that are written in other languages, with closed-source
code, or running on mobile devices, may further demonstrate the efectiveness and limitations of our approach.
Construct Validity. Our data (e.g., logging texts, pre-log code, post-log and ASTs) are extracted based on the
srcML tool [12]. srcML is a mature tool and has been widely used in various software engineering research.
Nevertheless, the quality of the data generated by srcML may impact the results of our study. LoGenText and
LoGenText-Plus require several hyper-parameters for the training process, such as the dimensions, the number of
layers, and the number of attention heads, which may impact the results of generating logging texts. To minimize
the bias caused by the hyper-parameter conigurations, we follow the practices from prior studies [38, 77] to
conigure the hyper-parameters. Performing further ine-tuning on these hyper-parameters may even further
improve the results from LoGenText and LoGenText-Plus. In our evaluation, the data from each project is randomly
split into 80%/10%/10% training, validation and testing datasets. The evaluation results may show some diferences
with other splits of the training, validation, and testing datasets. Besides, we ind that there exists a duplication
of the data samples between the training and testing datasets, which may also impact the evaluation results.
Speciically, there are 1 to 29 or 0.5% to 6.6% duplicate logging statements in the studied subjects. However, we did
not remove these duplicates as the number of duplicate instances is relatively small, and we want to evaluate our
approach in a real-life situation where duplicate logging statements do exist [45, 46]. Future work may consider
exploring how duplicate logging statements would impact the tool.

7 RELATED WORK

Automated logging suggestions. Although logs are of much value to software practitioners, the usefulness of
logs highly depends on their quality. Both logging too much and logging too little are undesired in practice [40, 96].
There exists a signiicant challenge for developers to make proper logging decisions. In general, prior research has
proposed two main types of approaches to address the challenge including 1) proactively providing suggestions
to developers, and 2) retroactively detecting issues in logging statements.
Prior research has proposed automated approaches that provide diferent logging suggestions including the

locations of logging statements [22, 39, 91, 100, 104], the verbosity levels [41, 47], the variables to include in a
logging statement [51], and the need to update an existing logging statement [42]. The most related work to our
paper is from He et al. [29], who conduct an empirical study on the usage of natural language descriptions in
logging statements and propose an automated logging text generation approach that leverages logging texts from
similar code snippets. Their approach has been adopted in this paper as the baseline approach (cf., Section 3).
Recently, pre-trained models of code have achieved new state-of-the-art results for several code-related tasks,
such as clone detection, code search, and code completion [25]. Inspired by these advances, Mastropaolo et al.
[59] propose to train a Text-To-Text-Transfer-Transformer (T5) model to support the automatic generation of the
complete logging statement, including the log positions, log levels, and the logging text (the focus of our work).
However, although the model is trained on more than 1,000 projects, the generated logging texts only have a
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BLEU score of 15, which is lower than the average result (i.e., 30.3) reported in our paper. Other research aims to
detect issues in logging statements. Chen et al. [8] and Hassani et al. [28] discovered anti-patterns of logging
statements from prior log-related code changes and issue reports. Automated tools are designed and implemented
to detect these anti-patterns in logging statements. Li et al. [45] discuss the issue of duplicate logging statements.

Despite the above research eforts, providing automated suggestions of logging texts is still challenging. Prior
work has highlighted the great importance of the information in the logging texts [40, 95]. Therefore, our work
aims to provide automated generation of logging texts to support developers’ logging decisions.
Empirical studies on software logging. Empirical studies have been conducted on the practices of logging.
The irst empirical study on quantitatively characterizing the logging practices was performed by Yuan et
al. [96]. Afterwards, follow-up studies by Chen et al. [9] and Zeng et al. [97] extend Yuan et al’s study from
C/C++ projects to Java projects and Android app projects, respectively. Similarly, Shang et al. [70] conduct a
study focusing on the evolution of logging statements. Recently, Li et al. [40] conduct a qualitative study on
the beneits and costs of logging based on surveying developers and studying logging-related issue reports.
Besides those characteristic studies on logging, empirical studies are also carried out focusing on diferent aspects
of logging practices. The studied topics include the stability of logging statements [35], logging utilities [10]
and libraries[34], logging conigurations [103], and the relationship between logging practices and software
quality [72] and performance [11, 97].
All prior studies provide empirical evidences that show the challenges in software logging practices, which

motivates our work towards automated generation of logging texts.

8 CONCLUSION

In this paper, we present our approach, LoGenText, and its improved version, LoGenText-Plus, which automat-
ically generates the textual descriptions of logging statements based on neural machine translation models.
By comparing the generated logging texts with the actual logging texts in the source code, we ind that both
LoGenText and LoGenText-Plus show promising results in the automated generation of logging texts. Our approach
LoGenText-Plus, which leverages the logging template information, outperforms the state-of-the-art LoGenText
and the baseline approach in terms of both quantitative metrics (BLEU and ROUGE) and human ratings. Our
research sheds light on promising research opportunities that exploit and customize neural machine translation
models for the automated generation of logging statements, which will reduce developers’ eforts in logging
development and maintenance and potentially improve the overall quality of software logging.
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