
Noname manuscript No.
(will be inserted by the editor)

Studying and Detecting Log-Related Issues

Mehran Hassani · Weiyi Shang · Emad
Shihab · Nikolaos Tsantalis

Received: date / Accepted: date

Abstract Logs capture valuable information throughout the execution of soft-
ware systems. The rich knowledge conveyed in logs is highly leveraged by
researchers and practitioners in performing various tasks, both in software
development and its operation. Log-related issues, such as missing or having
outdated information, may have a large impact on the users who depend on
these logs. In this paper, we first perform an empirical study on log-related
issues in two large-scale, open source software systems. We find that the files
with log-related issues have undergone statistically significantly more frequent
prior changes, and bug fixes. We also find that developers fixing these log-
related issues are often not the ones who introduced the logging statement
nor the owner of the method containing the logging statement. Maintaining
logs is more challenging without clear experts. Finally, we find that most of
the defective logging statements remain unreported for a long period (median
320 days). Once reported, the issues are fixed quickly (median five days). Our
empirical findings suggest the need for automated tools that can detect log-
related issues promptly. We conducted a manual study and identified seven
root-causes of the log-related issues. Based on these root causes, we developed
an automated tool that detects four evident types of log-related issues. Our
tool can detect 78 existing inappropriate logging statements reported in 40
log-related issues. We also reported new issues found by our tool to developers
and 38 previously unknown issues in the latest release of the subject systems
were accepted by developers.

Keywords Empirical study · Log · Software Bug · Mining software
repositories

Mehran Hassani · Weiyi Shang · Emad Shihab · Nikolaos Tsantalis
Department of Computer Science and Software Engineering
Concordia University
Montreal, Quebec, Canada
E-mail: {m assani, shang, shihab, tsantalis}@encs.concordia.ca

2 Mehran Hassani et al.

1 Introduction

Developers write logging statements in the source code to expose valuable in-
formation of runtime system behavior. A logging statement, e.g., LOG.warn(“Cannot
access storage directory ”+ rootPath)1, typically consists of a log level (e.g.,
trace/debug/info/warn/error/fatal), a logged event using a static text, and
variables that are related to the event context. During system runtime, the in-
vocation of these logging statements would generate logs that are often treated
as the most important, sometimes only, source of information for debugging
and maintenance of large software systems.

The importance of logs has been widely identified [23]. Logs are used dur-
ing various software development activities such as bug fixing [39], anomaly
detection [37], testing results analyses [27], and system monitoring [6,45]. The
vast application and usefulness of the logs motivate developers to embed large
amounts of logging statements in their source code. For example, the OpenSSH
server contains 3,407 logging statements in its code base [43]. Moreover, log
processing infrastructures such as Splunk [7] and ELK stack [1] are developed
for the ease of systematic log analyses.

To improve logging statements, similar as fixing bugs, developers would
report their issues with the logging statement and fix it by changing the source
code or other artifacts (e.g., configuration) during development. For example,
in an issue in Apache Hadoop-HDFS, HDFS-33262, with the title “Append
enabled log message uses the wrong variable”, developers replace the recorded
variable in the logging statement to provide more meaningful information. We
consider such issues that are fixed to improve logging statements as log-related
issues.

Prior empirical studies examine the characteristics of logging practices [43]
and the places where developers embed logging statements [13]. Also, prior
research aims to enhance logging statements by automatically including more
information [41, 45], and provide suggestions on where to log [48]. However,
these empirical results and the above-mentioned approaches do not aim to help
developers write an issue-free logging statement. In fact, there exist limited
guidelines that developers can follow to write appropriate logging statements.

The issues with logging statements have become one of the major concerns,
due to the vast usage of logs in practice. Examples of such issues include miss-
ing to embed important logging statements3 have misleading text in logging
statements4, and generating overwhelming information5. Logging statements
with issues may significantly reduce usefulness of the logs and bring extra
overhead to practitioners. For example, missing logging statements in the crit-
ical part of the source code may cause developers not to have enough knowl-
edge about the system execution; the misleading textual description in logging

1 https://issues.apache.org/jira/browse/HDFS-4048
2 https://issues.apache.org/jira/browse/HDFS-3326
3 https://issues.apache.org/jira/browse/HDFS-3607
4 https://issues.apache.org/jira/browse/HDFS-1332
5 https://issues.apache.org/jira/browse/CAMEL-6551

Studying and Detecting Log-Related Issues 3

statements may lead to wrong decisions made by system operators; and over-
whelming information in logs would prevent practitioners from identifying the
truly needed information [25]. Recent research on Github projects claims that
over half of the Java logging statements are “wrong” [17]. Moreover, for au-
tomated log analyses, the issues may have an even larger impact by rather
simple mistakes like a typo. For example, in the issue HADOOP-41906 with
Blocker priority, developers missed a dot in a logging statement, leading to
failures in log analysis tools.

In this paper, we conduct an empirical study on the real log-related issues
from two large, open source software systems that extensively use logging
statements, i.e., Hadoop and Camel. Studying log-related issues can lead us in
devising an automated technique that will aid developers to improve logging
statements. In particular, we extract 563 log-related issues from the JIRA issue
tracking systems of the two subject systems and study these issues reports
and their corresponding code changes. Our study aims to answer the following
research questions:

RQ1 What are the characteristics of files with log-related issues?
Files with log-related issues have undergone, statistically significantly more
frequent changes and more frequent bug fixes. Developers should prioritize
their efforts on such files to identify logging statements with potential is-
sues.

RQ2 Who reports and fixes log-related issues?
We found that in 78% the cases, logging statements are added and fixed by
different people. In other words, there exists no systematic responsibility
for developers to maintain logging statements in the subject systems. This
may make it difficult to identify an expert to ensure whether a logging
statement is appropriate.

RQ3 How quickly are log-related issues reported and fixed?
By examining the time between the introduction of logging statements,
the report, and fixed time of the log-related issues, we find that log-related
issues are often reported a long time (on a median of 320 days) after the
logging statements were introduced into the source code. Once reported,
however, the issues are fixed in a short time (on a median of five days).
Therefore, practitioners may benefit from automated tools that detect such
issues promptly.

RQ4 What are the root-causes of the log-related issues? Through a manual
analysis on log-related issues and their corresponding fixes, we identify
seven root-causes of log-related issues, namely, inappropriate log messages,
missing logging statements, inappropriate log level, log library configura-
tion issues, runtime issues, overwhelming logs, and log library changes.
Many root-causes (like typos in logs) of these issues are rather trivial,
suggesting the opportunity of developing automated tools for detecting
log-related issues.

6 https://issues.apache.org/jira/browse/HADOOP-4190

4 Mehran Hassani et al.

Our empirical study results highlight the needs and opportunities for auto-
mated tooling support for detecting evident log-related issues. Therefore, we
developed an automated tool7 to detect four types of log-related issues. Our
tool detected 43 of the 133 known log-related issues. Moreover, we reported
78 detected potential log-related issues from the latest releases of the subject
systems. Out of 78, 38 of them had been accepted by their development team
through issue reports and the rest of them are still under review.

Our most significant contributions are listed as follows:

– We perform a characteristic study on different aspects of log-related issues,
namely the files that contain log-related issues, report and fix time, and
developers’ involvement in the process.

– We manually identify seven root-causes of log-related issues.
– We propose an automated tool that can detect four different types of evi-

dent log-related issues from source code.

The rest of the paper is organized as follows. Section 2 describes the studied
systems and our data collection approach. Section 3 presents the results to
answer our research questions. Section 4 demonstrates our proposed tool that
automatically detects log-related issues. Section 5 discusses the related works.
Section 6 discusses the potential threats to the validity of our study. Finally,
Section 7 concludes the paper.

2 Case Study Setup

In this section, we present our case study setup. In particular, we present the
subject systems of our case study and our approach for collecting log-related
issues.

2.1 Subject systems

Our case study focuses on two large-scale open-source software systems, namely
Hadoop and Camel. To select our subject systems, we picked the top 1,000 most
popular Java projects from Github based on the number of stars. Then, we
cloned them and counted the number of logging statements in each project
using the source code. To count the number of logging statements, we checked
the types of the logger variables and whether their corresponding method calls
(e.g., trace, debug, info, warn, error, fatal) are standard log libraries levels.
Then, we picked the top two software systems as our subjects.

Hadoop is a well-known parallel computing platform that implements the
MapReduce paradigm. Hadoop has been widely adopted in practice. Hadoop
is written in Java with around two million SLOC and nearly 33K issues stored
in its issue tracking system for all of its sub-systems. Camel is an open-source
integration framework based on known Enterprise Integration Patterns with

7 https://mehranhassani.github.io/LogBugFinder/

Studying and Detecting Log-Related Issues 5

Bean Integration containing more than 1.1 million SLOC and 10K issues in its
issue tracking system. Like all other products of Apache, Hadoop and Camel
use JIRA as their issue tracking system. Both subject systems have extensive
logging statements in their code and logs are heavily used in their develop-
ment and operation actives. In particular, Hadoop has more than 11K logging
statements and Camel has more than 6K logging statements in their latest
revision of source code.

2.2 Collecting log-related issues

In order to conduct the study, we first need to collect log-related issues in
the subject systems. There exists no explicit flag in JIRA issue reports that
label an issue as a log-related issue. Thus, we extract all available issue reports
of our subject systems. Then, we leverage a keyword based heuristic to filter
log-related issues, by searching for keywords like log, logging, or logger. We
only select the issues that are labeled as bug or improvement and that are
also resolved and fixed. We only used fixed and resolved issues since we would
require the corresponding fix to these issues to understand the characteristics
and the root-causes of the issues. We include the issues with label improvement
because, from our preliminary manual exploration of the issue reports, we
found that many log-related issues are labeled as improvement while they were
in fact bugs. For example, in HADOOP-8075, a developer reports that “Lower
native-hadoop library log from info to debug”. The title clearly shows that the
log level in this case is wrong. However, this issue is labeled as an improvement
in the system. Since we wanted to study the issues that are related to logging,
but not the corresponding new logging with new features, we also excluded
other issue types like Task or Sub-task that are usually used to implement new
features rather than fixing a bug. Afterwards, we further verified each issue to
make sure they are indeed log-related issues. For example, we do not include
the issues if developers added new functionality to the code while modifying
logging statements since the modification is due to the functionality change
instead of an issue related to the logging statement itself. We also exclude the
issues that are not fixed or not closed as well as duplicated and invalid issues.
Eventually, 563 log-related issues remained, which we manually investigated
(Table 1).

Table 1: The Number of Issues in Hadoop and Camel
Subject systems # all fixed issues # Issues with log-related keywords # Manually verified
Hadoop-HDFS 3,863 253 178 (4.6%)
Hadoop-Common 5,999 221 170 (2.8%)
Camel 6,310 163 85 (1.3%)
Hadoop-YARN 1,542 133 71 (4.5%)
Hadoop-MapReduce 2,906 145 61 (2.1%)

6 Mehran Hassani et al.

3 Case Study Results

In this section, we present our case study results by answering four research
questions. For each research question, we show the motivation of the research
question, our approach to answering the question and the corresponding re-
sults. Figure 1 presents an overview of our approach to answering the research
questions.

Fig. 1: An overview of our approach to answer the research questions

RQ1: What are the characteristics of files with log-related issues?

Motivation. The first step towards understanding log-related issues is to find
out where they are located. In this research question, we study the characteris-
tics of files that contain log-related issues. Knowing these characteristics might
help developers prioritize their efforts when identifying and fixing log-related
issues.
Approach. To answer this research question, we first extracted the files re-
lated to each issue according to its fix. Then, we calculated the following
product and process metrics for Java files with and without log-related issues.

– Normalized source lines of code (NSLOC): We use SLOC to measure the
size of a file. We do not calculate a complexity metric since, as previ-
ous studies have shown before, most of the software complexity metrics
are highly correlated with SLOC [18, 19, 47]. However, larger files tend
to contain more logging statements [34]. Having more logging statements
increases the probability of having more log-related issues. Thus, we nor-
malize SLOC by the number of logging statements in each file.

– Fan-in: We used fan-in to measure dependency between files. Fan-in mea-
sures the number of files that depend on a given file. To calculate fan-in,
we first constructed the call graphs of all the methods in each file using
an open source tool named “java-callgraph” [15]. Then, we counted the

Studying and Detecting Log-Related Issues 7

number of methods from other files that call methods from a particular file
using the call graph. Files with higher fan-in values have more files in the
system depending on them, and thus, have more impact on the system. By
calculating the Spearman correlation between Fan-in and number of log-
ging statements in a file, we find that the correlation is low (0.19). Thus,
we did not normalize fan-in with the number of logging statements in the
files.

– Frequency of prior commits: We use the frequency of prior commits to
measure the stability of the files. Operators may need better logs to be
aware of the changes on the files that are less stable. We use the total
number of prior commits of each file divided by the lifetime length (in
number of days) of the file to calculate the frequency of prior commits.
The lifetime length of the file is calculated by measuring the time difference
between the first commit of the file and the date when we extract data from
the Git repository.

– Frequency of prior bugs: We also used the frequency of prior bugs to mea-
sure the quality of the files. Developers may depend on logs to ensure the
quality of these files. Same as the frequency of prior commits, we use the
lifetime length to normalize the total number of prior bugs of a file. We use
the JIRA reports for each subject system to collect the number the prior
bugs of each file.

Note that we did not include test files since we only wanted to focus on
the production code. We used statistical tests to compare metrics between files
with log-related bugs and without log-related bugs. More specifically, we used a
two-tailed statistical test, namely the Wilcoxon rank-sum test [38]. We perform
four comparisons on each dataset. To better control for the randomness of our
observations, we used Bonferroni correction [12]. We adjust our p-value by
dividing it by the number of comparisons (four). The results are significant at
the significance level alpha = 0.05/4 (p-value < 0.0125). This shows that the
two populations are different. However, studies have shown that when the size
of the populations is large, the p-value will be significant even if the difference
is very small. Thus, we calculated the effect size using Cliff’s delta [10, 22]
to measure how large the difference between two populations is. The value of
Cliff’s delta ranges from zero to one. According to Kampenes et.al. [22], Cliff’s
delta values can be interpreted as shown in Table 2:

Table 2: Cliff’s delta effect size interpretation.

Effect size Cliff’s delta value
Trivial if Cliff ’s d ≤ 0.147
Small if 0.147 < Cliff ’s d ≤ 0.33

Medium if 0.33 < Cliff ’s d ≤ 0.474
Large if 0.474 < Cliff ’s d

Results. Table 3 presents the median of our studied metrics for files with and
without log-related issues. We find that for all subject systems in our case

8 Mehran Hassani et al.

study, files with log-related issues have statistically significantly more prior
bugs and prior commits with large effect sizes. However, the difference of our
product metrics (NSLOC and fan-in) with and without log-related issues is
either statistically indistinguishable or their effect sizes are small or trivial
(except for fan-in for Camel and Hadoop-Yarn). These results imply that files
that are more actively under development or bug fixing tend to contain more
log-related issues.

However, we find that a large portion of the files does not include any
logging statements in them. Thus, they are less likely to have any log-related
issues in them. In order to reduce the impact of these files on our results, we
also calculated mentioned metrics only for the files with at least one logging
statement. Table 4 presents the median of our studied metrics for files with and
without log-related issues which at least include one logging statement in them.
The ratio of files with logging statements are mentioned in Table 4 subject
system. We find that similar to the previous results, files with log-related issues
have statistically significantly more prior bugs and prior commits with medium
to large effect sizes. However, the difference of our product metrics (NSLOC
and fan-in) with and without log-related issues is statistically indistinguishable
or their effect sizes are small or trivial (except for fan-in only for Hadoop-Yarn).
This implies that although removing files without logging statements reduced
the effect sizes, the difference is still significant in process metrics.

One possible reason can be that changes and bug fixes in the files make the
code inconsistent with the logging statements in the files. Thus, the logging
statements become outdated and eventually are reported as issues. In our
manual study in RQ4, we found one file called FSNamesystem.java with 6K
SLOC, 51 contributors and 250 issues, of which 12 are log-related. One of these
log-related bugs8 was specifically reported to clean-up the unnecessary logging
statements in the file that became outdated and the corresponding source code
no longer existed in the system. In the discussion of another log-related issue in
HDFS 9, developers mention that “the comments and logs still carry presence of
two sets when there is really just one” which specifically shows that the source
code and logging statements are inconstant. The results suggest that after
finishing development or bug fixing tasks, developers may consider verifying
the consistency of the source code and the logging statements to reduce such
log-related issues.�
�

�
�

RQ1 Conclusions: Files with log-related issues have undergone statisti-
cally significantly more frequent prior changes, and bug fixes. Developers
should prioritize effort of maintaining logging statements on these files.

8 https://issues.apache.org/jira/browse/HDFS-9528
9 https://issues.apache.org/jira/browse/HDFS-2729

Table 3: Medians (Med.) and effect sizes (Eff.) of the normalized process and product metrics for files with and without log-related issues. Effect
sizes are not calculated if the difference between files with and without log-related issues is not statistically significant.

Metric Type
Camel Common Yarn HDFS Mapreduce

Med. Eff. Med. Eff. Med. Eff. Med. Eff. Med. Eff.

Fan-in
With log-related bug 8.0

Medium(0.37)
15.0

-
14.0

Large (0.54)
27.5

Small (0.27)
7.5

-
Without log-related bug 3.0 15.0 5.0 12.5 5.0

NSLOC
With log-related bug 21.3

-
24.1

-
21.2

Small (-0.16)
24.0

-
30.4

-
Without log-related bug 20.4 25.0 20.0 27.0 25.0

Frequency of Prior Commits
With log-related bug 0.014

Large (0.49)
0.008

Large (0.68)
0.026

Large (0.84)
0.018

Large (0.63)
0.017

Large (0.93)
Without log-related bug 0.005 0.002 0.003 0.004 0.001

Frequency of Prior Bugs
With log-related bug 0.002

Large (0.83)
0.004

Large (0.73)
0.008

Large (0.88)
0.007

Large (0.74)
0.006

Large(0.91)
Without log-related bug 0.000 0.001 0.000 0.001 0.001

Table 4: Medians (Med.) and effect sizes (Eff.) of the normalized process and product metrics for files with and without log-related issues. Files
without log statements are excluded. Effect sizes are not calculated if the difference between files with and without log-related issues is not

statistically significant. The percentage of files with log-related bugs shown in front of each subject system.

Metric Type
Camel (19%) Common (22%) Yarn(18%) HDFS (27%) Mapreduce (16%)

Med. Eff. Med. Eff. Med. Eff. Med. Eff. Med. Eff.

Fan-in
With log-related bug 5.0

-
19.0

-
14.0

Large (0.48)
28.0

-
9.0

-
Without log-related bug 4.0 23.00 7.0 16.0 6.0

NSLOC
With log-related bug 19.2

-
30.3

Small (-0.29)
22.3

-
24.9

Small (-0.18)
35.1

-
Without log-related bug 24.0 38.0 27.8 35.7 39.0

Frequency of Prior Commits
With log-related bug 0.015

Medium(0.36)
0.008

Medium (0.40)
0.031

Large (0.67)
0.021

Medium (0.41)
0.017

Large (0.75)
Without log-related bug 0.008 0.004 0.006 0.010 0.004

Frequency of Prior Bugs
With log-related bug 0.002

Large (0.63)
0.005

Large (0.48)
0.009

Large (0.71)
0.007

Large (0.55)
0.007

Large(0.79)
Without log-related bug 0.001 0.002 0.001 0.002 0.001

10 Mehran Hassani et al.

RQ2: Who reports and fixes log-related issues?

Motivation. RQ1 shows that log-related issues often occur in files with less
stable source code. Experts of these files may be one of the most important
vehicles to ensure the quality of logs. Prior research demonstrates the impor-
tance of experts in resolving these log-related issues [35]. Furthermore, studies
show the importance of developer ownership and its impact on code quality [5].
Studies showed that when more people are working on a file, it is more likely
to have failures in the feature [4, 28]. Therefore, if experts of the log-related
issues can be identified, these issues can be fixed with less impact. Therefore,
in this research question, we investigate people involved during the lifetime of
log-related issues.

Approach. To answer this research question, we first need to know who in-
troduced the logging statement. Thus, for all the log-related issues in Java
files, we first search for JIRA issue IDs in Git commit messages to identify the
commit that fixes the issue. Some log-related issues do not have their issue ID
mentioned in a commit message. In particular, we can only find commits for
254 of the log-related issues. Then we analyze the history of the files, which
contain the logging statements and are changed in the commit, to identify the
commit where the logging statement was introduced. We performed our anal-
ysis on 1,071 logging statements extracted from these issues fixing commits in
our case study.

Furthermore, in our subject systems, the committer of each commit is usu-
ally not the actual author of the commit. Instead, the author information is
mentioned in the commit message. To extract the author names in the commit
message, we looked for names after with terms like “Thanks to”, “Contributed
by”, or “via”. Whenever we could not find the names using these heuristics,
we tried to find the issue key from the commit message and use the assignee
of that issue as the original author of the commit. Finally, if we could not
find any links in the message, we use the committer as the actual author of
that commit. In total, we only used the committer as the actual author in
12% of the commits. We identify the developers who introduced the logging
statements, and we count the prior number of commits by developers to mea-
sure the expertise and the ownership of the code in the repositories. Figure 2
demonstrates the lifetime of an inappropriate logging statement. Based on the
Figure 2, we named the author of the commit that added the logging state-
ment to the system (A) as the introducer and the author of the commit that
fixes a reported log-related issue by modifying the logging statement (D) as
the fixer. Furthermore, we named the top contributor of the file which contains
the logging statement the owner of the file [5].

Results. We find that 78% of the time, logging statements are introduced and
are fixed by different people. Furthermore, 78% of the log-related issues are
fixed by someone other than the owner of the file that contains the logging
statement. Moreover, 73% of the fixes to log-related issues are done by the
same person who reported the issue (57% of the all the issues). The results
show that one may report and fix a logging statement without being an owner

Studying and Detecting Log-Related Issues 11

of the file nor the person who introduced the logging statement initially. Such
findings suggest the lack of systematic ownership of the logging statements.
On the one hand, the developers who introduce the file realize the importance
of placing the particular logging statement in the source code [35]. On the
other hand, once the logging statements are in the source code, other people
would observe the value in the logs and start to depend on these logs in their
daily activities. Hence, the users of these logs also have valuable knowledge
about what should be included/or not in these logs. Our results show that
there are cases when the original author of the logging statement may not
understand the needs of other users of the log, leading to the report of log-
related issues. However, the users of logs who do not own the file nor initially
introduced the logging statement may change the logging statement without
notifying the owner of the file or the original developer who introduced the
logging statement. Such update may become a log-related issue that causes
other people’s log analyses to fail [32, 33].�

�

�

�

RQ2 Conclusions: Developers contributing to the log-related issues are
usually not the developer who introduced the log or the owner of the code
containing the logging statements. It is difficult to identify the expert for
each logging statement. Thus, the impact of log-related issues cannot be
minimized by referring to their experts.

RQ3: How quickly are log-related issues reported and fixed?

Motivation. The results of RQ1 and RQ2 illustrate the potential impact of
log-related issues and the challenges of mitigating them by experts. Practi-
tioners, such as dev-op engineers, who use the information in logs usually do
not have access to the source code. Thus, a simple mistake like wrong ver-
bosity level in a logging statement can hide important information from them.
If the logging statements with these issues stay in the software for a long time,
they become considerably harmful since they are more likely to impact all the
people who depend on them. Whereas, if log-related issues are diagnosed and
fixed easily, they might not be as harmful. Therefore, in this research question,
we study the time needed to report and fix log-related issues.
Approach. We aim to find out how fast log-related issues were reported and
fixed. Figure 2 demonstrates the lifetime of an inappropriate logging statement
which ended up being reported as a bug. Using the results of our analysis on
the history of changes for each logging statement, we estimate how fast log-
related issues were reported by calculating the time difference between when
the logging statement is introduced to the time when it is reported in the
issue tracking system (Figure 2, A to C). Furthermore, we estimate how fast
log-related issues were fixed by calculating the time difference between when
the log-related issue is reported and when it is fixed (C to D)
Results. The results are depicted in Figure 3 and Figure 4 . We find that
more than 80% of the issues were fixed in less than 20 days. In fact, 43% of all

12 Mehran Hassani et al.

A B C D

Nov 17 2014

Log Added Resolved

Issue reported
(HDFS-7890)

25 days 103 days 5 days

Change in method

Fig. 2: Lifetime of an example inappropriate logging statement

issues were fixed within two days of the submission date. Our results suggest
that most of these issues are simple and easy to fix once they are found. In our
manual analysis in RQ4, we observed that the associated code changes usually
include less than ten lines of code, suggesting that the lifetime of these issues
mostly involved in code review and tests.

However, inappropriate logging statements exist for a long time in the sys-
tem before being reported as an issue. Table 6 shows the five-number summary
of the number of changes for each logging statement. We can see that the me-
dian number of changes is two, where one of them is the commit that fixed the
issue. This result suggests that most of the inappropriate logging statements
are not the ones that are frequently changed.

Table 5 also shows the long time difference between the introduction of
the logging statement and when the issue was reported. Other than Hadoop-
MapReduce, on median, it takes 229 to 615 days to expose a log-related issue.
For example, in HDFS-7890, a developer reported that “Information on Top
users for metrics in RollingWindowsManager should be improved and can be
moved to debug. Currently, it is INFO logs at namenode side and does not
provide much information.”. We found that this logging statement was added
103 days before the report date and did not change until another developer
fixed it and changed the level to debug. Although the fix was small (only
one change), it took a long time for developers to figure out that this logging
statement is at an inappropriate level. However, it took only five days to
fix after it was reported. Figure 2 shows all the changes made to a logging
statement during its lifetime which led to issue HDFS-7890.

Furthermore, we analyzed the priority of log-related issues and found that
more than 46% of the log-related issues are labeled as Major, Critical, or
Blocker. Thus, many of these issues are not likely to be the ones that developers
are not interested in reporting and fixing them. The long time needed to
expose a log-related issue signifies the potential harm of these issues over such
long time periods, people might make decisions based on the inappropriate or
incomplete information provided by the logs. These results illustrate the need
for automated tools that detect such log-related issues in a timely manner.

Studying and Detecting Log-Related Issues 13

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days to report

P
er

ce
nt

ag
e

Fig. 3: Cumulative distribution of issue report time in days. Outliers that are greater than
1.5 time of the value of the third quartile of the data are not shown in this figure.

Table 5: Number of days before an inappropriate logging statement
being reported

Subject systems Min 1st Qu. Median 3rd Qu. Max
Common (changes) 0.17 159.9 459.3 482.4 1516.0
HDFS (changes) 0.17 41.4 229.2 431.3 1576.0
YARN (changes) 0.17 258.2 615.8 959.4 1357.0
MapReduce (changes) 0.17 41.67 41.67 91.1 1850.0
Camel (changes) 0.17 61.7 390.1 423.6 2689.0�

�

�

�
RQ3 Conclusions: It takes a long time for log-related issues to surface
and be reported. However, most of the log-related issues took less than two
weeks to fix. Automated tools are needed to assist developers in identifying
log-related issues in a timely manner.

14 Mehran Hassani et al.

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days to fix

P
er

ce
nt

ag
e

Fig. 4: Cumulative distribution of issue fix time in days. Outliers that are greater than 1.5
time of the value of the third quartile of the data are not shown in this figure.

Table 6: Number of changes before an inappropriate logging statement
get fixed

Subject systems Min 1st Qu. Median 3rd Qu. Max
Common (changes) 1 2 2 2 5
HDFS (changes) 1 2 2 4 10
YARN (changes) 1 2 2 2 6
MapReduce (changes) 1 2 2 2 5
Camel (changes) 1 2 3 2 10

Studying and Detecting Log-Related Issues 15

RQ4: What are the root-causes of log-related issues?

Motivation. Previous RQs show the need for automated tools to assist de-
velopers in finding inappropriate logging statements in code. Automatic tools
can use the historical data and other information in the system to provide
useful suggestions. Thus, we decided to perform a manual investigation on the
root causes of the log-related issues, such that we gain a deeper understanding
of log-related issues and find repeated patterns that can automatically expose
evident log-related issues in the source code.
Approach. To answer this research question, we used the issue reports and
their code changes we extracted from JIRA. Stol et al. [36] suggest that re-
searchers should describe how they analyzed data rather than dressing it up
as other well known scientific approaches.To avoid method slurring [2], we
explain our approach in details in this section.

We started to examine log-related issues based on their title, description,
and other information stored in every issue report. The first two authors in-
dependently read all the comments and discussions in each issue report and
manually investigated the patches that fix the issue. Then, they categorized
log-related issues into categories based on their root causes. More specifically,
we manually examined the issue report, discussion and the paths for each
log-related issue and added a summary and related key-words to them. Then,
issue reports were labeled based on all the information in the related artifacts.
Then, we revisited the extracted information and grouped similar labels into
categories. Next, based on our observations from previous iterations, similar
categories were merged into a new one. This process was repeated iteratively
until the categories cannot be merged anymore.

In case of conflict, a proper label is selected after a discussion between the
first two authors.
Results. The results of our manual study are shown in Table ??. We catego-
rized log-related issues to seven categories based on their root causes namely,
inappropriate log message, missing logging statements, inappropriate log level,
log library configuration issues, runtime issues, overwhelming logs, and log li-
brary changes. We will discuss each category in details. In Table 8, we show
the distribution of each of the mentioned types of log-related issues.
Inappropriate log message. As shown in Table 7, logging statements with
incorrect log messages constitute the majority of log-related issues. We con-
sider every issue regarding log messages (such as missing or incorrect vari-
able, or incorrect string literals) in this category. As an example, in the issue
HADOOP-2661, developers mentioned “Replicator log should include block id”.
Here, the developers asked to add the missing information (i.e., block ID) to
the log message.
Missing logging statements. There were some cases where developers re-
quested additional logging statements or asked for logging a specific event that
had not been logged. We consider all corresponding issues that are fixed by
adding logging statements as Missing logging statements. HADOOP-5365 is an
example of this type of issue, where the developers asked to add new logging

Table 7: Categories of log-related issues

Category # of log-related issues Example

Inappropriate log messages 182 HADOOP-2661,“Replicator log should include block id”

Missing logging statements 110 HADOOP-5365, “Currently, only failed accesses are logged. Need to log successful accesses as well.”

Inappropriate log level 96 HADOOP-3399, “A debug message was logged at info level”

Log library configuration issues 70 HADOOP-276,“The problem is that the property files are not included in the jar file.”

Runtime issues 53 HADOOP-7695, “RPC.stopProxy can throw an configuration file for unintended exception while logging error”

Overwhelming logs 35 HADOOP-3168 ,“reduce the amount of logging in Hadoop streaming”

Log library changes 19 HADOOP-211, “it’s a huge change from older ones to common logging and log4j”

Table 8: Distribution of the root causes of log-related issues
Subject system Inappropriate log messages Missing logging statements Inappropriate log level Log library configuration issues Runtime issues Overwhelming logs Log library changes

Hadoop-Common 26.2% 14.9% 14.9% 17.9% 14.3% 7.1% 4.8%

Hadoop-HDFS 34.8% 21.9% 16.3% 10.1% 5.1% 8.4% 3.4%

Hadoop-YARN 40.8% 16.9% 22.5% 5.6% 7.0% 5.6% 1.0%

Hadoop-Mapreduce 41.0% 18.0% 14.8% 13.1% 4.9% 6.6% 1.6%

Camel 25.9% 25.9% 20.0% 11.8% 5.9% 8.2% 2.4%

Studying and Detecting Log-Related Issues 17

statements to capture more information: “Currently, only failed accesses are
logged. Need to log successful accesses as well.”.

Inappropriate log level. Another interesting type of issues was problems
associated with the level of the log. Log messages have levels that show their
importance, verbosity, and what should happen after the event is logged. These
levels include fatal (abort a process after logging), error (record error events),
info (record important but normal events), debug (verbose logging only for
debugging), and trace (tracing steps of the execution, most fine-grained infor-
mation). Developers use log levels based on the information that they need to
print, and considering the overhead that more verbose log messages can impose
on the system’s execution. These log levels are widely used by analysis tools
and operators to filter out unwanted logs and extract relevant information. In
some issues, the level of a logging statement was thought to be incorrect and
needed to be changed. For example, in the issue HADOOP-3399, developers
clearly mentioned that “A debug message was logged at info level”. Setting a
lower log level could cause missing important information in the execution log
output. In contrast, setting a higher log level will add redundant information
to it. In other words, setting an inappropriate log level may lead to confusing
log messages.
Log library configuration issues. Developers use different APIs in their
software system’s lifetime to print log messages. Each API uses different con-
figuration files and interfaces to perform logging in the system. We consider
any problem in the implementation and configuration of the used APIs as an
Configuration issue. For instance, in the issue HADOOP-276, developers found
out that they needed to add a configuration file for log4j, as the description of
the issue reads “The problem is that the property files are not included in the
jar file.”
Runtime issues. A considerable number of log-related issues are runtime
issues. We consider an issue to be in this category if it causes a runtime fail-
ure or misbehavior of the system at execution time. For example, in the issue
Hadoop-7695, developers mentioned that “RPC.stopProxy can throw a con-
figuration file for unintended exception while logging error”. Here, developers
logged a variable that can throw Null Pointer Exception, and the issue was
introduced to ask the developers to check the value of the variable against
null, before logging it.
Overwhelming logs. In contrast to Missing log, in some issues, the develop-
ers requested to remove a logging statement since it was useless, redundant or
made the log output noisy. As an example, in HADOOP-3168 one of the de-
velopers mentioned that “reduce the amount of logging in Hadoop streaming”.
In order to fix this specific issue, developers removed log messages until they
reached one log message per 100,000 records since the information of all the
records was useless.
Log library changes. Eventually, the last category of log-related issues con-
tains the changes that were requested from developers to change or upgrade
the logging API in their system (e.g., for upgrading to a newer version of the
logging library, log4j); these changes fall in the corresponding category.

18 Mehran Hassani et al.

Based on our experience from the manual investigation, we found repeated
patterns in the log-related issues. Some of the patterns are trivial and evident
patterns, which raise the opportunity of automatically detecting potential in-
appropriate logging statements. These patterns can help us develop approaches
to automatically expose inappropriate logging statements in the source code.
In the next section, we will demonstrate our approach to detect these issues.�

�

�

�

RQ4 Conclusions: We categorized log-related issues into seven cate-
gories based on their root causes. We observe evident root-causes of the
log-related issue during our manual investigation. Such evident root-causes
show the opportunity of making automated tools to detect log-related is-
sues.

4 Automatic detection of inappropriate logging statements

In our empirical study, we found that although log-related issues are likely
to be impactful, they are reported much later than the introduction of the
logging statement. Our study results indicate the need for automated tools to
help developers detect log-related issues in their code.

Based on our results of the manual study on log-related issues, we found
that some of these issues are evident and are due to careless mistakes. We
found some patterns and similar suggestions to automatically find defect-prone
logging statements and show developers what may cause an issue in such
statements. We built four different checkers for four types of log-related issues:
Typos, missed exception messages, log level guard, and incorrect log levels. All
these four types are evident in root-causes that are identified in RQ4.

– Incorrect log levels As explained in RQ4, messages with incorrect log
level can make issues, such as providing too little or too much information,
to users of the logs.

– Missed exception message. Missed exception messages are the catch
blocks that do not contain any logging statements, or do not log the excep-
tion message inside them. Missed exception message can belong to missing
logging statement category or inappropriate log message.

– Log level guards. Log level guard issues happen when there is an expen-
sive computation in log messages and developers do not check which level
is enabled in the configuration before execution. Log level guard belongs
to log library configuration issues.

– Typos. As a subset of inappropriate log message category, typos are simple
mistakes in spelling inside the log strings.

We will explain how these checkers are designed and the issues that we
were able to detect using these checkers. An overall summary of our approach
is depicted in Figure 5.

Fig. 5: An overview of log-related issue checker.

20 Mehran Hassani et al.

4.1 Log level checker

In our empirical study, we found that 76 issues are due to incorrect log level
in logging statements, which were fixed by merely changing the log level. To
suggest log levels, we focused on the rich dataset of all log messages in the
source code of our subject systems. Hadoop and Camel contain more than 10K
and 6K logging statements in their source code, respectively. Thus, we tried
to use the text in the log message to suggest the level of the log.

Information Theory deals with assessing and defining the amount of infor-
mation in a message [40]. The theory seeks to reveal the amount of uncertainty
of information. For example, consider that we analyze the words and the com-
bination of words in logging statements. To ease the explanation, we call words
and combination of words as phrases. For each new logging statement, we want
to guess the log level using the phrases in the logging statement. At first, we
were uncertain about our guess. Every time we observe a phrase appearing in
a level, our uncertainty decreases. In other words, whenever we observe the
phrase “exit” in a fatal level logging statement, we are more certain that the
logging statement with the phrase “exit” should be in fatal level.

Shannon entropy is a metric used to measure the amount of uncertainty
(or entropy) in a distribution [16]. We used the Normalized Shanon’s Entropy
to calculate the level of the logging statements, based on the probability of
appearance of phrases in the log message. We calculated the entropy of the
phrases from existing logging statements. We consider the phrases with two
or more appearances.

Table 9 shows the five-number summary for the lowest entropy of the
phrases in each logging statement. We find that most of the logging state-
ments contain phrases with low entropy. In particular, more than 25% of the
logging statements contains a phrase with zero entropy (the phrases are
only appearing in a unique level). Therefore, we can use phrases with zero
entropy to suggest the log level for new logging statements. If a logging state-
ment contains any of these phrases, we can suggest that this particular logging
statement is more likely to be at the level that this phrase appeared all the
times.

To find inappropriate log levels, we first use the text and variables in ex-
isting logging statements in the source code to calculate the entropy for words
and combination of the words called phrases. In other words, we make a table
of phrases, their corresponding entropy, and the logging level. Then, for each
new logging statement, we extract the phrases and search for them in the table
we made from our training data. If a phrase from the new logging statement
exists in the table and its entropy is zero, we compare the logging level of the
new statement with the table. Finally, if the log level from the table is different
than the log level from the new statement, we suggest that the verbosity level
is wrong.

For example, in “LOG.debug(“Assigned container in queue: ”+ getName());”
we can see that the log message contains the phrase “assigned container”.
“assigned container” occurred 12 times in different log messages and always

Studying and Detecting Log-Related Issues 21

Table 9: A five-number summary for the lowest entropy of the phrases
in each logging statement

Subject systems Min 1st Qu. Median 3rd Qu. Max
Hadoop 0.00 0.00 0.33 0.50 0.87
Camel 0.00 0.00 0.25 0.45 0.83

appeared in info level. Thus, the entropy for this phrase of words is zero. How-
ever, the new logging statement with this token is in debug level. Given this
information, the tool will suggest that the current level debug is wrong.

To evaluate our approach, we run the tool on existing issues that were fixed
by changing levels. For each issue, we trained the checker with the revision
before the issue fixing commit. Out of 76 log-related issues containing 209 log
level changes we were able to fix 22 logging statements with inappropriate
logging level in seven log-related issues with four false positives. A prior study
showed that static analysis tools suffer from providing false positive results
to practitioners [9]. Therefore, we opt to avoid false positives and to have
excellent precision but low recall over lower precision with a higher recall.

4.2 Catch block checker

In 21 issues developers simply missed to log the exception inside the catch
blocks. Exception messages contain necessary information that is used by the
developers while debugging the code. These issues can be fixed simply by
adding or removing the exception message in a new logging statement or the
end of an existing logging statement. In several issue discussions, developers
mention they faced situations in which they needed information related to the
exceptions in the log output. In contrast, sometimes they found the informa-
tion unnecessary and removed them. Issues with these fixes are considered as
inappropriate log messages issues or missing logging statement in our study.

We provide a checker to recommend developers to add logging statements
or log the exception message inside the catch blocks based on historical infor-
mation of the source code. We used Eclipse’s JDT (Java Development Tools)
to parse the Java code and generate its Abstract Syntax Tree (AST). Using
the AST, all the catch blocks, and their logging statements are extracted. Af-
terward, we calculate the percentage of catch blocks that log the exception
messages for each exception type. To minimize false positives, we only detect
the issue if either all the catch blocks with the same exception type are logged,
or none of them are logged (threshold 100%). Using this threshold, we were
able to fix 4 logging statements with inappropriate logging level in 2 log-related
issues.

22 Mehran Hassani et al.

4.3 Log level guard checker

Logs provide valuable information for developers and operators of the software
system. However, each logging statement has some performance overhead to
the system. Especially, if the log message contains many variables and method
calls in it, the overhead can be costly. Hence, log libraries provide a condi-
tional guard for the logs, such that developers can avoid executing the logging
statement if logging in that level is disabled at runtime. When developers feel
that creating the log message has a considerable performance overhead, they
can use an if statement as a log level guard. In some of the libraries like Self4j
this log level guard is implemented inside the logger method, but for other
libraries, developers should add an if statement as a log guard manually. We
found nine issues that developers forgot to add log level guards before exe-
cuting logging statements. Thus, logging statements were executed but never
shown in the output. Based on these findings, we made a simple checker to
find missed log level guards. First, we analyze the logging library of each file.
If the logging library does not perform the log level check before executing
(i.e. Log4j), a log level guard needed for each debug level logging statement.
Thus, we check all the debug level logging statements in the file and if a log-
ging statements have a significant computation in its message (i.e., more than
three string concatenations or includes method calls), our tool suggests that
developers should add a log level guard to the logging statement or consider
migrating to libraries like SLF4J. Using this tool we were able to find all nine
issues reported on issue trackers of our case studies. We also run this tool on
the last revision of our case studies. We found 62 new cases that developers
need to add a log level guard. A false positive case would be when developers
remove log level guards while our tool suggests keeping the log level guard. We
identify two issues (HDFS-811610 and HDFS-897111) where developers remove
log level guards and our tool did not suggest to keep the guard in either case.

4.4 Typo checker

We had 24 issue reports for which the solution was just fixing the typos in log
messages. Typos do not have a large impact if the logs are read by operators
and developers. However, automated log analysis may be impacted if they
depend on these log message. To fix these typos, we need to examine the
string literal (i.e., fixed) part of log messages to find the typos in them. Log
messages often contain non-English words that might be in-house names or
code identifiers. Thus, a simple English spell checker will return many false
positives and find actual typos among them can be frustrating for developers.
In our tool, we tried to improve the dictionary using the data inside the system.
To reduce the number of false positives, we extracted string messages inside
all the logs and counted the number of appearances of each word. Then, we

10 https://issues.apache.org/jira/browse/HDFS-8116
11 https://issues.apache.org/jira/browse/HDFS-8971

Studying and Detecting Log-Related Issues 23

added the repeated words inside the log messages to the list of known words.
Furthermore, we added identifier names and words in code comments in the
file to our dictionary. Using this new dictionary, we check the strings in log
messages and report the inappropriate ones as possible typos.

With the typo checker, we were able to find 20 out of 24 reported typos
issues in our case study. Among the four issues that are not detected, one of
them was due to having extra white space between words, three of them were
a typo in the log configuration file that we do not support at the moment. We
also run our tool on the last revision of our case studies to find new issues that
are not reported yet. In total, we found 25 new typos in log messages. After
manual validation, we found seven false positives. One of the false positives was
an abbreviation that was not mentioned in the code comments. The other one
was a log with a text automatically generated, hence we missed that part and
considered that the statement contains a typo. The rest of the false positives
were informal words that were meaningful, but not included in our English
dictionary.

4.5 Results of applying the tool

In order to evaluate our tool, we first try to detect our manually verified log-
related issues. We run our checker on the source code snapshot before each
issue fix. The overall results are shown in Table 10. We reported the number
of issues and logging statements successfully covered by our tool. Note that
the number of issues is different from the number of logging statements since
issues can be fixed by changing multiple logging statements. We were able to
successfully detect 23% of inappropriate logging statements in 30% of the log-
related issues. We also apply our tools to find other possible log-related issues
in the latest source code from our subject systems. In total, we identified 226
potential inappropriate logging statements in the latest version of our case
studies source code. For each checker, we ranked the suggestions in order to
provide the most accurate detection to developers. The suggestions to change
the level are ranked based on the entropy and number of occurrence word
combination in the last stable version of source code. Catch block logging sug-
gestions are ranked based on the number of occurrences of the exception type
and percentage of similar behavior. Eventually, the results of log level guard
checker are ranked by the number of method calls and string concatenations in
the logging statements. We did not rank the typos since the suggestions were
under 20 (i.e. 18 suggestions). Then, we reported the top 20 suggestion of each
checker (18 for typos) for all the subject systems. Issues regarding typos in
logging statements were accepted immediately and fixed by the first author of
the paper. Issues regarding log level guards are also accepted by the developer
of the Hadoop and Camel. However, developers of Hadoop mentioned that
they plan to move to SLF4j in order to fix these issues rather than adding
the guards to the mentioned logging statements. In the MapReduce subsys-
tem, developers mentioned the fix is in progress. In the HDFS subsystem of

24 Mehran Hassani et al.

Hadoop, developers have already provided a patch to migrate the logging li-
brary to SLF4j. Finally, developers of Camel asked us to provide the patch by
adding the if statement before the debug level guards. Other reported issues
are still under review.

Table 10: The results of our tool on known issues

Type
known issues # issues successfully detected

(# of logging statements) by the checker (# of logging statements)
Typos 26(40) 22(34)
Missing to log exceptions 21(65) 2(4)
Inappropriate log level 76(209) 7(22)
Missing log level guard 9(15) 9(15)

A prior study has proposed an approach that builds a statistical model to
predict the appropriate level of a logging statement [25]. Although the goal
of this approach is to suggest log level, the approach can be used to detect
issues with an inappropriate level in particular. We compared our log level
checker with the approach that suggests log levels. We obtained the original
data that were used in the prior study [25]. Since Hadoop is also a subject
system in the prior study, we found 56 logging statements that were manually
identified in our study with wrong log levels and were also included in the
prior study’s data. We examined whether the statistical model that was build
based on the prior study could detect these log-related issues. We found that
in 32 logging statements, the model failed to find the appropriate level that
developers decided on the issues. However, our tool was able to suggest ten
correct log levels without any false positive. Note that the threshold of our
checker was set to 0.33 in this experiment. These results show that the logging
statements that are reported as issues, because of their level, are harder to
predict in nature. Studies also show that developers often have difficulties in
choosing the appropriate log level and spend much effort on adjusting the log
level [44].

5 Related Work

In this section, we discuss the prior research that is related to this paper.

5.1 Log analysis

Logs are widely used in software development and operation to ensure the
quality of large software systems [3]. Prior research focuses on the analysis
of logs [30] to assist different software development and operation activities.
Valuable information is extracted from logs, including event correlations [14,
29], resource usages [21], component dependency [31], and causal paths [45].
The extensive usage of logs motivates our paper since quality logs are extremely

Studying and Detecting Log-Related Issues 25

important for the effectiveness of prior log analysis research. The outcome of
this paper would help reduce log-related issues, hence improve the adoption
of advanced log analysis in practice.

5.2 Logging enhancement

The closest recent research is from Chen et al. [8] on the detection of anti-
patterns in logging code. Our study complements this work in many ways.
Chen et al. explore anti-patterns in logging code by mining logging code
changes in three open-source systems. In particular, they identified five anti-
patterns and proposed static code checkers to detect these patterns. However,
instead of detecting anti-patterns (like code smell [8]) that have the possi-
bility to be an issue, we focus on the event issues that are more certain. In
fact, by comparing our study to the research by Chen et al., only one anti-
pattern/root-cause (Wrong log level) overlaps in two studies. The reason may
be the different focus on anti-patterns and evident issues, and that we identify
log-related issues from issue reports while Chen et al. leverage code changes
to identify anti-patterns. Moreover, our empirical study results on log-related
issues provide more insights on these issues.

The prior research proposes techniques in order to enhance logging state-
ments. Yuan et al. have conducted a series of research [41, 42, 43, 45] on how
to perform better logging. They found that developers usually change logging
statements since they do not write the appropriate logging statement in the
first attempt. Furthermore, they give some insights on how to improve the
logging practices. They also built a simple checker that can help developers to
write better logging statements. Yuan et al. [43] start off by performing a char-
acteristic study on log practices by mining the revision histories of four open-
source software projects. They propose a tool named LogEnhancer [41, 45]
to automatically detect valuable information and add the information to log-
ging statements. LogEnhancer looks for accessible variables for each existing
logging statement and adds them to the logging library method call. With
our exceptions checker, we suggest developers add exception variable to the
logging statement if the thrown exception type always logged the exception
variable in the source code of the subject system. Even though we cannot run
their approach, by the description of their approach, we can know that their
approach is guaranteed to solve the issues that fixed by adding variables to
logging statements as well as the issues with missing exception variable (28
log-related issues). However, it can potentially produce noise to the log output.
In fact, seven log-related issues were fixed by removing variables from logging
statements. Their approach may results in worsening the issues. Zhu et al. [48],
also mention that adding all the variables to logging statement pollutes the
log output and not recommended by developers. Yao et al. [24] proposed an
approach that recommends locations to place logging statements in order to
improve performance monitoring on web-based software systems. In this ap-
proach, the authors use improvements of the explanatory power of statistical

26 Mehran Hassani et al.

performance models as a heuristic to suggest logging statement placement.
Our paper finds that missing logging statements are one of the root-causes of
log-related issues. However, their approach is only suitable with the consider-
ation of performance monitoring. Yuan et al. [42] investigate 250 real-world
failure reports find an additional point to log the possible failures. Ding et
al. [11] propose a filtering mechanism to reduce the I/O consumption of the
logs at runtime. They perform the filtering with having performance prob-
lem diagnoses as the main usage of the logs in their mind. Their approach is
deeply integrated into the source code as an API to reduce the number of logs
saved during the runtime. However, we aim to provide a recommender in our
approach to help developers improve logging statements in their source code.

Fu et al. [13] systematically studied the logging practices of developers in
the industry, with a focus on where developers log and come up with useful
lessons for developers regarding where to log. Follow-up work by Zhu et al. [48]
proposes a framework, which helps provide informative guidance on where
to insert logging statements. They implemented LogAdvisor to give usable
suggestions based on the different features of the code snippet. They used
machine learning algorithms to suggest logging decisions for developers. Their
approach shows promising results in their paper. However, it is only usable
for C# projects. Moreover, our checker has very little overhead comparing
to their multi-step framework. Our checker only needs the information of the
exception type. Although we have a lower recall, we still do not give wrong
suggestions in any of the issues. Furthermore, we aim to find multiple patterns
rather than focusing on one as Zhu et al. did in their study. Li et al. [25]
proposed an approach which helps developers choose the best log level when
they are adding a new logging statement. In another work [26], they provided
a model to suggest the need for log change in commits. Li et al. also studied
the rationale behind log changes. Li et al. found that the reasons behind log
changes can be categorized as block change, log improvement, dependence-
driven change, and logging issue. Kabinna et al. [20], studied the logging library
migration in Apache Software Foundation (ASF) projects. The found that 14%
of the ASF projects had at least one logging library migration in their lifetime.
The also show that 70% the migrated projects had at least two issues related
to the logging library migration. Although they provide useful insights for
logging library migration, they do not propose an approach to automatically
aid developers in the process. In another work [21], Kabinna et al. studied
the stability of logging statements and proposed prediction techniques to help
developer avoid depending on unstable logging statements.

Existing research mainly focuses on suggesting and improving existing log-
ging statements. However, we study the log-related issues and aim to improve
the quality of logging statements by automatically detecting these issues. We
provide a comparison of related works that aim to improve logging code in
Table 11.

Table 11: Comparing our work with prior research on logging suggestions and improvements

Papers Goal Code element level Note

Learning to log: Helping developers make informed Adding or removing logging Catch Block level, Providing a tool named Log Advisor to help developers of

logging decisions [48] statements to catch blocks Return-value check C# determine whether a log needed or not in a catch block.

Improving software diagnosability via log Adding variables Method Level Injecting all accessible variables to the

enhancement [46] to logging statements logging statement in the source code.

Characterizing and detecting anti-patterns in the Finding anti-patterns Statement Level Studying the anti-patterns in logging code in several

logging code. [44] in logging statement Java projects by analyzing log changing commits.

Which log level should developers choose Predicting verbosity level Statement Level Providing a model to predict appropriate

for a new logging statement? [25] logging level using code metrics.

Towards just-in-time suggestions for log changes [26] Predicting the need for log changes Commit level Built random forest classifiers using software measures to

predicting the need of log change in each commit.

Studying and detecting log-related issues (This paper) Detecting log-related issues Statement Level Studying characteristics of the log-related issues and

providing a checker to detect evident errors in logging code.

28 Mehran Hassani et al.

6 Discussions and Threats to Validity

6.0.1 Impact of the threshold on our checkers

Based on the results of our tool, two of our checkers, i.e., log level checker
and catch block checker, have a low number of detected issues. Both checkers
are based on thresholds. Our log level checker is based on the entropy of a
word or a combination of words existing in different log levels. Our catch block
checker is based on the percentage of different behaviors in existing exception’s
catch blocks. Therefore, we aim to refine these two checkers to achieve better
detection results.

Log level checker refinement. The original log level checker only considers
the phrases with zero entropy. Because most of the phrases have low entropy,
as shown in Table 9. This time, we use the phrase with the lowest entropy
in each logging statement to detect inappropriate log level, instead of only
considering the phrases with zero entropy. However, we find that also we were
able to provide more suggestions (47 instead of 26), our precision becomes
lower (73%). Furthermore, we varied the threshold between 0.0 to 0.33 (median
entropy, see Table 9), to see its impact on our results. Our precisions are
between 84% and 87%, and we can correctly detect 22 to 31 wrong log levels
in 7 to 9 log-related issues.

We find that for the older issues, there was limited number of logs in the
source code of our subject systems. Limited training data has a significant im-
pact on our checker. Thus, we used the data from other projects to improve the
training data. We used all subject systems with at least one logging statement
in them from the top 1,000 popular Java projects on Github (354 projects).
Then, we excluded the subject system that we were testing against, as well as
their forks from the list and trained the checker with source code for remaining
projects. However, we find that although this approach let us provide more
suggestions (55 to 80 log level change suggestions out of 209), the precision is
low (65% - 58% precision) using thresholds between 0.0 to 0.33.

Finally, we decided to add the source code from the revision before the
issue fixing commits to the other projects as well. Using this approach we kept
the testing and training data separated at all the time. With the extended
training set, we were able to suggest a level change for 51 logging statements
with eight false positives in 19 log-related issues, resulting into 84% precision
using phrases with zero entropy. After changing the threshold to 0.33, we were
able to suggest 56 level changes with ten false positives (82% precision) in 20
log-related issues.

Catch block checker refinement. The original catch block checker uses
100% as a threshold, meaning that developers logged the exception in either
all or none of the previous catch blocks with the same exception type. We vary
the threshold from 100% to 50% (in half of the existing exceptions developers
logged the exception). The results show that when the threshold is set to 80%,
the precision decreases from 100% to only 60%, while we are only able to
detect three more issues. When the threshold is set to 50%, our precision is

Studying and Detecting Log-Related Issues 29

only 33%. Such results show that in order to detect more issues, we would
need to sacrifice our precision. Therefore, having 100% as our threshold is a
better choice.

In this study, we aim to make a recommender tool for developers. Thus,
our goal is to have smaller false positive rates rather than higher recall values.
In all the checkers, we have very few to no false positives. We evaluated our
tool on the log changes extracted from the reported issues. Developers had a
hard time to write the appropriate logging statements on the first try. Thus
these logging statements are reported as issues. In fact, when we compared the
existing works using our dataset, we outperformed them with better precision
and recall. We agree that we do not provide many suggestions. However, we
try to provide the right suggestions when we do provide them. We plan to
improve the recall of our approach in future work.

6.1 Internal Validity

In this study, we employed different heuristics in our approach that may impact
the internal validity of our approach. We only studied the issues with a log-
related keyword in their title. However, to see the impact of this filtering, we
extracted all the commits in the history of the subject systems where at least
one line of code containing a logging statement was modified. We then drew
a statistically-random sample with 95% confidence level and ± 5 confidence
interval from this pool of commits and investigated them manually. We found
that our approach only misses 0.5% of the changes that were done due to a
log-related issue. Other commits in the sample are either true positives of our
approach (i.e., they are changes due to log-related issues that our technique was
able to identify correctly), unrelated fixes, or addition of new functionalities
to the system. Moreover, we used text matching to find the corresponding
commits for each issue. We ignored issues labeled other than “improvement”
or “bug” in our study. However, the majority of all the issues (72%) were
labeled either “improvement” or “bug”. We wanted to study issues regarding
a problem in logs rather than issues that implement a new feature. The results
of our second and third research questions impacted by the accuracy of the
matching we performed on the issues and commit. Besides, in some cases, the
authors of the commits on GitHub may not be the original authors of the
code. We mined the commit messages and used issue report data to find the
original author of the commits. However, in 12% of the commits, we were
not able to find another author mentioned in the commit message for the
corresponding issue of the commit. We used Git commands to obtain the log
introducing change in the history of the case studies. These commands use
Unix diff, which can impact our results. However, in our scripts, we manually
checked the results and removed the commits that we were not able to confirm
as log introducing changes by verifying the existence of the logging statement.

30 Mehran Hassani et al.

6.2 Construct Validity

Construct validity threats concern the relation between theory and observa-
tion [40]. In our study, the main threats to construct validity arise from human
judgment used to study and classify the log-related issues. In particular, the
categories are based on the classification performed by the first two authors
and can be biased by the opinion of the researcher on the issues and the source
code. We also used keywords to filter the issues. Thus, we might have missed
some log-related issues which do not contain our keywords in their titles. How-
ever, the goal of the study is not to exhaustively collect all log-related issues
but rather study based on a collection of them. Future studies may consider
collecting log-related issues in another approach to complement our findings.

6.3 External Validity

We perform our study on Hadoop and Camel. These systems are large soft-
ware systems containing millions of lines of code with 11K and 6K logging
statements, respectively. However, more case studies on other software sys-
tems in different domains are needed to see whether our results are similar to
this study. Conducting research on different case studies from other domains
will help us to examine the importance of the logging statements in other ar-
eas, and also to understand similar and distinct types of logging statements in
software systems. However, the results of our study showed that also four sub-
systems of Hadoop are considered as one subject system, they show different
behavior in our analysis.

Moreover, we should note that Hadoop and Camel are open source soft-
ware. Therefore, the results of our study are based on only open source software
systems and may not generalize to commercial systems. To improve our re-
search, we need to replicate it on enterprise software systems to gain a better
understanding of their log-related issues. Furthermore, our study focuses on
Java-based software systems. Using case studies from different languages can
improve our knowledge about logging statements and their problems in other
languages. We manually studied 563 log-related issues in seven categories. But,
our automated approach can provide suggestions for 132 log-related issues in
four categories. In our manual analysis, we find that many of the log-related
issues require domain knowledge, as well as, an understanding of the envi-
ronment being fixed. Hence, we chose to focus on issues that can be detected
and fixed automatically. Unfortunately, we were not able to provide a checker
for all of the log-related issues we studied in this paper. However, we offer
characteristic analysis to help developers and users better understand issues
regarding logging in their systems.

Table 12: Our findings on log-related issues and their implication.

Findings Implications

Location of the log-related issues Implication

Files with log-related issues have larger number of prior commits and more prior bugs. This implies that developers often prioritized their efforts on these files.

People involved in log-related issues Implication

78% of the buggy logging statements are fixed by someone other than original committer. Various people are responsible for adding and fixing the logging statements.

78% of the buggy logging statements are not fixed by owner. Thus, its hard to find experts of the logs. This shows the need for automated

24% of the buggy logging statements are introduced by the owner. tools to aid developers in diagnosing and fixing log-related issues.

73% of the buggy logging statements are fixed by the person who reported the issue.

Time takes to fix log-related issues Implication

It takes a long time (median 320 days) for a logging statement Log-related issues are fixed fast after their exposure but it takes

to be reported buggy. However, 80% of log issues were fixed long time for them to report as an issue.

within ten days of their report.

Root causes of log-related issues Implication

Based on our manual study, we categorized log-related issues into seven categories.
Log-related issues have different root causes. There exist

evident patterns which can automatically detected.

32 Mehran Hassani et al.

7 Conclusion

Logs are one of the most important sources of information for debugging and
maintaining software systems. The valuable information in logs motivates the
development of log analysis tools. However, issues in logs may highly impact
the values of log analysis tools by providing incomplete or inaccurate informa-
tion to the users of the logs. Therefore, in this paper, we empirically study 563
issues from two open-source software systems, i.e., Hadoop and Camel. We find
that 1) files with log-related issues have undergone statistically significantly
more frequent prior changes, and bug fixes, 2) log-related issues are often fixed
by neither the developer who introduced the logging statement nor the owner
of the file that contains the logging statement, and 3) log-related issues are
reported after a long time of the introduction of the logging statement. Our
findings show the need for automated tools to detect log-related issues. There-
fore, we manually investigate seven root-causes of log-related issues. Table 12
summarizes the findings for each research question and its implications. We
develop an automated tool that detects four types of evident root-causes of
log-related issues. Our tool could detect 40 existing log-related issues and 38
(accepted by developers) previously unknown issues in the latest release of
the subject systems. Our work suggests the need for more systematic logging
practices in order to ensure the quality of logs.

References

1. The Open Source Elastic Stack (2017). Https://www.elastic.co/products/
2. Baker, C., Wuest, J., Stern, P.N.: Method slurring: the grounded theory/phenomenology

example. Journal of advanced nursing 17(11), 1355–1360 (1992)
3. Barik, T., DeLine, R., Drucker, S., Fisher, D.: The bones of the system: A case study of

logging and telemetry at microsoft. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering Companion (ICSE-C), pp. 92–101 (2016)

4. Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B.: Does distributed develop-
ment affect software quality?: an empirical case study of windows vista. Communications
of the ACM 52(8), 85–93 (2009)

5. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!:
examining the effects of ownership on software quality. In: Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software
engineering, pp. 4–14. ACM (2011)

6. Boulon, J., Konwinski, A., Qi, R., Rabkin, A., Yang, E., Yang, M.: Chukwa, a large-scale
monitoring system. In: Proceedings of CCA, vol. 8, pp. 1–5 (2008)

7. Carasso, D.: Exploring Splunk. CIT, Zagreb, Croatia, Croatia (2012)
8. Chen, B., Jiang, Z.M.J.: Characterizing and detecting anti-patterns in the logging code.

In: Software Engineering (ICSE), 2017 IEEE/ACM 39th IEEE International Conference
on. IEEE (2017)

9. Chen, T.H., Shang, W., Hassan, A.E., Nasser, M., Flora, P.: Detecting problems in
the database access code of large scale systems - an industrial experience report. In:
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), pp. 71–80 (2016)

10. Chen, T.H., Shang, W., Jiang, Z.M., Hassan, A.E., Nasser, M., Flora, P.: Detecting
performance anti-patterns for applications developed using object-relational mapping.
In: Proceedings of the 36th International Conference on Software Engineering, pp. 1001–
1012. ACM (2014)

Studying and Detecting Log-Related Issues 33

11. Ding, R., Zhou, H., Lou, J.G., Zhang, H., Lin, Q., Fu, Q., Zhang, D., Xie, T.: Log2: A
cost-aware logging mechanism for performance diagnosis. In: Proceedings of the 2015
USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’15, pp.
139–150. USENIX Association, Berkeley, CA, USA (2015). URL http://dl.acm.org/

citation.cfm?id=2813767.2813778
12. Dmitrienko, A., Molenberghs, G., Chuang-Stein, C., Offen, W.W.: Analysis of clinical

trials using SAS: A practical guide. SAS Institute (2005)
13. Fu, Q., Zhu, J., Hu, W., Lou, J.G., Ding, R., Lin, Q., Zhang, D., Xie, T.: Where do

developers log? an empirical study on logging practices in industry. In: Companion
Proceedings of the 36th International Conference on Software Engineering, pp. 24–33.
ACM (2014)

14. Fu, X., Ren, R., Zhan, J., Zhou, W., Jia, Z., Lu, G.: Logmaster: Mining event cor-
relations in logs of large-scale cluster systems. In: Proceedings of the 2012 IEEE
31st Symposium on Reliable Distributed Systems, SRDS ’12, pp. 71–80. IEEE Com-
puter Society, Washington, DC, USA (2012). DOI 10.1109/SRDS.2012.40. URL
http://dx.doi.org/10.1109/SRDS.2012.40

15. Gousios, G.: java-callgraph: Java Call Graph Utilities (2017).
Https://github.com/gousiosg/java-callgraph

16. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Proceedings of
the 31st International Conference on Software Engineering, ICSE ’09, pp. 78–88. IEEE
Computer Society, Washington, DC, USA (2009). DOI 10.1109/ICSE.2009.5070510.
URL http://dx.doi.org/10.1109/ICSE.2009.5070510

17. Hen, I.: GitHub Research:Over 50% of Java Logging Statements Are Written Wrong
(2017). Https://goo.gl/4Tp1nr/

18. Herraiz, I., Hassan, A.E.: Beyond lines of code: Do we need more complexity metrics?
Making software: what really works, and why we believe it pp. 125–141 (2010)

19. Herraiz, I., Robles, G., Gonzalez-Barahona, J.M., Capiluppi, A., Ramil, J.F.: Compar-
ison between slocs and number of files as size metrics for software evolution analysis.
In: Conference on Software Maintenance and Reengineering (CSMR’06), pp. 8 pp.–213
(2006). DOI 10.1109/CSMR.2006.17

20. Kabinna, S., Bezemer, C.P., Shang, W., Hassan, A.E.: Logging library migrations: A
case study for the apache software foundation projects. In: Proceedings of the 13th
International Conference on Mining Software Repositories, MSR ’16, pp. 154–164. ACM,
New York, NY, USA (2016). DOI 10.1145/2901739.2901769. URL http://doi.acm.org/

10.1145/2901739.2901769
21. Kabinna, S., Shang, W., Bezemer, C.P., Hassan, A.E.: Examining the stability of log-

ging statements. In: 2016 IEEE 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), vol. 1, pp. 326–337 (2016). DOI
10.1109/SANER.2016.29

22. Kampenes, V.B., Dyb̊a, T., Hannay, J.E., Sjøberg, D.I.K.: Systematic review: A sys-
tematic review of effect size in software engineering experiments. Inf. Softw. Tech-
nol. 49(11-12), 1073–1086 (2007). DOI 10.1016/j.infsof.2007.02.015. URL http:

//dx.doi.org/10.1016/j.infsof.2007.02.015
23. Kernighan, B.W., Pike, R.: The Practice of Programming. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA (1999)
24. Kundi Yao Guilherme B. de Pádua, W.S.S.S.A.T.S.S.: Log4perf: Suggesting logging

locations for web-based systems’ performance monitoring. In: Proceedings of the 9th
ACM/SPEC on International Conference on Performance Engineering, ICPE ’18. ACM,
New York, NY, USA (2018)

25. Li, H., Shang, W., Hassan, A.E.: Which log level should developers choose for a new
logging statement? Empirical Softw. Engg. 22(4), 1684–1716 (2017). DOI 10.1007/
s10664-016-9456-2. URL https://doi.org/10.1007/s10664-016-9456-2

26. Li, H., Shang, W., Zou, Y., E. Hassan, A.: Towards just-in-time suggestions for
log changes. Empirical Softw. Engg. 22(4), 1831–1865 (2017). DOI 10.1007/
s10664-016-9467-z. URL https://doi.org/10.1007/s10664-016-9467-z

27. Malik, H., Hemmati, H., Hassan, A.E.: Automatic detection of performance deviations
in the load testing of large scale systems. In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pp. 1012–1021. IEEE Press, Piscataway,
NJ, USA (2013). URL http://dl.acm.org/citation.cfm?id=2486788.2486927

34 Mehran Hassani et al.

28. Nagappan, N., Murphy, B., Basili, V.: The influence of organizational structure on soft-
ware quality. In: Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International
Conference on, pp. 521–530. IEEE (2008)

29. Nagaraj, K., Killian, C., Neville, J.: Structured comparative analysis of systems logs
to diagnose performance problems. In: Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, pp. 26–26. USENIX Associa-
tion, Berkeley, CA, USA (2012). URL http://dl.acm.org/citation.cfm?id=2228298.

2228334

30. Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log analysis. Commun.
ACM 55(2), 55–61 (2012). DOI 10.1145/2076450.2076466. URL http://doi.acm.org/

10.1145/2076450.2076466

31. Oliner, A.J., Aiken, A.: Online detection of multi-component interactions in produc-
tion systems. In: Proceedings of the 2011 IEEE/IFIP 41st International Confer-
ence on Dependable Systems&Networks, DSN ’11, pp. 49–60. IEEE Computer So-
ciety, Washington, DC, USA (2011). DOI 10.1109/DSN.2011.5958206. URL http:

//dx.doi.org/10.1109/DSN.2011.5958206

32. Shang, W., Jiang, Z.M., Adams, B., Hassan, A.E., Godfrey, M.W., Nasser, M., Flora, P.:
An exploratory study of the evolution of communicated information about the execution
of large software systems. In: Proceedings of the 18th Working Conference on Reverse
Engineering, WCRE ’11, pp. 335–344 (2011)

33. Shang, W., Jiang, Z.M., Adams, B., Hassan, A.E., Godfrey, M.W., Nasser, M., Flora, P.:
An exploratory study of the evolution of communicated information about the execution
of large software systems. Journal of Software: Evolution and Process 26(1), 3–26 (2014)

34. Shang, W., Nagappan, M., Hassan, A.E.: Studying the relationship between logging
characteristics and the code quality of platform software. Empirical Software Engineer-
ing 20(1), 1–27 (2015)

35. Shang, W., Nagappan, M., Hassan, A.E., Jiang, Z.M.: Understanding log lines using
development knowledge. In: Proceedings of the 2014 IEEE International Conference on
Software Maintenance and Evolution, ICSME ’14, pp. 21–30. IEEE Computer Society,
Washington, DC, USA (2014). DOI 10.1109/ICSME.2014.24. URL http://dx.doi.

org/10.1109/ICSME.2014.24

36. Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering research:
A critical review and guidelines. In: Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pp. 120–131. ACM, New York, NY, USA (2016).
DOI 10.1145/2884781.2884833. URL http://doi.acm.org/10.1145/2884781.2884833

37. Tan, J., Pan, X., Kavulya, S., Gandhi, R., Narasimhan, P.: Salsa: Analyzing logs as
state machines. In: Proceedings of the First USENIX Conference on Analysis of System
Logs, WASL’08, pp. 6–6. USENIX Association, Berkeley, CA, USA (2008). URL http:

//dl.acm.org/citation.cfm?id=1855886.1855892

38. Wilcoxon, F., Wilcox, R.A.: Some rapid approximate statistical procedures. Lederle
Laboratories (1964)

39. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system
problems by mining console logs. In: Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pp. 117–132. ACM, New York, NY, USA
(2009). DOI 10.1145/1629575.1629587. URL http://doi.acm.org/10.1145/1629575.

1629587

40. Yin, R.K.: Case study research: Design and methods. Sage publications (2013)

41. Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., Pasupathy, S.: Sherlog: Error diagnosis
by connecting clues from run-time logs. In: Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XV, pp. 143–154. ACM, New York, NY, USA (2010). DOI 10.1145/1736020.
1736038. URL http://doi.acm.org/10.1145/1736020.1736038

42. Yuan, D., Park, S., Huang, P., Liu, Y., Lee, M.M., Tang, X., Zhou, Y., Savage, S.:
Be conservative: Enhancing failure diagnosis with proactive logging. In: Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pp. 293–306. USENIX Association, Berkeley, CA, USA (2012). URL http:

//dl.acm.org/citation.cfm?id=2387880.2387909

Studying and Detecting Log-Related Issues 35

43. Yuan, D., Park, S., Zhou, Y.: Characterizing logging practices in open-source software.
In: Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pp. 102–112. IEEE Press, Piscataway, NJ, USA (2012). URL http://dl.acm.org/

citation.cfm?id=2337223.2337236

44. Yuan, D., Park, S., Zhou, Y.: Characterizing logging practices in open-source software.
In: Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pp. 102–112. IEEE Press, Piscataway, NJ, USA (2012). URL http://dl.acm.org/

citation.cfm?id=2337223.2337236

45. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnosability
via log enhancement. ACM Trans. Comput. Syst. 30(1), 4:1–4:28 (2012). DOI 10.1145/
2110356.2110360. URL http://doi.acm.org/10.1145/2110356.2110360

46. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnosability
via log enhancement. ACM Transactions on Computer Systems (TOCS) 30(1), 4 (2012)

47. Zhang, H.: An investigation of the relationships between lines of code and defects. In:
Software Maintenance, 2009. ICSM 2009. IEEE International Conference on, pp. 274–
283. IEEE (2009)

48. Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M.R., Zhang, D.: Learning to log: Helping devel-
opers make informed logging decisions. In: Proceedings of the 37th International Con-
ference on Software Engineering - Volume 1, ICSE ’15, pp. 415–425. IEEE Press, Piscat-
away, NJ, USA (2015). URL http://dl.acm.org/citation.cfm?id=2818754.2818807

