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Abstract
Logging is widely used in modern software development to record run-time information
for software systems and plays a significant role in software testing. Although the research
area of logging has attracted much attention, little attention is paid to the practice of test
logging (i.e., the logging involved in test files). To fill this knowledge gap, we conduct this
empirical study to explore and disclose the practice of test logging. This study examines 21
open-source subjects with∼70K logging statements, of which∼48K are production logging
statements and ∼22K are test logging statements. We organize our study by answering
four research questions, and as a result, (1) we have yielded five findings to reveal the
differences between test and production logging statements, (2) we have disclosed four
findings regarding the differences between the maintenance efforts of test and production
logging statements, (3) we have identified four reasons why developers use test log, and
(4) we have uncovered the relationship between test logging and production logging. To the
best of our knowledge, this is the first study that quantitatively and qualitatively analyzes
the logging practices in test and production code, providing developers and researchers with
insight into this topic.
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1 Introduction

Logging is an important practice in recording the run-time information of software sys-
tems. Logging has been used for a variety of purposes, such as software quality evaluation
(Kernighan and Pike 1999; Shang et al. 2015), anomaly detection (Fu et al. 2009; Lou
et al. 2010), error reporting (Glerum et al. 2009), performance diagnosis (Nagaraj et al.
2012), system behavior understanding (Fu et al. 2013; Li et al. 2020a) and code cover-
age estimation (Chen et al. 2018), many of which facilitate testing. Moreover, a number of
programming languages provide logging frameworks to assist developers in logging. For
instance, Python has a widely used built-in logging module, logging, and Java offers a
variety of logging frameworks, including the built-in logging framework JUL (Oracle and/or
its affiliates 2021) and frameworks provided by third parties (such as SLF4J (QOSch 2021)
and Log4j (The Apache Software Foundation 2021)).

Logs are generated by logging statements. The following is a sample of a typical logging
statement that consists of four components: a logging object (LOG), a logging level (INFO),
a static text, and a dynamic variable:

A logging level allows developers to filter the run-time information of software systems,
printing only information about critical events (e.g., errors) while suppressing less critical
information (e.g., debugging information) (Gülcü 2002).

The significance of software logging has long been acknowledged, and numerous stud-
ies have been undertaken to improve logging practices. Yuan et al. (2012b), Chen and Jiang
(2017c), Zeng et al. (2019), He et al. (2018), and Chen and Jiang (2017a) characterize the
logging practice and logging anti-patterns in different programming languages and plat-
forms. Li et al. (2017b), Li et al. (2021), Liu et al. (2019), and Shang et al. (2014) explore
what information to log and Fu et al. (2014), Zhu et al. (2015), and Zhao et al. (2017)
investigate where developers should place logging statements.

Despite the considerable efforts that prior studies spent on analyzing and improving log-
ging practices, to the best of our knowledge, there is no study that explores logging practices
in test files and production files separately. In general, production files are used to develop
software that will be released to users, while test files are used to verify the functionality of
production files. In this paper, we define the logging involved in test and production files as
test logging and production logging respectively. Production and test files can be easily dis-
tinguished by their file paths. For example, in Hadoop, the source code directory of each
module consists of two separate folders, a main folder and a test folder that contain produc-
tion and test files, respectively. Since test files and production files serve different purposes,
the logging practices in test and production files may also differ, and identifying such differ-
ences may help developers more effectively and unambiguously log in test and production
files. Therefore, to fill this knowledge gap between the logging practices in test and produc-
tion code, we conduct an empirical study on logging statements in test files. Specifically,
this study focuses on four aspects: (1) the statistical differences of logging statements in test
and production files, (2) the differences of efforts that developers spent on maintaining test
and production logging statements, (3) the rationales why developers use test logging, (4)
the relationships between test and production logging.
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To investigate the logging practice in test and production files, we have conducted a
comprehensive study on 21 software projects. These projects have ∼8 million source code
lines, ∼70K logging statements (including ∼48K production logging statements and ∼22K
test logging statements), ∼214K commits (during the analyzed histories) and ∼89K files
in total. To identify the differences in the logging practice between test and production
files, we analyze the density, distributions, and historical data of test and production log-
ging statements separately. Furthermore, we conduct a “firehouse email” (Murphy-Hill et al.
2015) survey to reveal why developers use logging statements in test files. Then, we analyze
and label test logs according to their relationship with production logging to explore how
test and production logging are related. Our research yielded five findings regarding the
comparisons between the characteristics of test logging statements and production logging
statements, four findings with respect to the comparisons between developers’ maintenance
efforts for test and production logging statements, and revealed four reasons for why devel-
opers use test logs, as well as the relationship between production and test logging. The
summary of our research questions and findings are as follows:

RQ1: What is the difference between the characteristics of test logging statements and
production logging statements?

RQ2: What is the difference between developers’ maintenance efforts for test and pro-
duction logging statements?

RQ3: Why do developers use test logging?
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RQ4: What is the relationship between test logging and production logging?

The implications of our findings are that test logging is quite essential to developers,
and future research should treat logging statements in test files discretely, due to significant
differences between test and production logging. Our findings also suggest that some infor-
mation (e.g., production intermediate data) recorded by test logging statements can be used
in production logging, implying that more research into how to extract and leverage such
information is required.

Paper Organization The rest of this paper is organized as follows. Section 2 introduces
the subjects we have studied and how we extract the related data from these subjects.
Section 3 explains the motivation, research process as well as results of each research ques-
tion. Section 4 presents the threats to validity. Section 5 discusses the related work. Section 6
concludes this paper.

2 Case Study Setup

This section describes the projects under study and howwe extract data from these projects1.

2.1 Subjects

Our research involves 21 open-source subjects varying in size and domain. These subjects
were chosen because: (1) These are all well-known open-source software applications that
have been developed for at least 5 years, (2) These contain sufficient logging code for our
research, (3) These subjects are under the control of professional development teams for pro-
duction and testing, (4) They have been selected as studied subjects by the prior study (Chen
and Jiang 2017c).

Table 1 presents an overview of our studied subjects. In total, we analyzed 21 open-
source projects with ∼8 million sources lines of code. Column KLOC is the thousands of
source lines of code, ranging from ∼10K for Rat to ∼1754K for Hadoop. Column Files
denotes the number of Java files at the analysis time. The total number of files in the study is
∼89K, while each file has an average of ∼87 source lines of code. Column Commits indi-
cates the number of the analyzed commits. During the analyzed commit histories, 214,763
commits were pushed, while Rat had the least commits at 1,043, and Hadoop had the

1Scripts and data files used in our research are available online and can be found here: https://github.com/
senseconcordia/TestLoggingPractice

https://github.com/senseconcordia/TestLoggingPractice
https://github.com/senseconcordia/TestLoggingPractice
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Table 1 Overview of studied subjects

Subjects KLOC Files Commits Commit history

Hadoop 1,753.94 14,042 24,083 (2009-05-19, 2020-08-05)

Hbase 776.12 5,083 17,896 (2007-04-03, 2020-08-05)

Hive 1,480.47 19,310 14,777 (2008-09-02, 2020-08-03)

Zookeeper 108.85 1,372 2,173 (2008-05-19, 2020-08-04)

Tomcat 338.98 4,159 22,363 (2006-03-27, 2020-08-04)

Lucene 1,285.20 12,607 33,950 (2001-09-11, 2020-08-05)

ActiveMQ 414.74 5,462 10,644 (2005-12-12, 2020-07-31)

Maven 89.58 1,978 11,216 (2003-09-01, 2020-08-05)

Ant 143.75 2,383 14,648 (2000-01-13, 2020-07-30)

Empire-DB 55.23 729 1,172 (2008-08-04, 2020-07-01)

Karaf 124.84 2,575 8,208 (2007-11-26, 2020-07-29)

Log4j 30.29 620 3,275 (2000-11-16, 2015-06-04)

Mahout 110.19 2,080 4,440 (2008-01-14, 2020-07-29)

Mina 23.63 362 2,401 (2005-12-28, 2017-06-06)

Pig 269.98 2,458 3,693 (2007-10-29, 2020-04-23)

Pivot 106.47 1,791 4,660 (2008-06-05, 2019-08-14)

Struts 166.23 3,244 5,938 (2006-02-22, 2020-07-17)

Openmts∗ 55.16 1,194 2,833 (2015-12-13, 2020-07-27)

Fop 215.43 4,169 8,354 (1999-10-31, 2020-07-30)

Jmeter 143.13 2,987 16,996 (1998-09-02, 2020-08-05)

Rat 9.72 294 1,043 (2008-03-11, 2020-07-28)

Total 7,701.95 88,899 214,763

*Openmts is Openmeetings

most commits at 24,083. The average age of these subjects at the time of analysis is ∼14
years old, with a minimum age of ∼5 years for Openmeetings and a maximum age of
∼22 years old for Jmeter.

2.2 Data Extraction

Figure 1 illustrates the overview of our research workflow. In each analyzed subject, we
examined the logging practice in its latest version and all commit histories. The work-
flow mainly consists of three phases: Extracting logging statements (marked by ‘yellow’
color), Classifying logging code changes (marked by ‘turquoise’ color), and Executing
tests (marked by ‘red’ color).

2.2.1 Extracting Logging Statements

We first use GitPython (GitPython-Developers 2021), an open-source tool for accessing
and processing Git commits, to identify source code changes from Git histories. In order to
identify logging statements from source code changes, we use srcML (Collard et al. 2013), a
free tool for analyzing source code, to transform the source code to XML format. A similar
data extraction strategy was used in a previous study (Zeng et al. 2019) as well. Through
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Fig. 1 Overview of the research workflow

XPath, we can extract all method invocations from these XML documents, and then we
can search these method invocations for logging statements using Regular Expression with
logging-related keywords, such as log and logger. To increase the detection accuracy,
we remove method invocations whose names include the logging-related keywords, but they
are not logging-related, for example, the method invocations with name logo, logic, and
logdir. We further filter the remaining method invocations using logging-level related
keywords like info, warn, and error, etc. Following the identification of these logging
statements, they are labeled as test logging statements or production logging statements,
depending on whether they are from test or production files.

2.2.2 Classifying Logging Code Changes

In order to characterize logging practices, we measure how many logging statements have
been added, deleted, or updated during development histories. We first sort the source
code files with logging code changes extracted from GitPython into three categories:
file additions, file deletions, and file updates. Our goal is then to convert the logging
code changes made in these three types of files into three types of logging code changes
(i.e., added/deleted/updated logging statements). Changes in the logging statements in the
added/deleted files could be regarded as added/deleted logging statements respectively. If
the insertion and deletion of a logging statement in the Git revision of a revised file occur
in the same method and they seem to be very similar, the logging statement is consid-
ered updated. This can help us find the logging statement additions/deletions among the
remaining logging code changes in this file’s revision.

2.2.3 Executing Tests

To study the relationship between test and production logs, we execute the unit tests in our
studied subjects and analyze the generated logs (including both test and production logs)
from these tests. We first clone the source code of the head commit (when the study is
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conducted) for each research subject from GitHub and then execute unit tests on our local
Linux machine (Ubuntu 18.04, 4-Core Intel i5-2400 CPU, 8GB memory). If a failure occurs
during the testing, we ignore the failure and let the tests continue executing.

3 Case Study Result

In this section, we present the study results of our research questions. We describe the
motivation for each research question, as well as the approaches proposed to address the
research questions and the experimental results.

3.1 RQ1: What is the difference between the characteristics of test logging
statements and production logging statements?

3.1.1 Motivation

Many research studies have been conducted to characterize logging practices. On the one
hand, previous research has investigated the logging statements in production code (Li et al.
2017a; Li et al. 2017b) and disclosed the logging characteristics in various programming
languages and platforms (Yuan et al. 2012b; Chen and Jiang 2017c; Zeng et al. 2019). On
the other hand, prior research has not provided insights into the distinctions between logging
statements in test and production code. Investigating the logging characteristics in test and
production code could help developers write more effective logs and improve the state of
logging practice (e.g., by improving bug detection). Therefore, in this research question, we
explore the differences between the logging statements characteristics in test and production
code. At the time of analysis, the study is conducted on the most recent version of the
subjects. Table 1 provides an overview of the subjects.

3.1.2 Approach

To understand the differences between the logging statements in test and production code,
we extract the following three dimensions of metrics from the studied subjects, and we
investigate the relationship between the distributions of test and production logging density.
Table 2 presents a list of metrics for each of the three dimensions with further description.

– Log quantity metrics are used to measure the number of logging statements in varying
kinds of source code files, such as total logging statements, logging statements per
file, and log density. Similar metrics regarding log quantity were also used by Yuan
et al. (2012b). To calculate the logging density, we first use CLOC (Danial 2021), a
widely used open-source tool, to count the number of source code lines (SLOC) in test
and production files, then use srcML2 and regular expressions to count the number of
logging statements in these files. The log densities defined by prior work (Yuan et al.
2012b) are then computed by dividing the SLOC of test and production files by the
number of logging statements in each type of file separately.

– Logging level metrics measure the logging level distributions in test files and produc-
tion files (i.e. the proportions of each logging level in test and production files). Same
metrics regarding logging level number were also studied by Zeng et al. (2019). The

2https://www.srcml.org/

https://www.srcml.org/
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Table 2 Metrics used to characterize logging statements in production and test files

Dimension Metric Description

Log quantity metrics Log quantity The number of logging statements
in production/test files.

Log quantity per file The average number of logging
statements per production/test file.

Log density Log density of logging statements
in production/test files.

Logging level
metrics

Log level number The number of log levels in produc-
tion/test files.

Logging informa-
tion metrics

Text length The average length of static texts
per logging statement in produc-
tion/test files.

Variable number The average variable num-
bers per logging statement in
production/test files.

logging level is a component of a logging statement, and learning more about it can
help us understand the differences in logging statement characteristics between pro-
duction and test files. After logging statements are identified, we use XPath to identify
logging levels. Existing literature that studies logging in Java projects typically consid-
ers five log levels (Zeng et al. 2019) (i.e., the log levels that we consider in our paper)
or six log levels (Li et al. 2021) (with an additional fatal level). However, major logging
frameworks (e.g. SLF4J (2021)) have recently stopped supporting the fatal level as it is
considered redundant. Therefore, we consider the five log levels as commonly done in
prior studies.

– Logging information metrics quantify the information volume supplied by logging
statements. A logging statement consists of two types of information: static texts and
dynamic variables. We calculate the length of the static texts and the number of dynamic
variables to estimate logging information volume (the same measurement method was
adopted by Li et al. (2017b)). This dimension could be used to identify the differences
between test and production files in terms of logging information types.

Statistical Test We have introduced the three dimensions above in order to investigate the
difference between test and production logging statements. Such difference is summarized
by our plain statistics. We then leverage two popular statistical methodologies namedMann-
Whitney U test (Nachar 2008) and Chi-squared test (McHugh 2013) to further measure the
differences between test and production logging statements.

Mann-Whitney U test We choose the Mann-Whitney U test because it does not enforce
any assumptions about the distribution of analyzed data. Mann-Whitney U test is applied
to distributions of reciprocals for logging densities (since there is no logging statement in
some files, logging densities for these files cannot be calculated) in test and production
files (related to Finding 1), distributions of logging variable numbers as well as distribu-
tions of lengths of logging static texts (related to Finding 5) in test and production logging
statements respectively for each subject. Before the Mann-Whitney U test, we propose two
hypotheses (i.e, null hypothesis and alternative hypothesis):

H0: The distributions under test are the same.



Empir Software Eng           (2022) 27:83 Page 9 of 45   83 

H1: The distributions under test are different.

The test is executed at the 5% level of significance, which implies that if p-value ≤
0.05, the H0 is rejected but H1 is supported, and vice versa. Reporting only the statistical
significance may lead to erroneous results (i.e., if the sample size is very large, the p-value
can be small even if the difference is trivial (Laaber et al. 2019).) Hence, we use Cliff’s delta
effect size (Cliff 1996) to quantify the magnitude of difference between the two distributions
under the Mann-Whitney U test. In the case of positive effect size, the higher its value, the
greater the significance of difference. The thresholds of Cliff’s delta is defined as follows
(Romano et al. 2006):

effect size =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

negligible if Cliff’s d ≤ 0.147

small if 0.147 < Cliff’s d ≤ 0.33

medium if 0.33 < Cliff’s d ≤ 0.474

large if Cliff’s d > 0.474

(1)

Chi-Squared Test The Chi-squared test is chosen to examine the independence between
two categorical variables (Franke et al. 2012). In this study, we use the Chi-squared test to
determine the independence between the distributions of logging levels and the classifica-
tions regarding whether they are production or test logging statements (related to Finding 2
and 3), as well as the independence between the distributions of logging information types
and the classifications with regard to whether they are test logging statements or not (related
to Finding 4). We propose two hypotheses regarding the result of the Chi-squared test (i.e,
null hypothesis and alternative hypothesis):

H0: The distributions under test are independent of whether the logging statements are
in test files or not.
H1: The distributions under test are not independent of whether the logging statements
are in test files or not.

As with the Mann-Whitney U test, the Chi-squared test is also executed at the 5% level
of significance, which implies that if p-value ≤ 0.05, the H0 is rejected but H1 is supported,
and vice versa. To avoid erroneous results that could be induced by merely reporting the
statistical significance, we use Cramér’s V effect size (Cramér 2016) to measure the magni-
tude of association between the two distributions with p-value≤ 0.05 under the Chi-squared
test. Table 3 is the Cramér’s V interpretation table, which was firstly introduced by (Cohen
2013) and provides a list of intervals for the statistical significance of the association degree
between two distributions. Column df refers to degrees of freedom (Fisher 1922), which is
used to interpret Cramér’s V. The calculation of df is based on the characteristics of the
examined data sample. In the case of a two-dimensional table used to compute Cramér’s
V, the df is df = min (r − 1, c − 1), where r is the number of rows and c is the number
of columns observed in the table. For example, the relevant data describing logging level
distributions shown in Fig. 2 can be treated as a table with 5 columns (logging levels) and
2 rows (production and test logging statements), therefore its degrees of freedom is 1 (i.e.,
min (5 − 1, 2 − 1)).

3.1.3 Results

By analyzing the three dimensions of metrics we obtained, we discover five findings regard-
ing the differences between the logging statement characteristics in test files and production
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Table 3 Thresholds of Cramér’s
V effect size and the strength of
the relationship between the
analyzed distributions under
Chi-squared test

df negligible small medium large

1 [0, 0.10) [0.10, 0.30) [0.30, 0.50) [0.50, 1.00]

2 [0, 0.07) [0.07, 0.21) [0.21, 0.35) [0.35, 1.00]

3 [0, 0.06) [0.06, 0.17) [0.17, 0.29) [0.29, 1.00]

4 [0, 0.05) [0.05, 0.15) [0.15, 0.25) [0.25, 1.00]

5 [0, 0.05) [0.05, 0.13) [0.13, 0.22) [0.22, 1.00]

files. We find that logging in test files is as common as in production files and that the dis-
tributions of logging densities in test and production files are almost the same. Conversely,
test logging statements and production logging statements present notable differences in
their logging level distributions, and their logging information types and sizes. However,
such differences are often disregarded by prior studies which suggest general rules to help
developers choose proper log levels (Li et al. 2017b; Li et al. 2021) or useful information to
log (Liu et al. 2019). Consequently, our findings may inspire researchers to further explore
how logging can be facilitated for developers by considering logging separately for test files
and production files.

Log Quantity Metrics Table 4 summarizes the results of Log quantity metrics to measure
log numbers for the subjects. Each subject is presented in terms of thousands of lines of
code, the number of logging statements, logging statements per file, and logging statement
densities in the production and test files separately.

Descriptive Statistics As illustrated in Table 4, there are 48,030 production logging state-
ments in production code, which is about twice as many as the logging statements counted
in test files (21,639). However, it should be noted that source code lines are almost double in
production files (5,127.11K) in comparison to test files (2574.85K). As such, more logging

Fig. 2 Distributions of the logging statement levels
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Table 4 Overview of the logging statement numbers

Subject Production Test

KLOC LOG LOG/F Density KLOC LOG LOG/F Density

Hadoop 986.75 13,059 1.83 75 767.19 6,088 1.59 126

Hbase 472.71 6,364 2.74 73 303.41 3,506 1.78 85

Hive 1205.66 7,602 1.40 155 274.81 1,352 0.80 202

Zookeeper 61.09 1,365 2.89 44 47.76 684 1.85 70

Tomcat 261.74 2,373 1.29 106 77.25 461 0.73 167

Lucene 740.02 3,179 0.59 234 545.18 2,996 0.96 182

ActiveMQ 212.73 2,499 1.10 83 202.01 4,112 1.89 48

Maven 69.40 317 0.42 218 20.18 47 0.18 429

Ant 111.54 1,313 1.45 85 32.21 73 0.18 441

Empire-DB 52.96 813 1.78 64 2.27 18 0.60 134

Karaf 103.00 1,308 1.03 77 21.84 283 0.94 77

Log4j 21.59 725 3.36 30 8.70 355 3.81 25

Mahout 82.44 622 0.67 132 27.75 223 0.71 124

Mina 16.49 212 1.01 78 7.15 48 0.44 149

Pig 166.37 1,437 1.13 116 103.62 644 1.24 161

Pivot 99.35 183 0.23 534 7.12 236 1.57 30

Struts 111.96 1,104 0.81 101 54.27 43 0.07 1,262

Openmts∗ 49.36 500 1.03 100 5.80 66 0.74 88

Fop 185.27 1,337 0.82 139 30.17 76 0.18 397

Jmeter 110.99 1,694 1.66 64 32.15 317 0.91 101

Rat 5.71 24 0.21 238 4.02 11 0.18 365

Total 5,127.11 48,030 1.32 105 2574.85 21,639 1.24 118

Columns LOG and LOG/F denote the number of logging statements and the number of logging statements
per file respectively. Column Density is the number of source code lines per logging statement
*Openmts is Openmeetings

statements in production files does not imply that logging is more pervasive in production
files than in test files.

Table 4 reveals that test and production files have similar logging densities (118 vs. 105).
Furthermore, on average, there is at least one logging statement in each test file (1.24) and
each production file (1.32). Specifically, there are at least two logging statements per file
for certain subjects, such as Hbase, Zookeeper, and Log4j. Therefore, logging appears
to be widespread in both production and test files. We then perform the statistical test to
assess this observation.

Statistical Test The column Log density of Table 6 demonstrates the results of a Mann-
Whitney U test on the distributions of logging densities in test and production files. There
are three sub-columns below this column for p-value, cliff’s d (only calculated with p-values
≤ 0.05) and effect size. In the column eff size, the abbreviations NEGL, SM, MED, and
LG refer to negligible, small, medium, and large effect size respectively. In Table 6, there is
no significant difference (i.e., p-value ≥ 0.05) in log density between test and production



   83 Page 12 of 45 Empir Software Eng           (2022) 27:83 

files for half of the studied subjects (11/21). For the remaining 10 subjects, 7 subjects have
negligible effect sizes while only 2 subjects have small effect sizes and 1 subject has a
medium effect size. Based on these findings, we can conclude that there are no significant
differences in log density between test and production files for half of the studied subjects,
and the effect sizes of those differences are limited for the other half of the subjects.

Discussion According to the descriptive statistics and statistical test results above, although
there are many more production logging statements than test logging statements in real-
world projects, both are equally prevalent (Finding 1), which implies that logging in test
files is as important as in production files.

Despite the similarity between test and production logging revealed by Finding 1, we
should not treat them as a whole. On one hand, in real-world software development, software
development and software testing are often performed by separate teams (Grechanik et al.
2010), resulting in production code and test code rarely evolving synchronously (Wang et al.
2021). As a result, test and production files may have distinct logging practices. On the other
hand, test logging statements are overlooked by prior studies (e.g. Li et al. (2017b) and Li
et al. (2018)) and even though there exist several studies that take the logging statements
both in test and production files into consideration, they treat the logging statements in test
files the same as that in production files (more details regarding the focuses of prior studies
are presented in Section 5). Considering that logging statements in test files are as pervasive
as in production files, exploring similarities and differences may assist developers in better
logging in test and production files.

Logging Level Metrics Figure 2 illustrates the results on the subjects’ logging level
measurements — a proportional distribution of log levels in test and production files.

Descriptive Statistics Test files and production files use the INFO level in the majority of
logging statements, accounting for 77.81% and 31.74%, respectively, of all logging state-
ments. The TRACE level is seldom used either in test or production files: their ratios are
0.48% and 4.15% separately. The statistical test specific to log levels can be found below
Finding 3.

Discussion Based on the descriptive statistics above, we can deduce our Finding 2. Such
results imply that in both test and production files, logging is most frequently used to record
necessary informational data (e.g., encounter a status or an event) and is rarely used to
trace the code. It should be noted that He et al. (2018) and Li et al. (2020a) made similar
observations about developers logging for understanding normal system behaviors.

A possible reason for why the info level is considered as a most prevalent logging level
in the real-world logging practice could be that it is a fairly common default verbosity log-
ging level for software logging (i.e., only the logging statements with logging levels greater
than or equal to this level could emit logs during software run-time). For example, based on
the documentation of Apache Commons Logging (Apache Common Logging 2021), info
is the lowest logging level that makes logs visible to developers at run-time. According to
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prior studies (Li et al. 2017b; Zhi et al. 2019), developers often struggle to assign appro-
priate levels for the logging statements. As there are no rigorous logging specifications to
follow (Zhu et al. 2015), developers may tend to choose the default verbosity logging level
as the logging level of logging statements in such cases.

In the test code, there could be one more reason for the dominance of the info logging
level. Chen and Jiang (2017a) and Li et al. (2019) discover that in many cases, developers
do not adhere to current logging guidelines and instead use info and warn levels for
debugging purposes. Given that test files are used to verify the functionalities of production
code and have no impact on user experience in most cases, developers are more likely to
adopt a moderate level (i.e. info) for test logging statements rather than spending more
time considering the appropriateness of the logging levels.

Figure 2 also reveals an interesting finding: Debug is the second most prevalent log
level in production and test logging statements. The potential reason for this could be the
intention of developers’ use of logging statements. According to Zeng et al. (2019) and Li
et al. (2020a), developers often use logging statements as a debugger in addition to logging
normal system events. In addition, we also observe that production code has a higher pro-
portion of Debug levels than test code. The possible reason behind this, as supported by
a prior study conducted by Zeng et al. (2019), is that rather than removing the debugging
logging statements in production code after debugging, some developers prefer to leave the
debugging logging statements to help them diagnose the production code instantaneously
in case some errors occur in the future.

Descriptive Statistics Apart from the INFO level, the remaining four logging levels
account for less than a quarter (22.19%) of logging statements in test files, but they account
for 68.26% in production code. Furthermore, the standard deviations for the distributions of
logging level proportions in test and production files are 29.10% and 9.44% separately. This
indicates logging levels in production code are distributed more evenly than in test files.

Statistical test: We perform a Chi-squared test to examine whether the distributions of
logging levels are associated with the types of logging statements (i.e., test or production
logging statements). The df used for interpreting Cramér’s V is 1 because the relevant
data describing logging level distributions shown in Fig. 2 can be treated as a table with 5
columns (logging levels) and 2 rows (production and test logging statements) and min(5-1,
2-1)=1. The results are presented in column Log level of Table 5. There are three sub-
columns below this column: p-val (for p-value), Cramér’s V (only calculated with p-values
≤0.05), and eff size (for effect size). As we can see, all subjects (except one unavailable for
calculating Cramér’s V) have statistical significance for the association between log level
distributions and logging statement types. In the column eff size, the abbreviations SM,
MED, and LG refer to small, medium, and large effect size respectively. According to the
table, there exists a strong (LG in the column eff size) association between the distributions
of logging levels and logging statement types in 6/21 subjects. In the remaining subjects,
8/21 subjects have a medium effect size and 6/21 subjects display a small effect size. Over-
all, there exists a significant association between the distributions of logging levels and
logging statement types.
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Table 5 test results regarding the dependence between test and production logging metrics related to
Findings 2, 3 and 4

Subjects Log level Log information type

p-val Cramér’s V eff size p-val Cramér’s V eff size

Hadoop 0 0.446 MED 0 0.148 SM

Hbase 0 0.448 MED 0 0.223 SM

Hive 0 0.269 SM 0 0.183 SM

Zookeeper 0 0.430 MED 0 0.127 SM

Tomcat 0 0.551 LG 0 0.405 MED

Lucene 0 0.556 LG 0 0.081 NEGL

ActiveMQ 0 0.511 LG 0 0.155 MED

Maven 0 0.502 LG 0.080 N/A N/A

Ant 0.001 0.116 SM 0 0.291 SM

Empire-DB 0 0.178 SM 0 0.172 SM

Karaf 0 0.254 SM 0 0.291 SM

Log4j 0 0.457 MED 0 0.227 SM

Mahout 0 0.394 MED 0.002 0.121 SM

Mina 0 0.610 LG 0.387 N/A N/A

Pig 0 0.490 MED 0 0.317 MED

Pivot 0 N/A† N/A† 0 0.261 SM

Struts 0 0.440 MED 0 0.230 SM

Openmts∗ 0 0.353 MED 0.824 N/A N/A

Fop 0 0.227 SM 0.018 0.075 NEGL

Jmeter 0 0.183 SM 0.059 N/A N/A

Rat 0.041 0.564 LG 0.234 N/A N/A

*Openmts is Openmeetings
†The Cramér’s V is inapplicable for this subject since the statistical test requires at least three data categories
and this subject only has two logging levels

Discussion According to descriptive statistics, there exist differences in distributions of
test and production logging levels. The results of statistical tests further prove that the
distributions of logging levels are closely associated with logging statement types. These
observations support our Finding 3.

The more evenly distributed logging levels in production logging statements may imply
that the purposes for which developers log in production files are more diverse than those in
test files, which could be due to differences between the natures of production and test code.
On one hand, as production code is released to users, developers may log in production code
for customer support, system performance monitoring, etc. (Li et al. 2020a). On the other
hand, test code is used to verify the functionalities of production code, so developers may
primarily focus on debugging and observing system behaviors in testing.

Logging Information Metrics The purpose of these metrics is to determine whether there
are differences in logging information content between test and production log files
based on the distribution of argument types and quantities in test and production logging
statements.
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Descriptive Statistics Figure 3 plots the distribution of logging statement argument types in
test files and production files. According to Fig. 3, the majority of logging statements use a
combination of static texts and variables to log information in production files (71.70%) and
test files (62.25%). In test files, there are more logging statements with static text (27.98%)
than in production code (17.20%). Production and test files contain very similar proportions
of logging statements that only log variable information, 11.10%, and 9.77% respectively.
Such results indicate that developers prefer logging with a combination of static texts and
variables rather than exclusively static texts or variables (i.e., Finding 4).

Statistical Test Following the same procedure as we used to examine the distributions of
logging levels in test and production logging statements, we leverage the Chi-squared test
to determine whether the distributions of logging information types are associated with log-
ging statement types. The df for interpreting Cramér’s V is 1 because the relevant data
describing logging information types distributions shown in Fig. 3 can be treated as a table
with 3 columns (logging information types) and 2 rows (production and test logging state-
ments) and min(3-1, 2-1)=1. As it shows in Table 5 (the column Log information type),
there is no statistical significance of the association between the distributions of logging
information types and logging statement types in 5/21 subjects. Among the remaining 16
subjects, 3/16 subjects exhibit medium effect size while the others (13/16) display either
small or negligible effect size. To summarize, the Chi-squared test proves that the distribu-
tion of logging information types has an association with logging statement types, but such
association is weak according to the interpretation of Cramér’s V values.

Discussion Although our descriptive statistics reveal a similar tendency for developers to
use logging information types, statistical tests indicate that this tendency slightly depends on
the type of logging statements (i.e., testing/production). The existence of dependency rein-
forces our claim that test and production logging statements should not be studied together.

Fig. 3 Distributions of the logging information types
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In addition, the preservation of these complicated logging content compositions could exac-
erbate the dilemma of “what to log”, which has already sparked a lot of research (more
details in Section 5).

Fu et al. (2014) point out there is no existing work to assist developers in making
informed decisions to avoid over-logging and under-logging. It is essential to provide devel-
opers with the appropriate amount of logging information, which can also facilitate testing.
Therefore, we investigate the logging information volume in the studied subjects and hope
that our findings would provide developers with further insight into logging information
content.

Descriptive Statistics Figure 4 portrays the distribution of static logging text lengths and
dynamic variable numbers at the logging statement level. The sub-figures (a) and (c) display
the original box-plot charts used for analyzing text lengths and variable numbers respec-
tively, while sub-figures (b) and (d) display their magnified versions used for subsequent
analysis.Sub-figures (a) and (b) compare the distributions of the static text length in test and
production logging statements. Sub-figures (c) and (d) compare the distributions of the num-
ber of the dynamic logging variables in test and production logging statements. In Fig. 4, the
mean variable number in each production logging statement is 1.33 which is approximately
25% greater than it in each test logging statement (1.06). The average length of the static
texts captured by developers in the production logging statements is 37.81, while the mean
length of logging static texts for each test logging statement is 25.16. It should be noted that
a value of 0 indicates that the logging messages only contain variables or static text. For
example, the variable number of LOG.info("Initializing DS Client") is 0,
and the static text length of LOG.info(outputDirPathForEntity) is 0. The impli-
cation behind these differences is that on average, developers log more information in each
production logging statement than in each test logging statement.

Statistical test We leverage the Mann-Whitney U test to test the difference between the
distributions of static logging text lengths in test and production logging statements as well
as the difference between the distribution of logging variable numbers. The results are
presented in Table 6.

In terms of variable numbers, there is no significant difference between test and pro-
duction logging statements in 6/21 subjects, which is lower than what it is for log density. In
the 15 remaining subjects, 8 exhibit negligible effect sizes, 5 small effect sizes, 1 medium
effect size, and 1 large effect size. We can draw the conclusion from this result that there
are no significant differences in variable number distributions between test and production
logging statements for more than one-fourth of the studied subjects, and the effect sizes of
those differences are almost limited for the remaining subjects.

As for static text length, only 3/21 subjects have no significant difference between test
and production logging statements. Among the remaining 18 subjects, only 1 has a negligi-
ble effect size, while 6 have small effect sizes, 8 have medium effect sizes, and 3 have large
effect sizes. This indicates that only a small subset of the studied subjects has no significant
difference of static text length between test and production logging statements, while the
effect sizes of those differences in the remaining subjects are substantial.
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Fig. 4 Distribution of static logging texts lengths and variable numbers in each logging statement

Discussion The descriptive statistics show that the average variable numbers in each test
logging statement and each production logging statement are comparable. Meanwhile, the
average static text length is significantly larger in each production logging statement than
in each test logging statement. The statistical test results with regard to the variable num-
bers demonstrate that there is no significant difference between the distributions, which
confirms the observation about the comparable average variable numbers in each test and
production logging statement. The statistical test results related to the static text length show
that there exist notable differences between the distributions under test, which confirms the
observation regarding the larger average static text length in each production logging state-
ment. Therefore, based on the descriptive statistics and the results of statistical tests we can
infer Finding 5. Logging statements with longer text length and more variables are desir-
able for debugging purposes (Li et al. 2017b). Therefore such results may imply there are
more logging statements for debugging purposes in production files than in test files. This
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Table 6 Mann-Whitney U test results for comparing test and production logging metrics related to Findings
2 and 5

Subjects Log density Variable numbers Static text length

p-val cliff’s d eff size p-val cliff’s d eff size p-val cliff’s d eff size

Hadoop 0 0.062 NEGL 0 0.215 SM 0 0.319 SM

Hbase 0 0.053 NEGL 0 0.220 SM 0 0.371 MED

Hive 0.104 N/A N/A 0 0.141 NEGL 0 0.447 MED

Zookeeper 0.356 N/A N/A 0 0.127 NEGL 0.002 0.079 NEGL

Tomcat 0.316 N/A N/A 0 0.135 NEGL 0 0.414 MED

Lucene 0 0.087 NEGL 0 0.071 NEGL 0 0.372 MED

ActiveMQ 0 0.205 SM 0 0.210 SM 0 0.347 MED

Maven 0.206 N/A N/A 0.182 N/A N/A 0.055 N/A N/A

Ant 0 0.163 SM 0 0.492 LG 0 0.328 SM

Empire-DB 0.146 N/A N/A 0.031 0.243 SM 0 0.541 LG

Karaf 0.066 N/A N/A 0 0.118 NEGL 0 0.598 LG

Log4j 0.212 N/A N/A 0 0.394 MED 0 0.743 LG

Mahout 0.461 N/A N/A 0.048 0.069 NEGL 0 0.378 MED

Mina 0.434 N/A N/A 0.464 N/A N/A 0.007 0.226 SM

Pig 0.021 0.048 NEGL 0 0.156 SM 0 0.304 SM

Pivot 0 0.365 MED 0.118 N/A N/A 0.096 N/A N/A

Struts 0 0.145 NEGL 0.235 N/A N/A 0 0.414 MED

Openmts∗ 0.193 N/A N/A 0.377 N/A N/A 0 0.463 MED

Fop 0 0.099 NEGL 0.031 0.120 NEGL 0 0.326 SM

Jmeter 0 0.124 NEGL 0.015 0.073 NEGL 0 0.293 SM

Rat 0.428 N/A N/A 0.130 N/A N/A 0.149 N/A N/A

∗Openmts is Openmeetings

also confirms the situation we observed in Fig. 2 that Debug level is more common in pro-
duction logging statements. Future research can further explore the difference between the
rationales that developers log in test and production files.

RQ2: What is the difference between developers’ maintenance efforts for test and
production logging statements?

3.1.4 Motivation

The maintenance effort of the logging statements is the effort developers spend to modify
the logging statements, which includes adding, deleting, or updating logging statements.
A prior study by Yuan et al. (2012b) examines the maintenance of logging statements in
four C and C++ projects, finding that logging statements are unstable and that developers
expend significant effort to maintain them. As software development and testing involve
separate software teams (Grechanik et al. 2010), test and production code rarely evolve
simultaneously (Wang et al. 2021), which may lead to different logging practices in test and
production code. Nevertheless, prior studies ignore the differences between the maintenance
efforts of test logging statements and production logging statements. For example, Chen
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and Jiang (2017c) quantify the efforts (i.e. code churn rates) developers spent on maintain-
ing the logging statements in Java; Zeng et al. (2019) investigate the maintenance efforts
developers spent on maintaining logging statements in mobile applications without distin-
guishing between them. To fill this knowledge gap, we study the differences between the
maintenance efforts of test logging statements and production logging statements. Our find-
ings disclose that there exist notable differences between the maintenance efforts of test and
production logging statements and we should treat test and production logging statements
separately.

3.1.5 Approach

To recognize the differences between the maintenance efforts of test logging statements and
production logging statements, we extract the following metrics in two dimensions from
the studied subjects. Table 7 presents a list of metrics for each of the two dimensions with
further description.

– Log change metrics measure the efforts developers spend on maintaining the log-
ging statements as the projects evolve. Similar metrics with respect to log change
were adopted by Yuan et al. (2012b) and Kabinna et al. (2018). We identify log-
ging statements and classify their changes by exploiting the techniques introduced in
Section 2.2. Log churn refers to the amount of logging statement changes. It is mea-
sured by counting the number of logging statements that have been changed, including
adding/deleting/updating logging statements (Nagappan and Ball 2005). In our study,
the log churn rate for a subject is the average log churn rate of all the commits in that
subject, which is calculated by the following formula (Yuan et al. 2012b):

Log Churn Rate =

∑Commits
i=1

Log Churn of Commiti
LOG in Commiti

Commits

In this formula, Commits indicate the number of all commits in the analyzed subject
and LOG refers to the total number of logging statements.

– Component metrics are used to gauge how developers modify the components of log-
ging statements. Similar metrics were also used by Zeng et al. (2019). Given a list

Table 7 Metrics used to characterize logging statements maintenance efforts

Dimension Metric Description

Log
change
metrics

Log churn The number of changed produc-
tion/test logging statements.

Log churn rate The change rate of production/test
logging statements in each subject.

Commits with change The number of commits with
production/test logging statements
changed.

Component
metrics

Components
modi-
fied

The number of the changed com-
ponents for the updated produc-
tion/test logging statements.



   83 Page 20 of 45 Empir Software Eng           (2022) 27:83 

of updated logging statements from the prior study regarding log churn, we still use
srcML and XPath to extract the components from this list and analyze them individu-
ally. For example, we use an XPath query ./src:expr/src:literal to extract
the static texts from logging statements and then disclose the characteristics of static
texts in logging statements. As presented in Table 8 (we use Hadoop as an example),
the logging statement changes could be classified into five categories: whitespace for-
mat change, text change, variable change, logging level change, and logging object
change. Similar categories have been uncovered in prior research (Zeng et al. 2019) as
well.

Statistical Test As with RQ1, we perform statistical tests pertaining to the distributions of
logging statement change types (Chi-squared test; related to Finding 6), the distributions of
the updated logging components (Chi-squared test; related to Finding 8 and 9) as well as
the efforts developers spend on maintaining test and production logging statements (Mann-
Whitney U test; related to Finding 7).

3.1.6 Results

By analyzing the two dimensions of metrics we obtained and performing the statistical test
on the maintenance efforts (i.e. logging churn rates), we identify four findings with respect
to the variations in maintenance efforts of test and production logging statements. We find
that, although overall, the logging statements are less likely to be updated in test files com-
pared to that in production files, the average efforts developers spent on maintaining a

Table 8 Various change types of logging statement components in Hadoop

Change Example

Whitespace format

(a) OzoneBlockTokenSecretManager.java (Commit: a031388)

Static texts

(b) OzoneManagerLock.java (Commit: 87d9f36)

Dynamic variables

(c) S3Guard.java (Commit: 93b662d)

Logging level

(d) ObserverReadProxyProvider.java (Commit: 74780c2)

Logging object

(e) TestLog4jWarningErrorMetricsAppender.java (Commit: bd8d299)
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logging statement are comparable. Furthermore, we identify the difference between logging
components in updated logging statements for test and production files.

Log ChangeMetrics In this dimension, we analyze the numbers of the added, deleted, and
updated logging statements (during the analyzed histories) in each subject, as presented in
Table 9. To further investigate the difference between test log churn and production log
churn, we created Fig. 5 (complements Table 9) below, which demonstrates the proportions
of added, deleted, and updated logging statements in each subject. Table 10 shows the thou-
sand percentages of the updated, added and deleted logging statements, normalizing based
on the totally updated, added and deleted source code respectively.

Descriptive Statistics According to Table 9 and Fig. 5, during the studied commit histories
of the subjects, the total proportion of logging statements that are updated in the production

Table 9 Overview of the logging statement changes

Subject Production Files Test Files

Updated Added Deleted Updated Added Deleted

Hadoop 7,702 25,889 12,658 595 9,510 3,403

Hbase 6,665 17,944 11,721 1,003 7,009 3,527

Hive 3,870 16,842 9,225 208 3,903 2,501

Zookeeper 1,385 2,668 1,256 504 1,206 519

Tomcat 1,808 6,186 3,711 97 719 249

Lucene 4,037 8,625 5,430 1,360 6,362 3,354

ActiveMQ 2,875 5,239 2,711 871 5,559 1,445

Maven 623 1,809 1,451 346 439 392

Ant 2,313 4,872 3,505 56 640 568

Empire-DB 207 1,131 315 1 19 1

Karaf 756 3,405 1,841 40 689 398

Log4j 656 2,325 1,705 167 953 347

Mahout 1,699 1,999 1,392 235 704 480

Mina 480 1,254 1,041 44 233 185

Pig 556 2,876 1,296 259 3,058 2,279

Pivot 86 410 226 68 585 340

Struts 998 3,134 2,007 1 75 32

Openmts∗ 511 1,747 1,261 14 133 68

Fop 1,584 4,084 2,969 32 131 45

Jmeter 2,809 6,167 4,330 343 852 517

Rat 8 59 30 10 24 5

Total 41,628 118,665 70,081 6,254 42,803 20,655

*Openmts is Openmeetings
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Fig. 5 Distributions of the change types of logging statements

code is 18.07% which is roughly twice as much as it is in the test code (8.97%). Excep-
tionally, in Maven and Rat, the logging statements in the test code are more likely to be
updated. The percentage of the logging statements added in the test code is 61.40%, which is
about 10% higher than that in the production code (51.51%). The proportion of the logging
statements deleted in the test code (29.63%) and production (30.42%) code are comparable.

To eliminate the biases induced by various proportions of source code changes, we nor-
malized logging statement changes to build Table 10. Every data point in this table cell is
the corresponding data point from Table 9 divided by the number of lines of source code
changes. According to row Total, after excluding affection from proportions of source code
changes, production logging statements still have a higher chance of being updated than test
logging statements (14.84 vs. 8.03). However, both have a similar chance of being added
(9.89 vs. 10.05), while production logging statements have a lower chance of being deleted
than test logging statements (10.27 vs. 12.46).

Statistical Test The Chi-squared test results in column Log change types of Table 12
demonstrates if and how logging statement change types (i.e. Added,Deleted, andUpdated)
are associated with logging statement types. As it shows in the table, only 1/21 subject does
not have any association between the logging statement change types and logging statement
types. In the remaining 20 subjects, 8 exhibit negligible effect size and 12 display small
effect size. Such results indicate that although there exists an association between logging
statement change types and logging statement types, the association is quite weak.

Discussion The descriptive statistics uncover the differences in the possibility to be
changed between test and production logging statements. Such difference is more appar-
ent for logging statement updates when compared to the two other logging statement
changes. Moreover, the statistical test uncovered a slight association between logging state-
ment change types and logging statement types that supports the finding from descriptive
statistics.
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Table 10 Overview of the logging statement changes normalized based on the proportion (‰) of source code
changes

Subject Production Files (‰) Test Files (‰)

Updated Added Deleted Updated Added Deleted

Hadoop 31.19 15.16 17.63 4.47 8.79 10.91

Hbase 18.39 7.63 6.24 7.87 13.52 16.41

Hive 9.15 7.60 9.07 3.09 6.52 7.76

Zookeeper 54.62 26.09 30.76 26.00 18.75 30.80

Tomcat 14.96 12.39 15.73 5.86 7.56 13.81

Lucene 6.70 5.33 6.20 6.38 7.05 9.56

ActiveMQ 31.55 13.57 15.67 30.24 21.65 26.21

Maven 11.33 6.38 6.87 32.00 7.27 9.98

Ant 17.11 12.10 12.04 2.43 8.02 12.04

Empire-DB 24.28 17.60 28.23 3.65 7.02 2.77

Karaf 22.18 17.15 19.55 7.19 19.64 30.38

Log4j 24.08 22.55 22.58 33.79 42.79 60.31

Mahout 15.80 7.64 7.93 11.34 10.19 11.65

Mina 14.95 9.04 8.62 6.70 8.10 7.96

Pig 10.26 9.55 10.50 7.06 14.97 23.71

Pivot 1.30 1.68 1.56 17.53 47.01 68.42

Struts 28.30 10.56 11.04 0.06 0.78 0.77

Openmts∗ 18.85 18.56 28.47 7.27 17.03 28.89

Fop 9.72 9.65 12.88 6.78 3.43 6.76

Jmeter 15.23 20.79 24.14 9.77 11.09 11.75

Rat 2.18 4.53 10.00 4.08 2.68 2.31

Total 14.84 9.89 10.27 8.03 10.05 12.46

*Openmts is Openmeetings

Descriptive Statistics Table 11 presents an overview of the code churn rate and log churn
rate for the studied subjects. Column General indicates the churn rate of code or logs that
are not specific to test or production, while the columns Test and Production indicate churn
rates specific to test and production, respectively. According to Table 11, production logging
statements have a total churn rate of 15.93 for all subjects, which is slightly higher than
test logging statements (13.27 ). In general, the churn rates of test and production logging
statements are higher than the churn rates of test and production code separately, implying
that developers actively maintain the logging code, as revealed by prior studies (Yuan et al.
2012b; Chen and Jiang 2017c; Zeng et al. 2019).

Statistical Test We first conductedMann-Whitney U tests on test and production log churn
data at the commit level for each subject, which yielded that p-values is 0 (<0.001) for 20
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Table 11 Overview of the churn rates of each subject

Subject Code Churn Rate ( ) Log Churn Rate ( )

General Test Production General Test Production

Hadoop 3.47 3.99 3.31 4.56 3.39 4.92

Hbase 12.25 9.63 13.18 11.09 8.33 12.22

Hive 8.34 12.56 7.87 10.61 7.91 11.28

Zookeeper 33.84 40.73 30.78 51.22 47.88 52.15

Tomcat 2.37 3.37 2.30 2.14 2.59 2.18

Lucene 6.63 6.29 6.78 8.46 4.66 20.26

ActiveMQ 7.02 6.53 7.12 10.06 9.15 10.76

Maven 20.06 16.35 21.01 23.21 32.81 21.30

Ant 8.28 8.98 8.01 14.77 9.68 18.70

Empire-DB 16.91 30.60 16.62 26.28 47.83 26.18

Karaf 14.86 17.26 14.70 20.19 15.58 19.73

Log4j 29.63 31.06 29.35 34.17 35.04 33.60

Mahout 27.39 20.23 38.41 37.70 30.80 37.24

Mina 66.63 56.56 69.43 75.06 111.73 72.64

Pig 29.31 29.94 29.03 21.14 41.23 19.11

Pivot 17.60 27.66 17.42 39.68 43.37 38.46

Struts 21.11 16.98 22.85 24.34 11.15 24.69

Openmts∗ 14.21 14.73 14.13 19.26 10.80 20.21

Fop 16.80 18.54 16.68 22.61 17.27 22.85

Jmeter 8.35 8.90 8.25 7.64 16.85 7.55

Rat 55.94 56.03 55.71 84.72 71.63 89.97

Total 11.21 11.44 11.53 13.76 13.27 15.93

*Openmts is Openmeetings

subjects and 0.032 for Rat, indicating there exist differences between developers’ mainte-
nance effort (measured by log churn rates) regarding test and production logging statements.
To further study the effect size of these differences, Fig. 6 presents Cliff’s delta between
the distributions of the maintenance efforts on production and test logging statements for
each subject. As illustrated in Fig. 6, the differences in distributions of the maintenance
efforts on test and production logging statements are negligible in 19 subjects and are small
in the remaining 2 subjects. This means that, although there are differences in developers’
maintenance effort on test and production logging across all subjects, almost all of these
differences have negligible magnitude.

Discussion During our analysis, we discovered that the number of commits with log
changes differs significantly between test and production files. To be more specific, the
test logging statements are changed in 10,832 commits for all analyzed subjects, while the
production logging statements are changed in 29,650 commits which more than doubles
the number of commits with test log changes. Because log churn rates of test and produc-
tion logs are only slightly different, we can conclude that, on average, developers prefer to
change a smaller proportion of production logging statements in a commit and change them
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Fig. 6 Statistical test results for comparing the distributions of the changed logging components

more frequently (i.e., more commits with production log changes), whereas they prefer to
change a larger proportion of test logging statements in a commit but change them less often.

In conclusion, despite the fact that developers have different habits for modifying pro-
duction and test logging statements, the corresponding log churn rates are only marginally
different, implying that the effort expended by developers to maintain production log-
ging statements is only slightly greater than that expended on test logging statements (i.e.,
Finding 7).

Component Metrics Figure 7 depicts the proportions of the changed logging components
for all updated logging statements in test and production files. In this dimension, we dis-
close two findings by comparing the changed logging component proportions for test and
production logging statements.

In Fig. 7, the ordinate (Y-axis) represents the proportions of logging components in
updated logging statements, while the abscissa (X-axis) represents the various logging com-
ponent types as introduced in Table 8. Several components of a logging statement may

Fig. 7 Overview of the updated logging components
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be modified simultaneously when the logging statement is updated. Our logging compo-
nent proportion calculation includes such overlapping, i.e., a logging statement with various
component changes could be counted multiple times for analysis.

Descriptive Statistics According to Fig. 7, the logging component variable is the most
commonly updated component in both test logging statements (55.33%) and production
logging statements (48.40%). Component static text is the second most commonly modi-
fied logging component in test (27.53%) and production (31.73%) logging statements. The
proportion of component logging level in test logging statements is 1.97%, compared to
5.54% in production logging statements, which indicates that the least commonly modified
component is logging level. The relevant statistical test could be found below Finding 9.

Discussion Although prior studies have also revealed the proportions of logging statements
for various logging component change types, they examine test and production logging
statements as a whole rather than separately. For example, Yuan et al. (2012b) discover that
27% of logging statement changes in C and C++ applications are related to variable updates,
while Zeng et al. (2019) find that 45.6% of logging statement changes for it in mobile
applications. Our study, however, is the first to disclose how different logging component
change types vary in test and production logging statements. The statistical test below can
provide further insights.

Descriptive Statistics Based on Fig. 7, we examine the differences between the compo-
nents of updated logging statements in test and production files. The component variable
has the greatest difference (6.93%), whereas the component logging object has the small-
est difference (0.26%). It appears that differences between logging components in test and
production files are modest, which requires statistical testing to reach a more conclusive
conclusion.

Statistical Test We perform a Chi-squared test to examine whether the updated logging
components are associated with changed logging statement types (i.e., test/production). The
test results are presented in Table 12 (column Updated log components). In Table 12, only
one subject (i.e, Empire-DB) has a p-value greater than 0.05, indicating that the updated
logging components are only independent of logging statement types in one subject. In
the remaining 20 subjects whose updated logging components are associated with logging
statement types, only one has a large effect size and four have a medium effect size. Of
the remaining 15 subjects, ten have small effect sizes, while five have negligible effect
sizes. The statistical test results indicate that although the updated logging components are
associated with changed logging statement types, such association is rather minimal.
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Table 12 Chi-squared test results for comparing test and production logging metrics related to Findings 6, 8
and 9

Subjects Log change types Updated log components

p-val Cramér’s V eff size p-val Cramér’s V eff size

Hadoop 0 0.159 SM 0 0.087 NEGL

Hbase 0 0.124 SM 0 0.142 SM

Hive 0 0.123 SM 0 0.095 NEGL

Zookeeper 0.002 0.040 NEGL 0 0.078 NEGL

Tomcat 0 0.082 NEGL 0 0.140 SM

Lucene 0 0.131 SM 0 0.185 SM

ActiveMQ 0 0.234 SM 0 0.234 SM

Maven 0 0.145 SM 0 0.473 MED

Ant 0 0.137 SM 0 0.076 NEGL

Empire-DB 0.095 N/A N/A 0.906 N/A N/A

Karaf 0 0.105 SM 0 0.175 SM

Log4j 0 0.133 SM 0 0.280 SM

Mahout 0 0.152 SM 0 0.307 MED

Mina 0 0.074 NEGL 0 0.218 SM

Pig 0 0.174 SM 0 0.406 MED

Pivot 0.001 0.088 NEGL 0 0.407 MED

Struts 0 0.061 NEGL 0 0.122 SM

Openmts∗ 0 0.066 NEGL 0 0.247 SM

Fop 0 0.049 NEGL 0 0.113 SM

Jmeter 0.027 0.022 NEGL 0 0.067 NEGL

Rat 0.007 0.270 SM 0.001 0.766 LG

*Openmts is Openmeetings

Discussion Figure 7 shows a similar trend of updated logging component distributions for
test and production logging statement changes, and we derive Finding 8 from this, which
concerns the similarity of updated logging components between test and production log-
ging statement modifications. However, after performing statistical tests, we discovered that
updated logging components are still related to the logging statement types, but the associ-
ation is weak. Because of this association, test and production logging statements should be
studied individually.

3.2 RQ3: Why do developers use test logging?

3.2.1 Motivation

In RQ1, we reveal the log level distributions in test and production files. We have discussed
how the number of INFO levels is (much) greater than other log levels, particularly at higher
log levels (i.e., ERROR and WARN), which contradicts our straightforward notion (i.e., the
higher logging levels may account for the major portion of test logging levels). Because
of these discrepancies between logging level distribution and our plain notation, a research
question arises: why do developers use test logs? By answering this question, we build
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a bridge from log level usage to actual test log usage in this section. In order to answer
this question, we conduct a “firehouse email interview” (Murphy-Hill et al. 2015) with the
developers to find out why they recently added logging statements to the test files. A similar
approach is used by Zeng et al. (2019) as well.

3.2.2 Approach

Our approach constitutes two phases. In the first phase, we collect data from develop-
ers. Then in the second phase, we analyze developers’ response messages and identify the
rationales.

– Data collection. During this phase, we survey developers by email to find out why test
logging statements are added. We first identify logging statements newly added to test
files of the studied subjects every week from 2020-07-28 to 2021-01-14 by using our
data extraction scripts, and then we email developers to inquire about the reasons that
they add those logging statements in test files. In order to increase the survey response
rate, we try to provide as many details as possible (e.g. file URL, commit ID, and line
number) about the logging statements. In most instances, we just ask developers one
question regarding why they added a new logging statement, such as if they can explain
why they added the logging statement briefly in a given context. In other instances, we
inquire developers about multiple logging statements since we observed that a commit
could contain numerous new logging statements (up to four to avoid bothering develop-
ers). As surveying developers multiple times may lead to biased results, we only survey
each developer once. Finally, we have emailed 50 developers and received 22 replies
regarding the addition of 43 test logging statements.

– Data analysis. We perform a pair review (i.e., each reviewer examines the same data
individually and then merges their review results) to classify the rationales that devel-
opers log in test files. Two reviewers first examine each responded email separately to
tag each logging statement with a label that indicates the rationale behind it. After the
first round of examination, reviewers combine the initial labels into new labels. Dur-
ing a second round, the two reviewers then re-label the logging statements individually
according to the new labels and the contents of the emails. After these two rounds of
examination, we use Cohen’s kappa (McHugh 2012) to measure the reliability of the
agreements between two reviewers. Below is a formula fromMcHugh (2012) that gives
the relationship between the level of agreement and the value of cohen’s kappa:

Level of Agreement =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

None if Cohen’s k ≤ 0.20
Minimal if 0.20 < Cohen’s k ≤ 0.39
Weak if 0.39 < Cohen’s k ≤ 0.59
Moderate if 0.59 < Cohen’s k ≤ 0.79
Strong if 0.79 < Cohen’s k ≤ 0.90
Almost perfect if Cohen’s k > 0.90

(2)

3.2.3 Results

During the research, we gathered the rationale for adding 43 logging statements from 22
surveyed developers. The Cohen’s kappa regarding the agreement between the two review-
ers after the first round is 0.69 this value increased to 1 after the second round review. This
indicates that our classification is reliable. As illustrated in Fig. 8, our research results have
revealed four reasons why developers log in to test files.



Empir Software Eng           (2022) 27:83 Page 29 of 45   83 

Fig. 8 Rationales for developers logging in test files

Debugging (20/43) Debugging is the most typical reason for developers to use test log-
ging. Across these 20 Debugging cases, there are few minor differences in the rationale for
developers to use test logs. In 9/20 cases, developers use logging statements to collect infor-
mation for certain source code lines that are prone to cause bugs. For example, in Hive
with commit 077952f, one developer added the following logging statement:

The following is the developer’s response on why this logging statement was added:

In 7/20 cases of Debugging, test logs are used to print the error message directly to facil-
itate debugging. For example, in the commit 52db86b of Hadoop, one of the developers
we surveyed added the logging statement below:

The developer’s justification for adding this logging statement is as follows:

In the remaining four cases, developers responded that they added logging statements
for debugging on their local machine, but that they should have eliminated them before
committing or used assertions instead.

Recording operational information (18/43) The second most common reason for devel-
opers to log in test files is Recording operational information in order to monitor test
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behaviors and enhance printed log messages. In 13/18 cases, logging statements are used to
check the results of certain operations. For example, in the commit 4b62152 of Hbase ,
the developer added a logging statement below:

The following is the developer’s response on the reason for the logging statement addition:

In the rest 5/18 cases, the logging statements are introduced to enhance the readability
and comprehensiveness of the generated log messages. For example, the following logging
statement was added into Lucene-solr with commit 6bf5f4a:

The rationale explained by the developer is:

Refactoring (3/43) Some logging statements are introduced in test files as a result of the
refactoring of test code. For example, one developer added the following logging statement
into Hbase with commit b556343:

The reason behind this logging addition is that the developer just rearranged the code in that
class and that logging statement was already there since the creation of the test.

Code clone (2/43) Only a few logging statements were added due to the clone of the test
code. For example, in commit 2ffe00f of Hadoop, a developer added a logging statement
below:

The following is how the developer justified the reason:

In conclusion, developers use test logs for four reasons, the most common of which
is Debugging, followed by Recording Operational Information. In conjunction with the
discovery of log level distribution, which reveals that INFO is the most commonly used log
level in test files, we can conclude that developers use a significant portion of INFO for
debugging purposes. In other words, in addition to the error messages printed by logging
statements with higher log levels, developers always use informational data (e.g., recording
an event) to debug.

3.3 RQ4: What is the relationship between test logging and production logging?

3.3.1 Motivation

During the software testing process, both production and test logs are printed. A production
log displays production information under testing while a test log is generated by a test suite.



Empir Software Eng           (2022) 27:83 Page 31 of 45   83 

RQ1 and RQ2 highlight some significant differences and similarities in logging practices
between test and production files, implying that test logs may not be independent of pro-
duction logs. In this case, the question arises as to whether the log information contained in
test logs could be useful for production logging, for example, to leverage the information in
test logs to improve production logging statements. Therefore, to answer this question, we
conduct a manual study to explore the relationships between test and production logging.
Based on the results of the manual study, we classify the test logs to determine whether the
information in the test log is useful for production logging. We would like to know, even
though test logs are generated by test files, if they are added to production logging, whether
they can help people better understand the runtime behavior of the system. To the best of
our knowledge, this is the first study to investigate the relationship between test logging and
production logging and classify test logs’ usefulness for production logging.

3.3.2 Approach

As shown in Fig. 9, our approach consists of three steps. In the first step, we execute all
of the unit tests for the subjects under investigation in order to obtain test outputs3. The
second step takes the test outputs from the first step as input and uses regular expressions to
identify the test logs from them. In the final step, we randomly select a sample from the test
logs identified in the previous step and label each test log using a pair review. These labels
reflect the relationship between test logs and their corresponding production logs, as well
as whether the information supplied by the test logs is useful for production logging and the
test log’s classification.

– Tests outputs collection. We begin by cloning the research subjects onto our local
machine. Because all of the research subjects use automation build tools, such as
maven and ant, for software building and testing that publishes logs through Termi-
nal, we modify the test configuration files to redirect the test outputs from Terminal
into text files to facilitate further data analysis. Finally, we execute the tests through the
command line. For example, we run all the tests of the subjects that use maven as their
automation build tool with mvn clean install -fn.

– Log messages identification. Each text file generated in the first step contains test logs
and production logs produced by the production code covered by the test case involved
in this text file. The goal of this step is to identify test logs so that we can investigate the
relationships between them and the other logs (i.e., production logs) in the following
step. A typical test log would appear like this:

We first use regular expressions to match the time patterns to identify the typical logs
(atypical logs are worthless for subsequent analysis), and then we use regular expres-
sions and the search-keyword “test” to identify test logs in the test outputs. Typical
logs can specify which files generate the logs. In the example above, this log is gen-
erated by TestAMRMProxyService.java. The keyword “test” is always present
in the name of a test file so that we can use it to identify test logs. This approach has
been proved to have a high precision and an acceptable recall in identifying test and
production files (White et al. 2020).

3In this work, we refer to test outputs as the log messages produced during the execution of the unit tests.
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Fig. 9 Overview of the research approach for RQ4

– Log messages analysis. In this step, we manually analyze the log information from test
and production logs. The reason we adopt the manual analysis method instead of check-
ing the function calls is that checking function calls is a coarse-grained approach. The
presence of a production method invocation in a test does not imply that the test logs
generated by this test can be helpful to the production logging. Finding the relation-
ships between test and production logging requires the analysis of log information, and
human effort is needed to understand log information. We first sample the test logs and
then apply two rounds of labeling to the logs samples. We randomly sample test logs
with five confidence interval and 95% confidence level (Confidence Intervals/Levels
2021). We obtained 385 different test log samples from the unit tests’ outputs that con-
tain 691,310 instances in total, and selected 100 logs at random from this log sample
set to perform the first round of labeling. Our log samples are divided into five batches,
each of which is reviewed by two researchers individually, due to the fact that there
are five researchers involved in this study. Each test log is provided with the context
of the test output which includes all the production and test logs produced during the
execution of a unit test.

The first round of labeling only examines a subset of the log samples in order to
obtain an initial consensus and get some common knowledge. The first round of label-
ing produces a preliminary set of labels used for the second round. The labeling is
based on log content analysis of test logs and the surrounding production logs in the
same log file, which necessitates that the labelers comprehend the log information in
test logs and the surrounding production logs. The second round of labeling covers all
log samples and is based on the common understanding of the prior round. The second
round includes labeling the rest of the test logs as well as revisiting the labeled logs
to alter them if they are against the established knowledge base. If the two researchers
are unable to achieve an agreement, a third researcher may be invited to reach the
final agreement. After these two rounds of labeling, the Cohen’s kappa of researcher
agreement ranges from 0.91 to 1 for three labels, indicating that researchers attain a
consistent agreement on the test log labels. The final agreement was then reached with
the assistance of a third researcher.

3.3.3 Results

Each test log sample has three labels: (1) the relationships between it and the relevant sur-
rounding production logs, (2) the usefulness of test logs for production, and (3) test log
classifications. Below are the details of these three labels:

Relationship between the test logs and production logs As shown in Fig. 10, our
research has yielded four categories with regard to the relationship between test and pro-
duction logs: Test only, Overlap, Elaboration, and Complementary. The definition of each
category is provided below, along with an example in table Table 13. The fonts of labeled
test logs are in ‘blue color’, while the fonts of associated production logs are in ‘orange
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Fig. 10 Relationship between test and production logs

color’. In every category, we display not only the labeled test logs but also logs that surround
them to help readers understand the context of each test log.

– Test only (290/385). Test logs in this category only contain information about the
tests and do not include any relevant production logs in the same file. As illustrated in
Table 13, the test log refers to cleaning up a directory used for testing only during a test.

– Overlap (40/385). In this category, the information provided by test logs is also
reflected in production logs. For example, the test log (‘blue’ font) and related produc-
tion log (‘orange’ font) in Table 13 are both indicating the same file is locked therefore
this test log is overlapping with production logs.

– Elaboration (29/385). Test logs in this category contain information that somewhat
overlaps with relevant production logs, but they elaborate the production logs with
additional details. In Table 13, although the production log includes information about
the opportunistic container, the test log provides more details about the
opportunistic container, such as container ID and version.

– Complementary (26/385). Test logs in this category complement the information con-
veyed in the production logs. As shown in Table 13, the test log indicates that the
monitoring thread is waiting for the required resource to be utilizable while the first
production log indicates that CPU usage is not yet available.

Figure 10 presents proportions for each category of the relationship between production
logs and test logs. Based on this figure, the most prevalent relationship is Test only (75.3%).
This number confirms developers’ intuition that the vast majority of test logs are dedicated
to testing rather than production. However, there is quite a large number (around a quarter)
of test logs related to production. The second most prevalent relationship is the Overlap
relationship (10.4%), which signifies that either the test code developers are not aware of
the similar logging in production code, or the production logging is not in a good format that
facilitates testing. The least common relationships between test logs and production logs
are Elaboration (6.8%) and Complementary (7.5%), both of which have fairly comparable
proportion numbers.

The Elaboration and Complementary relationships suggest that the production run-time
information contained in the production logging is not sufficient for understanding the test-
ing results. Test logs that are labeled with Overlap relationship with production logging
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Table 13 Relationships between test and production logs

Relationship Example

Test only

(a) Generated by TestScannerFromBucketCache (subject: Hbase)

Overlap

(b) Generated by KahaDBDeleteLockTest (subject: ActiveMQ)

Elaboration

(c) Generated by TestDistributedOpportunisticContainerAllocator (subject: Hadoop)

Complementary

(d) Generated by TestContainersMonitorResourceChange (subject: Hadoop)

provide the same information as in production logs, hence we conjecture that such test logs
may not be useful to production logging. However, there is no existing evidence (to the best
of our knowledge) proving this. Thus, we also examine whether such test logging could be
useful and added to the production code.

Usefulness of test logs In the subsequent analysis, we examined the usefulness (to pro-
duction logging) of the 95 test logs that are not labeled with Test only and assigned these
logs three labels:Useful, Not useful, andUnclear. Generally, we manually examine the con-
tents of test logs and the production logs that surround them. We would like to know, if the
information contained in the test logs is added to production logging statements, whether
it can improve production logging and help people better understand the runtime behavior
of the system (i.e., being useful). Table 14 presents some examples of useful and useless
test logs. As in the previous section, the analyzed test logs are denoted by ‘blue’ font color.
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Table 14 Example of the usefulness of the test logs

Usefulness Example

Useful

(a) Generated by TestRouterWebServices (subject: Hadoop)

Not useful

(c) Generated by TestCentralizedOpportunisticContainerAllocator (subject: Hadoop)

Figure 11 depicts the connections between the usefulness of test logs and their relationship
with production logs.

– Useful (35/95). The information provided by test logs in this category is useful to pro-
duction logging. As the example shows in Table 14, the surrounding log is describing
the initialization of a requested resource from a specific user, and the target test log is
indicating the success of initialization.

– Not useful (57/95). The information contained in test logs is useless to production
logging. For example, the surrounding log in Table 14 describes the properties of
an opportunistic container. Although the analyzed test log contains more

Fig. 11 Usefulness of non-Test-Only logs
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details about this container, it is useless for production logging since this container is
primarily used for testing, and details about it are not required in production.

– Unclear (3/95). Finally, we have observed several test logs that are difficult to deter-
mine whether they are useful to production logging due to the lack of related domain
knowledge.

Figure 11 demonstrates the correlations between the usefulness of test logs and their
relationships with production logs. We find that the category Useful consists of 20 cases of
Complementary and 15 cases of Elaboration, with no Overlap. The category Not useful is
composed of 6 cases of Complementary, 12 cases of Elaboration, and 39 cases of Overlap-
ping. The majority of Overlap cases fall into the category of Not useful, which implies the
test logs having an Overlap relationship with production logging are almost useless to pro-
duction logging which is because such information is already available in the production
logging.

Classification of test logs To further investigate what information makes test logs useful,
we then classify the information recorded in the 95 test logs that are not labeled with Test
only during our subsequent analysis. Our study has revealed ten categories based on the
information contained within these logs which can be leveraged in future research with
regard to how to identify and utilize the useful information in test logs. These ten categories
are defined below, and examples are included in Table 15. Just as in the previous section,
the analyzed test logs are marked with a blue color.

– Production intermediate data (31/95). In this category, test logs contain information
regarding the properties of the software or production code that is being tested. For
example, the test log in Table 15 depicts the ID of an ongoing production event.

– Test intermediate data (6/95). Test logs in this category display the intermediate status
of the resource exclusively for testing or the temporary values of variables in test code
during test execution. In Table 15, the test log is recording the temporary status of the
resources only for testing.

– Production event (21/95). Test logs in this category depict the events related to the
production code under test. The example presented in Table 15 is describing an event
about the production code under test.

– Test event (15/95). Test logs in this category portray events that only pertain to the tests
rather than the tested production code. The example in Table 15 displays the event of
initiating a session, which is exclusively relevant to the test.

– Production method call (1/95). Test logs describe the method invocations in produc-
tion files for this category. An example in Table 15 obviously mentions a production
method createDurableConsumer() is invoked.

– Test setup (4/95). In this category, test logs describe the configuration to set up tests.
The test log in Table 15 describes how to set up the cluster’s (SHARED DIR HA) port
number for testing.

– Production return (5/95). Test logs in this category record the information returned
from the production code. As the example shown in Table 15, the test log is display-
ing the node selection result for a network topology which is the return result from
production code regarding node selection strategy.

– Environmental information (7/95). Test logs in this category display the envi-
ronmental information of the platform, host, or hardware that the test is running
on.
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Table 15 Classifications of test logs

Classification Example

Production intermediate

data

(a) Generated by TestJobHistoryEvents (subject: Hadoop)

Test intermediate data

(b) Generated by TestTxnNoBuckets (subject: Hive)

Production event

(c) Generated by TestAMRMProxyService (subject: Hadoop)

Test event

(d) Generated by TestClose (subject: Tomcat)

Production method call

(e) Generated by AMQ4636Test.java (subject: ActiveMQ)

Test setup

(f) Generated by TestFailureToReadEdits (subject: Hadoop)

Production return

(g) Generated by TestNetworkTopology (subject: Hadoop)

Environmental information

(h) Generated by ClientPortBindTest (subject: Zookeeper)

Test assertion

(i) Generated by TestNameNodePrunesMissingStorages (subject: Hadoop)
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– Test assertion (2/95). In this category, test logs record the assertion results, and always
include both expected and actual test results. The example in Table 15 represents the
two types of test results in a single log.

– Others (3/95). In this category, we include those cases not covered by any of the
preceding categories.

Figure 12 demonstrates the proportion of each category for the test logs not labeled with
Test only. As it shows in this figure, the most common category is Production intermedi-
ate data (32.6%), which indicates that the majority of test logs are leveraged to record the
intermediate status of the software or resources under test. The second and the third most
common categories are Production Event (22.1%) and Test Event (15.8%) respectively,
implying that test logs are often utilized to record the events of production or tests. The least
common category is Production Method Call (1.1%).

4 Threats to Validity

We discuss the threats to the validity of our research in this section.

4.1 External Validity

The subjects involved in this research are all open-source Java projects hosted on GitHub
and incubated by Apache Software Foundation (2021). The selection of the research
subjects can lead to the following threats:

– Our research results may not be applicable to industry or non-free software considering
that the logging practice can be different in industrial environments. We attempt to
reduce this issue by investigating multiple software projects. However, this drawback
can be further overcome through collaboration with developers from the industry and
analyzing the closed-source applications developed by them.

– Our findings may not be reproduced to software written in other programming lan-
guages (e.g., C and C++) rather than Java since we only investigated Java projects.
Therefore, it necessitates a further exploration of applications implemented in other
languages. Although we only look at Java projects, Java is a popular programming
language and we believe that our results can be useful to numerous software developers.

– As all of the studied subjects are developed and maintained by Apache Software Foun-
dation (2021), our findings may not be applicable to the software systems developed by
other foundations or organizations (e.g. Microsoft Developer (2021)) since the devel-
opers’ logging practices may vary among them. However, our studied subjects are all
well-known projects that have been developed for many years by professional devel-
oper teams, and we believe that our results can reflect the real-world logging practice
in software development.

4.2 Internal and Construct Validity

The threats to the internal and construct validity of our research may result from the way
we gather the data:

– When extracting data from the studied subjects, we leveraged the Levenshtein Distance
algorithm and set the threshold to 0.5 (Zhao et al. 2017) to determine whether the
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Fig. 12 Test log categories

change type of a logging statement is updated or not. Actually, the threshold selection
may have an impact on our research results. However, a similar approach and the same
threshold were utilized in prior researches (Zeng et al. 2019; Zhao et al. 2017) and their
results were also found to be highly accurate.

– While collecting JUnit test outputs, we did not guarantee that all of the tests passed. We
allow projects to continue running even if a test fails. The presence of failed tests can
result in limited test coverage, which may have an impact on our results. However, in
real-world software testing, a 100% passing rate is not always promised. Moreover, by
observing our test outputs, we did not find many test failures, therefore the impact of
these test failures should not be significant to our research results.

– The classifications involved in RQ3 and RQ4 are determined by humans, which could
be affected by their knowledge, expertise, and bias. In addition, our collected survey
data in RQ3 may be impacted by the background of the developers who participated
in our survey. However, the developers polled in RQ3 are professionals from well-
known open-source projects, and five participants in RQ4 are professional researchers
specializing in Software Engineering. Four of us hold Ph.D. degrees and one is a
Master research student. In RQ4, the categorization outcome is heavily influenced
by how the researchers engaged understand log content as well. To mitigate this, we
reviewed a large amount of documentation from the studied projects, manually searched
logging statements that generated the analyzed test logs, and studied their code con-
text to improve comprehension. Moreover, this threat was also mitigated by assigning
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two researchers to analyze every log. To resolve the disagreements between the two
researchers, we invited a third person to act as a tie-breaker.

5 RelatedWork

This section introduces the related work. As shown in Table 16, these studies are primarily
concerned with characterizing logging practices, as well as determining what should be
logged and where the logging statements should be placed. However, these studies either
only focus on production logging or consider production logging and testing logging as a
whole, ignoring the differences between them and the significance of test logging.

5.1 Characterizing Logging Practice

Several studies involve characterizing logging practice. The first study on logging practices
is performed by Yuan et al. (2012b), who analyze four open-source C and C++ projects.
Shang et al. (2015) study the relationship between logging characteristics and code quality
of platform software by characterizing logging statements in Hadoop and JBoss . Fu et al.
(2014) investigate two large industrial C# software systems to better understand develop-
ers’ logging practices in the industry. Likewise, Chen and Jiang (2017c) conduct their study
on Java applications and compare logging practices in Java to those in C and C++. Kabinna
et al. (2018) explore the stability of logging statements in four open source projects. Li et al.
(2018) investigate the connections between logging decisions and the topics of related code
snippets. Hassani et al. (2018) study the characteristics of log-related issues. Zeng et al.
(2019) research the logging practice in 1,444 F-Droid applications and compare the log-
ging practices in server, desktop, and mobile applications. He et al. (2018) characterize the
natural language descriptions in the logging statements in Java and C# projects. Chen and
Jiang (2017b) disclose six anti-patterns of the logging statements in Hadoop, ActiveMQ,
and Maven, and propose an approach to assist developers in detecting the anti-patterns. Li
et al. (2019) identify the duplicate code smells in logging statements, categorize them into
five patterns and propose a static analysis approach to detect the duplicate logging code
smells. Li et al. (2020a) conduct a qualitative study to understand developers’ perspectives

Table 16 Summary of related work regarding software logging

Study type Production & test logging mixed Production logging only

Characterizing
logging practice

Yuan et al. (2012b); Shang et al.
(2015); Fu et al. (2014); Chen
and Jiang (2017c); Kabinna et al.
(2018); Zeng et al. (2019); He et al.
(2018); Chen and Jiang (2017b); Li
et al. (2020a); Tang et al. (2022)

Li et al. (2018); Li et al. (2019)

Where to log Zhu et al. (2015); Li et al. (2020b) Yuan et al. (2012a); Ding et al.
(2015); Zhao et al. (2017); Yao
et al. (2018)

What to log Yuan et al. (2011); Shang et al.
(2014); Liu et al. (2019); He et al.
(2018); Ding et al. (2022)

Li et al. (2017b)
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regarding the benefits and costs of logging practice. More recently, Tang et al. (2022) study
the logging practices specific to log levels and present an automated tool (Tang et al. 2021)
to help developers rejuvenate log levels. In addition, metrics used in our study to measure
logging characterises, such as the density and churn rate of logging statements, are also
adopted in many prior studies (Yuan et al. 2012b; Shang et al. 2015; Chen and Jiang 2017c;
Kabinna et al. 2018; Zeng et al. 2019). Although various studies have been conducted to
characterize logging practices, none of the aforementioned studies have taken into account
the significant differences in logging characteristics between production and test logging.
Our study, on the other hand, fills this knowledge gap between the differences between test
logging and production logging.

5.2 Where to Log

The research field where to log is primarily concerned with where developers should place
logging statements. Yuan et al. (2012a) are the first to perform a study into where to log, and
they present an approach to help developers record common error events. Zhu et al. (2015)
propose a learning framework to help developers make decisions on where to add logging
statements. Ding et al. (2015) propose a logging framework that is able to decide whether
to place the logging statements based on the logging overhead and effectiveness. Zhao et al.
(2017) present an approach named Log20 that is able to automatically add the logging
statements to record non-erroneous events. Yao et al. (2018) present an automated logging
tool aiming to assist developers in monitoring the web-based system resource usages. More
recently, Li et al. (2020b) introduce a deep learning based approach to help developers
decide where to place logging statements at the block level. Nevertheless, as we stated in
relation to the related work concerning characterizing logging practices, these studies do
not take into account the differences in logging practices in test and production files. Our
findings reveal that there are considerable differences between test logging and production
logging such as the usage of the logging levels, therefore these approaches may be further
enhanced by taking such differences into consideration.

5.3 What to Log

The research topic of what to log is mostly concerned with what content developers should
log. Yuan et al. (2011) investigate what information should be recorded by logging state-
ments and present an approach to enhance the logging information for effective logging.
Shang et al. (2014) conduct a study regarding what kind of development knowledge can be
used for software logging. Likewise, Liu et al. (2019) propose a learning-based approach to
assist developers in choosing which variables to log when developing software. Ding et al.
(2022) propose a logging text generation tool by leveraging the neural machine translation
technology. He et al. (2018) utilize information retrieval technology to automate the gener-
ation of logging descriptions. Li et al. (2017b) present an ordinal regression model to help
developers determine which logging level to use when adding a new logging statement.
Their research uses dynamic variable numbers and static text length to measure logging
information, which we also included in our research. Again, studies should not overlook
the distinctions between test and production logging, which necessitates additional attention
from developers.
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6 Conclusions

In this research, we have studied 21 open-source Java projects to characterize the differences
of logging practice in test and production files and answered four research questions. Our
research has yielded nine findings on the differences between test and production logging,
four reasons why developers use test logging, four relationships between test and produc-
tion logging, and ten classifications based on the information provided by test logs. The
contribution of this paper is as follows:

– To the best of our knowledge, this is the first study that quantitatively and qualitatively
analyzes the logging practice in test and production files.

– We revealed the significance of test logging and production logging and filled the
research gap between test and production logging.

– We surveyed developers and disclosed four reasons why developers log in test files.
– For the first time, a study has revealed the relationship between test logging and

production logging.

Our findings highlight that test logging, to some extent, is different from production
logging and should be treated differently in future research. On the other hand, test logging
may contain useful information for the production system and can be leveraged in future
work to improve production logging. Based on our findings, some opportunities for future
research regarding test logging can be:

– As test logging levels and content are different from that of production logging, there is
a need for automated tools specialized in helping developers choose proper test logging
levels or test logging content.

– Given that some test logging statements are introduced as a result of code clone
(revealed by RQ3), it would be interesting to explore whether there are more code
smells (e.g., duplicated code) in test logging statements than in production logging
statements.

– In light of a prior study (Li et al. 2020a) that investigates the benefits and costs of
software logging, future research could explore the differences in benefits and costs of
software logging between production and test code.

– Future work can leverage the useful information in test logging to improve and enrich
production logging.
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