
IoPV: On Inconsistent Option Performance Variations
Jinfu Chen

∗

jinfuchen@whu.edu.cn

Wuhan University

Wuhan, Hubei, China

Zishuo Ding

zishuo.ding@uwaterloo.ca

University of Waterloo

Waterloo, ON, Canada

Yiming Tang

yxtvse@rit.edu

Rochester Institute of

Technology

Rochester, NY, USA

Mohammed Sayagh

Mohammed.Sayagh@etsmtl.ca

ETS (Quebec University)

Montreal, QC, Canada

Heng Li

heng.li@polymtl.ca

Polytechnique Montréal

Montreal, QC, Canada

Bram Adams

bram.adams@queensu.ca

Queen’s University

Kingston, ON, Canada

Weiyi Shang

wshang@uwaterloo.ca

University of Waterloo

Waterloo, ON, Canada

ABSTRACT
Maintaining a good performance of a software system is a pri-

mordial task when evolving a software system. The performance

regression issues are among the dominant problems that large

software systems face. In addition, these large systems tend to be

highly configurable, which allows users to change the behaviour

of these systems by simply altering the values of certain configu-

ration options. However, such flexibility comes with a cost. Such

software systems suffer throughout their evolution from what we

refer to as “Inconsistent Option Performance Variation” (IoPV). An

IoPV indicates, for a given commit, that the performance regres-

sion or improvement of different values of the same configuration

option is inconsistent compared to the prior commit. For instance,

a new change might not suffer from any performance regression

under the default configuration (i.e., when all the options are set to

their default values), while altering one option’s value manifests a

regression, which we refer to as a hidden regression as it is not man-

ifested under the default configuration. Similarly, when developers

improve the performance of their systems, performance regression

might be manifested under a subset of the existing configurations.

Unfortunately, such hidden regressions are harmful as they can

go unseen to the production environment. In this paper, we first

quantify how prevalent (in)consistent performance regression or

improvement is among the values of an option. In particular, we

study over 803 Hadoop and 502 Cassandra commits, for which we

execute a total of 4,902 and 4,197 tests, respectively, amounting to

12,536 machine hours of testing. We observe that IoPV is a common

problem that is difficult to manually predict. 69% and 93% of the

Hadoop and Cassandra commits have at least one configuration that

hides a performance regression. Worse, most of the commits have

different options or tests leading to IoPV and hiding performance

regressions. Therefore, we propose a prediction model that identi-

fies whether a given combination of commit, test, and option (CTO)
manifests an IoPV. Our evaluation for different models shows that

random forest is the best performing classifier, with a median AUC

of 0.91 and 0.82 for Hadoop and Cassandra, respectively. Our paper
defines and provides scientific evidence about the IoPV problem and

∗
Corresponding author.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00

https://doi.org/10.1145/3611643.3616319

its prevalence, which can be explored by future work. In addition,

we provide an initial machine learning model for predicting IoPV.

CCS CONCEPTS
• Software and its engineering→ Software performance.

KEYWORDS
Software performance, Performance variation, Configurable soft-

ware systems

ACM Reference Format:
Jinfu Chen, ZishuoDing, Yiming Tang,Mohammed Sayagh, Heng Li, BramAdams,

and Weiyi Shang. 2023. IoPV: On Inconsistent Option Performance Varia-

tions. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616319

1 INTRODUCTION
Modern large-scale software systems tend to have a large num-

ber of configuration options, which can hide performance issues.

These options are used to customize the behaviour of a software

system without changing its source code. Although these options

add flexibility to a software system, they make testing software

performance a challenging task. For example, in theory, one has to

run 2
10

tests for a software system with just 10 boolean configura-

tion options, while a highly configurable software system such as

Hadoop can have as many as 365 available options [1]. While there

are constraints between configuration options, bringing down the

total number of configurations in practice, this still amounts to a

too large set of configurations to test exhaustively, especially for

(long-running) performance tests.

Prior study [2] found that more than 50% of performance bugs are

related to misconfiguration, implying that configuration tuning is

crucial for system performance. Most of the configurations directly

impact performance, such as the timeout-family configurations like

ipc.client.connect.timeout that directly affects latency in Hadoop. For
another example, a prior study [3] found that the configuration

option native_transport_max_threads in the Cassandra project can
lead to up to 7.3X latency (i.e., performance regression) under two

different configuration settings, i.e., two different values for the

option native_transport_max_threads.

https://doi.org/10.1145/3611643.3616319
https://doi.org/10.1145/3611643.3616319

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jinfu Chen, Zishuo Ding, Yiming Tang, Mohammed Sayagh, Heng Li, Bram Adams, and Weiyi Shang
Pe
rf
or
m
an

ce

V1

V2

Commit
C1 C2

(a)

C2

V1

V2𝑎

𝑏
V1

V2

C1
Commit

(b)

C1 C2

V1

V2𝑎

𝑏
V1

V2

Pe
rf
or
m
an

ce

Commit
(c)

C1 C2

V1

V2
𝑎

𝑏 V1

V2

Commit
(d)

Figure 1: The definition of IoPV: (a) Approaches that do not
consider the historical evaluation, (b) An option with a con-
sistent performance variation (a=b), (c) An option with an
inconsistent performance variation (a!=b) C2 has a perfor-
mance regression compared to C1, and (d) An option with
an inconsistent performance variation (a!=b) C2 has a per-
formance improvement compared to C1. V1 and V2 are two
different values of the same configuration option. C1 andC2
are two revisions. A smaller performance metric value (e.g.,
CPU usage) indicates a better performance.

Performance-related configuration is a non-trivial problem since

configuration options are hard to understand and poorly docu-

mented [3]. In particular, the default configuration may have no

performance regression perceived by the end-user; however, user-

specific configuration settingsmay lead to a significant performance

regression. For example, a real-life performance issue is shown in

MySQL under the configuration option query_cache_type in ver-

sions 5.0.44, 5.0.84, and 5.1.38. Such an issue is reported in the

MySQL bug tracking system with bug ID MySQL-47529 [4]. The op-

tion query_cache_type is used to set the query cache type. The possi-
ble values of the option query_cache_type include OFF, ON, and DE-
MAND, defaulting to OFF. In general, turning on query_cache_type
leads to somewhat better performance, since MySQL can cache re-

sults inmemory. In this bug, we see that with setting query_cache_type
to OFF, the performance among the three versions remains the same.

However, when turning on query_cache_type, the performance in

version 5.0.84 is worse than in versions 5.0.44 and 5.1.38.

Traditionally, prior work studied the difference in system per-

formance caused by different values of the same option, without
considering how the performance impact of an option evolves due

to code changes [1]. For instance, traditional approaches compare

different values of a configuration option based on their raw per-

formance values [5, 6, 7], as illustrated in Figure 1a. However, such

comparison is subjective as the option’s value V2 with worse per-

formance might not necessarily be problematic, but might, as an

example, just enable the execution of some extra features. Con-

versely, even if an option’s value has a good performance compared

to other values, those differences in performance might start to

vary when comparing to the performance of the same option value

in the prior commit. Normally, one would expect to see the situ-

ation in Figure 1b, which shows that both option values have a

consistent variation in performance, in this case, a similar increase

(regression) in the performance metric. In reality, one can observe

cases such as in the example in Figure 1c, where V1 still shows

better performance compared to V2 after commit C2, but it faces a

significantly larger performance regression compared to the prior

commit than V2. In Figure 1d, the V2 value still has a worse perfor-
mance after the new commit, but its performance improved much

more significantly compared to the prior commit than V1.
Therefore, different values of an option can have an inconsistent

variation in terms of performance compared to the prior commit,

which we refer to as Inconsistent Option Performance Vari-
ation (a.k.a, IoPV). IoPV is a difficult and complicated issue for

developers to identify and fix. We find there is a lack of reported

IoPV issues in the issue tracking systems as developers all too often

do not test different values of options across versions. However,

the IoPV might be problematic as it can hide a performance regres-

sion that is manifested only when altering configuration options.

Such regressions can unfortunately go as unseen to the production

environment. The IoPV may directly affect the user experience,

increase the resources cost of the system and lead to reputational

and financial repercussions.

In this paper, we perform a case study on two large-scale open-

source software systems: Hadoop and Cassandra. We first conduct a

preliminary study to quantify the prevalence of IoPV in practice. We

observe that 81% of the commits have at least one option manifest-

ing an IoPV issue. We also observe that manually identifying such

issues is challenging, as commits do not share the same options

that manifest an IoPV. That motivates us to propose an automated

model that predicts if the combination of a Commit, a Test, and

an Option (CTO) would exhibit an IoPV issue. We evaluate our

prediction model using the following two research questions:

RQ1. Can we accurately learn IoPV issues in the studied sys-
tems? Our prediction model reaches an area under the receiver

operating characteristic curve (AUC) up to 0.93 and 0.90 for predict-

ing IoPV for Hadoop and Cassandra, respectively. AUC measures

our models’ ability to discriminate the CTO cases into IoPV and

non-IoPV cases. We observe that random forest is the most per-

forming model for four and three out of five performance measures

(i.e., response time, CPU, memory, I/O Read, and I/O write) for

Cassandra and Hadoop, respectively.
RQ2. What are the most important metrics for predicting
IoPV issues? We observe that all four dimensions of metrics con-

sidered in our study, namely the code structure, code change, code

token, and configuration options metrics, have a statistically signif-

icant impact in predicting IoPV. The dimensions that are related to

the configuration options and the tokens of the changed code are

the most important dimensions for both case studies.

2 BACKGROUND
Software configuration is a mechanism used to customize the be-

haviour of a software system without changing the source code.

The configuration options are often stored in configuration files as

a set of key - value pairs, where the key represents an option’s name

and the value represents a default or user-chosen value for that

IoPV: On Inconsistent Option Performance Variations ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

option. We define a configuration as one particular assignment of

a value to all existing options. Table 1 lists the definition of these

terms. For example, A=1 and B=2 is one possible configuration for

a software system with the two integer options A and B. Configu-
ration options enable users to adapt the execution of their software

systems by simply modifying the values of certain configuration

options, without re-compilation. For example, a user can change

the directory that stores the cache for Cassandra by changing the

value of the saved_caches_directory configuration option.

Table 1: Our definition of configuration, option, and value.

Term Definition Example

Option A typed, configurable item that allows users to set

different values.

𝐴

Value A specific assignment of a value for an option. 𝐴 = 1

Configuration An assignment of values to all options by a user. 𝐴 = 1;𝐵 = 2

Although configuration introduces large flexibility for users,

considering all the possible configurations during testing is impos-

sible. A software system with 10 boolean configuration options

requires testing 2
10

configurations. In fact, configuration problems

are among the dominant problems in software engineering [1, 8].

In particular, a software system can suffer from what we refer

to as Inconsistent Option Performance Variation (a.k.a, IoPV).
This occurs when, for a given commit C, the performance of a

subset of an option’s values evolved differently relative to their

performance in the commit prior to C. Considering the example in

Figure 1, when comparing the raw performance of the two option

values V1 and V2 (Figure 1a), we observe that V1 shows a better
performance than V2. However, that might not be problematic as V2
might just enable an extra feature, such as logging a transaction. In

fact, Figure 1c shows that even if V2 does not show any significant

performance variation from the prior commit, V1 suffers from a

performance regression. Similarly, in Figure 1d the performance

of V2 is improved compared to the prior commit, while that im-

provement does not manifest under option value V1. The IoPV may

directly affect the user experience, increase the resources cost of

the system and lead to reputational repercussions. A performance

variation is calculated as the difference between the performance

variation of each option’s value after and before each commit, which

is illustrated in Figure 1 by “𝑎 − 𝑏”.

3 DATA COLLECTION
In this section, we present our subject systems and our approach

to collect performance regressions and configuration data.

3.1 Subject Systems
In this paper, we consider Hadoop [9] and Cassandra as two subject
systems. We choose these two subject systems due to the following

reasons: (1) their performance is critical for the users, (2) the two

systems are highly configurable, (3) the two systems have been

studied in prior research on software performance [10], and (4) we

are familiar with these two systems. The overview of our subject

systems is shown in Table 2.

3.2 Data Gathering
We follow the approach summarized in Figure 2 to collect data.

Table 2: Our studied dataset.

Subjects # Studied
Releases Last release # Commits # Configuration

Options # Tests

Hadoop 7 2.7.3 803 365 1,853

Cassandra 5 3.0.15 502 162 369

3.2.1 Filtering Commits. Since we study performance variation

across different versions of a software system, we only consider

source code related changes. Hadoop and Cassandra are both Java

systems. Therefore, we filter out commits without any java source
code changes. Furthermore, developers can commitmultiple changes

toward fixing the same issue, which is defined in the issue tracking

system. As Hadoop and Cassandra use JIRA as their issue tracking

system and have an explicit mapping between commits and issues,

we use the issue ID mentioned in the commit messages to identify

the commits that belong to the same issue. If multiple commits are

associated with the same issue, we only consider the last commit.

This is important as developers can initially introduce a regression

but then fix it before releasing the code changes related to the issue.

3.2.2 Extracting Options. In the second step, we extract configura-

tion options and their corresponding values for each subject system

(i.e., 365 and 162 configuration options in the last studied releases of

Hadoop and Cassandra, respectively). We obtain option names and

default values by crawling the documentation of Hadoop [11] and

Cassandra [12], by extracting the configuration file that is shipped

with the project’s releases. Finally, we manually classified the ex-

tracted options based on their expected data types (e.g., Boolean

when the default value is TRUE or FALSE).

3.2.3 Identifying Impacted Tests. We automatically create a map-

ping between the changed source code in each commit and the

existing unit tests. We derive such commit-test mapping based on

the automatically generated method-level code coverage results,

similar to a prior study by Chen et al. [13]. For each commit, we use

Eclipse JDT to automatically add logging instrumentation to each

method that will print log messages that indicate the execution

of the method at runtime. We then run each test for the commit.

A test is considered impacted by the commit if any instrumented

logging is output. Afterwards, we only run the tests that execute

the changed source code for a given commit since executing all

the existing tests of a software system for each commit and each

possible configuration is practically infeasible. In addition, running

those tests that are not impacted by the code change of a com-

mit is not likely to detect performance variations (regressions or

improvements under some values of an option).

3.2.4 Identifying Impacted Options. Similar to identifying impacted

tests, we would like to identify which configuration options are

impacted while running the tests. The configuration option values

are accessed using getters, based on our research of two well-known
projects, Hadoop and Cassandra (e.g., DatabaseDescriptor.java [14]
to access the Cassandra’s options). We keep track of method invo-

cations to the getters that involve configuration options. If such

method invocations occur during test execution, the relevant op-

tions are considered impacted by the commit. Note that we only

execute the tests that cover the changed methods in each commit.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jinfu Chen, Zishuo Ding, Yiming Tang, Mohammed Sayagh, Heng Li, Bram Adams, and Weiyi Shang

Git 1. Filtering
commits

Code
commit

3. Identifying
impacted tests

5. Evaluating
performance

Performance
evaluation

results

6. Statistical
analyses on
performance

evaluation results

For each test and each option
Identified tests with

performance
regression regarding

options

Repository

process

data

Code commit
and options

with impacted
tests

2. Extracting
Options

Option
Documentation Options

with values
4. Identifying

impacted options

7. Discretizing CTO
into IoPV and non

IoPV
IoPV data

Figure 2: An overview of our approach to collect data. CTO is a combination of a Commit, a Test, and an Option.

3.2.5 Evaluating Performance. After obtaining which tests and

which options are impacted by each commit, we exercise the test

on each commit and its parent commit (i.e., the previous commit)

to evaluate their respective performances. We first execute each

test with all the configuration options set at their default values.

Then, we alter the value of one configuration option at a time.

For the configuration options with boolean values, we alter the

configuration option to the value that is not the default. For example,

if the default value is TRUE, we would alter the value to be FALSE.
For the numeric type option, we alter the configuration option once

to the value that is double the default value and once to half of the

default value. For example, if a configuration option has a default

value of 100, we would run the test altering the value to 200, then

run the same test altering the value to 50. For enumeration-typed

options, we alter to each of the possible values.

Our performance evaluation environment uses the Google Com-

pute Engine with 8GB memory and 16 cores CPU. In order to gener-

ate statistically rigorous performance results, we adopt the practice

of repetitive measurements [15] to evaluate performance. Conser-

vatively, we executed each test 30 times independently, which is

larger than prior work that repeats a test only 5 to 20 times [16, 17,

18]. To measure the performance that is associated with each test,

we use a performance monitoring tool named psutil [19] (Python
system and process utilities). Psutil can capture detailed perfor-

mance metrics and has been widely used in prior research [20, 21].

We collect both domain level and physical level performance met-

rics. In our execution, we collect five performance metrics during

the execution, i.e., response time, CPU usage, memory usage, I/O

read and I/O write. To minimize the performance noise, we first

control the execution environment strictly in each instance, i.e,

every instance is with the same hardware setup and every instance

only runs the small-scale test process. Second, all the performance

measures related to a given version of a given project were done

in a limited time period, so the variation within that scope should

not have been impacted by VM provisioning/contention. Finally,

we repeat the unit test 31 times. The first time of execution is to

warm up the junit process. The remaining 30 times of execution

are taken into consideration in our statistical analysis.

3.2.6 Statistical Analyses on Performance Evaluation Results. To
identify the IoPV, we statistically compare the performance of a

given test and a configuration option value before and after each

commit using the Mann-Whitney U test [22] (i.e., 𝛼 = 0.05) and

Cliff's delta [23], which measures the magnitude of performance

regressions. We choose Mann-Whitney U test since it does not have

any assumption on the distribution of the data. Researchers have

shown that reporting only the statistical significance may lead to

erroneous results (i.e., if the sample size is very large, p-value can

indicate statistical significance even if the difference is trivial). Thus,

we also use Cliff's delta to quantify the magnitude of the differences

(a.k.a., effect sizes). Cliff's delta measures the effect size statistically

and has been used in prior engineering studies [24, 25, 26]. Cliff's

delta ranges from -1 to +1, where a value of 0 indicates two identical

distributions.

For each combination of commit, test and option value, we obtain

a Cliff's delta value. We then calculate the differences between the

maximum and minimum Cliff's delta for each option’s different

values, which the next subsection uses to categorize a combination

of commit, test and option as IoPV or non-IoPV.
We also consider a test to be a performance regression when the

value of the effect size is positive and has either medium (0.33 <

Cliff's delta ⩽ 0.474) or large (0.474 <Cliff's delta) magnitude. On the

other hand, we consider a test to manifest a performance improve-

ment if the value of the effect size is negative and has a medium

(−0.33 < Cliff's delta ⩽ −0.474) or large (−0.474 >Cliff's delta)
magnitude. Note that we perform this statistical analysis for each

performance metric (i.e., response time, CPU usage, memory usage,

I/O read and I/O write) separately. For example, a commit may show

a CPU regression or improvement, but not show any difference for

the response time.

3.2.7 Discretizing CTO into IoPV and non-IoPV. In the final step,

we categorize each commit, test, and option (CTO) into IoPV or non-

IoPV based on an automatically determined threshold. Our intuition

is that the maximum difference values (a-b in Figure 1) would be

concentrated in either small values (i.e., when adjusting an option

does not make a difference) or large values (i.e., when adjusting an

option does make a difference), which is demonstrated in Figure 1.

Specifically, we use Ckmeans.1d.dp [27], a one-dimensional clus-

tering algorithm, to find a threshold that separates the maximum

difference values of all CTOs into two groups, i.e., IoPV and non-

IoPV. Note that the option variation ranges between 0, when there

is no variation, and 2, when the effect size (cf. Section 3.2.6) is 1 for

one option value and -1 for another value of the same option.

IoPV: On Inconsistent Option Performance Variations ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

To further investigate our collected data, we manually exam-

ine the issue reports related to each commit with an IoPV issue

(based on our quantitative analysis of our preliminary analysis). In

particular, we first extract the issue id from the commit message.

Then we write a script to search in the issue report for the name

of each configuration option as the keywords. Finally, if there are

commits or issue reports containing the searched keywords, we

manually examine whether the issue is reporting any performance

regression. We observe that out of 1,155 and 2,275 CTOs without

regression under the default option value but with regression under

other option values, only 9 and 1 CTO in Hadoop and Cassandra,
respectively, have reported configuration-related performance re-

gression in the commit messages or issue reports. Such results show

that performance regression may be hidden from developers since

performance regression such as CPU or memory regression do not

have a direct impact on developers, but rather on users. In addition,

we infer that developers do not test other configuration option

values except the default ones.

4 PRELIMINARY STUDY
Through this preliminary study, we quantify the existence of the

IoPV problem in large and highly configurable software systems, as

well as how difficult it is to identify the IoPV. This preliminary anal-

ysis will also motivate the need for an approach that automatically

identifies the IoPV.

PQ1. Are IoPV issues common in the studied
systems?
Motivation. The goal of this preliminary research question is to

quantify and provide scientific evidence on how often a configu-

ration option can suffer from instances of the IoPV issue. While

a new code change might not show any performance regression

under the default configuration, another configuration can hide a

performance regression that can go as unseen to the production

environment. This is an important problem as performance issues

often lead to serious monetary losses [28]. Similarly, a configuration

improvement might not be manifested under all the configurations.

One may only compare different values of a given configuration

option rather than identifying the IoPV problem. However, only

comparing different values of a given option cannot know whether

the performance variation is due to the configuration error or other

reasons, such as a new feature.

Approach. We first collect performance measurements for each

CTO (combination of a commit, test and option) and label each

CTO as IoPV or a non-IoPV. Then, we identify for each commit

and unit test the number of configurations under which the per-

formance is statistically significantly worse (a.k.a., performance

regression) or better (a.k.a., performance improvement) than the

performance of the same test and configuration in the prior commit.

Finally, we quantify for each commit the number of tests that show

a performance regression or a performance improvement under

just a subset of the existing configurations. In the studied Hadoop
and Cassandra releases, there are 4,902 and 4,197 CTO, respectively.

We also evaluate whether the interactions between the combina-

tions of configuration options would influence the manifestation of

IoPV issues. Unfortunately, measuring all the possible interaction

of configuration options is practically unfeasible. An estimation of

what would be the cost of evaluating all the combination of just

2-wise configuration options sums up to 377,556 and 963,788 test

executions for Hadoop and Cassandra, respectively, which would

take more than 16 machine years to finish the experiment. Instead,

we select a statistically representative (95% confidence level and 5%

confidence interval) random sample of 384 𝑡-wise CTO from the

population of all possible 𝑡-wise (𝑡 ranges from two to five in our

study) combinations of options, which comprises 32,536,088 and

91,864,800 𝑡-wise combinations for Hadoop and Cassandra, respec-
tively. Then, we measure the performance of each of our 𝑡-wise

based CTO similar to single-option based CTO.
Intuitively, if each occurrence of an IoPV issue for a combination

of options coincides with the occurrence of an IoPV for at least one

of the individual options, in practice one would be able to rely on

only the analysis of IoPV for individual options. In other words,

if none of the individual options would manifest IoPV issues, the

combination of options would not manifest IoPV issues either; and

if the combination of options manifests IoPV issues, at least one

individual option would manifest IoPV issue. Therefore, we also

evaluate the number of 𝑡-wise CTO that have results contradicting

with the single option results.

Table 3: Number of CTO collected from the subject systems.
No regression under the default option value, but with regression under other option values.

subject #CTO

Any Response time CPU Memory I/O read I/O write

metric large med large med large med large med large med

Hadoop 4,902 1,155 24 18 517 84 208 214 216 52 526 100

Cassandra 4,197 2,275 600 423 1,094 352 788 404 1,033 363 921 326

Improvement under the default option value but with regression under other option values.

subject #CTO

Any Response time CPU Memory I/O read I/O write

metric large med large med large med large med large med

Hadoop 4,902 668 4 3 425 14 102 36 170 30 426 46

Cassandra 4,197 842 122 53 450 95 220 52 412 93 327 74

Regression in default value and non-regression/improvement in other values.

subject #CTO

Any Response time CPU Memory I/O read I/O write

metric large med large med large med large med large med

Hadoop 4,902 1,022 17 9 431 60 128 200 228 64 441 4

Cassandra 4,197 1,408 236 222 592 298 314 229 553 264 439 229

Any metric means the union #CTO of five performance metrics.

Med |large means the effect size Cliff's delta of performance regression is medium |large.

Result. The IoPV is a common problem, as 61% and 91% of
our studied CTO in Hadoop and Cassandra suffer from the
IoPV problem in at least one performance metric. In addition,

eachHadoop and Cassandra commit has a median percentage of 43%

and 96% of the pairs of tests and options that manifest at least one

IoPV across releases. Although a small percentage of Hadoop tests

and options suffers from an IoPV in each performance metric, e.g.

response time, there is a large percentage (61%) of CTO suffering

from IoPVwhen considering five performance metrics. On the other

hand, the percentage of pairs of tests and options that suffer from

an IoPV is larger than the percentage of pairs of tests and options

that do not face an IoPV for Cassandra across all the performance

metrics. The result of high percentage is relative to the number of

values of each CTO. For instance, Cassandra has a larger percentage
of CTO that suffer from IoPV. We find that there are a lot of values

of each option in Cassandra.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jinfu Chen, Zishuo Ding, Yiming Tang, Mohammed Sayagh, Heng Li, Bram Adams, and Weiyi Shang

Noted from Table 3, 1,155 out of 4,902 (24%) CTO in Hadoop and

2,275 out of 4,197 (54%) CTO in Cassandra, show a performance

regression on at least one performance metric when the default con-

figuration does not show any performance regression. For instance,

in terms of response time, we observe a performance regression

on 42 and 1,023 out of 4,902 and 4,197 Hadoop and Cassandra CTO
respectively, when the default configuration does not show any

regression, as shown in Table 3. As shown in the same Table, the

performance metric that suffers the most from the IoPV problem are

the I/O write in Hadoop and CPU usage in Cassandra. In addition,

these are not minor regression differences, as 78% of the regressions

are large based on our effect size analysis.

In almost all cases, an IoPV result for a 𝑡-wise combination
of options correlates with an IoPV for at least one of the in-
dividual options, for all evaluated performance metrics. For
instance, 383 and 374 (out of a total of 384) 𝑡-wise CTO show such

a correlation in terms of response time for Hadoop and Cassandra.
Similarly, the IoPV of 376, 383, 376, and 382 Hadoop 𝑡-wise CTO
correlate with IoPV of their constituent individual options in terms

of CPU, Memory, I/O read, and I/O write, respectively. We find

similar numbers for Cassandra. Such results imply that if there is

an IoPV issue manifested by a combination of options (i.e., a 𝑡-wise

combination), in practice the same IoPV issue will be exhibited by

one of the individual options. On the other hand, if none of the

individual option manifests an IoPV issue, their combination is not

likely to manifest any IoPV issue either. For this reason, the rest of

the paper focuses on the individual CTO.

PQ2. How difficult is it to manually identify
IoPV issues?
Motivation. The goal of this preliminary question is to understand

how difficult the manual prediction of IoPV (i.e., identification of

IoPV without running the tests) is. For instance, the higher the

number of options that manifest an IoPV in a large number of pairs

of commits and tests, the more difficult the identification of IoPV
is, as it indicates that an IoPV can occur in an unexpected way and

any option can be responsible for such a problem. The lower the

number of options that suffer from an IoPV, the easier it is to test

all of these IoPV responsible options.

Approach. To investigate the difficulty of identifying an IoPV, we
first study the prevalence of IoPV in different granularity, i.e., com-

mit, test, and option. Second, we calculate the intersection of the

<test, option, IoPV > triplets between each pair of commits using

the Jaccard similarity defined as follows:

𝐽 (𝐶1,𝐶2) = |𝐶𝑇𝑂𝐶1 ∩𝐶𝑇𝑂𝐶2 |
|𝐶𝑇𝑂𝐶1 ∪𝐶𝑇𝑂𝐶2 |

(1)

where 𝐶1 and 𝐶2 refer to every pair of commits (both consecutive

and non-consecutive commits). |𝐶𝑇𝑂𝐶1 ∩𝐶𝑇𝑂𝐶2 | is the number of

CTO that share the same <test, option, IoPV > (i.e., the intersection).

|𝐶𝑇𝑂𝐶1 ∪𝐶𝑇𝑂𝐶2 | is the total number of unique <test, option, IoPV
> in commits 𝐶1 and 𝐶2 (i.e., the union). The Jaccard distance

ranges between 0 and 1, where a value of 1 means that the pair

of commits share the same <test, option, IoPV > triplets, while 0

indicates that the pair of commits does not share any <test, option,

IoPV > triplet.

Result. IoPV problems are hard to manually predict. The re-
sults of the prevalence of IoPV in different granularity are shown

in Table 4. In particular, 60 out of 74 (81%) commits in Hadoop and

56 out of 57 (98%) commits in Cassandra show at least one CTO
with an IoPV in at least one performance metric. Similarly, 117 out

of 122 (96%) options in Hadoop and 50 out of 54 (93%) options in

Cassandra suffer at least once from an IoPV through the studied

commits. Table 4 shows more details about how common are IoPV
for the studied commits, tests, and options. In summary, our results

indicate that the IoPV problem is not limited to a small set of com-

mits, tests or options, which makes it challenging to predict which

CTO would have an IoPV.

Table 4: Number of unique commits, tests and options with
IoPV problems.

Commit Test Option

Total IoPV Total IoPV Total IoPV

Hadoop

Res. time 74 27 74 13 122 74

CPU 74 47 74 62 122 113

Memory 74 38 74 59 122 113

I/O read 74 45 74 53 122 108

I/O write 74 47 74 57 122 117

Any metric 74 60 74 67 122 117

Cassandra

Res. time 57 55 216 189 54 43

CPU 57 55 216 204 54 49

Memory 57 53 216 202 54 43

I/O read 57 56 216 202 54 44

I/O write 57 53 216 192 54 39

Any metric 57 56 216 208 54 50

Even if most of the commits show at least one IoPV, it is not
easy to predict which test and option may suffer from the IoPV.
Figure 3 shows the pairwise Jaccard distance between the <test,

option, IoPV > triplets of the studied commits in the Hadoop and

Cassandra systems, respectively. The figures indicate that most of

the commits do not share any <test, option, IoPV > (i.e., with dark

cells), especially for the Cassandra system (i.e., more dark cells).

Therefore, it is difficult for developers to manually identify which

tests and options that they need to run and configure to verify the

existence of IoPV.

(a) Hadoop response time (b) Cassandra response time

Figure 3: Pairwise Jaccard distance between the <test, op-
tion, IoPV > triplets of the studied commits of the Hadoop
and Cassandra system. The 𝑥-axis and 𝑦-axis show the stud-
ied commits. Each cell refers to the Jaccard distance of any
pair of commits: the darker the color is, the larger the dis-
tance is.

IoPV: On Inconsistent Option Performance Variations ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

To understand why different commits show inconsistent <test,

option, IoPV > triplets, we manually analyze some commits that

show the largest Jaccard distance from other commits. In partic-

ular, there are two and six commits with large Jaccard distance

(> 0.8) to all other commits in Hadoop and Cassandra, respec-
tively. For Hadoop, we pick up one [29] out of the two commits

of Hadoop to manually examine the impacted tests, configuration

option and the commit changes. We find that the studied options

that cause IoPV are related to connection time, such as the options

dfs.ha.fencing.ssh.connect-timeout and fs.s3a.connection.timeout. By
examining the code in the test TestKMS.java, we find that TestKMS.java
loads the connection timeout configuration options. And the code

changes in this commit trigger the test case in the test TestKMS.java.
Thus, the commits that impact such connection time-related options

and the test may lead to IoPV problems while other commits may

not lead to the same IoPV. For Cassandra, we select one commit [30]

with the largest Jaccard distance to other commits. Our results show

that two tests named EmbeddedCassandraServiceTest and Debug-
gableScheduledThreadPoolExecutorTest manifest the largest perfor-

mance regression regarding optionsmax_hints_file_size_in_mb and
memtable_heap_space_in_mb, respectively. By manually examining

the commit changes covered by the tests, we find that there exist

code changes in the method start within the Java file EmbeddedCas-
sandraService.java [31]. Such code changes trigger the test cases

to load and initialize options in the impacted tests EmbeddedCas-
sandraServiceTest and DebuggableScheduledThreadPoolExecutorTest,
which lead to performance regression. In particular, 69% of commits

in Hadoop and 96% of commits in Cassandra have a Jaccard distance
more than 0.5. Such results imply that different commits may lead

to different options and tests that exhibit IoPV problems.

: Summary of Preliminary Study

IoPV is a common problem in our studied systems and

it is difficult to manually identify IoPV without exhaus-

tively running the tests. Our results suggest the need for

an approach that identifies which CTO manifests an IoPV.

5 PREDICTING IOPV PROBLEMS
RQ1. Can we accurately learn IoPV issues in the
studied systems?
Motivation. This research question is to evaluate different classifi-

cation approaches on predicting for which CTO one has to check

multiple option’s values. In our preliminary study, we observe that

the IoPV is common and hard to manually predict, which indicates

that developers need to test different values for each option. How-

ever, as there are typically a large number of configuration options

(e.g., Hadoop version 2.7.3 has 355 configuration options) with dif-

ferent possible values, exhaustively experimenting with all different

options for each test in performance testing is time- and resource-

consuming. In this RQ, we aim to reduce the effort of conducting

configuration-aware performance testing by predicting the need for

testing with different values for a given configuration option when

a code change is made (i.e., for a CTO). Specifically, our approach
predicts whether a CTO manifests an IoPV, such that developers

can make an informed decision on whether they should consider

different values for that option in their performance testing.

Approach. In this RQ, we follow the detailed steps to build ML

models to predict whether a CTO manifests an IoPV.
Step 1. Data preparation. Our target variable is a binary variable

that indicates whether a CTOmanifests an IoPV, which we obtained

following the approach discussed in Section 3. We consider four

dimensions of software metrics that are related to the likelihood of

a configuration option impacting the performance testing of a code

commit for each test (i.e., of a CTO). Table 5 lists the detailed metrics

used in our models. Chen et al. [13] find that code structure, and

code change dimensions are important for predicting performance

regressions, however they did not consider the impact of different

configurations on the manifestation of performance regressions.

Therefore, we use the prior dimensions as well as an additional

dimension about the configuration options.

Next, we pre-process the features. The code token metrics in-

clude thousands of unique code tokens. Thus, we need to pre-

process such metrics into a numeric representation. We consider

three different approaches to pre-process the code token metrics.

(1) Term frequency-inverse document frequency (tf-idf): Tf-
idf [38] generates a feature for each unique token. The value of a

feature for a commit is the term frequency of the corresponding

token (i.e., 𝑡 𝑓 (𝑡, 𝑐) = 𝑓𝑡,𝑐 , where 𝑓𝑡,𝑐 is the number of times a token

𝑡 appears in commit 𝑐) times the inverse frequency of the commits

that contain the token (𝑖𝑑 𝑓 (𝑡) = log (𝑁 /𝑁𝑡), where 𝑁 is the total

number of commits while 𝑁𝑡 is the number of commits containing

the token 𝑡 .) (2) Principal component analysis (PCA): Using
tf-idf generates a large number of features that may lead to very

complex models. Therefore, we apply PCA [39] on the features

resulting from tf-idf to reduce the number of features. (3) Word
embeddings: We use word2vec [40, 41] to code each token into a

vector of 128 numerical values. Specifically, we pre-train the em-

beddings from a large code base [42], then apply the pre-trained

embeddings on the tokens in our data.

Step 2. Model construction.We build machine learning models

to predict whether a configuration option suffers from an IoPV on

a given CTO. For the generalization of our results, we consider

five different types of models, including random forest (RF), lo-

gistic regression (LR), XGBoost (XG), neural network (NN), and

convolutional neural network (CNN). A random forest is a classifier

consisting of a collection of decision tree classifiers [43]. Logis-

tic regression is a statistical model that uses a logit function to

model a binary variable as a linear combination of the independent

variables [44], which is widely used in software analytics [45, 46].

XGBoost is an efficient and accurate implementation of the gradient

boosting algorithm [47, 25]. The neural network model [48] used

in our study consists of four layers and is trained with batch size

100, and 10 epochs. The CNN model [49] in our study consists of

five layers, and are trained with batch size 100, and 10 epochs.

Step 3. Model evaluation.We use 10-fold cross-validation to eval-

uate the performance of our models. In each repetition of the 10-fold

cross-validation, the whole data set is randomly partitioned into

10 sets of roughly equal size. One subset is used as the testing set

(i.e., the held-out set) and the other nine subsets are used as the

training set. We train our models using the training set and evaluate

the performance of our models on the held-out set. In each fold

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jinfu Chen, Zishuo Ding, Yiming Tang, Mohammed Sayagh, Heng Li, Bram Adams, and Weiyi Shang

Table 5: Overview of our selected metrics.

Dimension Metric Rationale

Code

change

Number of modified subsystems The more subsystems are changed, the higher risk the change may be [32].

Number of modified directories Changing more directories may more likely introduce performance regressions [32].

Number of modified files Changing many source files are more likely to cause performance regressions [33].

Modified code across files Scattered changes are more possible to cause performance regressions [34].

Number of modified methods Changes altering many methods are more likely to introduce performance regressions [35].

Number of lines SOC in tests Program with more lines is more likely to suffer from performance regressions [36].

Lines of code added The more lines of code added, the higher risk that the program will suffer from performance regressions [37, 35].

Lines of code deleted The more lines of code deleted, the higher risk of performance regression is introduced [37, 35].

Code

structure

Number of methods in impacted test Program with a large number of methods is more likely to suffer from performance regressions.

McCabe Cyclomatic complexity Program with higher complexity is more likely to suffer from performance regressions [34].

Number of called subprograms Large called subprograms will amplify the regressions if there exist regressions in the called program [33].

Number of calling subprograms Large calling subprograms will amplify the regressions if there exist regressions in the called program [33].

Code token Code tokens of the changed code Some code tokens may be more related to performance than other tokens.

Option token Split configuration option names The name components of a configuration option may be related to a specific performance metric.

of the cross-validation, we use precision, recall and Area Under

the receiver operating characteristic Curve (AUC) to measure the

performance of our models.

Result. Our models can effectively predict when a CTO is
manifesting an IoPV for all of our five studied performance
measures (as shown in Table 6). Our best models (i.e., as indicated

by the bold-italic values) achieve an AUC of 0.85 to 0.94 on the

Hadoop project and 0.79 to 0.90 on the Cassandra project, for dif-
ferent performance metrics. For the Hadoop project, RF is the best

model for four out of the five performance metrics, achieving an

AUC of 0.85 to 0.93. Grebhahn et al. [50] find that random forest

performs better compared to other prediction models. Even if XG

shows the best AUC performance for the fifth performance metric

(i.e., Response time), the difference between RF and XG is only 0.01.

For the Cassandra project, RF shows the best performance on three

out of five performance metrics. NN shows the best performance

on also three performance metrics (Memory and I/O read have the

same performance as the RF model). The average AUC of the best

NN model is 0.83, while the average AUC of the best RF model is

0.82. Note that NN, on the other side, requires a large amount of re-

sources to train and test a model, while the improvements it shows

over RF is trivial. CNN shows the best performance on only one per-

formance metric (i.e., with an AUC of 0.79 for the Response time).

However, the average AUC of the best CNN model is 0.09 lower

than that of RF. In summary, we suggest that developers consider

the RF model for predicting when a CTO has an IoPV problem.

The choice of representation of the code tokens significantly
impacts the performance of our models. For the traditional

models (RF, LR, and XG), using code embeddings to represent the

code tokens often achieves the best performance, while using PCA

usually results in the worst performance. For example, for the

Hadoop project, the RF model achieves an AUC of 0.85 to 0.93 using

code embeddings, 0.82 to 0.93 using tf-idf, and only 0.59 to 0.76 using

PCA. The reason for the poor performance of the models using

PCAmight be that PCA significantly reduced the information in the

tokens through dimension reduction, even though we considered

the principal components that account for 95% of the variance in

Table 6: Results of modeling whether a CTOmanifests IoPV.
Hadoop

RF with tf-idf RF with PCA RF with code embedding XG with tf-idf

Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC AUC

Res. time 0.68 0.39 0.93 0.68 0.39 0.66 0.73 0.33 0.93 0.94
CPU 0.70 0.51 0.90 0.55 0.02 0.71 0.77 0.60 0.92 0.88

Memory 0.64 0.36 0.87 0.48 0.04 0.69 0.75 0.41 0.91 0.87

I/O Read 0.68 0.54 0.91 0.58 0.02 0.76 0.79 0.56 0.93 0.91

I/O Write 0.63 0.44 0.82 0.44 0.02 0.59 0.72 0.49 0.85 0.82

Average 0.67 0.45 0.89 0.55 0.10 0.68 0.75 0.48 0.91 0.88

Cassandra

RF with tf-idf RF with PCA RF with code embedding NN with PCA CNN with PCA

Pre. Recall AUC Pre. Recall AUC Pre. Recall AUC AUC AUC

Res. time 0.74 0.37 0.74 0.45 0.13 0.62 0.67 0.46 0.75 0.73 0.79
CPU 0.68 0.39 0.76 0.46 0.15 0.61 0.73 0.59 0.82 0.90 0.75

Memory 0.71 0.37 0.78 0.35 0.04 0.61 0.71 0.58 0.84 0.84 0.77

I/O Read 0.74 0.48 0.79 0.54 0.32 0.67 0.74 0.63 0.83 0.83 0.68

I/O Write 0.76 0.50 0.82 0.58 0.32 0.68 0.77 0.65 0.86 0.84 0.67

Average 0.73 0.42 0.78 0.47 0.19 0.64 0.72 0.58 0.82 0.83 0.73

Only full results of the random forest models and the AUC values of models

with at least one best result are presented.

the original variables. In contrast, for the deep neural network

models (NN and CNN), using PCA to represent the code tokens

may achieve better results than the other two representations. For

example, for the Cassandra project, the CNN model combined with

PCA achieves the best AUC for two out of the five performance

metrics, across all different models. The reason might be that there

are a larger number options in our studied systems in the deep

neural network models, while using PCA could significantly reduce

the number of options to be trained.

: Summary of RQ1

Our models can effectively predict whether a CTO mani-

fests an IoPV problem. Random forest based on code em-

bedding shows the best performance on predicting IoPV
for most of the performance measures.

IoPV: On Inconsistent Option Performance Variations ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

RQ2. What are the most important metrics for
predicting IoPV issues?
Motivation. The goal of this research question is to analyze the

models (of RQ1) that predict the IoPV to understand the factors that

play the most important role in determining whether an option

could manifest an IoPV. In particular, we focus on the random forest

model with code embeddings, as it shows the best performance in

predicting IoPV. Our results can help practitioners understand and

identify the scenarios where they need to adjust their configuration

parameters during their performance tests.

Approach. To analyze the most important metrics for predicting

IoPV, we analyze the impact of each dimension. Different projects

have different features as the code tokens and configuration options

are different. To make our results more generalizable, we measure

the important features at the dimension level instead of feature

level. In particular, we consider the following experiments:

Measuring the importance of each dimension of metrics by
removing the dimension from themodel. In order to study the

importance of each dimension of metrics, we build a model with all

dimensions and compare it to a model with one dropped dimension

at a time. That comparison consists of statistically comparing both

models’ AUC values. The larger the difference is for a dimension,

the more important that dimension is.

Measuring the importance of each dimension of metrics by
only keeping the dimension in the model. Since metrics from

different dimensions can be correlated, we also consider comparing

models that are built using one dimension at a time. For example,

some tokens from the code token dimension can be correlated with

tokens from the configuration dimension. Therefore, we build a

model using one dimension at a time, which results in four models.

Finally, for each model with different dimensions of metrics, we

have ten values of AUC since we use 10-fold cross validation. We

compare all these models based on their respective AUC values. In

particular, we use the Mann-Whitney U test to examine whether

there is a statistically significant difference between the original

model with all dimensions of metrics and other models with partial

metrics.

Result. Every dimension of metrics plays a statistically sig-
nificant role in predicting IoPV cases. Table 7 shows the results
of using the Mann-Whitney U test to compare the complete RF

model with the RF model that uses only one dimension of met-

rics or that excludes one dimension of metrics. A p-value that is

smaller than 0.05 indicates a statistically significant difference. Ta-

ble 7 shows that, when only keeping one dimension of metrics,

all the resulting models show a statistically significant different

(worse) performance. When excluding each dimension of metrics,

the resultingmodels show a statistically significant different (worse)

performance in most of the cases (in 16 out of the 20 combinations

of the four metric dimensions and the five performance measures

forHadoop, and in 14 out of the 20 combinations for Cassandra). Our
results highlight that one should consider all the four dimensions

of metrics together when building a model to predict which CTO
manifests an IoPV.

The code token and configuration dimensions show the
best performance among the four dimensions ofmetrics. For
bothHadoop andCassandra, for all the performancemeasures, using

Table 7: The results (p-values) of using the Mann-Whitney
U test to statistically compare the AUC of RF with the com-
plete set of metrics vs. with a subset of metrics.

Hadoop

Without CC Without CS Without CT Without CON

Res. time ≪0.0001 0.001 0.001 ≪0.0001

CPU 0.002 0.052 ≪0.0001 ≪0.0001

Memory 0.016 0.396 0.019 ≪0.0001

I/O Read 0.052 0.154 0.027 0.002

I/O Write ≪0.0001 0.001 0.005 ≪0.0001

Only CC Only CS Only CT Only CON

Res. time ≪0.0001 ≪0.0001 ≪0.0001 ≪0.0001

CPU ≪0.0001 ≪0.0001 ≪0.0001 ≪0.0001

Memory ≪0.0001 ≪0.0001 ≪0.0001 0.001

I/O Read ≪0.0001 ≪0.0001 ≪0.0001 0.005

I/O Write ≪0.0001 ≪0.0001 ≪0.0001 ≪0.0001

Cassandra

Without CC Without CS Without CT Without CON

Res. time 0.093 0.061 0.052 0.038

CPU ≪0.0001 0.001 ≪0.0001 ≪0.0001

Memory ≪0.0001 0.009 0.093 0.013

I/O Read 0.001 0.016 ≪0.0001 0.006

I/O Write 0.001 0.312 ≪0.0001 0.192

Only CC Only CS Only CT Only CON

Res. time ≪0.0001 ≪0.0001 0.019 ≪0.0001

CPU ≪0.0001 ≪0.0001 0.011 ≪0.0001

Memory ≪0.0001 ≪0.0001 0.002 0.011

I/O Read ≪0.0001 ≪0.0001 ≪0.0001 0.005

I/O Write ≪0.0001 ≪0.0001 ≪0.0001 ≪0.0001

CC is Code Change, CS is Code Structure, CT is Code Token, and CON

is Configuration.

only the code token metrics or the configuration metrics in the

model achieves a better AUC than using other single dimension of

metrics, except that the configuration dimension leads to a relatively

worse performance for the I/O write measure of Cassandra. The
results indicate that the context of the change as well as the goal

of configuration options expressed through their tokens are the

most important predictors for IoPV. However, when we exclude one

dimension of metrics from the model , the resulting differences are

less significant, and removing the code tokens and the configuration

dimensions in fact does not lead to the worst performance. For

example, removing the code change dimension from the model

for the response time measure of Hadoop actually leads to worse

performance than removing the code tokens dimension. This is

because the different dimensions of metrics are correlated even after

correlation analysis; thus the impact of removing one dimension of

metrics may be partially mitigated by other dimensions of metrics.

: Summary of RQ2

Every dimension of metrics plays a statistically significant

role in predicting whether a CTO manifests an IoPV prob-

lem. The most important dimensions are related to code

tokens and configurations.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jinfu Chen, Zishuo Ding, Yiming Tang, Mohammed Sayagh, Heng Li, Bram Adams, and Weiyi Shang

6 DISCUSSION
In this section, we discuss the learned lessons during the implemen-

tation of our approaches, the generalizability of our study and the

application of our approach for predicting IoPV in interaction of

configuration options.

6.1 Generalizability of our study
Adding more case studies can benefit the generalizability, but it still

may not address the generalizability issue. Below, we discuss some

aspects that may impact the generalizability of our study.

(1) Option quantity: Our approach aims to predict the inconsis-

tent option performance variation issue automatically. We find that

there are 365 and 162 configuration options in Hadoop and Cassan-
dra, respectively. If the number of configuration options in a system

is small, e.g., less than ten options, our approach may not have a

practical impact for practitioners, as practitioners can examine the

small limited number of configuration options manually.

(2) Test and Option coverage: Test and Option coverage. Our

approach depends on the readily available small-scale tests in the

software systems. If the tests cannot cover the source changes and

impacted options, our approach may fail to predict IoPV. Since our
approach works at the commit level, only the changed methods

need to be covered by the test. We find that for all the changed

methods in all commits, 68% and 53% are covered by the tests in

Hadoop and Cassandra, respectively. Such changed methods cover

a total of 122 and 55 options in Hadoop and Cassandra, respectively.
Such high coverage ensures the success of our approach. This also

implies that, in order to adopt our approach, practitioners may first

evaluate whether the source code that is likely to be changed is

covered by tests.

(3) Test quality: We use the existing available small-scale tests to

evaluate the performance variations. Prior research [51, 52] study

the use of performance unit tests to increase performance aware-

ness. If the existing test is written with a sub-optimal quality, the

performance results may be biased. For example, the test failures in

the flaky test may introduce noise and require extra running time to

achieve stable performance results. Recent research [52] discusses

the reasons for tests not suitable for performance evaluation, which

can be leveraged to know how well other projects can adopt our

approach.

6.2 The application of our approach for
predicting IoPV in interaction of
configuration options

Based on the findings from the study [2], performance bugs are

often related to configurations. The results from study [2] show

that the majority (72%) of parameter configuration bugs is related

to only one option; about 28% of studied configuration bugs in-

volve two or more configuration options. Therefore, on the one

hand, our approach can be directly used to predict the majority of

configuration-aware performance issues. On the other hand, our

measured data and our approach can be also partially toned to

predict a combination of configuration-aware performance issues.

We have executed 61,860 CTO instances. Even if our measured data

cannot represent all the interactions, our measured performance

data covers part of interactions of options, like two-way, and N-way

options. For example, we assume that there are two options O1 and

O2. The possible values of O1 are 0, 4, 8, defaulting to 0, and the

possible values of O2 are True and False, defaulting to False. Our

performance data covers the following pairwise option values be-

tween O1 and O2: 1) < 0, 𝐹𝑎𝑙𝑠𝑒 >, 2) < 4, 𝐹𝑎𝑙𝑠𝑒 >, 3) < 8, 𝐹𝑎𝑙𝑠𝑒 >,

4) < 0,𝑇𝑟𝑢𝑒 >. On the other hand, our existing performance data

misses the following pairwise option values: 1) < 4,𝑇𝑟𝑢𝑒 > and

2) < 8,𝑇𝑟𝑢𝑒 >. N-way testing is a kind of combinational test that

requires that every combination of any N options in the software

must be tested at least once.

7 THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our study.

External validity. Due to the expensive computing resources

needed (we spent around 12,536 machine hours collecting per-

formance data), we conducted our evaluation on two open-source

software systems, i.e., Hadoop and Cassandra. Our findings may

not generalize to other software systems. However, we found mo-

tivating results on the prevalence of IoPV and the performance of

our prediction model, which can be replicated by future studies on

other software systems.

Internal validity. In our approach, we collect five popular per-

formance metrics, i.e., Response time, CPU, Memory, I/O read and

write, while other performance metrics such as throughput can still

be explored by future research. We do not consider the combination

of configuration options as that will require a huge cost and the

goal of our study is to identify and define the IoPV issues. On the

one hand, prior work [2] mentions that 72% of the performance

issues are due to a single option, so our paper covers the most

common cause of performance issues. On the other hand, one can

use covering arrays to conduct N-way testing for functional tests

with very low number of cases [53]. However, for performance

testing, the approach likely does not work since we want to isolate

each combination’s performance impact from others. We encourage

future studies to extend our work by considering the interaction of

configuration options.

Construct validity. The stability of the cloud-based testing envi-

ronment may cause testing noise. To minimize the noise, we capture

the performance of the corresponding Linux processes of the run-

ning tests. Furthermore, for each test, we repeat the execution 30

times independently. Finally, we run all of our experiments in the

same environments. There may still exist extreme values as outliers

that should not be considered by our approach. To mitigate this

threat, we remove the outlier data using the mean ± 3 × standard

deviation (STD) as an indicator of outliers.

8 RELATEDWORK
In this section, we discuss prior works along three dimensions: per-

formance regression detection, performance model for configurable

system, and identifying optimal configuration for performance.

8.1 Performance regression detection
Performance regression detection techniques can be divided into

two categories: measurement-based and model-based detection.

Measurement-based approaches compare performance metrics (e.g.,

IoPV: On Inconsistent Option Performance Variations ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

CPU usage) between two consecutive versions to detect perfor-

mance regressions. For example, Nguyen et al. [54, 55, 56] leveraged

control charts to identify performance regressions. Foo et al. [57]

proposed an approach that compares a test’s performance metrics

to historical performance metrics. Model-based approach builds

a machine learning model with a set of performance metrics to

detect performance regressions. Bodik et al. [58] leveraged a logis-

tic regression model to model system users’ behavior to improve

Cohen et al.'s model [59]. Foo et al. [60] proposed an approach

that uses ensembles of models to detect performance regressions

in heterogeneous environments.

Our work complements this line of research in the sense that we

consider the configuration aspect of configurable software systems.

This paper sheds light on the IoPV problem by first quantifying the

existence of inconsistent performance variations, then proposing

a prediction model that identifies the commits, tests, and options

that exhibit the IoPV problem.

8.2 Performance model for configurable
system

Many prior research has been conducted on predicting performance

for configurable software systems. Mühlbauer et al. [61, 62] build

performance model to identify performance changes in software

performance evolution. Unlike the latter work [62], which analyzes

a software system as a whole, our work considers the impact of con-

figurability on individual test cases, implying that our work is more

fine-grained. Because our focus is on test cases, it may aid in attribut-

ing performance variation not only to configuration options but

also to tested functionality. Such prior study provides an evidence

that performance changes during software evolution, which moti-

vates our study. Jamshidi et al. [63, 64, 65] employ transfer learning

to learn performance model across environments. DeepPerf [66]

uses a deep feed-forward neural network to model configurable

software systems. The existing studies use the historical revisions’

performance, or the sampled configuration’s performance to build

a model, to estimate the performance of future revisions. Different

from prior studies, our prediction model does not require training

on the historical performance data, but rather identifies inconsis-

tent option performance variations as software evolves. In general,

our study is orthogonal to the above approaches and our measured

performance data can be used in future research on performance.

8.3 Identifying optimal configuration for
performance

A large body of research has been conducted on performance op-

timization by finding optimal configurations [5, 6, 67, 68, 7, 69].

Siegmund et al. [5] build mathematical models that describe the

impact of a configuration on software performance based on each

option’s value. Raghavachari et al. [6] propose an iterative approach

to identify an optimal configuration in terms of performance. Guo

et al. [68] leverage non-linear regression to suggest an optimal

configuration. Nair et al. [70, 71] conduct several studies to find

well-performing configurations using rank-based and sequential

model-based approach. Oh et al. [72] propose a truly random sam-

pling to search configurations recursively to find near-optimal con-

figurations without building a performance model. Kim et al. [73]

present a lightweight tool to prune unnecessary configurations for

test execution, but they only take into account boolean options.

Other efforts identified the optimal configuration options in terms

of performance by leveraging existing optimization approaches, i.e.,

iterative search [74], multi-objective optimization [75], and smart

hill climbing [76].

Our goal is neither to identify optimal configurations nor to

debug configuration-related performance issues. In particular, we

focus on understanding whether a performance improvement or

regression is consistent through all the values of an option. That

is important, as one can improve the performance of a software

system or release new changes that do not impact the performance

under one configuration when other configurations hide a perfor-

mance regression. Furthermore, prior work on this line of research

compares the absolute performance between two values for the

same option, while this can be subjective, as discussed earlier. One

option’s value can naturally consume performance as it enables the

execution of additional features. However, performance comparison

need also considers historical performance data.

9 CONCLUSION
The performance improvement or regression of a software change

might not be equally manifested through all the possible config-

uration options’ values, which we refer to as the problem of In-

consistent Option Performance Variation (IoPV). In this paper, we

observe that IoPV is a common problem, which is difficult to man-

ually identify without running exhaustive tests, because most of

the commits do not share similar options or tests that may lead to

IoPV and hide performance regressions. We also observed that pre-

dictive models (e.g., RF) can effectively predict the IoPV problems

using four dimension of metrics that are related to code changes,

code structures, code tokens, and configurations. Our findings high-

light the importance of considering different configurations when

performing performance regression detection, and that leveraging

predictive models can mitigate the difficulty of exhaustively con-

sidering all configurations of a system during such a process. We

expect that our study inspires a wide spectrum of future studies on

configuration-aware performance regression detection.

10 DATA AVAILABILITY
The link to our replication package can be found here [77].

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jinfu Chen, Zishuo Ding, Yiming Tang, Mohammed Sayagh, Heng Li, Bram Adams, and Weiyi Shang

REFERENCES
[1] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo. 2018. Software configuration engineering in

practice: interviews, survey, and systematic literature review. IEEE Transactions on Software
Engineering. issn: 0098-5589. doi: 10.1109/TSE.2018.2867847.

[2] Xue Han and Tingting Yu. 2016. An empirical study on performance bugs for highly con-

figurable software systems. In Proceedings of the 10th International Symposium on Empirical
Software Engineering and Measurement (ESEM’16).

[3] Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically inferring performance

properties of software configurations. In EuroSys ’20: Fifteenth EuroSys Conference 2020, Her-
aklion, Greece, April 27-30, 2020. ACM, 10:1–10:16.

[4] [n. d.] Mysql bugs: #47529: query cache performance is bad on multi-core servers. https :

//bugs.mysql.com/bug.php?id=47529. (Accessed on 01/02/2023). ().

[5] Norbert Siegmund, Alexander Grebhahn, SvenApel, andChristian Kastner. 2015. Performance-

influence models for highly configurable systems. In Proceedings of the 10th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’15), 284–294.

[6] Mukund Raghavachari, Darrell Reimer, and Robert D Johnson. 2003. The deployer’s prob-

lem: configuring application servers for performance and reliability. In Proceedings of the
25th international conference on Software engineering. IEEE Computer Society, 484–489.

[7] Yixin Diao, Joseph L Hellerstein, Sujay Parekh, and Joseph P Bigus. 2003. Managing web

server performance with autotune agents. IBM Systems Journal, 42, 1, 136–149.
[8] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson. [n. d.] Configurations every-

where: implications for testing and debugging in practice. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE’14), 215–224.

[9] Tom White. 2009. Hadoop: The Definitive Guide. (1st edition). O’Reilly Media, Inc. isbn:

0596521979, 9780596521974.

[10] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser, and

Parminder Flora. 2014. Detecting performance anti-patterns for applications developed us-

ing object-relational mapping. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014). Hyderabad, India, 1001–1012.

[11] [n. d.] Https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-

default.xml. https : / / hadoop . apache . org / docs / current / hadoop - project - dist / hadoop -

common/core-default.xml. (Accessed on 01/05/2023). ().

[12] [n. d.] Configuring cassandra | apache cassandra documentation. https://cassandra.apache.

org/doc/latest/cassandra/configuration/. (Accessed on 01/05/2023). ().

[13] Jinfu Chen, Weiyi Shang, and Emad Shihab. 2022. Perfjit: test-level just-in-time prediction

for performance regression introducing commits. IEEE Trans. Software Eng., 48, 5, 1529–
1544.

[14] [n. d.] Cassandra/databasedescriptor.java. https : / / github . com / apache / cassandra / blob /

trunk / src / java / org / apache / cassandra / config / DatabaseDescriptor . java. (Accessed on

01/02/2023). ().

[15] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora.

2016. Cacheoptimizer: helping developers configure caching frameworks for hibernate-based

database-centric web applications. In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE 2016). ACM, Seattle, WA,

USA, 666–677.

[16] Christoph Laaber and Philipp Leitner. 2018. An evaluation of open-source software mi-

crobenchmark suites for continuous performance assessment. In Proceedings of the 15th
International Conference on Mining Software Repositories (MSR ’18). ACM, Gothenburg, Swe-

den, 119–130. isbn: 978-1-4503-5716-6. doi: 10.1145/3196398.3196407.

[17] Philipp Leitner and Jürgen Cito. 2016. Patterns in the chaos—a study of performance

variation and predictability in public iaas clouds. ACM Trans. Internet Technol., 16, 3, Article
15, (April 2016), 15:1–15:23. issn: 1533-5399. doi: 10.1145/2885497.

[18] Christoph Laaber, Joel Scheuner, and Philipp Leitner. 2019. Software microbenchmarking

in the cloud. how bad is it really? Empirical Software Engineering, 24, 4, 2469–2508.
[19] [n. d.] Psutil documentation — psutil 5.9.5 documentation. https://psutil.readthedocs.io/en/

latest/. (Accessed on 01/05/2023). ().

[20] Jinfu Chen and Weiyi Shang. [n. d.] An exploratory study of performance regression in-

troducing code changes. In 2017 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017, 341–352. doi: 10.1109/ICSME.

2017.13.

[21] Kundi Yao, Guilherme B. de Pádua, Weiyi Shang, Steve Sporea, Andrei Toma, and Sarah

Sajedi. 2018. Log4perf: suggesting logging locations for web-based systems’ performance

monitoring. In Proceedings of the 2018 ACM/SPEC International Conference on Performance
Engineering, ICPE 2018, Berlin, Germany, April 09-13, 2018. ACM, 127–138.

[22] Nadim Nachar et al. 2008. The mann-whitney u: a test for assessing whether two indepen-

dent samples come from the same distribution. Tutorials in Quantitative Methods for Psy-
chology, 4, 1, 13–20.

[23] Lee A Becker. 2000. Effect size (es). 12, 2006, 155–159.

[24] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones, David C.

Hoaglin, Khaled El Emam, and Jarrett Rosenberg. 2002. Preliminary guidelines for empirical

research in software engineering. IEEE Transactions on software engineering, 28, 8, 721–734.
[25] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Jianmei Guo, Catalin Sporea, Andrei

Toma, and Sarah Sajedi. 2020. Using black-box performance models to detect performance

regressions under varying workloads: an empirical study. Empirical Software Engineering.
Accepted.

[26] Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang, and Ahmed E. Hassan. 2018. Studying soft-

ware logging using topic models. Empir. Softw. Eng., 23, 5, 2655–2694.
[27] [n. d.] Ckmeans.1d.dp function | r documentation. https : / / www. rdocumentation . org /

packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp. ().

[28] [n. d.] It outages cause businesses $26.5 billion in lost revenue each year, survey. https :

//www.eweek.com/networking/it-outages-cause-businesses-26.5-billion-in-lost-revenue-

each-year-survey/. (Accessed on 01/10/2023). ().

[29] [n. d.] Hdfs-8163. using monotonicnow for block report scheduling causes test. https : / /

github.com/apache/hadoop/commit/b17d365f. (Accessed on 01/09/2023). ().

[30] [n. d.]Merge branch ’cassandra-2.2’ into cassandra-3.0. https://github.com/apache/cassandra/

commit/0fe82be8. (Accessed on 01/09/2023). ().

[31] [n. d.] Cassandra/embeddedcassandraservice.java at 0fe82be83cceceb12172d63913388678253413bc.

https://github.com/apache/cassandra/blob/0fe82be83cceceb12172d63913388678253413bc/

src/java/org/apache/cassandra/service/EmbeddedCassandraService.java#L53. (Accessed on

01/02/2023). ().

[32] Audris Mockus and David M Weiss. 2000. Predicting risk of software changes. Bell Labs
Technical Journal, 5, 2, 169–180.

[33] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics to predict

component failures. In Proceedings of the 28th International Conference on Software Engineer-
ing (ICSE ’06). ACM, Shanghai, China, 452–461. isbn: 1-59593-375-1.

[34] Ahmed E. Hassan. 2009. Predicting faults using the complexity of code changes. In Proceed-
ings of the 31st International Conference on Software Engineering (ICSE ’09). IEEE Computer

Society, Washington, DC, USA, 78–88. isbn: 978-1-4244-3453-4.

[35] T. Zimmermann, R. Premraj, and A. Zeller. 2007. Predicting defects for eclipse. In Predic-
tor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007. International
Workshop on. (May 2007), 9–9.

[36] A. G. Koru, D. Zhang, K. El Emam, and H. Liu. 2009. An investigation into the functional

form of the size-defect relationship for software modules. IEEE Transactions on Software
Engineering, 35, 2, (March 2009), 293–304. issn: 0098-5589. doi: 10.1109/TSE.2008.90.

[37] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn measures to pre-

dict system defect density. In Proceedings of the 27th International Conference on Software
Engineering (ICSE ’05). ACM, St. Louis, MO, USA, 284–292. isbn: 1-58113-963-2.

[38] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document queries. In

Proceedings of the first instructional conference on machine learning. Volume 242. Piscataway,

NJ, 133–142.

[39] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis. Chemo-
metrics and intelligent laboratory systems, 2, 1-3, 37–52.

[40] TomasMikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed

representations of words and phrases and their compositionality. In Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2 (NIPS’13). Cur-
ran Associates Inc., Lake Tahoe, Nevada, 3111–3119.

[41] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of

word representations in vector space. In 1st International Conference on Learning Represen-
tations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings.

[42] [n. d.] Zenodo.org. https://zenodo.org/record/3801975. (Accessed on 01/02/2023). ().

[43] Leo Breiman. 2001. Random forests. Machine learning, 45, 1, 5–32.
[44] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied logistic

regression. Volume 398. John Wiley & Sons.

[45] Chakkrit Tantithamthavorn, Ahmed E Hassan, and Kenichi Matsumoto. 2018. The impact

of class rebalancing techniques on the performance and interpretation of defect prediction

models. IEEE Transactions on Software Engineering.
[46] Weiyi Shang, Ahmed E Hassan, Mohamed Nasser, and Parminder Flora. 2015. Automated

detection of performance regressions using regression models on clustered performance

counters. In Proceedings of the 6th ACM/SPEC International Conference on Performance Engi-
neering, 15–26.

[47] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: a scalable tree boosting system. In Pro-
ceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining, 785–794.

[48] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural net-

works. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011 (JMLR Proceedings). Vol-

ume 15. JMLR.org, 315–323.

[49] Steve Lawrence, C. Lee Giles, Ah Chung Tsoi, and Andrew D. Back. 1997. Face recognition:

a convolutional neural-network approach. IEEE Trans. Neural Networks, 8, 1, 98–113.
[50] Alexander Grebhahn, Norbert Siegmund, and Sven Apel. 2019. Predicting performance of

software configurations: there is no silver bullet. arXiv preprint arXiv:1911.12643.
[51] Vojtech Horký, Peter Libic, Lukás Marek, Antonín Steinhauser, and Petr Tuma. 2015. Uti-

lizing performance unit tests to increase performance awareness. In Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, Austin, TX, USA, January
31 - February 4, 2015. ACM, 289–300.

[52] Zishuo Ding, Jinfu Chen, and Weiyi Shang. 2020. Towards the use of the readily available

tests from the release pipeline as performance tests. are we there yet? In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE, 1435–1446.

[53] Charles J Colbourn. 2004. Combinatorial aspects of covering arrays. Le Matematiche, 59, 1,
2, 125–172.

[54] Thanh H.D. Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser,

and Parminder Flora. 2012. Automated detection of performance regressions using statisti-

cal process control techniques. In Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering (ICPE ’12). ACM, Boston, Massachusetts, USA, 299–310. isbn:

978-1-4503-1202-8.

[55] T. H. D. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora. 2011. Au-

tomated verification of load tests using control charts. In 2011 18th Asia-Pacific Software
Engineering Conference. (December 2011), 282–289. doi: 10.1109/APSEC.2011.59.

[56] Thanh H. D. Nguyen, Meiyappan Nagappan, Ahmed E. Hassan, Mohamed Nasser, and

Parminder Flora. 2014. An industrial case study of automatically identifying performance

regression-causes. In Proceedings of the 11th Working Conference on Mining Software Repos-
itories (MSR 2014). ACM, Hyderabad, India, 232–241. isbn: 978-1-4503-2863-0. doi: 10.1145/

2597073.2597092.

[57] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Ying Zou, and Parminder

Flora. 2010. Mining performance regression testing repositories for automated performance

analysis. In Quality Software (QSIC), 2010 10th International Conference on. IEEE, 32–41.
[58] Peter Bodıék, Moises Goldszmidt, and Armando Fox. 2008. Hilighter: automatically building

robust signatures of performance behavior for small-and large-scale systems. In SysML.
[59] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Armando

Fox. 2005. Capturing, indexing, clustering, and retrieving system history. In Proceedings
of the Twentieth ACM Symposium on Operating Systems Principles. ACM, Brighton, United

Kingdom, 105–118. isbn: 1-59593-079-5. doi: 10.1145/1095810.1095821.

[60] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Ying Zou, and Parminder

Flora. 2015. An industrial case study on the automated detection of performance regressions

https://doi.org/10.1109/TSE.2018.2867847
https://bugs.mysql.com/bug.php?id=47529
https://bugs.mysql.com/bug.php?id=47529
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml
https://cassandra.apache.org/doc/latest/cassandra/configuration/
https://cassandra.apache.org/doc/latest/cassandra/configuration/
https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/config/DatabaseDescriptor.java
https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/config/DatabaseDescriptor.java
https://doi.org/10.1145/3196398.3196407
https://doi.org/10.1145/2885497
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://doi.org/10.1109/ICSME.2017.13
https://doi.org/10.1109/ICSME.2017.13
https://www.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp
https://www.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp
https://www.eweek.com/networking/it-outages-cause-businesses-26.5-billion-in-lost-revenue-each-year-survey/
https://www.eweek.com/networking/it-outages-cause-businesses-26.5-billion-in-lost-revenue-each-year-survey/
https://www.eweek.com/networking/it-outages-cause-businesses-26.5-billion-in-lost-revenue-each-year-survey/
https://github.com/apache/hadoop/commit/b17d365f
https://github.com/apache/hadoop/commit/b17d365f
https://github.com/apache/cassandra/commit/0fe82be8
https://github.com/apache/cassandra/commit/0fe82be8
https://github.com/apache/cassandra/blob/0fe82be83cceceb12172d63913388678253413bc/src/java/org/apache/cassandra/service/EmbeddedCassandraService.java##L53
https://github.com/apache/cassandra/blob/0fe82be83cceceb12172d63913388678253413bc/src/java/org/apache/cassandra/service/EmbeddedCassandraService.java##L53
https://doi.org/10.1109/TSE.2008.90
https://zenodo.org/record/3801975
https://doi.org/10.1109/APSEC.2011.59
https://doi.org/10.1145/2597073.2597092
https://doi.org/10.1145/2597073.2597092
https://doi.org/10.1145/1095810.1095821

IoPV: On Inconsistent Option Performance Variations ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

in heterogeneous environments. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. Volume 2. IEEE, 159–168.

[61] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. 2019. Accurate modeling of perfor-

mance histories for evolving software systems. In 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019.
IEEE, 640–652.

[62] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. 2020. Identifying software perfor-

mance changes across variants and versions. In 35th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020.
IEEE, 611–622.

[63] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay Patel, and

Yuvraj Agarwal. 2017. Transfer learning for performance modeling of configurable systems:

an exploratory analysis. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017.
IEEE Computer Society, 497–508.

[64] Pooyan Jamshidi,Miguel Velez, Christian Kästner, Norbert Siegmund, and Prasad Kawthekar.

2017. Transfer learning for improving model predictions in highly configurable software.

In 12th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2017, Buenos Aires, Argentina, May 22-23, 2017. IEEE Com-

puter Society, 31–41.

[65] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018. Learning to

sample: exploiting similarities across environments to learn performance models for config-

urable systems. In Proceedings of the 2018 ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. ACM, 71–82.

[66] Huong Ha and Hongyu Zhang. 2019. Deepperf: performance prediction for configurable

software with deep sparse neural network. In Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE, 1095–1106.

[67] Heng Li, Tse-Hsun (Peter) Chen, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora.

2018. Adopting autonomic computing capabilities in existing large-scale systems: an indus-

trial experience report. In Proceedings of the 40th International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP ’18), 1–10.

[68] Jianmei Guo, Krzysztof Czarnecki, Sven Apely, Norbert Siegmundy, and Andrzej Wasowski.

[n. d.] Variability-aware performance prediction: a statistical learning approach. In Proceed-
ings of the 28th International Conference on Automated Software Engineering, 301–311.

[69] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel Valov,

Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. 2018. Data-efficient performance

learning for configurable systems. Empir. Softw. Eng., 23, 3, 1826–1867.
[70] Vivek Nair, TimMenzies, Norbert Siegmund, and SvenApel. 2017. Using bad learners to find

good configurations. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. ACM, 257–267.

[71] Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. 2020. Finding faster

configurations using FLASH. IEEE Trans. Software Eng., 46, 7, 794–811.
[72] Jeho Oh, Don S. Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding near-optimal

configurations in product lines by random sampling. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, Sep-
tember 4-8, 2017. ACM, 61–71.

[73] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don S. Batory, Sabrina Souto,

Paulo Barros, and Marcelo d’Amorim. 2013. Splat: lightweight dynamic analysis for reduc-

ing combinatorics in testing configurable systems. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software En-
gineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013. ACM, 257–

267.

[74] Philipp Lengauer and Hanspeter Mössenböck. [n. d.] The taming of the shrew: increasing

performance by automatic parameter tuning for java garbage collectors. In Proceedings of
the 5th international conference on Performance engineering, 111–122.

[75] Ravjot Singh, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E Hassan. 2016. Optimizing the

performance-related configurations of object-relational mapping frameworks using a multi-

objective genetic algorithm. In Proceedings of the 7th ACM/SPEC on International Conference
on Performance Engineering. ACM, 309–320.

[76] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H. Xia, and Li Zhang. 2004. A smart hill-

climbing algorithm for application server configuration. In Proceedings of the Thirteenth
International World Wide Web Conference, 287–296.

[77] IOPV. 2023. Github.com. https://github.com/iopv/iopv. (Accessed on 01/02/2023). (2023).

Received 2023-02-02; accepted 2023-07-27

https://github.com/iopv/iopv

	Abstract
	1 Introduction
	2 Background
	3 Data Collection
	3.1 Subject Systems
	3.2 Data Gathering

	4 Preliminary Study
	5 Predicting IoPV Problems
	6 Discussion
	6.1 Generalizability of our study
	6.2 The application of our approach for predicting IoPV in interaction of configuration options

	7 Threats to Validity
	8 Related Work
	8.1 Performance regression detection
	8.2 Performance model for configurable system
	8.3 Identifying optimal configuration for performance

	9 Conclusion
	10 Data availability

