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ABSTRACT

The test failure causes analysis is critical since it determines the
subsequent way of handling different types of bugs, which is the
prerequisite to get the bugs properly analyzed and fixed. After a test
case fails, software testers have to inspect the test execution logs
line by line to identify its root cause. However, manual root cause
determination is often tedious and time-consuming, which can cost
30-40% of the time needed to fix a problem. Therefore, there is a
need for automatically predicting the test failure causes to lighten
the burden of software testers. In this paper, we present a simple but
hard-to-beat approach, named NCChecker (Naive Failure Cause
Checker), to automatically identify the failure causes for failed test
logs. Our approach can help developers efficiently identify the test
failure causes, and flag the most probable log lines of indicating the
root causes for investigation. Our approach has three main stages:
log abstraction, lookup table construction, and failure causes pre-
diction. We first perform log abstraction to parse the unstructured
log messages into structured log events. NCChecker then auto-
matically maintains and updates a lookup table via employing our
heuristic rules, which record the matching score between different
log events and test failure causes. When it comes to the failure cause
prediction stage, for a newly generated failed test log, NCChecker
can easily infer its failed reason by checking out the associated
log events’ scores from the lookup table. We have developed a pro-
totype and evaluated our tool on a real-world industrial dataset
with more than 10K test logs. The extensive experiments show the
promising performance of our model over a set of benchmarks.
Moreover, our approach is highly efficient and memory-saving, and
can successfully handle the data imbalance problem. Considering
the effectiveness and simplicity of our approach, we recommend
relevant practitioners to adopt our approach as a baseline to beat
in the future.
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1 INTRODUCTION

As modern software has become much larger and more complex,
software defects and bugs are unavoidable in such systems. These
software defects can lead to the system failures and its degraded
quality (e.g., performance, reliability and/or security) [14, 28, 32, 34,
44]. To minimize the number of delivered errors and mitigate the
risk of system failures, developers, and/or testers usually resort to
software testing by running test cases. The risk of software failures
may be considered low with passing all test cases. By contrast, the
risk of software failures is significantly high if the test case fails.
Once a test case fails, it is necessary for developers and/or testers
to further investigate the reasons for its failure by analyzing the
test execution results, which are typically stored in log files.

Developers use logs to record valuable runtime information
(e.g., important events, program variables values, trace execution,
runtime statistics, and even human-readable messages). The rich
and detailed information recorded in log files are considered as
the most important and useful resources to help developers and/or
testers understand system failures and identify potential failure
causes [2, 9, 23, 29, 33, 42]. Moreover, because logs are often the
only available data that reports the software runtime information,
logs are referred to as the most common accessible resources for
diagnosing system failures.

There are many causes that can lead to test failures (e.g., envi-
ronmental condition problem, source code problem, and software
version problem). Different types of failures have their own cor-
responding action to perform (e.g., submitting bug reports to de-
velopers, rerunning test scripts, submitting exception messages to
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software maintainers). Therefore, it is essential to identify the fail-
ure causes in a timely manner such that the corresponding experts
can be assigned shortly in order to review, analyze and fix the bugs
without further delay. On the other hand, the modern software
systems grow rapidly and become more mature. Different software,
hardware and services are tightly integrated, leading to ever higher
difficulty in diagnosing test failures. Prior work reports that more
than 100 billion US dollars has been spent on failure diagnosis pro-
cess and manual determination of a test failure root causes can
consume half of the total time for fixing a software issue [43, 44]. In
practice, it is thus preferable to have toolkits that can automatically
diagnose the cause of test failures. However, making such a tool is
difficult due to the following challenges:

(1) Dealing with information overload. Information overload
is a common challenge for different software engineering
tasks [10, 11, 22, 31, 37, 39, 40]. To find out the causes of
the test failures, software testers have to read and digest
the test logs carefully. However, these test logs are often
too large to examine manually. In a large software company,
thousands of test failures are reported daily resulting into a
huge amount of logs, with each log containing hundreds of
test steps and thousands of log lines [2, 17, 38]. For example,
in our study, we collected more than 10K logs from our
industrial partner. A test log file consists of 3-4K log lines
on average and the largest log file contains more than 550K
log lines. This huge amount of information goes far beyond
the level that testers can handle, and it is extremely difficult
and inefficient for testers to manually figure out the failure
causes [8, 26]. To alleviate such problems, practitioners have
crafted extensive regular expressions to analyze test failure
causes. However, the complexity of the runtime behaviors
during testing makes the definition and maintenance of such
regular expressions a time-consuming and error-prone task;
while the performance is still far from satisfactory [16, 47].

(2) Dealing with imbalanced datasets. As mentioned above,
the test failures are caused by various number of reasons.
However, not all failure causes happen equally. For example,
in our study, the vast majority of failure causes are bug-
related issues (i.e., 63%) and environmental problems (i.e.,
23%), the third-party library issue only accounts for a very
small proportion of all failure cases (i.e., 1.4%). Despite previ-
ous study [18] has proposed a similarity-based approach to
predict the multiple failure causes, the performance of the
similarity-based approaches will decrease dramatically on
such a highly imbalanced dataset, especially for these mi-
nority failure classes. It is thus valuable to have an approach
that focuses on few-shot samples and prevents the majority
of samples from excessively affecting the learning process.

(3) Dealing with the rapidly increased latency and mem-
ory. Considering the large-scale software systems run on
24x7 basis, the generated logs are typically huge [15, 28].
Analyzing the archived logs in such a huge volume brings
challenge to the latency and memory usages. For example,
the approaches proposed by previous studies [2] need to
compare logs against a library of historical referenced logs
to identify the test failure causes. If the library increases with

the velocity of the rapidly accumulated logs (e.g., 50 giga-
bytes per hour in Google system), simply reading these logs
into memory for comparison purposes and retrieving rele-
vant logs can cost significant time. Therefore, dealing with
the rapidly increased logs and ever-increasing computation
resources is a major challenge.

To overcome the aforementioned challenges from practice, in this
work, we propose NCChecker (Naive Failure Cause Checker), a
heuristic rule-based approach for failure causes analysis that learns
from the large volumes of test logs. NCChecker is simple and
contains three stages: log abstraction, lookup table construction
and failure causes prediction. In the first stage, we perform log
abstraction to convert each unstructured log into structured log
events. The structured information contains essential of log lines
without any noisy details and can then be used as input for the
downstream tasks. In the second stage, we create the failure reason
lookup table by using four simple but effective heuristic rules. The
rows of the lookup table are different log events abstracted from
the first stage, while the columns of the lookup table are different
failure causes (i.e., environmental issues, bug related issues, test
script issues, and third-party library issues). The cell of the lookup
table contains the relevant scores estimated by NCChecker by
using our heuristic rules. For a given log event and a failure reason,
the higher the score, the more relevant the log event is associated
with the particular failure reason. When it comes to the last stage of
failure causes prediction, for a newly reported failing test case, we
parse the test log into a sequence of existing log events. Afterwards,
for each log event, we check out the scores from the above lookup
table for different failure reasons. For a given failure reason, we
sum up the checked out scores from all the possible log events for
this specific failure reason. A failure reason with the maximum
value will be selected as the final prediction failure cause.

To evaluateNCChecker, we collect more than 10K test logs from
our industrial partner, which is a leading information and commu-
nication technology company. The experimental results show that
NCChecker outperforms several state-of-the-art approaches by a
large margin. Moreover, NCChecker performs well with respect
to the imbalanced dataset and can successfully identify the failure
causes in minority. In addition, NCChecker is efficient and con-
sumes low memory for log analysis. In summary, this study makes
the following contributions:

(1) We propose a simple but hard-to-beat approach to address
the challenges of test failure analysis. NCChecker can assist
developers and/or testers to correctly and efficiently diag-
nose test failures.

(2) We construct a dataset with more than 10K test logs to eval-
uate and verify the effectiveness of our model. The dateset
involves more than 7K failed logs and 3K passed logs in total.
The failure causes of these test logs are manually verified by
testers.

(3) We conduct comprehensive experiments to investigate the
effectiveness of our approach. The experimental results show
that our approach is effective and efficient.

(4) Considering the effectiveness and simplicity of our approach,
we recommend developers to apply our approach in practice
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Table 1: An Overview of the Collected Log Datasets

Log Type Measurement Value

Failed Logs

# Logs 7,159
Avg. Log Lines 3,905
Max. Log Lines 550,732
Total File size 3.2G

Passed Logs

# Logs 3,286
Avg. Log Lines 4,564
Max. Log Lines 270,108
Total File size 1.7G

and researchers to adopt our approach as a baseline to beat
in the future.

2 PRELIMINARY

In this section, we first present an overview of our log datasets.
Afterward, we introduce four key insights that guide the design of
the heuristic rules of our approach.

2.1 Data Overview

In this study, we collected 10,445 test logs (including 7,159 failed
test logs and 3,286 passed test logs) from our industry partner. We
counted the log lines and file size of each test log, and the overall
data statistics of the dataset are summarized in Table 1. In our work,
each failed test log is manually labeled with a specific test failure
cause. There are four types of failure causes with respect to our
collected test logs. Different types of failure causes are expected
to be handled by different kinds of solutions. We now describe the
details of different failure causes as follows:

• Bug related issues (C1): The bug related issues are con-
cerned with general software system bugs due to coding
mistakes, compatibility problems, and security vulnerabili-
ties etc,. When the bug related issues occur, it is necessary
to notify the software developers to identify, reproduce and
fix the corresponding bugs.

• Environmental issues (C2): The environmental issues are
related to the problems of the network, CPU, memory, op-
erating system, etc. When the environmental issues occur,
software testers are responsible to diagnose the system envi-
ronment.

• Test script issues (C3): The test script issues related to the
defects within the test scripts (e.g., expressions, arguments,
statements). When test script issues occur, software testers
are responsible to diagnose and debug the test scripts.

• Third party library issues (C4): The third-party library
issues are associated with defects or incompatible problems
in the third-party libraries, e.g., there are problems regarding
the automatic logging system.When third-party library prob-
lems appear, it is necessary to ask developers to diagnose
the third-party library software.

The distribution of the above four types of test failure causes
are summarized in Table 2. From the table, we can see that there
is an unequal distribution of different failure causes among test

Table 2: Different Types of Failure Causes

ID Failure Causes Count Percentage

C1 bug related issues 4, 559 63.7%
C2 Environmental issues 1, 664 23.2%
C3 Test script issues 835 11.7%
C4 Third party library issues 101 1.4%

Sum - 7, 159 100.0%

return user view with return command
[DTB] system-view 

[~R75]
[DTB] delete rollback checkpoint
<R75>
cmd.pathinfo = /usr/local/cmd/cfg.rb:357
method = /usr/local/dev/dev.rb:1161

[DTB] system-view 

return user view with return command
The slave board is not in position
[~240K-5]
[DTB] delete rollback checkpoint
<240K-5>
cmd.pathinfo = /usr/local/cmd/cfg.rb:259
method = /usr/local/dev/dev.rb:1012

e0 |   [DTB] system-view 
e1 |   return user view *
e2 | The slave board is not in position
e3 | [~240K-5]
e4 |   [DTB] delete *
e5 |   <240K-5>
e6 |   cmd.pathinfo = *
e7 |   method = *

e1  |   return user view with *
e8  |   [~R75]
e4  |   [DTB] delete *
e9  |   <R75>
e6  |   cmd.pathinfo = *
e7  |   method = *

e0  |   [DTB] system-view 

Failed Log
Abstraction

Passed Log
Abstraction

Figure 1: Log abstraction of failed/passed logs

logs. For example, the vast majority of the failure causes are the C1
(bug related issues) and C2 (environmental issues), which make up a
very large proportion (i.e., over 86%) of all the failed test cases. The
number of failed tests caused byC3 (test script issues) andC4 (third-
party library issues) only account for a relatively small number of
the failed test cases. Especially regarding C4, only 101 test failures
are caused by the third-party library issues, which comprises only
1.4% among all failed test cases.

2.2 Key Insights

Our approach has been inspired by the following four key insights,
which lead to our solution for this task.
Key Insight 1: Logs are often too large and too unstructured

to analyze manually. First of all, the log files are often very large.
For example, as shown in Table 1, the failed test log contains 3,905
log lines on average, with the largest log file containing over 550K
log lines. Testers have to go through the entire log file to identify
the log lines that correspond to the test failure. The sheer amount
of log data makes its analysis a time-consuming and challenging
task. Moreover, the log files are highly complex and unstructured.
We present two snippets of failed/passed logs in Fig. 1. As shown in
Fig. 1, a test log often involve a sequence of test steps (e.g., system-
view and delete rollback checkpoint shown in orange text), each test
step is followed by multiple lines of echo messages, which contains
the state of the object (e.g., ⟨240K-5⟩ and ⟨R75⟩), environment vari-
ables (e.g., cmd.pathinfo), exception messages (e.g., The slave board
is not in position), etc.
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To overcome this challenge, we adopt a log abstraction technique
in our approach. Log abstraction can significantly reduce the num-
ber of unique lines in a log. The raw log lines often contain dynamic
run specific information (e.g., file path, IP address) that can hinder
the automatic analysis, log abstraction can extract the log event
by abstracting away dynamic parameters. For example, in Fig. 1,
the second last log line of the failed log (“cmd.pathinfo=/usr/
local/cmd/cfg.rb:259”) and the passed log (“cmd.pathinfo=
/usr/local/cmd/cfg.rb:357”) can be abstracted with the same
log event e6 (cmd.pathinfo=*). After removing the superfluous
information, the abstract log line only contains the essence of each
log line without noisy details. As a result, each log will be abstracted
a sequence of log events which record the system status and opera-
tions. For example, the failed log snippet is abstracted into eight
log events (i.e., e0 - e7) after the log abstraction process.
Key Insight 2: The failed log events are more important than

the passed log events for identifying failures causes. We
make the following observations: test failure locations should be
contained in the lines of a failed log. On the contrary, a passed
log should not contain the lines related to a failure. Therefore, log
lines that appear in both failed test logs and passed test logs are
unlikely to link to a fault. For a failed test log, most of the log lines
record normal operations, only a small percentage of log lines are
problematic and indicate problems. For example, as shown in Fig. 1,
the failed log contains a log event e1 (i.e., return user view *),
However, the passed log also contains this log event, so it is unlikely
that the test failure is related to the log event e1. In contrast, the log
event e2 (the slave board is not in position) occurs only in
the failed log, indicating the potential cause for this failure. Based
on our assumption, we should focus on the log events that are only
covered by failed test logs.
Key Insight 3: The single-problem log events are more im-

portant than the multi-problem log events for identifying

failure causes. As mentioned above, a log event can occur in both
failed test logs and passed test logs. Similarly, a log event can be
relevant to a single failure cause or multiple failure causes. Based on
the number of failure causes, we further divide the failed log event
into single-problem log events and multi-problem log events. That
is, if a log event is only relevant to one particular type of failure
cause, we then consider this log event as a single-problem log event.
Otherwise, if a log event is relevant to two or more types of failure
causes, we consider this log event as a multi-problem log event. For
example, as shown in Fig. 2, the log event e2 is associated with four
types of failures (i.e., C1-C4), which is a multi-problem log event.
The log event e3 is only relevant to C2 (environmental issues) in his-
tory, which is a single-problem log event. In this study, we assume
that multi-problem log events are less helpful in identifying the
root cause of a specific test failure. In contrast, the single-problem
log event that only happens with respect to a particular failure, is
more likely to be useful in failure causes prediction.
Key Insight 4: The minority-class log events are more im-

portant than the majority-class log events for identifying

failure causes. Our last insight comes from the challenge of the
imbalanced dataset. As discussed in Section 2, each failed test log
is manually labeled with a failure cause verified by testers. How-
ever, most of the failed logs are associated with the C1 (bug related
issues) and C2 (environmental issues) (more than 86%). Only a small

percentage of failed logs are caused by C3 (test script issues) and
C4 (third party library issues). In this study, regarding the single-
problem log events, if the log event is associated with C1 or C2,
we consider this log event as a majority-problem log event; if the
log event is associated with C3 or C4, we consider this log event
as a minority-problem log event. For example, as shown in Fig. 2,
the log event e3 is a majority-problem log event (associated with
C1 only), while the log event e8 is a minority-problem log event
(associated with C4 only). When predicting the potential failures,
even though e3 and e8 both occur twice in history, considering the
C4 (third party library issues) is comparatively rare than the C1
(bug related issues), the minority-problem event log e8 clearly has
greater predictive power for identifying failures causes.

3 OUR APPROACH

We first define the task of identifying test failure causes for our
study. We then present the details of our proposed approach. The
overall framework of our approach is illustrated in Fig. 2.

3.1 Task Definition

The goal of our work is to automatically predict the failure cause of
a test based on analyzing the test logs. In particular, given the his-
torical passed logs P, the historical failed logs F and the associated
failure causes C, the failure cause prediction problem is to predict
Cnew for the newly arisen test failures via analyzing the unseen
failed log Fnew with the help of ⟨P, F,C⟩. We formulate this task as
a multi-class classification problem. More formally, our task is to
find a function Predict so that:

Predict(Fnew |⟨P, F,C⟩) = Cnew (1)

3.2 Approach Details

In this paper, we propose NCChecker, whose overall framework
is presented in Fig. 2. NCChecker consists of three stages: log
abstraction, lookup table construction and failure causes prediction.
In short, the unstructured raw logs are parsed into a sequence of log
events by log abstraction. Then based on our previous insights and
observations, we propose heuristic rules tomake a lookup table. The
lookup table records the predictive power scores for different log
events regarding different failure causes. Finally, during the failure
cause prediction stage, for a newly failed test log, NCChecker can
easily infer the root cause by checking from the lookup table. More
details are presented in the following sub-sections.

3.2.1 Log Abstraction. As discussed asKey Insight 1, the raw logs
are too large and unstructured to analyze manually. To overcome
the unstructured nature of test logs and reduce the large amount
of log messages, we first use log abstraction techniques to parse
unstructured, free-text log messages into structured log events.
The common way of log abstraction in industry is to write regu-
lar expression according to the logging statements in the source
code. However, due to the rapidly growing log data and frequently
software updates, it is too costly and time-consuming to manually
construct regex. Therefore, automatic log parsing without source
code is necessary. Previous studies have proposed different log ab-
straction techniques [5, 7, 12, 25, 27], in this study, we adopt the
widely used log parser, Drain [13], for our log abstraction tasks.
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Figure 2: Workflow of our approach

In general, each log line contains two parts: the static part and
the dynamic part. The static part describe the semantic meaning
of a program event, while the dynamic part includes parameters
(e.g., file name) that record system attributes. The goal of automatic
log abstraction is to separate the static part from the dynamic part.
In particular, the log parser can abstract a group of similar log
messages into a unique log event, and mask the dynamic part with
a placeholder (usually by an asterisk). For example, by applying the
Drain log parser, the log message “Took 10 seconds to build instances”
can be abstracted with the log event “Took * seconds to build
instances”, where the static part represents the common part of
similar log messages and the asterisk represents the dynamic part.

After log abstraction, each log line is transformed into a unique
log event, and a log file is transformed into a sequence of log events.
As a result, for a given passed log p, it will be parsed into a sequence
of log events, i.e., Ep = {ep1 , ep2 , ..., epm }. Similarly, a failed log f

will be parsed into Ef = {ef1 , ef2 , ..., efn }. For example, as shown
in Fig 1, the failed log snippet is sequentially represented by its
corresponding log events sequence {e0, e1, ..., e7}.

3.2.2 Lookup Table Constructing. After parsing all logs (including
passed logs and failed logs) into log events, in this step, we construct
a lookup table for representing the predictive power of each log
event with respect to different failure causes. The lookup table is
constructed by the following steps:

1. Diff with pass. Log events that both occur in passed log and
failed log are unlikely to reveal a fault, which may introduce noise
for failure causes prediction. Inspired by our Key Insight 2, we
assume that the failed log events aremore important than the passed
log events for identifying failure causes. After log abstraction, each
passed log is parsed into a set of log events, we collect all log
events occur in passed logs to construct a passed log events pool,
P. Similarly, we collect all the log events occur in failed logs to
construct a failed log events pool, F . In this step, we perform
Diffwithpass operation to remove all log events that appear in passed
logs from failed logs. Specifically, for each log event in F , if it
also appears in P, we then remove this log event from F . After
performing the Diffwithpass operation, all the log events in F occur
only in failed logs, denoted as F ′. For example, as shown in Fig. 1,
only the log events e2, e3, e5 (highlighted in red color) are retained
for subsequent log analysis, while other log events (e.g., e0, e1) are
removed.

2. Lookup table initialization. In this step, for each log event in
F ′, we count its failed times with respect to different failure causes.
Specifically, we initialize a lookup table T, where the rows are log
events in F ′, the columns are different failure causes Ci (1 ≤ 𝑖 ≤ 4).
The cell value 𝑐𝑖 𝑗 represents the number of times that the log event
𝑒𝑖 failed according to the failure cause Cj.

In particular, the lookup table T initialization is conducted as
follows: First, all the cell values in table T are initialized to zero.
Given the failed test log fi and its failure cause Ci, for each log
event ek in F ′, if ek occurs in fi, we then increment the count by 1
regarding the log event ek and the failure cause Ci. After the table
initialization, the lookup table T records the failed frequency of all
log events in F ′ regarding different failure causes. For example, as
shown in Fig. 3, the log event e2 occurs 10 times in total, two of
which are associated with bug related issues (C1), four times with
environmental issues (C2), once with test script issues (C3) and three
times with third party library issues (C4). The log event e10 occurs
five times in total, all of which are associated with environmental
issues (C2).

3. Lookup table updating with single/multi-problem log

events. Inspired by our Key Insight 3, we assume the single-
problem log events are more important than the multi-problem
log events. Therefore in this step, we would like to increase the
predictive power of single-problem log events and decrease the
predictive power of multi-problem log events. To do this, we first
normalize the multi-problem log event frequency values to the
range of (0, 1). In particular, regarding the multi-problem log event
ei, the updated cell value 𝑐′

𝑖 𝑗
is calculated as follows:

𝑐′𝑖 𝑗 =
𝑐𝑖 𝑗∑4
𝑗=0 𝑐𝑖 𝑗

(2)

For example, the log event e2 is associated with several failure
causes, which is amulti-problem log event. After updating themulti-
problem log event, the original count value of 𝑒2 (i.e., [2, 4, 1, 3])
will be normalized as [0.2, 0.4, 0.1, 0.3], which represents the 20%
of 𝑒2 contributes to C1.

In contrast, regarding the single-problem log event ek, the up-
dated cell value 𝑐′

𝑘 𝑗
is calculated as follows:

𝑐′
𝑘 𝑗

=


0.0 if 𝑐𝑘 𝑗 = 0
1.0 if 𝑐𝑘 𝑗 = 1
𝑙𝑜𝑔2 (1 + 𝑐𝑘 𝑗 ) if 𝑐𝑘 𝑗 > 1

(3)

For example, the log event e3 and e5 are only associated with C2,
which are single-problem log events. The original count value will
be updated.

4. Lookup table updating with minority/majority-class log

events. Inspired by our key insight 4, we assume the minority-
class log events are more important than the majority-class log
events. Therefore we aim to increase the predictive power of the
minority-class log events, and decrease the predictive power of the
majority-class log events. To do this, we give different weights to
different log events for different log events based on whether they
belong to the majority or the minority classes. In particular, we use
the ICF (inverse class frequency) to operationalize the importance
of a log event to different class frequencies. Regarding a single log
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e1
e2 
e3
e4
e5

e2 
e3
e5

e2 
e10

Log event C1 C2 C3 C4
e2 2 4 1 3
e3 2 0 0 0
e5 0 1 0 0

e10 0 5 0 0
e11 0 0 0 2

1. Diff With Pass 2. Initialization 3. Updating Singe/Multi
problem log event

4. Updating Minority/Majority
class log event

Log event C1 C2 C3 C4
e2 0.2 0.4 0.1 0.3
e3 1.58 0 0 0
e5 0 1 0 0

e10 0 2.59 0 0
e11 0 0 0 1.58

Log event C1 C2 C3 C4
e2 0.2 0.4 0.1 0.3
e3 2.43 0 0 0
e5 0 4.54 0 0

e10 0 11.76 0 0
e11 0 0 0 99.14

Figure 3: Lookup Table Construction of NCChecker

event ei, the updated cell value 𝑐′′
𝑖 𝑗
is calculated as follows:

𝑐′′𝑖 𝑗 = 𝑐
′
𝑖 𝑗 × 𝐼𝐶𝐹Cj (4)

𝐼𝐶𝐹Cj =
𝑁

𝑁Cj

(5)

where 𝐼𝐶𝐹Cj represents the inverse class frequency value with
respect to failure cause Cj. 𝑁 denotes the total number of failed
test logs and 𝑁Cj denotes the number of failed test logs that belong
to Cj. The intuition here is to assign a higher weight to the log
events associated with minor classes. For example, the log event
e11 is associated with failure cause C4, which is a minority-class
log event. Therefore its value will be updated by multiplying 𝐼𝐶𝐹C4
(i.e., 62.75). For the majority-class log event e3, its value will be
updated by multiplying 𝐼𝐶𝐹C1 (i.e., 1.54). After updating, the log
event e11 has a greater predictive power than e3 due to rare class
frequency.

After the initialization and updating process, the lookup table T
represents the predictive power of different log events for different
failure causes. The higher the value, the stronger the indicator the
log event is associated with the failure cause.

3.2.3 Failure cause prediction. After constructing the lookup table
T, we can easily check out the matching score between a failed
log event and a specific failure cause. When it comes to the failure
cause prediction stage, for a given newly failed test log, we first
perform the log abstraction to parse the log into a sequence of log
events. After that, for each log event in the sequence, if the log event
appears in the lookup table T, we check out the matching score
of this log event with respect to different failure causes. Finally,
we sum up all the associated row values, the failure cause with
the highest score will be reported as the final prediction result.
The log events with the maximum values will be highlighted for
investigation.

4 EMPIRICAL EVALUATION

In this section, we first present the baselines, the evaluation metrics
and our experiment settings. We then describe the results of our
automatic evaluation results.

4.1 Baselines

To demonstrate the effectiveness of our proposedmodel,NNChecker,
we compared it with the following chosen baselines:

• Random Guess (RG). Regarding the test failure cause pre-
diction, the RG model randomly determine a failure cause
for a given failed test log according to the data distribution.
In particular, we predict the failure cause randomly and we
repeat the random prediction 100 times to get a median per-
formance.

• The Majority Class Classifier (MCC). Considering the
data imbalance problem in our dataset, e.g., 63% of the test
failures are caused by bug related issues, it is reasonable to
use the majority class classifier as a baseline for comparison
purposes. In particular, the majority classifier model predicts
the most frequent class label (i.e., bug related problem in our
study) for all test samples.

• CAM. Jiang et al. [18] proposed a a novel approach CAM
(Cause Analysis Model) that infers test failure causes by
analyzing test logs. CAM runs TF-IDF across the logs to
determine which terms had the highest importance, it then
construct attribute vectors based on test log terms. When
a new test alarm occurs, CAM calculates the log similarity
between the new test log and the historical test logs. Finally,
the unseen failed test log is categorized by examining the
categories of the K nearest neighbours.

• LogFaultFlagger. Amar et al. [2] recently proposed an ap-
proach named LogFaultFlagger to predict bugs and localize
faults in test logs via mining historical test logs. LogFault-
Flagger vectorizes the logs with line-IDF metrics and uses
EKNN to identify which logs are likely to lead to product
faults and which lines are the most probable indication of
the failure. We adapt the LogFaultFlagger for our task of
failure cause prediction.

4.2 Evaluation Metrics

Since our task is a multi-class classification problem, we adopted
the widely-accepted evaluation metrics, i.e., Precision, Recall and
F1-score to evaluate the performance of NCChecker and baseline
methods. We define the following statistics with respect to our task:
(i) 𝑇𝑃𝑘 (True Positives): 𝑇𝑃𝑘 is the number of test logs assigned
correctly to class 𝑘 . (ii) 𝐹𝑃𝑘 (False Positives): 𝐹𝑃𝑘 is the number
of test logs that do not belong to class 𝑘 but assigned to class
𝑘 incorrectly by classifier. (iii) 𝐹𝑁𝑘 (False Negatives): 𝐹𝑁𝑘 is the
number of test logs that do not assigned to class 𝑘 by classifier but
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which actually belong to class 𝑘 . Our evaluation metrics are defined
as follows:

• Precision: Precision is the fraction of true positive samples
divided by the total number of positively predicted samples
(column sum). The precision metric for class 𝑘 , namely 𝑝𝑘 ,
is defined as follows:

𝑝𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
(6)

The precision over all𝐾 categories (macro average precision)
is defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑𝐾
𝑘=1 𝑝𝑘

𝐾
(7)

• Recall: Recall is the fraction of true positive samples divided
by the total number of positively classified samples (row
sum). Similarly, the recall metric for class 𝑘 , namely 𝑟𝑘 , is
defined as follows:

𝑟𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
(8)

The recall over all categories (macro average recall) is defined
as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑𝐾
𝑘=1 𝑟𝑘

𝐾
(9)

• F1-score: F1-score is the harmonic mean of precision and
recall, which combines both of the two metrics above. It
evaluates if an increase in precision (or recall) outweighs a
reduction in recall (or precision), respectively. The F1-score
metric for class k, namely 𝑓 1𝑘 , is defined as follows:

𝑓 1𝑘 =
2 × 𝑝𝑘 × 𝑟𝑘
𝑝𝑘 + 𝑟𝑘

(10)

The F1-score over all categories (macro average f1-score) is
defined as follows:

𝐹1 =
∑𝐾
𝑘=1 𝑓 1𝑘
𝐾

(11)

The higher an evaluation metric, the better a method performs.
It is worth mentioning that we did not consider accuracy due to
data imbalance.

4.3 Experimental Settings

We divide our dataset into training set and testing set, the training
set is used for learning and building the lookup table, and the testing
set is hold out to evaluate the performance of our approach (we did
not use validation in this study since there are no hyper parameters
of our model for fine tuning). In particular, we randomly sampled
10% of failed test logs for testing and kept the rest for training.
The details of the training and testing samples as well as the log
events are summarized in Table 3. All experimental results are
conducted over a server equipped with Intel(R) Core(R) CPU i7-
4790 at 3.60GHZ on 32GB RAM, four cores, and 64-bit Windows 10
operating system.

Table 3: Statistics of our training/testing Datasets

Type Measurement Count

C1. Bug related

Train Logs 2,600
Test Log 289

Train Log events 91,237
Test Log events 11,916

C2. Environment

Train Logs 885
Test Log 99

Train Log events 26,388
Test Log events 5,112

C2. Test Script

Train Logs 470
Test Log 47

Train Log events 18,724
Test Log events 5,062

C2. TP Lib

Train Logs 65
Test Log 8

Train Log events 5,166
Test Log events 1,563

4.4 Quantitative Analysis

4.4.1 RQ1: The Effectiveness Evaluation. To evaluate the effective-
ness of our proposed model, i.e., NCChecker, we compare NC-
Checker with the baseline methods on our testing set in terms
of overall Precision, Recall and F1-score. The evaluation results is
shown in Table 4. From the table, we have the following observa-
tions:

• The currently state-of-the-art models, e.g., CAM and LFF
performs suboptimal on our evaluation set. The CAM creates
TF-IDF vectors based on the raw log messages and ranks the
logs using cosine similarity. While the LFF parses the raw
logs into log events and creates the TF-Line IDF vectors based
on the parsed log events. Considering the constructed TF-
IDF vectors are relatively sparse, the retrieval-based models
(i.e., CAM and LFF) can easily ignore the critical log events,
which contain the key information for indicating the failure
root cause correctly.

• Our model, i.e., NCChecker, outperforms all the baseline
methods by a large margin in terms of all evaluation met-
rics. We attribute this to the following reasons: First, it uses
the log abstraction techniques to parse the unstructured log
lines into structured log events, instead of recording the over-
whelming amount of log messages, NCChecker transforms
a log file into a sequence of log events, which can extract
useful patterns from raw log messages. Second, compared
with the information retrieval based models, which rely on
the test log from existing database, our model predicts the
failure causes by using finer-granularity log event elements.
We designed heuristic rules to boost the predictive power of
the critical log events, when two raw logs are dissimilar but
share a number of critical log events, our model can easily
make the correct predictions by checking these critical log
events.
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Table 4: Overall Effectiveness Evaluation

Measure Precision Recall F1

RG 25.3% 25.0% 19.7%
MCC 25.0% 16.4% 19.8%
CAM 53.1% 61.8% 55.0%
LFF 37.2% 48.3% 37.8%

NCChecker 72.0% 72.4% 71.9%

Answer to RQ-1: How effective is our approach for test

failure causes prediction? – We conclude that our approach

is highly effective for identifying the root causes of failed

test logs.

4.4.2 RQ2: Class-Wise Evaluation. The test failures are caused by a
various of failure causes. Accurately identifying the failure causes
are important because different actions need to be taken subse-
quently. One of the key challenges with respect to our task is that
the class imbalance problem, i.e., the majority classes are more
frequent occurring than the minority classes. For example, the C1
(bug related issues) accounts for more than 63% of all failed test
logs. To verify the effectiveness of our model for identifying failure
causes with respect to different failure cause classes, we conduct
a class-wise evaluation in this research question. In particular, we
evaluate the performance of NCChecker and baselines regarding
different types of failure causes. The evaluation results are shown
in Table 5. It can be seen that:

• It is obvious that all the approaches (excluding ours) achieve
a better performance on majority classes (e.g., C1 and C2)
than the minority classes (e.g., C3 and C4). This is because
the majority class have more examples, the models can learn
meaningful patterns from these abundant training samples,
while it is more difficult to explore theminority class patterns
given its smaller sample size and skewed class distribution.

• The RG and MCC model achieve the worst performance
with respect to the minority class failure causes. This is
reasonable because the prediction results of RG and MCC
model simply rely on the proportions of the majority classes.
The likelihood of assigning a test failure into the minority
classes is very small.

• The CAM and LFF model have their advantage as compared
to the RF andMCCmodel. It is notable that CAM can achieve
a comparable (i.e., C1) or better (i.e., C2) performance than
our approach, but its predictive performance on minority
classes are still suboptimal. This is because that the CAM
and LFF are information retrieval based models. Their per-
formance heavily rely on whether similar test logs can be
found and how similar the test logs are. Considering the
limited number of test logs belong to the minority classes,
similar logs are hard to find in the training set.

• Regarding the minority class, it is obvious that our model,
NCChecker, outperforms all other baselines. Rather than
checking the similar test logs in history, NCChecker main-
tains a lookup table by estimating the predictive power of

Table 5: Class-wise Effectiveness Evaluation

Type Approach Precision Recall F1

C1. Bug

RG 26.7% 65.2% 37.9%
MCC 65.6% 100.0% 79.2%
CAM 83.3% 81.4% 82.3%
LFF 80.7% 71.9% 76.0%

NCChecker 85.4% 80.9% 83.1%

C2. Env

RG 26.5% 23.4% 24.9%
MCC 0.0% 0.0% 0.0%
CAM 69.4% 73.9% 71.5%

LFF 35.3% 41.1% 38.0%
NCChecker 60.2% 67.0% 63.4%

C3. Test

RG 19.6% 9.4% 12.7%
MCC 0.0% 0.0% 0.0%
CAM 45.6% 42.0% 43.7%
LFF 28.6% 30.3% 29.4%

NCChecker 56.5% 66.7% 61.2%

C4. Lib

RG 2.9% 1.8% 3.3%
MCC 0.0% 0.0% 0.0%
CAM 14.3% 50.0% 22.2%
LFF 4.1% 50.0% 7.7%

NCChecker 85.7% 74.9% 80.0%

the historical failed log events, we designed heuristic rules
to increase the predictive power of the minority-class log
events. As a result, if the minority-class log events appear
in the minority-class test logs, our model are more likely
to infer correct failure causes regardless of the size of the
minority-classes.

• There is still a large room for our approach to improve re-
garding minority-classes. For example, the precision of our
model for C3 is 54.3%, which means around half of the test
script failure test logs are wrongly assigned. The reason may
be that there are log events only available in the testing set
and not in the training set, our model is unable to handle
the out-of-table log events.

Answer to RQ-2: How effective is our approach for predict-

ing different types of failure causes? –We conclude that our

approach is effective for failure causes prediction with re-

spect to different failure types and can successfully handle

the minority classes.

4.4.3 RQ3: Ablation Evaluation. The key to our test failure cause
prediction task is how effectively the lookup table can capture the
relationship between different log events and failure causes. We pro-
pose three key heuristic rules guiding us to build the lookup table.
Specifically, we construct the lookup table by following four key
steps: step1 (diff with pass), step2 (lookup table initialization), step3
(lookup table updating with single/multi-problem log events), step4
(lookup table updating with minority/majority-class log events). To
study the effectiveness of our three heuristic rules, we conduct an
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Table 6: Ablation Evaluation

Measure Precision Recall F1

Drop 1 39.7% 58.3% 39.1%
Drop 2 44.9% 36.7% 17.2%
Drop 3 48.2% 78.1% 55.3%
NCChecker 72.0% 72.4% 71.9%

ablation analysis to evaluate their effectiveness and contributions
one by one. We compare NCChecker with three of its incomplete
versions:

• Drop 1:We drop step1 (diff with pass) in this version. The
lookup table is constructed by step2 (lookup table initializa-
tion), step3 (lookup table updatingwith single/multi-problem
log events) and step4 (lookup table updatingwithminority/majority-
class) only.

• Drop 2: In this version, we drop step3 (lookup table up-
dating with single/multi-problem log events). The lookup
table is constructed by step1 (diff with pass), step2 (lookup
table initialization), and step4 (lookup table updating with
minority/majority-class) only.

• Drop 3: In this version, we drop step4 (lookup table updat-
ing with minority/majority-class) and construct the lookup
table only with step1 (diff with pass), step2 (lookup table ini-
tialization), step3 (lookup table updating with single/multi-
problem log events).

• NCChecker: Our model which considers all the steps to
construct the lookup table.

The experimental results are shown in Table 6. From the table,
several points stand out:

• No matter which step we remove, the overall perfor-

mance of ourmodel decreases.This shows the importance
and usefulness of our key insights. All three assumptions
provide valuable information to construct the lookup table
respectively.

• Drop 2 achieves the worst performance. It is clear that
there is a significant drop overall in every evaluationmeasure
after removing step3. This signals that the step3 (i.e., lookup
table updating with single/multi problem log events) is the
most important of all the steps for constructing the lookup
table and has major contributions to the overall performance.

Answer to RQ-3: How effective is our use of three heuristic

rules for constructing lookup table? – We conclude that

all the three heuristic rules are effective and helpful to

enhance the performance of our model.

4.4.4 RQ4: Computation Resources Evaluation. Due to the huge
number of test logs, the rapidly increasing computation resources
(e.g., computation time and memory usage) are key challenges
for model design. In this research question, we analysis the time
consumption as well as memory consumption of our model.

Regarding the time consumption, we record the training time and
testing time of NCChecker. The time consumption of NCChecker

on training is mostly for the log abstraction. It takes three hours to
parse all the test logs (including failed test logs and passed test logs)
using Drain. However, we argue that the log abstraction process is
a one-time cost. The subsequent operations of making the lookup
table is highly efficient. According to the Equations defined in
Section 3, the lookup table can be constructed by going through all
the log events only once, which is dependent on the sizes of the
training logs and generated log events.

The time cost advantage of NCChecker is more obvious in
terms of the testing procedures. Regarding the evaluation, the time
complexity of IR based models are𝑂 (𝑁 ), while the time complexity
of our model is 𝑂 (1). This is because for a given test log, IR based
models calculate the similarity score across all training logs. For
our approach, the failed reason can be predicted by checking out
the associated log events scores from the lookup table directly.
NCChecker takes 8.75 seconds for analyzing the 443 test logs,
which means it costs only 20ms on average to check each log.

Regarding the memory consumption, the raw log files are often
very large. In particular, it cost over 3GB to store the raw log files.
After log parsing, all the log events and their frequency are recorded
and the memory consumption is significantly dropped (from 3GB
to 6M). By employing our approach, we only need manage and
maintain a relatively small size lookup table (i.e., 8.9KB), which
records all relevant scores between different log events and failure
causes, for diagnosing test failures.

Answer to RQ-4: How effective is our approach in terms

of the computation resources? – We conclude that our ap-

proach is efficient and memory saving.

5 RELATEDWORK

5.1 Log-Based Root Cause Analysis

Root cause analysis, also known as failure diagnosis, aims to iden-
tify the underlying causes leading to a test failure that has affected
end users. Root cause analysis is a crucial step for effectively re-
solving the software problems, which is extremely expensive and
inefficient [14, 41, 44].

As modern software system grows rapidly and becomes more
mature, test failures are more and more difficult to analysis and
diagnose [4, 20, 46]. For example, Jiang et al. [19] reported that
problem debugging is time-consuming and challenging which can
be improved by using logs. They suggested developers to automate
failure diagnosis process to speed up the problem fixing time. Zhou
et al. [45] studied the failure debugging process with respect to
microservice systems. They concluded that proper tracing and vi-
sualization techniques can improve failure diagnosis, which shows
the necessity for intelligent log analysis tools.

Researchers have developed different techniques for automating
the log-based failure cause diagnosis [2, 18, 36]. The works most
similar to ours are the retrieval-based root cause analysis methods.
In particular, retrieval-based methods retrieve similar failures in
history for better diagnosing newly-occurred failures. Shang et
al. [36] focused on diagnosing applications in Hadoop system by in-
jecting failures manually and analyzing the logs. Nagaraj et al. [30]
investigated the system behaviors in good or bad performance.
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They adopted machine learning techniques to automatically infer
failures by analyzing the correlations between performance and
system components. Jiang et al. [18] proposed CAM to failure cause
analysis for test alarm in system and integration testing. For a given
test alarm, they searched the test logs of historical test alarms that
may have the same failure cause with the new test log. In particular,
the similar matching is conducted by using K nearest neighbors
(KNN) algorithm between log vectors, where log vectors are built
on test log terms extracted by term frequency-inverse document
frequency (TF-IDF). Following that, Amar et al. [2] extended CAM
by removing log lines that passed the test while keeping log lines
only occurred in failed test logs. Then the historical logs were vec-
torized by a modified Line-IDF metrics. The vectors were utilized
to utilized to train an EKNN model to identify most probable log
lines that led to the test failures. Even though the retrieval-based
methods are proposed to predict the test failure causes, they per-
formed relatively poor with respect to the minority test failure
causes, because they heavily rely on the sizes of the similar test
logs, our approach based on heuristic rules can effectively handle
the minority failure causes.

5.2 Log-Based Failure Prediction

Different from the root cause analysis which diagnoses the causes
after the test fails, failure prediction aims to proactively predict the
failure before it happens. Failure prediction is essential for predic-
tive maintenance due to its ability to prevent failure occurrences
and maintenance costs [1].

A common practice of failure prediction is analyzing the system
logs, which record the system status, changes in configuration,
operational maintenance, etc. The source of failure can be divided
into two categories, homogeneous systems, and heterogeneous
systems, and the mainstreaming failure prediction approaches of
different categories are different [14].

In homogeneous systems (e.g., large-scale supercomputers), fail-
ure prediction approaches mainly focus on modeling sequential
information. Sahoo et al. [35] collected the system log of compo-
nents’ health status and leveraged several time series models to
predict the health of each node in the system through indication
metrics, such as the percentage of system utilization, usage of net-
work IO, and system idle time. Klinkenberg et al. [21] trained a
binary classification model from the system log and detected the
potential node failure given a time sequence of monitoring data
collected from each node. Das et al. [6] adopted deep learning tech-
nology and proposed Desh to predict the failure of each node. It
firstly recognized the log events chain leading to node failure, then
it trained the log events chain recognition with expected lead times
to node failure. Finally, Desh can predict the lead time of specific
node failure.

In heterogeneous systems (e.g., cloud systems), failure predic-
tion approaches mainly focus on modeling relationships among
multiple components. Chen et al. [3] proposed AirAlert to find the
dependence between the alerting signal extracted from system logs
by the Bayesian network. Then AirAlert predicted failure based
on a gradient boosting tree. Lin et al. [24] designed MING which

combined the LSTM and Random Forest model to o find the rela-
tionship between logs and the failure from temporal and spatial
features.

6 THREATS TO VALIDITY

Threats to internal validity are related to potential errors in
the code implementation and experimental settings. To reduce the
errors in automatic evaluation, we have double checked the code
of our approach and baselines. Regarding the experiment results,
we have carefully tuned the parameters of baseline approaches and
used them in their highest performing settings for comparison.
Threats to external validity are related to the generalizability of
the our experimental results. The generalizability of the root cause
prediction algorithm in NCChecker should be further explored,
since our algorithm may be sensitive to datasets. To alleviate this
threat, we evaluate our approach over industry datasets with more
than 10K test logs. The ground truth of our dataset are of high
quality because they are manually labelled by software developer-
s/testers.
Threats to construct validity relate to suitability of our eval-
uation metric selection. We use the widely-accepted evaluation
metrics (i.e., Precision/Recall/F1-score) to evaluate the effectiveness
of our approach and baselines in our experiments. Since our dataset
is highly imbalanced with respect to different types of causes, we
use macro Precision/Recall/F1 metrics to estimate the overall per-
formance. In addition, there are other software artifacts such as
source/test code we did not use in this study, the performance of our
approach may be further improved by leveraging more software
artifacts.

7 CONCLUSION

This research aims to automatically predict test failure causes for
failed test logs. To address this task, we first collected more than 10K
test logs from our industry partner and manually labeled the failed
reason for each failed test log. We propose an approach named
NCChecker (Naive Failure Cause Checker) by leveraging log pars-
ing and heuristic rules. Extensive experiments have demonstrated
its effectiveness and promising performance for test failure causes
prediction. Considering the effectiveness and simplicity of our ap-
proach, we recommend relevant practitioners to adopt our approach
as a baseline for the failure causes prediction task.
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