
Towards a Robust Waiting Strategy for Web GUI Testing for an
Industrial Software System

Haonan Zhang
University of Waterloo, Canada
haonan.zhang@uwaterloo.ca

Lizhi Liao
Memorial University of
Newfoundland, Canada

lizhi.liao@mun.ca

Zishuo Ding
The Hong Kong University of Science
and Technology (Guangzhou), China

zishuoding@hkust-gz.edu.cn

Weiyi Shang
University of Waterloo, Canada

wshang@uwaterloo.ca

Nidhi Narula, Catalin Sporea,
Andrei Toma, Sarah Sajedi
ERA Environmental, Canada

ABSTRACT
Automated web GUI testing has been widely adopted since manual
testing is time-consuming and tedious. Waiting strategy plays a
vital role in automated web GUI testing since it significantly im-
pacts the testing performance. Though important, little focus has
been set on the waiting strategies in web GUI testing. Existing
waiting strategies either wait for a predetermined time, which is
not reliable in a dynamic environment, or only wait for a specific
condition to be verified, which is often not robust enough to handle
the complicated testing scenarios. In this work, we introduce a ro-
bust waiting strategy. Instead of waiting for a predetermined time
or waiting for the availability of a particular element, our approach
waits for a desired state to reach. This is achieved by capturing the
Document Object Models (DOM) at the desired point, followed by
an offline analysis to identify the differences between the DOMs
associated with every two consecutive test actions. Such differences
are used to determine the appropriate waiting time when automat-
ically generating tests. Evaluation results with an industrial web
application indicate that our approach produces more robust tests
than the conventional waiting strategies used in web GUI testing.
Furthermore, our generated tests are more representative of the
recorded usage scenarios and are efficient with low overhead in
test execution time.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Automated web GUI testing, waiting strategy, GUI rendering, in-
dustrial experience report

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695269

ACM Reference Format:
Haonan Zhang, Lizhi Liao, Zishuo Ding, Weiyi Shang, and Nidhi Narula,
Catalin Sporea, Andrei Toma, Sarah Sajedi. 2024. Towards a Robust Waiting
Strategy for Web GUI Testing for an Industrial Software System. In 39th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3691620.3695269

1 INTRODUCTION
Modern web applications provide rich functionalities and informa-
tion to meet users’ growing needs for business, daily activities, and
entertainment. Graphic User Interfaces (GUIs) play a vital role in
web applications as they facilitate user interaction and informa-
tion access. Therefore, it is important to test the functionalities
and responsiveness of GUIs to ensure a seamless user experience
without software failures. A typical way to test web application
GUIs is through manual verification where software testers manu-
ally interact with the application under test (AUT) by performing
actions like clicking buttons, based on test specifications, to verify
GUI correctness. Although manual testing accurately simulates
the real user experience of interaction and ensures test actions are
performed correctly, it is extremely tedious, labor-intensive, and
consequently costly and error-prone [7, 17]. Our industrial collab-
orator also suffered the above issues of manual Web GUI testing,
yet the importance of Web GUI testing makes it unavoidable in this
real-life case.

To mitigate these issues, testing automation frameworks like
Selenium [50] are often adopted to streamline the testing process.
These frameworks support the Record-and-playback testing for
Web GUI. In particular, during a recording phase, testers manu-
ally interact with the application while the framework records
those interactions. Afterward, the framework can automatically
play the recorded interactions, which become automated tests that
are conducted on the Web GUIs of the applications. However, when
employing such automation frameworks in GUI testing, testers are
often required to determine appropriate waiting times between
actions. The waiting time is added such that web pages can be fully
loaded and interactable before executing subsequent testing actions
on the web page.

Currently, the most commonly used waiting strategies in Web
GUI testing [37, 43, 45, 48] are waiting for a predetermined time [51]
and explicit wait [53].Waiting for a predetermined time pauses the
execution of the test for a certain period, allowing time for the

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Haonan Zhang, et al.

new page to load. Explicit wait operates by waiting for a specific
condition of a web page element to be fulfilled, such as the visibility
or clickability of an element, before proceeding with the test execu-
tion. However, both strategies have their inherent limitations, and
we also encounter major challenges when attempting to integrate
them into testing a large-scale enterprise web application from our
industry collaborator. In particular, we find that by applying the
mix of both waiting strategies, the generated tests still often fail due
to flakiness. Neither waiting for a predetermined time nor explicit
wait would ensure that after the wait, the web application is ready
for the next action. In addition, there is a discrepancy between the
generated tests and the original recording of the tests; while the
existing waiting strategies cannot address such discrepancy. Finally,
we find that after putting many waits into the tests, the duration of
the tests often becomes very long, wasting many resources.

Despite the limitations of existing waiting strategies, there exists
little work on effectively and appropriately determine the waiting
time between actions in GUI automation testing. To the best of our
knowledge, the work of Feng et al. [15] and its follow-up work [14]
are the only studies that are attempting to address the challenges
of current waiting strategies in GUI testing. However, their focus
is on Android GUI testing, which differs considerably from web
GUI testing [33, 48] because of the different development and exe-
cution environments. Additionally, the datasets and models used
in their work are specifically tailored for Android GUI automation
testing [9, 18, 31, 38, 39, 49], making their approaches inapplicable
for resolving waiting issues in the context of our target industrial
Web application.

Therefore, in this paper, we propose an approach to assist in con-
ducting the Record-and-playback automated GUI testing for our
industrial collaborator. Instead of waiting for a predetermined time
or waiting for the availability of a particular element, our approach
captures the desired state of the web application during the record-
ing of the tests. Therefore, the tests generated by our approach wait
for the appearance of the desired states to automatically perform
test actions during testing. In particular, our approach captures
the Document Object Models (DOM) at the desired stage of the
application during recording. Then, we conduct offline analysis to
compare the differences between the captured DOMs of every two
consecutive test actions. Such differences are used to determine the
appropriate waiting time when automatically generating tests. Our
evaluation results with an industrial web application indicate that
our approach produces more robust tests than the conventional
waiting strategies used in web GUI testing. Furthermore, the gener-
ated tests are more representative of the recorded usage scenarios
and are efficient with low overhead in test execution time.

The contributions of this paper are as follows:

• To the best of our knowledge, this is the first study that tries
to address the challenges of waiting strategies in web GUI
testing.

• We propose an easy-to-apply approach that only uses the
differential information of the DOMs to assist in waiting for
the desired states of the web application under test.

• We develop our approach into a tool, which has been adopted
in testing a real-life industrial web application on a daily
basis.

Paper organization. Section 2 presents the background infor-
mation about the current practice in automation testing. Section 3
discusses the challenges encountered when applying automated
GUI testing in the industry. Section 4 describes our approach to
addressing the challenges. Section 5 evaluates our approach. Sec-
tion 6 presents the related work to our study. Section 7 discusses
the threats to the validity of our study. Finally, Section 8 concludes
this paper.

2 BACKGROUND
In this section, we present background information about record-
and-playback automated GUI testing practices and waiting strate-
gies in automated GUI testing.

2.1 Record-and-playback automated GUI testing
One of the widely adopted GUI testing techniques is based on a
record-and-playback loop during the testing process. Such a tech-
nique is also supported by Web GUI testing tools like Selenium
IDE [22]. Normally, testers need to perform a set of actions on the
web application according to their testing scenarios. During the
testers’ operations, these actions are recorded and stored by the
recording tools. Afterward, testers can playback these recorded
test actions when needed. Figure 1 gives an illustrative example
of a recording-and-playback testing process for the iCloud login
page1 using Selenium IDE. As shown in the Recording Step, in
this scenario, testers first need to open the login page, input their
email address, and click the arrow at the end of the input area as
highlighted in the red box. Afterward, the testers would need to
wait for the password input field to appear, then input the password
and move on to the next action.

The recording of the actions is automatically generated by Se-
lenium. Each of the performed actions is recorded as a command
that denotes what kind of action is performed, a target that denotes
where the action is performed, and a value that denotes the input
(if any) from the tester within the corresponding target. After the
recording phase, testers can replay the recordings directly from
the Selenium IDE. In the table given in the example, the recorded
test actions from Selenium IDE are replayed as follows: The iCloud
login page is opened using the previously recorded URL. Selenium
IDE then targets the account name input field, identified by its
element id “account_name_text_field”, and enters the email address
“admin@icloud.com”. The arrow at the end of the account name in-
put field is identified with the element id “sign-in” and then clicked.
After several seconds the password input field should appear and
Selenium IDE identifies it by its id “password_text_field”.

In addition to playing back directly from the IDE, testers can
also export the recordings to test code and playback the tests from
there. As the automatically generated test code in Figure 1 shows,
the generated test code adopts Selenium WebDriver APIs [54] to
interact with browsers. In the given code, driver is an object of
the browser driver that is used to relay commands to the browser.
Method findElement is used to find the target element an action is
performed on and sendKeys and click are actions to perform within
the target element.

1https://www.icloud.com/

Towards a Robust Waiting Strategy for Web GUI Testing for an Industrial Software System ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Command Target Value

1 Open https://www.icloud.com

2 Click id=account_name_text_field

3 Type id=account_name_text_field admin@icloud.com

4 Click id=sign-in

5 Wait

6 Click id=password_text_field

Record-and-Playback generated by Selenium

Automatically generated test code

4

5

6
Waiting for a

predetermined time

4

6

wait for the password
 text box to appear

5

iCloud login UI

Record Step

Playback Step

Explicite wait

Figure 1: Web GUI testing example for iCloud login page

2.2 Waiting strategies in automated GUI testing
Although GUI testing tools like Selenium IDE can easily generate
the test recordings and scripts, the generated tests can be fragile
and flaky [20, 26]. One of the main reasons for the fragility and
flakiness are often caused by the need for waiting time between
actions [2, 15, 20, 27, 45, 48]. As shown in our example in Figure 1,
the testers need to wait for the appearance of the password box in
order to perform the action of inputting the password. Therefore,
testers often need to manually inject some waiting commands.

There are typically two typical waiting strategies supported
by these GUI testing tools. 1) Waiting for a predetermined time.
One may simply force the test to pause for a certain period of
time, (e.g., Thread sleep) to avoid processing to the next action
too early. Intuitively, this approach would not completely address
the flakiness [12, 37] of the generated tests since the responding
time of GUI is often variable and unpredictable. Although one
may always increase the waiting time to avoid flakiness, such an
approach would drastically increase the duration of the tests [15].
2) Explicit wait. One may also ask the test to wait for a certain
condition, such as the availability of an element that the next action
depends on. GUI test tools like Selenium provide native support on
such explicit wait [20, 37, 42, 43, 45, 51, 53]. In the example shown
in Figure 1, the test may wait for the password input box to be
clickable before performing the action. While addressing some of
the flakiness of the tests, a certain condition of an element may not
be the desired condition by the testers. For example, a button being
ready for clicking does not mean that it is the appropriate time to
click that button. The true correct time to click the button depends
on the actual testing scenario. We find that such cases often appear
in testing real-world web systems and are discussed in the next
section (Section 3).

3 CHALLENGES OF AUTOMATED GUI
TESTING ON AN INDUSTRIAL SYSTEM

In this section, we discuss the challenges that are encountered when
automated GUI testing is applied to an industrial software system.

3.1 Industrial system under study
The target industrial system of our work is a large-scale software
application with a Web-based graphical user interface (GUI). We
call the system ES in the rest of this paper. ES was developed and
hosted by our industrial collaborator, which is a leading provider
of environmental management solutions for manufacturing compa-
nies. ES is designed to manage various regulatory reports, such as
the Toxic Release Inventory (TRI) [1] and the National Pollutant
Release Inventory (NPRI) [13]. It offers reporting services on these
regulations for enterprises worldwide, encompassing industries
such as automotive, aerospace, oil and gas, and paints and coatings.

Since the users (customers) of ES are mainly non-experts in
software or computer domains, the web-based GUI is extremely
crucial for the adoption of the system by its customers. The web-
based GUI is built using the Bootstrap 5 framework and operates
on an IIS web server. The server side of ES is developed using the
Microsoft ASP.NET framework [32]. Different from simple web ap-
plications, which primarily involve simple data create-read-update-
delete (CRUD) operations, ES focuses on handling a large volume
and diverse regulatory reports. Consequently, the customers inter-
act with ES to dynamically generate and render of numerous forms
and sheets through the web-based GUI. There is also a substantial
amount of interaction between the client side and the server side
for data retrieval and storage.

Moreover, due to the diversity of the customers, many of the
forms in ES are dynamically generated in response to user actions
and each form comprises various elements and widgets, such as
drop-downs and calendars, which may have inter-dependencies,
like cascading drop-downs. Therefore, the variety and the interac-
tive nature of these forms contribute to a higher level of complexity
compared to simple web applications, making it more challenging
when directly applying existing automation testing strategies in
the context of ES.
GUI testing and waiting strategies. Given the extensive client
base and the critical nature of the service, the reliability of the web
application’s functionalities is a key priority for our industrial col-
laborator. For a long period of time, our industrial collaborator has
relied on manual GUI testing of ES. However, due to the continuous

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Haonan Zhang, et al.

increase in testing scenarios, this approach has gradually become
impractical. During the past two years, the first two authors have
closely worked as embedded researchers with our industrial col-
laborator to help them automate their testing process. Inspired by
the existing work in automated GUI testing [10, 14, 19, 20, 36], we
have applied a Record-and-Replay testing approach to assist testers
in recording their test actions once and replaying them as needed,
thereby reducing manual effort. In addition, due to the fact that
the test code generated by the recorder contains only the sequence
of test actions, i.e., without any waiting interval between two ac-
tions, we also need to manually insert numerous waiting commands
between test actions with the duration determined based on the
personal experience and expertise of the system. However, through-
out the collaboration process, we have also identified several major
challenges when applying the existing practice in the context of
our target industrial web application.

3.2 Encountered challenges
In this subsection, we discuss the challenges encountered when
conducting record-and-playback GUI testing for the industrial sys-
tem.
Challenge 1: Substantial test failures due to flakiness.

During GUI testing, testers often encounter the need to insert
a wait between two actions. Although manually applying the mix
of the two waiting strategies (cf. Section 2.2), we are still facing
substantial test failures when confronted with the dynamic and
complex nature of GUIs. In particular, although we injected explicit
wait for almost every action in the tests, the complex nature of the
web system makes the wait unreliable. In other words, a certain
condition of a web element may not ensure the applicability of an
action (cf. motivating example 1). To avoid such test failures, we
had to inject further wait for a predetermined time, as long as 10
seconds to ensure the test would not crash in the middle. However,
the responding time of the elements on the web pages of such a
complex system is unpredictable due to factors such as internet
connections, the amount of data in the database, GUI layout, and
so forth. In short, we were still facing test failures that resulted
from the inability to locate the element, e.g., “No Such Element
Exception [11]” and had to re-run those tests.
Challenge 2: Unrepresentativeness to actual scenarios.

During the GUI testing of our target industrial web application,
it is crucial to ensure that the testing scenarios of the system during
the playback phase align with the usage scenario envisioned by
testers during the test recording phase. However, existing GUI
testing and waiting strategies can often lead to inconsistencies
between the recorded and the playback of the tests, resulting in
unrepresentativeness with actual scenarios. In fact, neither waiting
for a certain period of time nor waiting for a certain state of a
web element (e.g., clickable of a button) would ensure the web
application under test is at the appropriate time to proceed with the
next action. In particular, inmany cases, waiting for a certain state of
a web element (e.g., clickable of a button) often leads to performing
the next action too early. We find that all too often when the time
a button is ready for clicking, other important related elements are
still rending (cf. motivating example 2). For example, on YouTube,
the video may not be loaded while the corresponding hyperlinks

to other similar videos are already clickable. If in the recording
phase, the next step of the test is to view other similar videos, the
test would not be representative of the recorded scenario since the
video on the current page may be skipped. Such an issue may also
appear when waiting for a predetermined waiting time.
Challenge 3: Prolonged test execution.

We also encountered the challenge of potentially prolonged test
execution times when employing strategies of waiting for fixed
lengths, which can adversely affect project timelines and resource
allocation. In particular, in order to ensure the test cases can be
successfully executed without the impact of flakiness, testers often
prefer a conservative long waiting time interval between test ac-
tions. However, regardless of whether the web application under
test is ready to proceed with the next action, the tests have to wait
for a predetermined duration, which sometimes is over 10 seconds.
Therefore, this waiting time becomes an overhead and increases the
overall time required for test execution. Prolonged test execution
times not only delay the feedback to development teams, imped-
ing the project’s progress but also increase the testing costs and
resource consumption.

Step 1: choose from the facility drop-down list

Step 2: waiting for the Location and
Department drop-down list to be populated

Step 3: choose the
Indicent Type check

boxes

Step 4: Save the form

The recorded test
would not be aware

of step 2.

Figure 2: Real-life motivating example #1

3.3 Motivating examples
In this subsection, we present two real-life motivating examples to
demonstrate the challenges that we encountered in practice.
Motivating example 1. Figure 2 presents a motivating example
from ES. On this page, users of ES are required to interact with
a sequence of drop-down lists and checkboxes before saving the
entered information in a total of four steps. In particular, the user
needs to 1) select from the Facility drop-down list, 2) await the
dynamic population of the subsequent two drop-down lists, i.e.,
the Location drop-down list and the Department drop-down list.
Then 3) the user needs to choose an option from the Incident Type
checkboxes below. Finally, 4) the user saves the completed form.

When recording the tests, the recorded tests would only contain
the three steps of actions: 1) selecting from the Facility drop-down
list, 2) selecting from the Incident Type checkboxes and 3) saving the
form. However, the most important waiting on the population of the
Location and Department drop-down lists are missing. Moreover,
since there are no direct interactions between the users and the
two drop-down lists. The generated test does not even include
these two elements. We tried to add explicit wait after the first

Towards a Robust Waiting Strategy for Web GUI Testing for an Industrial Software System ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

action. However, the explicit wait would wait for the availability
of the Incident Type checkboxes, instead of the two drop-down
lists. This is because, from the view of the test, the next action after
the first step is selecting from the checkboxes. Without manually
analyzing the test code to understand this issue and adding ad
hoc waiting code customized for this test, we were depending on
a very long waiting time to avoid the test failure. This is a real-
life example that demonstrates the challenge of test failure due to
flakiness (Challenge 1) presented in the previous subsection and the
temporary solution of having a long waiting time also contributes
to the challenge of prolonged test execution (Challenge 3).
Motivating example 2. Figure 3 presents a real-life example re-
lated to the discrepancy between the recorded web page and the
web page during playback. As shown in Figure 3a, in the scenario
under recording, testers wait for the tree of checkboxes (highlighted
in the red box) to be rendered before performing the next action.
However, as displayed in Figure 3b, during the playback phase, the
rendering of the tree of the checkboxes is not finished when the
tests start to perform the next action. In this case, the test would
not fail since the tree of checkboxes is not a required field of the
form. However, without having a tester to check the progress of the
automated GUI test, we would not even know the rendering of this
tree of check-boxes is often not even executed during tests. This
playback of the testing scenario is not exactly representative of the
recorded testing scenario. This is a real-life example that demon-
strates the challenge that the generated tests are unrepresentative
of the actual scenario (Challenge 2).

(a) Web page during recording (b) Web page during playback

Figure 3: Real-life motivating example #2

3.4 Our approach to addressing the challenges
By carefully examining the nature of the three challenges that are
encountered in practice, we find that the existing automated GUI
testing waiting strategies are not designed to truly represent the
usage scenarios of actual users, but rather objective measurements
like time, or whether an element is clickable. However, in real life, a
user would not hold a timer to decide whether to perform the next
action. In most cases, a real user would not use whether an element
is clickable to drive the decision to go to the next page. Instead, users
would see the entire web page as a whole to determine whether
they have seen all the needed information to continue their actions.

Therefore, if one would generate a test that exactly replicates the
usage scenario of the testers, the test would be much less flaky, since
a tester would not attempt to click on something that is not there
or not clickable (addressing Challenge 1). The exact replicate usage

scenario would not make the test unrepresentative (addressing
Challenge 2) and an actual tester’s usage scenario would not have
extensive waiting steps unless necessary (addressing Challenge 3).
Therefore, the goal of our approach is to try to capture the actual
usage scenario during the record-and-playback testing.

The state-of-the-art record-and-playback testing practices cap-
ture the usage scenario mainly focusing on the interactions between
users and the applications while putting less focus on the states of
the application. We argue that since the user’s behavior is exten-
sively driven by the perception of the entire states of the application
under test, we should capture both the actions of users and more
importantly the states of the web applications under test. To em-
phasize, the state information of the web application is based on
what the actual users can perceive, instead of whether the page is
“loaded”, “stable” or “actionable”.

Hence, our approach contains three steps: 1) capturing the de-
sired states of the web applications for each action, 2) generating
signatures of the states, and 3) generating tests based on the sig-
natures. In the next section (Section 4), we present the detailed
implementation of our approach that assists web GUI testing for
ES.

4 IMPLEMENTATION
In this section, we present our actual implementation of a record-
and-playback testing approach, that assists our GUI testing for ES
on a daily basis. Our implementation is based on an extension to
the existing Selenium IDE recorder.

4.1 Capturing the desired states
To wait for a desired state to be reached in a test scenario, we must
first capture the desired states of each action. Selenium IDE already
provides the feature that captures the interaction between users
and web applications [22]. Therefore, we opt to extend the existing
Selenium IDE such that during the recording phase, whenever an
interaction is performed by the tester, not only the interaction is
captured, we also capture the Document Object Model (DOM) of the
correspondingweb page and create a reference to the corresponding
interaction. One may argue that DOM only represents the UI of the
systemwhile the states of the system also include other information,
such as its back-end data. However, we consider the information
reflected on UI is the most directly perceived by the users, especially
during Web GUI testing.

When capturing the DOM of web pages, we encounter situa-
tions involving iframes within a web page. Specifically, when the
corresponding element of interaction is located in the main win-
dow, we exclusively store the source code of the main window,
omitting all embedded iframes. On the other hand, for interactions
performed on elements nested within an iframe, only the DOM of
the respective iframe is collected. This choice of implementation
is based on our intuition that if the interacted element is directly
embedded in the main window, the focus of the action is on the
main window otherwise the users should be more concerned with
the elements embedded in the iframe. This also ensures minimal
overhead and precise capture of the page’s current state before any
transitions. It is also worth noting that for an interaction related to
an iframe, the id of the iframe (if present) is also recorded to identify
the iframes more precisely when playing back the test cases. This is

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Haonan Zhang, et al.

Capturing the Desired States

Record
State

Selenium
Side File

Extract
Data

HTML

Diff&
Filter

<div>

Newly
Loaded

Elements

<div>

Modified
Selenium

IDE

Perform
Actions

Test Code

Generate
Code

Generating Signatures of the States Test Code Generation

Test
Actions

Waiting
Method

Generate
Waits

Figure 4: Overview of our implementation

an improvement over the default iframe identification by indexes in
Selenium IDE, which is often unreliable when dealing with multiple
iframes on a single web page.

4.2 Generating signatures of the states
Once we have gathered the desired page states, the step is to ascer-
tain when these states are achieved during test execution. Therefore,
we would need to generate a signature to represent desired states,
such that during testing, the tests can match with the signature to
determine whether to perform the next action.

A most naive signature would be directly using the content
of the DOM, captured from the last step, to be compared during
tests. However, this naive approach has two major issues. First,
the direct comparison of two DOMs is costly, introducing much
time overhead to the tests. If our approach costs very high runtime
overhead during tests, it would have a low advantage over a simple
predetermined waiting time. Second, more importantly, it lacks
resilience against the trivial differences between the same web page
being accessed multiple times. Much information on a web page,
such as IDs of elements, is dynamically generated during runtime.
Without filtering out such differences, our approach would not
match to the desired state.

Instead of treating the entire page as signatures for comparison,
we generate the signatures from the differences between the DOMs
of the two consecutive actions, which are typically much smaller
than the entire DOM. Our intuition is also based on a heuristic that
if the differences between the two DOMs can all be observed, it
is likely that we have reached the desired state of the web page.
In particular, the differential analysis between the DOMs can be
conducted offline, after the recording phase is done. With the offline
analysis, our approach does not need heavy runtime comparison
between signatures; while only a small set of different elements
between two desired states are checked during testing. In addition,
if there are no changes between the desired states of two actions,
the generated tests would not even need to have wait between the
two actions. Such an implementation choice would help reduce
the runtime overhead of our approach.

The most important elements we need to wait for during test-
ing are the added elements. In our industrial context, the content
change of the text elements is also very important because the
changed data in the sheet cells and other widgets are very likely
subject to the actions on the database, which often take a longer
time to process. Therefore, we need to apply a diff algorithm to
compare two consecutive desired states on the element granular-
ity to identify the added elements and the updated text elements

during the transition from a page state to its subsequent page state.
There are many algorithms for comparing HTML documents. While
many studies leverage these algorithms to assess the similarity of
these DOMs and identify the near-duplicated states to streamline
the testing steps [56], we focus on the differences of these DOMs
to guide signature generation and determine waiting conditions.
Recent work [3, 34] finds that the SFTM algorithm [4] has a better
performance in comparing HTML documents than others [24, 44].
Therefore we start from using the SFTM algorithm to compare our
collected desired page states to identify the potential elements that
need to wait for. However, we find that the default output of the
SFTM can not be adopted for ES. This is because: 1) The SFTM
algorithm does not compare the text content in the elements, which
means it will take two elements similar in the criteria it cares about
but different text content a match, 2) The default output contains
many invisible elements that can negatively affect our approach by
letting our approach wait for invisible elements to be displayed.

To adapt the SFTM output to ES, we first refine SFTM by further
investigating the elements that directly contain text content in its
output. Specifically, we compare the text content in the pairs of
elements that SFTM identifies as remaining the same or updated to
extract the elements that have their text content changed. To tackle
the second issue, we leverage some heuristic rules to remove the
invisible elements. For example, an element is invisible, if the values
of the style attributes of the element and any of its parents contain
“display: none” or the value of its or any of its parent’s height or
width attribute is 0px. Since our target industrial web application
leverages the Bootstrap 5 frameworks, we also add some framework-
specific rules (e.g., class contains sr-only) to filter out the invisible
elements. Similar rules to filter out the invisible elements are also
used in some existing work [34]. The adapted SFTM algorithm
would increase our approach’s resilience against trivial runtime
differences; while capturing all important differences between
two desired states.

4.3 Test code generation
After identifying all the elements that we need to wait to ensure the
desired state is reached, we generate our test code based on these
elements and their corresponding interactions that are already cap-
tured by the Selenium IDE. To ensure the visibility of these elements
by automated tests, we first need to generate a Selenium locator
for each of them to locate them. We implement an approach based
on JSoup [21], a Java library for parsing HTML, which generates
the corresponding Selenium locators for each element. Similar to
Selenium IDE, we generate the locators for an element based on

Towards a Robust Waiting Strategy for Web GUI Testing for an Industrial Software System ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

its id, attributes, and position. The details of the different kinds of
locators we generate are presented in Table 1. Among these loca-
tor types, the id locator is typically the most reliable, whereas the
xpath position locator is prone to change [28, 41]. However, an id
locator may not always be available for a given element. In such
cases, it is better to prioritize locators based on link text, name, and
attributes etc. over the xpath position locator, due to their enhanced
stability. Therefore, we store the locators in the order outlined in
Table 1, selecting the first locator from the list for each element
to improve the precision and consistency in our element locating
process. However, for text elements, we prioritize all of the other
locators before the locators that leverage the text content because
the text contents in ES are likely to change. For example, the data
in the cells of the sheets can be updated quite often. This allows
our method more resistant to the dynamic changes in ES

Table 1: A list of different locators used in our test generation

Locator name Description

id Locate an element by its ID
link text Locate a link element by the text it displays
name Locate an element by its name attribute
xpath link Use xpath to find a link element
xpath attribute Use xpath and its attribute to find an element
xpath relative id Use xpath and its parent’s or sibling’s id to find an element
xpath image Locate an image element with xpath and specific image at-

tributes
xpath href Loacte an anchor element with xpath and the href attribute
xpath inner text Use xpath to find element with specific text content
xpath position Find an element based on its position in the DOM

At the final step, we generate test code by using FreeMarker [16],
a template engine to generate text output. We generate code for
actions recorded by Selenium IDE including open, click, type, send-
Keys, and selectFrame. For each of the locators of the elements that
are identified for ensuring the reach of the desired states, our wait-
ing method uses Selenium explicit wait to wait for its visibility. It
then ensures the clickability of the target element. In situations
where no new and changed text elements are detected following
an action, our method omits the creation of a waiting statement,
recognizing that no changes require a pause before continuing with
the subsequent action. This strategy ensures only applying waits
where necessary, thereby streamlining the testing process.

5 EVALUATION
In this section, we introduce the experimental setup for our evalua-
tion and discuss the evaluation results from three aspects: 1) the
robustness, where we focus on the test failures due to flakiness
(cf. Section 3-Challenge 1); 2) the representativeness, where we
evaluate whether the playback phase aligns with the usage sce-
nario envisioned by testers (cf. Section 3-Challenge 2) and 3) the
efficiency, which refers to the execution times of the test cases
that can be successfully executed without the impact of flakiness
(cf. Section 3-Challenge 3).

5.1 Experimental setup
5.1.1 Subjects. Our evaluation is performed on a business-critical
module of ES and this module is about creating and maintaining
environment-related regulation reports. We collected 26 real-life

Web GUI test cases for evaluation, which encompass a range of 11
to 51 steps each and cover almost every aspect related to creating,
deleting, editing, and verifying environmental reports. Some actions
in these test scenarios are performed in different iframes, and many
of the test actions are performed on dynamically generated elements
and can trigger the page rendering process and data retrieving
process, making these test scenarios highly complicated. To give
more details, we have made all screen recording videos of the tests
and the extracted data available online2.

5.1.2 Baselines. The baselines for our evaluation experiment con-
sist of three different waiting strategies that are commonly used
in current GUI testing practice. These include: running test cases
using Selenium explicit wait, employing the Thread sleep strategy,
and without using any waiting statements. These baselines are also
used in existing work [45]. Prior study [5] points out that a typical
time limit that users can tolerate for a page loading is around 3
to 5 seconds, therefore, we set the time limit for Thread sleep to 5
seconds. To make our evaluation more comprehensive, we also run
the test cases with a doubled time limit (i.e., 10s) for Thread sleep.

5.1.3 Environment. To generate test cases from these test scenarios,
we first use the Selenium IDE tailored for our industrial context to
record the test actions defined in the test scenarios. Throughout this
process, each action is executed on a stable page determined with
human expertise. The experiment is performed in a macOS Ventura
13.1 operating system with an Apple M1 Pro CPU and 32GB RAM.
The display we use is a 4K LG 32UN500-W monitor. The window
resolution is set to 1920×1080 during the recording process. Google
Chrome (121.0.6167.85 official build for arm64) is chosen as the
browser for testing considering its popularity and widespread use
in practice. After the test cases are generated, we execute them
with different waiting strategies. We collect the console output
and record a video of each test execution for further analysis. All
test cases are executed in incognito mode with the browser cache
disabled, and the browser window size is kept consistent with that
used during the recording phase to ensure consistency of the test
environment.

5.2 Evaluation of robustness
Motivation. In the target industrial context, test failures frequently
occur due to insufficient waiting periods between actions instead of
functional bugs (cf. Section 3-Challenge 1), leading to non-negligible
false positives. Therefore, this research question focuses on exam-
ining the number of test failures due to flakiness when employing
our waiting strategy and the baseline waiting strategies.
Metrics collection.We use two metrics to compare the robustness
of different approaches: the number of test failures, and the steps
executedwhen the test is terminated (nomatter failed or completed).
Note that all test cases can be successfully executed manually by
testers, ensuring that test failures are highly unlikely to be caused
by software bugs. We analyze the console output we collected to
determine whether the test failed, identify the reason for the failure,
and record the executed steps.
Results and discussions. Our approach is robust against flaki-
ness and can detect bugs that are previously unknown. Table 2

2https://github.com/senseuwaterloo/ASEIndustryTrack2024

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Haonan Zhang, et al.

presents the detailed results regarding the performance of differ-
ent approaches. Overall, our approach significantly outperforms
the baselines regarding successfully replaying the test cases. The
overall completion rate of the 26 test cases employing our waiting
strategies is 92.31%, achieving 73.08%, 88.46%, 92.32%, and 92.32%
more successful replays compared to the baselines respectively. It
is worth noting that the Sleep 5s approach managed only a single
successful playback while the No wait and Selenium explicit wait
approaches have zero test successfully reproduced. In terms of exe-
cuted steps, our approach outperforms all other approaches as well,
having 26.85 steps executed on average, achieving an improvement
range of 89.75% to 356.63% when compared with the baseline wait-
ing strategies. The results highlight that our proposed approach
exhibits better robustness compared to the baseline approaches.

Table 2: Comparison of the overall completion rates across
different approaches

Metrics No Wait Explicit Wait Sleep 5s Sleep 10s Our Approach

Completion 0% (0/26) 0% (0/26) 3.85% (1/26) 19.23% (5/26) 92.31% (24/26)
Step 5.88 13.27 9.96 14.15% 26.85

“Completion” denotes the average completion rate (completed test cases/total test cases),
“Step” denotes the average executed test actions before tests complete or fail.

We conduct a manual analysis of the reasons behind failed test
cases and find that in the baseline approaches, failures occur due to
interactions with undesired pages. Specifically, some failures stem
from performing subsequent actions before the current ones are
completed properly, leading to unexpected follow-up actions that
are different from the recorded ones, ultimately causing the test to
fail (recall the industry example in Section 3.3). Additionally, failures
arise when actions are interrupted by the page rendering process.
A typical scenario involves the target web application displaying a
loading image to signify ongoing content generation, during which
the intended actions are disrupted by such visual cues. In the case
of our approach, the two test failures are attributed to functional
bugs in the web application that were missed by the testers. In
some cases, the decision to display an alert window after an action
depends on a variable whose value is subject to change through an
Ajax call. There are times when, despite the page appearing stable
and fully interactive, the underlying Ajax call is still in progress,
leading to discrepancies in the variable’s state. Such inconsistency
affects whether the alert window is shown, causing discrepancies
between the recording and playback phases and, consequently, test
failures. We reported this issue to the developers, who identified it
as a bug and have fixed it. The baseline methods would not be able
to detect this bug because they failed before the buggy steps were
reached. The results demonstrate that our method is more robust
and capable of detecting previously unknown problems.

5.3 Evaluation of representativeness
Motivation. Prior work usually adopts Thread sleep and Selenium
explicit wait waiting strategies, however, in Section 3, we find that
both of them often lead to inconsistencies between the recording
and the playback of the tests, resulting in unrepresentativeness
of actual scenarios. Therefore, in this section, we investigate the
representativeness of our proposed approach when we use it in our
target industry system. Given that Thread sleep is a static method

and often inaccurately estimates the actual loading time [15, 45],
we compare our methodology with Selenium explicit wait—the only
dynamic alternative among the baselines. To further understand
whether our waiting strategy aligns with human perception, we
analyze the statistical differences between the waiting time frames
generated by our method and those observed during manual testing.
Metrics collection. We prioritize actions that require a waiting
statement generated by our approach, which induces waits only
in response to observable page changes. By concentrating on such
actions, we effectively exclude those that either do not prompt page
modifications or do not require waiting for such changes before
continuation. For ease of reference, we term these as Significant-
Wait-Required Actions (SWRA).

For every SWRA, we assess the page’s status and interactivity
at the moment of action. SWRA that are performed when pages
do not reach the desired states are termed Unstable Actions (UA).
Initially, we identify the actions from the generated test code for
which our method has produced waiting statements, designating
them as SWRA. Subsequently, we collect all successfully executed
SWRA from tests executed with Selenium explicit wait and our
method. Upon reviewing the corresponding execution video for
each test, we categorize an action as UA if it is performed before
the page reaches the desired state.

To evaluate if our waiting strategy aligns with human perception,
we ask an ES employee to manually perform the test scenarios,
recording videos of each. We then extract the waiting time before
each stable SWRA from these videos. To compare the distributions
of waiting time from our method and the manual tests, we use the
Mann-Whitney U test [40], which makes no assumptions about data
distribution. We propose two hypotheses:
H0: The distributions of the waiting time under test are the same.
H1: The distributions of the waiting time under test are different.

The test is conducted at a 5% significance level. If p-value ≥ 0.05, we
reject H1 and support H0, and vice versa. Reporting only the statisti-
cal significance may lead to erroneous results as large samples can
produce small p-value even for trivial differences [25]. Hence, we
also use Cliff’s delta [8] to quantify the magnitude of the difference
between the two distributions.

Table 3: Comparison of page stability assurance between
Selenium explicit wait and our approach

Metrics Explicit Wait Our Approach

SWRA 157 409
UA 29 8

Results and discussions. Our approach ismore representative
of actual scenarios and has negligible statistical differences
compared tomanual testing. Table 3 presents the detailed results
of the page situations when tests are executed with Selenium explicit
wait and our approach. Of the actions successfully executed when
using Selenium explicit wait, 157 of them are SWRA, among which
29 of them are UA, making 18.47% of the Significant-Wait-Required
Actions performed on unstable web pages. In terms of our approach,
409 SWRA are successfully executed and eight (1.96%) of them are
performed on unstable web pages (UA). Such results indicate that
compared to Selenium explicit wait, our method can better help

Towards a Robust Waiting Strategy for Web GUI Testing for an Industrial Software System ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

SWRA to be successfully executed and avoid UA happening. We
then analyze the results of the Mann-Whitney U test. The p-value
is 0.70 (≥ 0.05) and the Cliff’s delta is negligible, which indicates
that there is no significant difference between our approach and
manual testing regarding the waiting time and our approach aligns
with user perception.

We further investigate the eight UA that happened in our ap-
proach and find that these cases are all related to the greyed-out
dropdown lists that have their content already filled out. In a test
scenario, we need to fill out a form and save it, and the content
of the form will grey out. We then navigate to the next page and
navigate back. However, sometimes after navigating back, there
will be a loading sign beside the dropdown even though it is filled
out and greyed out. Such a sign indicates some process (e.g., data-
base refresh) on the server is undergoing and our method can not
identify the server status therefore mistakenly takes the page as
stable.

5.4 Evaluation of efficiency
Motivation. Another challenge we encounter when conducting
GUI testing for the industrial system is a prolonged test execution.
As the responding time of the elements on the web pages is usually
unpredictable, testers often set a conservative long waiting time in-
terval between test actions, negatively impacting testing efficiency.
Therefore, in this section, we would like to explore the efficiency
of our approach.
Metrics collection.We evaluate the efficiency from two aspects:
1) The execution time of the completed tests. We first select the
completed tests and then compare the execution times between
different approaches. We analyze the recorded videos to identify
the period from the opening to the closing of the browser as the
test execution time; 2) the overhead of certain actions. For SWRA
executed via our method and not classified as UA, we further exam-
ine the video frames manually to evaluate our approach’s overhead.
This involves determining the timestamp of the frame at which
the page becomes stable and the timestamp of the frame where
the action is just executed, thereby calculating the period between
these two timestamps as the overhead.
Results and discussions. Our approach outperforms the base-
lines in testing efficiency and maintains a low overhead at
both the action level and test case level on average. Table 4
shows the results of the execution time of completed test cases.
Compared to our approach, the Sleep 5s strategy requires 22.64%
(29.7 seconds) more time to playback test case 317423, whereas Sleep
10s needs 54.96% (62.05 seconds), 70.44% (92.39 seconds), 42.12%
(67.47 seconds), 56.43% (109.76 seconds), and 75.06% (131.18 sec-
onds) additional time for test cases 317421, 317423, 317425, 317428,
and 317429, respectively. This underlines the efficiency of our ap-
proach, which outpaces the Thread sleep strategy in time efficiency
while maintaining equivalent completion rates.

For the 401 (409 - 8) SWRA (cf. Table 3) successfully executed
on desired pages in our approach, we investigate the potential
overhead our method may introduce on average for each action in
every test case. Figure 5a demonstrates the distribution of average
overhead at the action level for each test case. It is evident that
the average overhead per action per test case is under 7 seconds,

Table 4: Comparison of the execution times of the completed
test cases across different approaches

Test Sleep 5s Sleep 10s Our Approach

317421 N/A 174.95 112.90
317423 160.86 223.55 131.16
317425 N/A 227.67 160.20
317428 N/A 304.25 194.49
317429 N/A 305.95 174.77

with the majority being less than 5 seconds. We further analyze
the overhead of our approach at the test case level as outlined in
Figure 5b.When examining the overhead as a percentage of the total
execution time for each test case, it spans from 12.67% to 38.67%,
with an average additional time of 20.13% per test case. Furthermore,
the average overhead attributed to each SWRA per test case is 3.16
seconds. While the average additional time of 20.13% per test case
might appear significant, we contend that the extra 3.16 seconds
per related event is reasonable, considering that manual actions
performed by testers on a web page also typically require several
seconds.

(a) O/StableSWRA (b) O/T

Figure 5: Analysis of the overhead of our approach at action
level and test level. “StableSWRA” denotes the Significant-
Wait-Required Actions executed on pages with desired states,
“O” denotes the overhead time in a test, and “T” denotes the
total execution time of a test in Table 2

6 RELATEDWORK
In this section, we discuss prior studies that are related to our work.
Overall, these studies can be categorized into two categories: 1)
empirical studies of web GUI testing; and 2) improving web GUI
test cases.

6.1 Empirical studies of web GUI testing
Given the importance of web GUI testing for ensuring web appli-
cation quality, significant research has been conducted to address
its challenges. Luo et al. [37] identified the discrepancy between
page rendering time and waiting time in test code as a major cause
of flaky tests. Leotta et al. [26] found that while the Record-and-
Replay approach is less costly for developing test cases, it is more
expensive to maintain compared to programmable web testing.
Another study by Leotta et al. [27] revealed that the main chal-
lenge with using Selenium for GUI testing is the flakiness and

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Haonan Zhang, et al.

fragility of tests. Presler-Marshall et al. [45] observed that different
Selenium configurations impact test flakiness, particularly due to
waiting strategies. Hammoudi et al. [20] discovered that insufficient
waiting time is a key reason for Record-and-Replay test failures.
Likewise, Nass et al. [42] identified waiting time issues as a root
cause of many challenges in GUI test automation. Ricca et al. [47]
highlighted brittleness as one of the three major problems hindering
the automation of web GUI testing.

In almost all of the aforementioned studies, test fragility caused
by improper waiting time is mentioned in their outcomes. How-
ever, little focus has been set on tackling this issue in the existing
literature. In our work, we target a real-world industrial web appli-
cation and propose a more robust waiting approach to improve the
robustness, representativeness, and efficiency of web GUI testing.

6.2 Improving web GUI test cases
There are also many studies that focus on improving and fixing web
GUI test cases. For example, Leotta et al. [29] proposed an approach
to determine the best locator among candidates to enhance test ro-
bustness. Their later works [28, 30] introduced methods to generate
more robust XPath locators by learning from fragile HTML proper-
ties. Nass et al. [41] developed a similarity-based algorithm using
weighted similarity scores to locate target elements. Other studies
address fixing test cases for new web application releases. Choud-
hary et al. [6] identified behavioral differences in test cases across
successive versions and suggested fixes. Hammoudi et al. [19] pro-
posed an incremental test repair approach, while Stocco et al. [52]
used visual information for test repair. Imtiaz et al. [23] and Long
et al. [36] focused on fixing test cases from Record-and-Replay
automation techniques. Brisset et al. [3] used a tree-matching al-
gorithm, Lin et al. [34] developed an iterative matching algorithm,
and Qi et al. [46] leveraged semantic information from test execu-
tion to fix test cases. Xu et al. [55] explored using ChatGPT for test
case repair.

Most studies focus on improving locators or fixing missing ele-
ments in test code, with few addressing waiting strategies in web
GUI test cases. Olianas et al. [43] and Liu et al. [35] proposed re-
placing Thread sleep with explicit wait and deciding where to insert
explicit wait, respectively. However, these methods can still lead to
flaky test results (cf. Section 2.2). Unlike that, our work proposes
a more robust waiting strategy by considering user actions and
the state of web applications, ensuring GUI testing of real-world
industrial web applications truly represents actual usage scenarios.

7 THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our work.
Construct validity. The threats to our construct validity can arise
from howwe collect the metrics for our evaluation. Currently, there
is no available way to measure exactly when the page is ready to
interact in a GUI test execution, therefore we have to record a video
of the test execution and manually analyze the video frame by
frame to identify the timestamp of the frame where the web page
just become stable and interactive. Since different people may have
different standards of a stable and interactive page, our collected
data may not accurately reflect other people’s perceptions of the
stability of the web pages. However, to the best of our knowledge,

we are the first to evaluate the overhead of a waiting strategy in
Web GUI testing and prior studies [14, 15] only perform evaluations
related to the passing rates and execution times of the test cases.
Our evaluation metrics may inspire future studies to consider this
aspect for evaluation.

External validity. The threats to the external validity of our
work can stem from our target subject. Our study is conducted on a
large-scale web application that is developed with Bootstrap 5 and
ASP.NET and has many years of development and maintenance
history. Although our target industrial system has a certain rep-
resentativeness of model web applications, some of our findings
may not be directly generalizable to other web applications with
different frameworks or contexts. However, our approach can be
readily adapted to other industrial environments with a reasonable
engineering effort. By tailoring the Selenium IDE to collect the
DOM states, comparing these DOM states using a diff algorithm,
and generating code using the Selenium framework and a code gen-
eration template, researchers or practitioners who are interested
can easily apply our approach to their respective contexts.

Internal validity. The threats to internal validity can mainly
come from the environment in which our experiments are per-
formed. We have tried our best to keep our experimental settings
consistent by using the same browser version, throttling the net-
work from the browser configuration, disabling the browser cache,
and using the same window size. Nevertheless, there may still exist
some other factors that are beyond our control and pose an impact
on our experimental results. For instance, since we do not have total
control over the server side of our target industrial web application,
the performance variability of the server side may result in some
bias to our results.

8 CONCLUSION
This paper presents a robust waiting strategy in automated web
GUI testing in the context of a real-world industrial web applica-
tion. Instead of waiting for a predetermined time or waiting for the
availability of a particular element, our approach waits for a desired
state to reach. To achieve this, we first capture the Document Object
Models (DOM) at the desired point and then analyze such data of-
fline to identify the differences between the DOMs associated with
every two consecutive test actions. Such differences are further
used to determine the appropriate waiting time when automatically
generating tests. The industrial experimental results demonstrate
that with our proposed waiting strategy, we can produce more ro-
bust tests than the conventional waiting strategies used in web GUI
testing. Furthermore, the generated tests are more representative
of the recorded usage scenarios and are efficient with low overhead
in terms of the test execution time.

ACKNOWLEDGMENTS
We are grateful to ERA Environmental Management Solutions for
providing access to the industrial system used in our study. The find-
ings and opinions expressed in this paper are those of the authors
and do not necessarily represent or reflect those of ERA Environ-
mental Management Solutions and/or its subsidiaries and affiliates.
Moreover, our results do not in any way reflect the quality of ERA
Environmental Management Solutions’ products.

Towards a Robust Waiting Strategy for Web GUI Testing for an Industrial Software System ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES
[1] U.S. Environmental Protection Agency. 2024. Toxics Release Inventory (TRI)

Program. Retrieved January 16, 2024 from https://www.epa.gov/toxics-release-
inventory-tri-program

[2] Emil Alégroth and Robert Feldt. 2017. On the Long-Term Use of Visual Gui
Testing in Industrial Practice: A Case Study. Empirical Softw. Engg. 22, 6 (dec
2017), 2937–2971.

[3] Sacha Brisset, Romain Rouvoy, Lionel Seinturier, and Renaud Pawlak. 2022. Er-
ratum: Leveraging Flexible Tree Matching to repair broken locators in web
automation scripts. Inf. Softw. Technol. 144 (2022), 106754.

[4] Sacha Brisset, Romain Rouvoy, Lionel Seinturier, and Renaud Pawlak. 2023. SFTM:
Fast matching of web pages using Similarity-based Flexible Tree Matching. In-
formation Systems 112 (2023), 102126.

[5] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). USENIX Association, Oakland, CA, 439–453.

[6] Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso. 2011.
WATER: Web Application TEst Repair. In Proceedings of the First International
Workshop on End-to-End Test Script Engineering (Toronto, Ontario, Canada) (ETSE
’11). Association for Computing Machinery, New York, NY, USA, 24–29.

[7] Laurent Christophe, Reinout Stevens, Coen De Roover, and Wolfgang De Meuter.
2014. Prevalence and Maintenance of Automated Functional Tests for Web
Applications. In 2014 IEEE International Conference on Software Maintenance and
Evolution. 141–150.

[8] N. Cliff. 1996. Ordinal Methods for Behavioral Data Analysis. Erlbaum.
[9] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,

Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology (Québec City, QC,
Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA,
845–854.

[10] Felix Dobslaw, Robert Feldt, David Michaëlsson, Patrik Haar, Francisco Gomes de
Oliveira Neto, and Richard Torkar. 2019. Estimating Return on Investment for
GUI Test Automation Frameworks. In 2019 IEEE 30th International Symposium on
Software Reliability Engineering (ISSRE). 271–282.

[11] Selenium Project Documentation. 2023. No Such Element Exception. Retrieved
August 21, 2023 from https://www.selenium.dev/documentation/webdriver/
troubleshooting/errors/#no-such-element-exception

[12] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Un-
derstanding Flaky Tests: The Developer’s Perspective. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 830–840.

[13] Environment and Natural Resources. 2024. National Pollutant Release
Inventory. Retrieved January 16, 2024 from https://www.canada.ca/en/
services/environment/pollution-waste-management/national-pollutant-
release-inventory.html

[14] Sidong Feng, Haochuan Lu, Ting Xiong, Yuetang Deng, and Chunyang Chen. 2023.
Towards Efficient Record and Replay: A Case Study in WeChat. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (San Francisco, CA, USA) (ESEC/FSE
2023). Association for Computing Machinery, New York, NY, USA, 1681–1692.

[15] Sidong Feng,MulongXie, and ChunyangChen. 2023. EfficiencyMatters: Speeding
Up Automated Testing with GUI Rendering Inference. In Proceedings of the 45th
International Conference on Software Engineering (Melbourne, Victoria, Australia)
(ICSE ’23). IEEE Press, 906–918.

[16] Apache Software Foundation. 2023. Apache FreeMarker is a template engine to
generate text output based on templates and changing data. Retrieved August
21, 2023 from https://freemarker.apache.org/index.html

[17] Mark Grechanik, Qing Xie, and Chen Fu. 2009. Maintaining and evolving GUI-
directed test scripts. In 2009 IEEE 31st International Conference on Software Engi-
neering. 408–418.

[18] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI Testing of Android
Applications Via Model Abstraction and Refinement. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). 269–280.

[19] Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. 2016. WATERFALL:
an incremental approach for repairing record-replay tests of web applications.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (Seattle, WA, USA) (FSE 2016). Association for
Computing Machinery, New York, NY, USA, 751–762.

[20] MounaHammoudi, Gregg Rothermel, and Paolo Tonella. 2016. Why do Record/Re-
play Tests of Web Applications Break?. In 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST). 180–190.

[21] Jonathan Hedley. 2023. JSoup is a Java library that simplifies working with
real-world HTML and XML. Retrieved August 21, 2023 from https://jsoup.org/

[22] Selenium IDE. 2023. Open source record and playback test automation for the
web. Retrieved August 21, 2023 from https://www.selenium.dev/selenium-ide/

[23] Javaria Imtiaz, Muhammad Zohaib Iqbal, and Muhammad Uzair Khan. 2021. An
automated model-based approach to repair test suites of evolving web applica-
tions. J. Syst. Softw. 171 (2021), 110841.

[24] Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, Tim Roughgarden, and Scott R.
Klemmer. 2011. Flexible Tree Matching. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume Three
(Barcelona, Catalonia, Spain) (IJCAI’11). AAAI Press, 2674–2679.

[25] Christoph Laaber, Joel Scheuner, and Philipp Leitner. 2019. Software Microbench-
marking in the Cloud. How Bad is It Really? Empirical Softw. Engg. 24, 4 (Aug.
2019), 2469–2508.

[26] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2013. Capture-
replay vs. programmable web testing: An empirical assessment during test case
evolution. In 2013 20th Working Conference on Reverse Engineering (WCRE). 272–
281.

[27] Maurizio Leotta, Boni García, Filippo Ricca, and JimWhitehead. 2023. Challenges
of End-to-End Testing with Selenium WebDriver and How to Face Them: A
Survey. In 2023 IEEE Conference on Software Testing, Verification and Validation
(ICST). 339–350.

[28] Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2021. Sidereal: Statistical
adaptive generation of robust locators for web testing. Softw. Test. Verification
Reliab. 31, 3 (2021).

[29] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2015. Using
Multi-Locators to Increase the Robustness of Web Test Cases. In 8th IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2015,
Graz, Austria, April 13-17, 2015. IEEE Computer Society, 1–10.

[30] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2016. Robula+:
an algorithm for generating robust XPath locators for web testing. J. Softw. Evol.
Process. 28, 3 (2016), 177–204.

[31] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-Guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 23–26.

[32] Lizhi Liao, Heng Li, Weiyi Shang, Catalin Sporea, Andrei Toma, and Sarah Sajedi.
2023. Adapting Performance Analytic Techniques in a Real-World Database-
Centric System: An Industrial Experience Report. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (San Francisco, CA, USA) (ESEC/FSE 2023). Associa-
tion for Computing Machinery, New York, NY, USA, 1855–1866.

[33] Jun-Wei Lin and Sam Malek. 2022. GUI Test Transfer from Web to Android. In
2022 IEEE Conference on Software Testing, Verification and Validation (ICST). 1–11.

[34] Yuanzhang Lin, Guoyao Wen, and Xiang Gao. 2023. Automated Fixing of Web UI
Tests via Iterative Element Matching. In 38th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2023, Luxembourg, September 11-15, 2023.
IEEE, 1188–1199.

[35] Xinyue Liu, Zihe Song, Weike Fang, Wei Yang, and Weihang Wang. 2024. WEFix:
Intelligent Automatic Generation of Explicit Waits for Efficient Web End-to-
End Flaky Tests. In Proceedings of the ACM on Web Conference 2024 (Singapore,
Singapore) (WWW ’24). Association for Computing Machinery, New York, NY,
USA, 3043–3052.

[36] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Wei Chen, and Jun Wei. 2020.
WebRR: Self-Replay Enhanced Robust Record/Replay forWebApplication Testing.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual
Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York,
NY, USA, 1498–1508.

[37] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Hong Kong,
China) (FSE 2014). Association for Computing Machinery, New York, NY, USA,
643–653.

[38] OpenSTF Minicap. 2023. Stream real-time screen capture data out of Android
devices. Retrieved August 21, 2023 from https://github.com/openstf/minicap

[39] UI/Application Exerciser Monkey. 2023. UI/Application Exerciser Monkey. Re-
trieved August 21, 2023 from https://developer.android.com/studio/test/other-
testing-tools/monkey

[40] Nadim Nachar. 2008. The Mann-Whitney U: A Test for Assessing Whether Two
Independent Samples Come from the Same Distribution. Tutorials in Quantitative
Methods for Psychology 4 (03 2008).

[41] Michel Nass, Emil Alégroth, Robert Feldt, Maurizio Leotta, and Filippo Ricca.
2023. Similarity-based Web Element Localization for Robust Test Automation.
ACM Trans. Softw. Eng. Methodol. 32, 3, Article 75 (apr 2023), 30 pages.

[42] Michel Nass, Emil Alégroth, and Robert Feldt. 2021. Why many challenges with
GUI test automation (will) remain. Information and Software Technology 138
(2021), 106625.

[43] Dario Olianas, Maurizio Leotta, and Filippo Ricca. 2022. SleepReplacer: a novel
tool-based approach for replacing thread sleeps in selenium WebDriver test code.
Softw. Qual. J. 30, 4 (2022), 1089–1121.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Haonan Zhang, et al.

[44] Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient Computation of the Tree
Edit Distance. ACM Trans. Database Syst. 40, 1, Article 3 (mar 2015), 40 pages.

[45] Kai Presler-Marshall, Eric Horton, Sarah Heckman, and Kathryn Stolee. 2019.
Wait, Wait. No, Tell Me. Analyzing Selenium Configuration Effects on Test Flaki-
ness. In 2019 IEEE/ACM 14th International Workshop on Automation of Software
Test (AST). 7–13.

[46] Xiaofang Qi, Xiang Qian, and Yanhui Li. 2023. Semantic Test Repair for Web
Applications. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (San Fran-
cisco, CA, USA) (ESEC/FSE 2023). Association for Computing Machinery, New
York, NY, USA, 1190–1202.

[47] Filippo Ricca, Maurizio Leotta, and Andrea Stocco. 2019. Chapter Three - Three
Open Problems in the Context of E2E Web Testing and a Vision: NEONATE. Adv.
Comput. 113 (2019), 89–133.

[48] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang.
2021. An Empirical Analysis of UI-Based Flaky Tests. In Proceedings of the 43rd
International Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE
Press, 1585–1597.

[49] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[50] Selenium. 2023. Selenium. Retrieved August 21, 2023 from https://www.selenium.
dev

[51] Thread Sleep. 2023. Thread Sleep in Java. Retrieved August 21, 2023 from https:
//docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#sleep-long-int-

[52] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual web test
repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing
Machinery, New York, NY, USA, 503–514.

[53] Explicit Waits. 2023. Selenium Explicit Waits. Retrieved August 21, 2023 from
https://www.selenium.dev/documentation/webdriver/waits/#explicit-waits

[54] Selenium WebDriver. 2023. Selenium WebDriver. Retrieved August 21, 2023
from https://www.selenium.dev/documentation/webdriver/

[55] Zhuolin Xu, Yuanzhang Lin, Qiushi Li, and Shin Hwei Tan. 2023. Guiding
ChatGPT to Fix Web UI Tests via Explanation-Consistency Checking. CoRR
abs/2312.05778 (2023). arXiv:2312.05778

[56] Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. 2020. Near-Duplicate
Detection in Web App Model Inference. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20).
Association for Computing Machinery, New York, NY, USA, 186–197.

Received 12 July 2024; accepted 23 August 2024

