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Abstract—Performance issues are often the cause of failures in
today’s large-scale software systems. These issues make perfor-
mance testing essential during software maintenance. However,
performance testing is faced with many challenges. One challenge
is determining how long a performance test must run. Although
performance tests often run for hours or days to uncover
performance issues (e.g., memory leaks), much of the data that is
generated during a performance test is repetitive. Performance
analysts can stop their performance tests (to reduce the time
to market and the costs of performance testing) if they know
that continuing the test will not provide any new information
about the system’s performance. To assist performance analysts
in deciding when to stop a performance test, we propose an
automated approach that measures how much of the data that is
generated during a performance test is repetitive. Our approach
then provides a recommendation to stop the test when the data
becomes highly repetitive and the repetitiveness has stabilized
(i.e., little new information about the systems’ performance is
generated).

We performed a case study on three open source systems
(i.e., CloudStore, PetClinic and Dell DVD Store). Our case
study shows that our approach reduces the duration of 24-
hour performance tests by 75% while preserving more than
91.9% of the information about the system’s performance. In
addition, our approach recommends a stopping time that is
close to the most cost-effective stopping time (i.e., the stopping
time that minimize the duration of the test and maximizes the
amount of information about the system’s performance provided
by performance testing).

I. INTRODUCTION

The performance of large-scale software systems
(e.g., Gmail and Amazon) is a critical concern because
they must concurrently support millions of users. Failures
in these systems are often due to performance issues rather
than functional issues [28], [50]. Such failures may have
significant financial and reputational consequences. For
example, a failure in Yahoo mail on December 12, 2013,
resulted in a service outage for a large number of users [1].
A 25-minute service outage on August 14, 2013 (caused by
a performance issue) cost Amazon around $1.7 million [1].
Microsoft’s cloud-based platform, Azure, experienced an
outage due to a performance issue on November 20, 2014 [3],
[4], which affected users worldwide for 11 hours. These
performance failures affect the competitive positions of these
large-scale software systems because customers expect high
performance and reliability.

To ensure the performance of large-scale software systems,
performance tests are conducted to determine whether a given

system satisfies its performance requirements (e.g., minimum
throughput or maximum response time) [14]. Performance
tests are conducted by examining the system’s performance
under a workload in order to gain understanding of the
system’s expected performance in the field [47]. Therefore,
performance tests are often carefully designed to mimic real
system behaviours in the field and uncover performance issues.

One of the challenges associated with designing perfor-
mance tests is determining how long a performance test
should last. Some performance issues (e.g., memory leaks)
only appear after the test runs for an extended period of time.
Therefore, performance tests may potentially last for days to
uncover such issues [32]. Although in practice, performance
tests are often pre-defined (typically by prior experience or
team convention) to last a certain length of time, there is
no guarantee that all the potential performance issues would
appear before the end of the tests. Moreover, performance
tests are often the last step in already-delayed and over-
budget release cycles [27] and consume significant resources.
Therefore, determining the most cost-effective performance
test length may speed up the releases cycles, i.e., reduce the
time to market, while saving testing resources, i.e., reducing
the computing resources that are required to run the test and
to analyze the results.

A performance test often repeats the execution of test cases
multiple times [6]. This repetition generates repetitiveness in
the results of the test, i.e., performance counters. Intuitively,
a performance analyst may consider stopping a performance
test by knowing 1) that the newly-generated data by continuing
the test would likely be similar to the data that has already
been collected, or 2) that the trend of the performance data by
continuing the test would likely be similar to the data that has
already been collected. Based on our intuition, in this paper
we present an approach that automatically determines when to
stop a performance test. Our approach measures the repetitive-
ness of the performance counters during a performance test.
We use the raw values of these counters to measure the repet-
itiveness of the counter values and we use the delta of the raw
values, i.e., the differences in the raw counter values between
two consecutive observations of these performance counters,
to measure the repetitiveness of the observed trends in the
performance counters. To automatically determine whether it
is cost-effective to stop a test, our approach examines whether
the repetitiveness has stabilized. Our intuition is that as the test



progresses, the system’s performance is increasingly repetitive.
However, this repetitiveness eventually stabilizes at less than
100% because of transient or unpredictable events (e.g., Java
garbage collection). Our approach would recommend stopping
the test if the repetitiveness (for either raw values or delta
values) stabilizes. In addition, the repetitiveness measured by
our approach can be leveraged as a reference for performance
analysts to subjectively determine whether to stop a perfor-
mance test.

To evaluate our approach, we conduct a case study on
three open-source systems (i.e., CloudStore, PetClinic and
Dell DVD Store). We conducted performance tests on these
systems with random workloads. We then used our approach
to recommend when the tests should stop. We measure the
repetitiveness in performance counters by running the test for
24 hours. We find that the data that would be generated after
the recommended stopping time is 91.9% to 100% repetitive
of the data that is collected before our recommended stopping
time. Such results show that continuing the test after the
recommended stopping time generates mostly repetitive data,
i.e., little new information about the performance. In addition,
we calculate such repetitiveness for every hour during the test
and we find that the delay between the most cost-effective
stopping time and our recommended stopping time is short,
i.e., within a two-hour delay.

This paper makes two contributions:
1) We propose an approach to measure the repetitiveness

of performance counters. Such measurements can be
leveraged in future performance test research.

2) We propose a novel approach to automatically recom-
mend the most cost-effective time to stop a performance
test by examining the repetitiveness of performance
counters.

This paper is organized as follows. Section II gives an
overview of designing a performance test and prior research
that assists in designing performance tests. Section III provides
a motivation example in order to give a clearer idea of where
and when to use our approach. Section IV explains the phases
of our approach. We discuss our case study in Section V,
followed by the results in Section VI. Then threats to the
validity of our work are presented in Section VII. We conclude
the paper in Section VIII.

II. BACKGROUND AND RELATED WORK: DESIGNING
PERFORMANCE TESTS

Performance testing is the process of evaluating a system’s
behaviour under a workload [5]. The goals of performance
testing are varied and include identifying performance is-
sues [46], verifying whether the system meets its require-
ments [42], and comparing the performance of two different
versions of a system [36], [43].

Performance tests need to be properly designed in order to
achieve such goals. There are three aspects that need to be
considered when designing a performance test: 1) workload
scenarios, 2) workload intensity and 3) test length. In this
section, we discuss prior research along these three aspects.

A. Workload scenarios

The first aspect of designing a performance test is to design
the workload scenarios that will execute against the system.
There are a number of strategies for designing these scenarios.
Therefore, researchers have proposed approaches to assist in
the design of workload scenarios.

• Covering the source code: A relatively naı̈ve way
of designing workload scenarios is to ensure that the
scenarios cover a certain amount of the source code.

• Covering the scenarios that are seen in the field: A
more advanced way of designing workload scenarios is
to ensure that the scenarios cover a certain amount of the
field workload [47].

• Covering scenarios that may expose performance
issues. A typical test case prioritization approach is based
on the number of potential faults that the test case may
expose [37] or the similarity between test cases [38].

These approaches often generate workloads that are too
large or complex to be used for performance testing. There-
fore, performance analysts must determine the most important
aspects of the workload using a reduction approach. Several
approaches exist to reduce these workload.

Reduction based on code coverage in a baseline: Avritzer
et al. propose a technique that limits the number of test cases
by selecting a subset of the test cases [2]. First, a given
system is modelled as a Markov chain, which consists of a
finite number of states (i.e., each state consists of a sequence
of rules that were fired as a result of a change in object
memory). A subset of the test suite is selected to maximize
test coverage (i.e., percentage of unique states covered by the
test case). Jiang et al., propose a technique that is related to
Avritzer’s technique [2] in that both techniques define a set of
different system states. However, Jiang et al., use a different
definition for the state, which is the active scenarios that are
extracted from the execution logs of the system under the test.
Their technique reduces the time of User Acceptance Testing
by comparing the scenarios (i.e., extracted from workload
scenarios logs) of a current test and a baseline test [26]. The
intuition of their technique is to measure whether all possible
combinations of workload scenarios have already been covered
in the test. The technique first identifies all the combinations
of workload scenarios from prior tests. In a new test, if most
of the combinations of workload scenarios have appeared, the
test can be stopped. However, such a technique may not be
effective for a performance test. Some workload scenarios with
performance issues, such as memory leaks, would not have a
large impact on system performance if they are only executed
once. Such workload scenarios need to be repeated for a large
number of times in order to unveil performance issues.

Hybrid reduction approach: Several researchers have
proposed reducing the number of workload scenarios based on
analyzing multiple dimensions. Mondal et al. propose a metric
to prioritize the selection of test cases that maximizes both
code coverage and diversity among the selected test cases us-
ing a multi-objective optimization approach [34]. Shihab et al.
propose an approach that prioritizes lists of functions that are



recommended for unit testing by extracting the development
history of a given system [44]. Cangussu et al. propose an ap-
proach based on an adaptive or random selection of test cases
by using polynomial curve fitting techniques [11]. Hemmati et
al. evaluate the effectiveness of three metrics (i.e., coverage,
diversity, and risk) for test case prioritization [25]. Their work
concludes that historical riskiness is effective in prioritizing
test case in a rapid release setting. Elbaum et al. [19] propose a
test case selection and prioritization techniques in a continuous
integration development environment. Test cases that would
execute modules that are related to newly-changed code are
prioritized over other tests.

B. Workload Intensity

The second aspect of designing a performance test is to
specify the intensity of the workload (e.g., the rate of incoming
requests or the number of concurrent requests). There are two
strategies for designing a performance test:

• Steady workload: Using this strategy, the intensity re-
mains steady throughout the test. The objective of this
strategy, for example, can be to verify the resource
requirements such as CPU and response time for a system
under a test [45], and identifying performance issues
(e.g., memory leaks) [8].

• Step-wise workload: Using this strategy, the intensity
of a workload varies throughout the test. For example, a
system may receive light usage late at night in compar-
ison to other peak hours. Therefore, another strategy of
designing a test is by changing usage rates (i.e., workload
intensity). The step-wise strategy refers to increasing
the workload intensity periodically. This strategy may
be used to evaluate the scalability of a system [50].
Increasing the workload intensity may uncover the ability
of the system to handle heavy workloads. Furthermore,
Hayes et al., [24] describe the approach of adjusting the
number of concurrent users as not realistic as it may give
misleading results (i.e., any serious workload variation in
the field may lead to a performance-related failures).

C. Test Length

The third aspect of designing a performance test is to specify
the duration of the test. The chosen test cases or workload sce-
narios can have a finite length. During a performance test, the
execution of these test cases are repeated multiple times [17].
Jain [9] designs an approach to stops a performance test by
measuring the variances between response time observations.
Their approach recommends stopping the performance test
when the variance is lower than 5% of the overall means.
Busany et al. [10] propose an approach that can be used to
reduce test length by measuring the repetitiveness of log traces.

Although there is little research on determining the length of
a performance test, intuitively, a performance test may stop if
1) almost every possible raw value of the performance counters
is observed, or 2) a trend of the performance test data is
observed. In the first case, continuing the performance test
would not generate any new data, while in the second case, one

may calculate (i.e., interpolate or extrapolate) the un-observed
data based on the trend. Otherwise, if a test does not meet
either stopping criteria, the test can be stopped based on a time
length that is required or agreed upon by performance analysts.
In practice, the decisions on stopping performance tests are
often made based on performance analysts’ experiences and
intuition. Therefore, in this paper, we propose an automated
approach that recommends the most cost-effective time to stop
a performance test by measuring the repetitiveness of values
and trends of performance test data.

III. A MOTIVATING EXAMPLE

Eric is a performance analyst for a large-scale software
system. His job is to conduct performance tests before every
release of the system. The performance tests need to finish
within a short period of time, such that the system can be
released on time. In order to finish the performance tests before
the release deadline, Eric needs to know the most cost-effective
length of a test. Eric usually performs the appropriate length
of a performance test based on his experience, gut feelings,
and (unfortunately) release timelines.

A performance test consists of the repeated execution of
workload scenarios. Hence, Eric develops a naı̈ve approach
that verifies whether a performance test has executed all the
scenarios. Once the test has executed all workload scenarios
at least once, the test is stopped. However, some performance
issues (e.g., memory leaks) may only appear after a large
number of executions. Stopping the performance test after the
execution of each workload scenario once would not detect
such performance issues.

Eric uses performance counters to analyze the system’s
performance. If the performance counters become repetitive,
continuing the test would not provide much additional infor-
mation. In addition, Eric found that if he observed trends of
a performance counter in the beginning of the test, he can
use the trend to calculate the counter values in the rest of the
test. Table I shows an imaginary example of four performance
counters that are generated during a performance test. During
the performance test, the memory usage has an increasing
trend. Therefore, the delta between every two consecutive
memory usage values are also shown in the table.

In this example, i.e., Table I, the values of the performance
counters from time stamp 304 to 308, i.e., the time period
rep-1 in Table I, and 310 to 314 (i.e., rep-2), are repetitive
to (i.e., exactly the same values as) time stamp 326 to 330
(i.e., rep-1’), and 321 to 325 (i.e., rep-2’). If the test is stopped
at time stamp 321, Eric would not miss any performance
counter value from the test, while the total duration of the
test case would be reduced to 321 minutes.

Therefore, Eric re-designed his automated approach to
recommend whether a performance test should continue or
stop based on the repetitiveness of values or trends of the
performance counters that are generated during the test. Once
the data generated during a performance test becomes highly
repetitive, the approach recommends that the test be stopped.



TABLE I: An imaginary example of a performance counters
file

Performance Counters
Time stamp RT CPU Memory (delta) IO

301 82 9 86 (86) 90
302 26 7 113 (27) 3
303 80 7 135 (22) 70

rep-1

304 81 52 182 (47) 77
305 83 99 224 (42) 74
306 12 53 229 (5) 57
307 5 99 229 (0) 67
308 17 93 240 (11) 37
309 37 40 319 (79) 25

rep-2

310 62 29 396 (77) 47
311 83 61 411 (15) 10
312 98 69 428 (17) 93
313 71 22 494 (66) 2
314 31 79 556 (62) 13
315 68 15 568 (12) 86
316 25 26 616 (48) 77
317 18 65 706 (90) 27
318 36 53 770 (64) 87
319 51 1 843 (73) 53
320 100 93 942 (99) 62

rep-2’

321 62 29 1,019 (77) 47
322 83 61 1,034 (15) 10
323 98 69 1,051 (17) 93
324 71 22 1,117 (66) 2
325 31 79 1,179 (62) 13

rep-1’

326 81 52 1,226 (47) 77
327 83 99 1,268 (42) 74
328 12 53 1,273 (5) 57
329 5 99 1,273 (0) 67
330 17 93 1,284 (11) 37

In practice, tests last for hours or days and hundreds or
thousands of performance counters and generated. Therefore,
performance tests need a scalable and automated approach to
determine when to stop. In the next section of this paper, we
explain this automated approach in details.

IV. OUR APPROACH FOR DETERMINING A
COST-EFFECTIVE LENGTH OF A PERFORMANCE TEST

In this section, we present our approach for determining a
cost-effective length of a performance test. Figure 1 presents
an overview of our approach.

Table I shows an imaginary example of performance coun-
ters that would be collected during a performance test. The
performance counters in Table I are collected every minute.
The values of the performance counters at each time stamp are
called observations. To ease the illustration of our approach,
we show a small example with only four performance counters
(i.e., response time, CPU usage, memory usage, and I/O traf-
fic) and 30 observations. However, the number of performance
counters and observations is much larger in practice.

To determine when to stop the performance test we periodi-
cally (e.g., every minute) collect performance counters during
the test. After collecting the counters, we determine whether
to use the raw values or the delta values of each counter.
We then measure the likelihood of repetitiveness. Finally, we
determine when repetitiveness stabilizes (and the test can be
stopped) using the first derivatives of the counters.

We fit a smoothing splines to the likelihood and determine
whether the likelihood of repetitiveness has stabilized using the
first derivative. Our intuition is that as the test progresses, the
system’s performance is increasingly repetitive. However, this
repetitiveness eventually stabilizes at less than 100% because
of transient or unpredictable events. Therefore, we aim to
identify this stabilization point. In the rest of this section, we
present our approach in details.

A. Collecting Performance Test Data

The collected performance counters are the input of our
approach. Typical performance monitoring techniques, such
as PerfMon [39], allow users to examine and analyze the
performance counter values during the monitoring.

We collect both raw values of the counters and the delta
of counters between two consecutive observations of each
counter. We design our approach such that we either see highly
repetitive values of the counters, or repetitive trend of the
counters. Therefore, we collect raw values of the counters
for measuring the repetitiveness of the counter values and we
collect the delta of the counters to measure the repetitiveness
of the counter trends.

Since our approach runs periodically, in our working ex-
ample, the first time when we run our approach, we collect
counters from the beginning of the test to the time stamp
320. The second time when we run our approach, we collect
counters from the period of time from the beginning of the
test to the 321 minute because we choose to run our approach
periodically every minute.

B. Determining the Use of Counter (Raw or Delta Values)

Performance counters may illustrate trends during perfor-
mance tests. For example, memory usage may keep increasing
when there is a memory leak. On the other hand, some
counters do not show any trends during a performance test. In
this step, i.e., every time before we measure the repetitiveness
of the generated performance counter values, we determine
for each counter, whether we should use the raw or delta
values. We leverage a statistical test (Mann-Kendall Test [33])
to examine whether the values of the counters that have already
been generated during the test have a monotonic trend. The
null hypothesis of the test is that there is no monotonic trend
in values of a counter. A p-value smaller than 0.05 means that
we can reject the null hypothesis and accept the alternative
hypothesis, i.e., there exists a monotonic trend in the values
of a counter. If there exists a statistically significant trend, we
would use the delta values of the counter, otherwise, we would
use the raw values of the counter.

For our working example, for the first time period, i.e., the
301st to the 320th, the memory counter is the only counter
that has a statistically significant trend (i.e., a p-value that is
<0.05 in the Mann-Kendall Test). Therefore, for our working
example, we use delta memory instead of raw memory values.

C. Measuring the Repetitiveness

The goal of this step is to measure the repetitiveness of the
performance counters that have already been collected since
the beginning of a performance test. The more repetitive, the
more likely that the test should be stopped, since the data to
be collected by continuing the performance test is more likely
to be repetitive.

It is challenging to measure repetitiveness of performance
counters. Performance counters are measurements of resource
utilizations. Such measurements typically do not have exact
matches. For example, two CPU usage values may be 50.1%



Fig. 1: An Overview of Our Approach

and 50.2%. It is hard to determine whether such difference
between two performance counter values corresponds to an ac-
tual performance difference or is due to noise [30]. Statistical
tests have been used in prior research and in practice to detect
whether performance counter values from two tests reveal
performance regressions [21], [43]. Therefore, we leverage
statistical tests (e.g., Wilcoxon test [23]) to determine whether
the performance counter values are repetitive between two
time periods. We choose Wilcoxon test because it does not
have any assumption on the distribution of the data.

1) Selecting the First Random Time Period (Period

i

):
In order to measure the repetitiveness of performance coun-
ters, we randomly select a time period (Period

i

) from the
performance test and check whether there is another period
during the performance test that has generated similar data.
The length of the time period len

⌧

is a configurable parameter
of our approach. In our working example, the performance test
data shown in Table I has 30 observations. With a time period
with 5 observations (len

⌧

= 5), we may select time period
Period

i

from time stamp 317 to 321.

2) Determining Whether Period

i

is Repetitive: In this step,
we determine whether there is another time period during the
performance test that has similar data to Period

i

. First, we
randomly select another time period (Period

j

). We do not
consider overlapping time periods Period

i

. For example, in
Table I, any time period that contains observations from time
stamp 317 to 321 is not considered. Second, we compare the
data from Period

i

to the data from Period

j

to determine
whether they are repetitive. If not, another time period is ran-
domly selected (a “new” Period

j

) and compared to Period

i

.
If we cannot find a time period Period

j

that is similar to
Period

i

, we consider Period

i

as a non-repetitive time period.

a) Calculating the S

max

for Period

j

: One may per-
form an exhaustive search on all the possible time periods
to find a time period Period

j

that generates similar data
as Period

i

. For our working example, since a time period
consists of five observations (configured as a parameter), there
are 16 possible time periods (i.e., those do not overlap with
Period

i

). Usually a performance test for a long time, leads to
a substantial number of possible time periods. For example,



a typical performance test that runs for 48 hours and collects
performance counters every 30 seconds, would contain over
5,700 possible time periods of 30 minutes. Thus, our approach
would likely take a long time to process. Since our approach
aims to stop the performance test to reduce the performance
test duration, we determine the number of searches (S

max

)
based on a statistically representative sample size [31].

We consider all possible time periods that do not overlap
with Period

i

as a population and we select a statistical
representative sample with 95% confidence level and ±5
confidence interval as recommended by prior research [31].
The confidence interval is the error margin that is included in
reporting the results of the representative samples.

For example, if we choose the confidence interval of 5,
and based on the random sample, we find that 40% of the
time periods are repetitive. Such results mean that the actual
likelihood of having repetitive time periods is between 35%
(40-5) and 45% (40+5). The confidence level indicates how
often the true percentage of having repetitive time periods lies
within the confidence interval. For the same previous example,
there is 95% likelihood that the actual likelihood of having
repetitive time periods is between 35% and 45%.

By selecting a statistical sample of time periods to search
for Period

j

, we can reduce the number of searches as in
comparison to exhaustive search. For example, if there are
5, 000 time periods, we only need to randomly sample 357
time periods to compare to Period

i

. In our working example,
the number of random time periods to search for Period

j

is 15. Because we use a small size of data (i.e., 16) in our
working example, the size of statistical sample does not have
a large difference to the size of the entire data. With larger
data, we would have a considerably larger reduction in the
size of the statistical sample relative to the entire data.

b) Selecting Another Random Time Period (Period

j

):
We select a second random time period Period

j

with the
same length as Period

i

and determine whether Period

i

and
Period

j

are repetitive. In our working example, the time
period (304,308) is randomly sampled as Period

j

.
c) Determining the Repetitiveness Between Period

i

and
Period

j

: To determine whether Period

i

(e.g., (317,321))
and Period

j

(e.g., (304,308)) are repetitive, we determine
whether there is a statistically significant difference between
the performance counter values during these two time periods
using a two-tailed unpaired Wilcoxon test [23]. Wilcoxon tests
do not assume a particular distribution of the population. A
p � value > 0.05 means that the difference between the
counter values from both time periods is not statistically
significant and we cannot reject the hypothesis (i.e., there
is no statistically significant difference of the counter values
between Period

i

and Period

j

). Failure to reject the null
hypothesis means that the difference between the counter
values from two time periods is not statistically significant. In
such cases, we consider Period

i

and Period

j

to be repetitive.
The Wilcoxon test is applied to all counters from both time
periods. The p-values of Wilcoxon tests for the counters of
our working example are shown in Table II.

TABLE II: Wilcoxon test results for our working example

Performance Counters
RT CPU Memory IO

p-values 0.0258 0.313 0.687 0.645

The two time periods (Period

i

and Period

j

) are considered
repetitive if all the differences of all the counters are not
statistically significantly different between two time periods.
For our working example, the difference between the response
time (RT) in two time periods is statistically significant.
Therefore, we do not consider the two time periods repetitive.
In this case, another random time period Period

j

would be
selected if the number of searches is not reached.

d) Checking Whether the S

max

is Reached: If the total
number of searches for a repetitive time period for Period

i

is not yet reached, our approach will continue the search by
selecting another random time period as Period

j

. Otherwise,
the search will stop and Period

i

will be reported as not
repetitive.

For our working example, when a random time period that
consists of observation 301 to 305 is selected as Period

j

, the
two time periods are repetitive (i.e., p-values of all counters
are greater than 0.05). Thus, Period

i

is reported as repetitive.
3) Repeating the Experiment: The entire process (i.e., ran-

domly select Period

i

and search for a repetitive time period
Period

j

) is repeated for a large number of times (i.e., 1, 000
times) to calculate the repetitiveness of the performance coun-
ters. Efron et al., [18] state that 1,000 replications can make
an inference of the data. Therefore, our approach repeats this
process for 1,000 iterations. In every iteration, our approach
will report whether the Period

i

is repetitive or not repetitive.
4) Calculating the Likelihood of Repetitiveness: We de-

termine the repetitiveness by calculating the likelihood that
a randomly selected Period

i

is determined to be repetitive.
In particular, we divide the number of times that Period

i

is
reported as repetitive by 1, 000. After repeating the process in
our working example 1, 000 times, the calculated likelihood of
repetitiveness is 81.1%. This means that after 1, 000 iterations,
a repetitive time period is found 811 times.

D. Smoothing Likelihood of Repetitiveness

We fit a smoothing spline to the likelihood of repetitiveness
that is measured so far while running the test to identify the
overall trend in the likelihood of repetitiveness (i.e., increasing
or decreasing). The smoothing spline helps to reduce the in-
fluence of short term variations in repetitiveness and increases
the influence of the long term trends. We use the loess()

function in R [20] to fit the smoothing spline.

E. Calculating the First Derivative of Repetitiveness

To identify the time point where the likelihood of repetitive-
ness stabilizes, we calculate the first derivative. These deriva-
tives quantify the difference between successive likelihoods.
Providing that a derivative reaches ⇠ 0, the test can be
stopped. A derivative is calculated as follows:

Derivative =
likelihood

current

� likelihood

previous

Periodically

diff

(1)



Where the Periodically

diff

shows the number of minutes
between the last time stamp at which the previous likelihood
is calculated, and the last time stamp at which the current
likelihood is calculated in minutes. For our working example,
the difference between calculating a likelihood and another is
one minute.

F. Determining Whether to Stop the Test

In the final phase, we identify two parameters as configu-
rations of our approach: 1) the threshold of first derivatives
of repetitiveness (Threshold) and 2) the length of time that
the first derivative of repetitiveness is below the threshold
(Duration). If the first derivatives of repetitiveness is below the
Threshold for equal or more than the Duration, our approach
would recommend stopping the test. Moreover, Duration not
only checks for the Threshold, but it also makes sure that
the type of data of every counter does not change, i.e., every
counter should stick with the same type of data (either raw
data or delta data).

For our working example, a Threshold and a Duration are
determined (i.e., as 0.1 and 3-minute, respectively). Therefore,
the test can be stopped in the 326 minute because its first
derivative is 0.031, the two following (i.e., 0.037 and 0.093)
are less than our Threshold (i.e., 0.01), and the type of data
does not change.

V. EXPERIMENT SETUP

To evaluate our approach for determining when to stop a
performance test, we perform experiments with three different
large systems, i.e., CloudStore [40], PetClinic [41] and Dell
DVD Store (DS2) [16]. In this section, we present the subject
systems, the workloads that are applied to them, and our
experimental environment.

A. Subject Systems
CloudStore [40] is an open-source e-commerce system that

is built for performance benchmarking. Cloud Store follows
the TPC-W performance benchmark standard [49].

PetClinic [41] is an open-source web system that aims to
provide a simple yet realistic design of a web system. Pet-
Clinic was used in prior studies for performance engineering
research [12], [22], [28].

The Dell DVD store (DS2) is an open-source web sys-
tem [16] that simulates an electronic commerce system to
benchmark new hardware system installations. DS2 has been
used in prior performance engineering research [36], [43].

B. Deployment of the Subject Systems
We deploy the three subject systems in the same experimen-

tal environment, which consists of 2 Intel CORE i7 servers
running Windows 8 with 16G of RAM. One server is used
to deploy the systems and the other server is used to run
the load driver. For all subject systems, we use Tomcat [48]
7.0.57 as our web system server and MySQL [35] 5.6.21 as
our database.

C. Performance Tests
We use the performance test suites, for each system. Our

aim is to mimic the real-life usage of the system and ensure
that all of the common features are covered during the test [7].
These suites exercise the subject systems when evaluating our
approach. For CloudStore and PetClinic, their performance
test suites are based on Apache JMeter. Apache JMeter is a
performance testing software that is designed to generate load
against online systems [29]. DS2 uses its own load generator
that conducts a performance test by pushing a workload
against the system. We run performance tests for 24 hours
for all three subject systems. The workload scenarios for our
test suites are preset by the JMeter and DS2 load drivers. To
avoid intentionally generating a repetitive load, we randomly
change load intensity during our performance tests.

D. Data Collection
We collected both physical level and domain level per-

formance counters as the results of the performance tests.
We leverage a performance monitoring system named Perf-
Mon [39] to collect physical level performance counters. We
record CPU usage, memory usage and I/O traffic usage that
are associated with the process of our systems during the
performance tests. We also collect response time as domain
level performance counters. Response time is used in prior
performance engineering research to measure the performance
of a system [13], [51]. Response time measures when a user
sends a request to the system, how fast the system responses
to the user. In our case study, we leverage JMeter to generate
requests to the systems. As simulated users, JMeter tracks the
response time of each request. Therefore, we leverage JMeter
to measure the average response time for every ten seconds.

One of the challenges of leveraging performance coun-
ters that are generated from different sources is the clock
skew [21]. In our case study, the PerfMon and the load
generator (i.e., JMeter or DS2’s driver) would not generate
performance counters at exactly the same time. To address this
challenge, we record performance counters every 10 seconds
and use the average value of every three consecutive records
that belong to the same half of a minute to generate a new
value of the performance counter for every 30 seconds. For
example, the CPU usage may be recorded three times at 12:01,
12:11 and 12:21, while the response time is recorded at 12:05,
12:15 and 12:25. We calculate the average values of CPU
usage and response time as their values for the 12:00 to 12:30.

E. Parameters of Our Approach
To determine when to stop a performance test, we apply our

approach on the performance counters of the subject systems.
Our approach requires three parameters to be configured: 1)
the length of a time period (len

⌧

), 2) the threshold of first
derivatives of repetitiveness (Threshold) and 3) the length of
time that the first derivative of repetitiveness is below the
threshold (Duration).

We choose three values of each parameter in order to eval-
uate our approach with different parameters. For the length of
a time period, we choose two values including 15 minutes and



30 minutes. For the threshold of derivatives of repetitiveness,
we choose 0.1, 0.05 and 0.01. Finally, for the length of time
that the first derivative of repetitiveness is below the threshold,
we choose 30 minutes, 40 minutes and 50 minutes. Therefore,
we have 18 different combinations of configurations for each
subject system to evaluate our approach. In addition, our
approach needs to run periodically with the performance test.
In our case study, we choose to run our approach every 10
minutes in order to get frequent feedback on the repetitiveness
of the performance counters.

F. Levering Existing (Jian’s) Approach to Stop Performance
Tests

Jain also propose an approach that recommends when to
stop a performance test [9]. Their approach recommends when
to stop a performance test by measuring the variances between
response time observations. We benchmark our approach by
comparing the recommended stopping time of our approach to
the recommended stopping time of Jain’s approach. First, we
group every consecutive number of response time observations
into a number of batches. To determine the optimal size of
batches, we keep increasing the size of batches and measure
the mean of variance. The optimal size of a batch is the
size before the mean variance drops [9]. In our experiments,
we find the optimal sizes of batches are 1.5 minutes for
CloudStore and 2 minutes for both DS2 and PetClinic. We
then calculate the means of response time observations for
every batch along with the overall means of response time
values. Using the variances among the means of every batch,
we calculate the confidence interval of the batch means of
response time observations. During the test, the moment the
confidence interval drops less than 5% of the overall means,
the approach stops the test.

Jain’s approach recommends extremely early stopping
time. We find that Jian’s approach recommends stopping
our tests shortly after starting the test. The recommended
stopping times are 7.5 minutes, 6 minutes and 20 minutes for
CloudStore, DS2 and PetClinic, respectively. Intuitively, such
extremely early stopping times cannot be used in practice since
many performance issues, e.g., memory leak, can only appear
after running the system for a long period of time.

G. Preliminary Analysis
The assumption and the most important intuition of our

approach is that the performance tests results are highly repet-
itive. Therefore, before evaluating our approach, we perform
a preliminary analysis to examine whether the performance
tests results are repetitive. We measure the repetitiveness of
the performance counters that are collected during a 24-hour
performance test.

All performance tests from the three subject systems are
highly repetitive. The repetitiveness of PetClinic and DS2 is
close to 100% and repetitiveness of CloudStore is between
92% to 98%. Such results mean that if we randomly pick
performance counters from a 15 or 30 minutes len

⌧

period
from the performance tests, there is an over 92% likelihood
that we can find another time period during the performance

TABLE III: The stopping times that are recommended by
our approach for performance tests. The values of the

stopping times are hours after the start of the tests.
Duration 30 minutes 40 minutes 50 minutes
Threshold 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

CloudStore 15 minutes 5:10 6:20 7:10 5:10 6:20 7:10 5:10 6:20 7:10
30 minutes 5:30 6:10 11:20 5:30 6:10 14:10 5:30 6:10 18:20

DS2 15 minutes 7:50 7:50 9:10 7:50 7:50 9:10 7:50 7:50 9:10
30 minutes 8:10 8:20 9:40 8:10 8:20 9:40 8:10 8:20 9:40

PetClinic 15 minutes 4:20 4:30 9:30 4:20 4:30 9:30 4:20 4:30 9:30
30 minutes 4:20 6:20 7:30 4:20 6:20 7:30 4:20 6:20 7:30

tests that either generates similar performance counter values
or shows a similar trend. Such a high repetitiveness confirms
that our approach may be able to stop the test within a much
smaller amount of time.

VI. CASE STUDY RESULTS

In this section, we present the results of evaluating our
approach. Table III shows when our approach recommends
that the performance test be stopped with different parameters.
An undesired stopping time may be ether too early or too late.
If a performance test stops too early, important behaviour may
be missed. On the other hand, one may design an approach
that stops the tests very late to ensure that there is no data
that brings new information after the stopping time. However,
stopping the tests late is against our purpose of reducing the
length of a performance test.

To evaluate whether our recommended stopping time is too
early, we measure how much of the generated data after our
recommended stopping time is repetitive of the generated data
before our recommended stopping time. The repetitiveness
captures how much behaviour is missed when we stop the
test early. To evaluate whether our recommended stopping
time is too late, we evaluate how long is the delay between
the recommended stopping time and and the cost-effective
stopping time.
Evaluating whether the recommended stopping time is too

early. We run a performance test for 24 hours. We note the
time when our approach recommends that the test be stopped.
We then divide the data that is generated from the test into
data generated before the stopping time (i.e., pre-stopping data
and (a) in Figure 2) and data generated after the stopping time
(i.e., post-stopping data and (b) in Figure 2).

Fig. 2: Our Approach that Evaluates Whether the
Recommended Stopping Times is too Early

We follow a similar approach as described in Section IV
to measure the repetitiveness between the pre-stopping data
and the post-stopping data. First, we first select a random
time period (Period

i

) from the post-stopping data. Second,
we determine whether Period

i

is repetitive by searching for a
Period

j

with performance counter data that is not statistically
significantly different from Period

i

. Third, we repeat this
process, i.e., selecting random Period

i

from (b) in Figure 2),



TABLE IV: The percentages of the post-stopping generated
data is repetitive of the pre-stopping generated data.

Duration 30 minutes 40 minutes 50 minutes
Threshold 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

CloudStore 15 minutes 100 100 100 100 100 100 100 100 100
30 minutes 100 100 100 100 100 100 100 100 100

DS2 15 minutes 97.6 97.1 100 97.8 98 100 98.6 97.7 99.9
30 minutes 91.9 98.1 99.9 94.1 97.8 99.9 92.9 98.4 100

PetClinic 15 minutes 100 100 100 100 100 100 100 100 100
30 minutes 100 100 100 100 100 100 100 100 100

and Period

j

from (a), 1, 000 times. Finally, we calculate the
likelihood that we can find a repetitive time period between
the pre-stopping data and the post-stopping data.

To compute the likelihood that we can find a repetitive time
period (i.e., the repetitiveness likelihood), we assume that B
is the set of time periods before the stopping time, and A is
the set of time periods after the stopping time. Ā ⇢ A where
8 ā 2 Ā there exists a b 2 B that is repetitive of ā 2 Ā.
Therefore, the repetitiveness likelihood is the size of Ā divided
by the size of A.

A very high repetitiveness likelihood indicates that continu-
ing the test is not likely to reveal much new information about
the system’s behaviour. When the repetitiveness likelihood is
high, then our approach recommended a good time to stop the
test. Conversely, when the repetitiveness likelihood is low, then
our approach recommended stopping the test too early (i.e., we
stopped the test before all of the system’s behaviour could be
observed). Therefore, the higher repetitiveness likelihood, the
better (i.e., more cost-effective) our decision to stop the test.
Evaluating whether the recommended stopping time is too

late. First, we identify the most cost-effective stopping time.
In particular, we calculate the repetitiveness likelihood if we
naı̈vely stopped the test at the end of every hour during the
test. Then at every hour, we calculate EffectivenessScore using
the following formula:

EffectivenessScore = (R
h

�R

h�1)� (R
h+1 �R

h

) (2)

where R is a repetitiveness likelihood at the hour h. We use
the EffectivenessScore to find the hour during the test that has
maximum increase of repetitiveness before the hour and min-
imum increase of repetitiveness after the hour. The hour with
highest score is considered the most cost-effective stopping
time. Finally, we measure the delay between the recommended
stopping time and the most cost-effective stopping time.

Note that, one cannot know such most cost-effectiveness
before finishing the test to gather the complete dataset. We use
the most cost-effectiveness stopping time to evaluate whether
our approach can recommend stopping the test with minimal
delay.

For example, if we find that a sequence of likelihood of
repetitiveness from the 1

st

hour to the 6
th

is (12%, 16%, 89%,
92%, 97%, 97.5%), and the recommended stopping time is at
the 6

th

hour. We first calculate the EffectivenessScore, and
they are from the 2

nd

to the 5
th

hour as follows: (-69, 70, -2,
-4.5). Therefore, the most cost-effective stopping time is the
3
th

hour, and the delay is 3 hours.
Results. There is a low likelihood of encountering new data
after our recommended stopping times. Table IV shows
the stopping time and the likelihood of having repetitive data

TABLE V: The delay between the recommended stopping
times and the most cost-effective stopping times.

Duration 30 minutes 40 minutes 50 minutes
Threshold 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

CloudStore 15 minutes 1:10 2:20 3:10 1:10 2:20 3:10 1:10 2:20 3:10
30 minutes 0:30 1:10 6:20 0:30 1:10 9:10 0:30 1:10 13:20

DS2 15 minutes 3:50 3:50 5:10 3:50 3:50 5:10 3:50 3:50 5:10
30 minutes 5:10 5:20 6:40 5:10 5:20 6:40 5:10 5:20 6:40

PetClinic 15 minutes 0:20 0:30 5:30 0:20 0:30 5:30 0:20 0:30 5:30
30 minutes 0:00 1:20 2:30 0:00 1:20 2:30 0:00 1:20 2:30

after the stopping time. We find that the likelihood of seeing
repetitive data after the stopping time is between 91.9% to
100%. Therefore, the results of our approach are not overly
impacted by choosing different values for the parameters.

There is a short delay between the most cost-effective
stopping time and the stopping time recommended by our
approach. Table V shows the delay of our approach to find a
cost-effective stopping times of the tests. Out of 54 stopping
times in Table V, 27 are under three hours away from the most
cost-effective stopping times. Whereas, only six stopping times
that are recommended from our approach are more than six
hours away from the cost-effective times, i.e., all when setting
Threshold as 0.01.

The measurement of repetitiveness can be used by
stakeholders to subjectively decide when to stop a perfor-
mance test. Our approach recommends when to stop a perfor-
mance test and measures the repetitiveness of the performance
counters, during the performance test. Such measurements
quantify the risk that is associated with stopping the test early.
Performance analysts and other stakeholders (e.g., project
managers and release engineers) can leverage such information
to subjectively decide whether they are willing to take the risk
to stop the test (i.e., comfort level).⇤

⇥

�

�

The post-stopping data is highly repetitive (91.9% to
100%) to the pre-stopping data. There is only a short
delay between the recommended stopping times by our
approach and the most cost-effective stopping times. In
27 out of 54 cases the delay is under 3 hours away from
the optimal stopping times.

VII. THREATS TO VALIDITY

A. Threats to Internal Validity

Choices of Thresholds. Our approach requires three parame-
ters as thresholds to determine whether to stop a performance
test. To evaluate the sensitivity of our approach against dif-
ferent thresholds, we chose three values for each threshold.
We evaluate our approach with the combinations of different
thresholds. We find that the choice of these parameters impacts
our recommended stopping time. Further studies may consider
automatically optimizing our approach by choosing optimized
thresholds.
Randomness in the Experiments and the Approach. To
avoid intentionally generating a repetitive data in our experi-
ments, we randomized the workload of the performance tests.
Furthermore, time periods, i.e., Period

i

and Period

j

, are
selected randomly. The choice of making random selection
was made to speed up our approach. Also, to avoid the neg-
ative effect of this random selection, we repeat this selection
process for 1,000 iterations. Future studies may consider more



evaluation of this randomness by replicating the experiments
and running our approach multiple times.

B. Threats to External Validity

Our Subject Systems. We used three open-source e-
commence systems (i.e., CloudStore, PetCinic, and DS2) to
evaluate our approach. The programming language used for
DS2 is PHP, while Java language is used for both CloudStore
and PetCinic. Our approach may not have similar results when
applied to other systems. However, the goal of this paper is
not to recommend a universal “stopping time”, but to pro-
pose an approach that helps performance analysts determine
whether to stop their performance tests. More case studies
on additional software system (e.g., commercial systems) in
additional domains and additional tests are needed to evaluate
our approach.
Our Performance Tests. Our approach assumes that the
system’s performance eventually becomes repetitive. However,
our approach is agnostic to whether this repetition occurs
when system’s is performing well, experiencing performance
issues or encountering a performance bottleneck. Moreover,
in the performance tests of our case study, the load drivers
periodically send pre-defined combinations of requests to the
systems to evaluate performance. However, large software
system, especially commercial systems, may leverage more
complex workload in performance tests. Evaluating our ap-
proach with more complex performance tests is needed in our
future work.

C. Threats to Construct Validity

The Quality of Performance Counters. In our case study,
we leverage PerfMon and load drivers (i.e., JMeter and DS2
driver) to provide performance counters. In particular, the
response time provided by our load drivers is an average value
of response time of all the requests that are responded during
a time period. However, by calculating the average response
time, we may fail to identify extreme values. Similarly, the
CPU usage, Memory usage and I/O traffic are also calculated
by averaging their values over a small time period. Using
different time periods to measure performance counters to
evaluate our approach will address this threat.
Determining Repetitiveness. In our approach, we consider
two time periods to be repetitive only if none of the perfor-
mance counters are statistically significantly different between
two time periods. In practice, domain experts may consider
two time periods repetitive even with some performance coun-
ters that are not statistically significantly different. However,
our approach uses a stricter rule to make sure that the two
time periods are repetitive to ensure that performance testers
will have confidence in our recommendations. Performance
analysts may choose to use a less strict rule for repetitiveness
based on the subject systems.
The Choice of Our Performance Counters. We use four
performance counters (i.e., CPU usage, memory usage, I/O
traffic and response time) in the evaluation of our approach.
All of these performance counters are widely used in prior

research (e.g., [36], [43], [46]), and by developers [15]. In
a typical performance test, hundreds of different performance
counters are collected. However, comparing every performance
counter to identify repetitiveness would be time consuming.
Moreover, many of the performance counters are highly corre-
lated [32]. Future studies may consider more and different type
performance counters. Considering to use a workload counter
(e.g., throughputs), might be more beneficial for our approach.
Measuring Trends in Performance Counters. We use
the Mann-Kendall Test to determine whether a performance
counter has a monotonic trend since the beginning of the test
and we use delta values of every two consecutive observations
a performance counters to measure the trend. However, a
performance counter may exist more complex (e.g., sinusoid
trends) trends or the trends may not start at the beginning of
the test. In our future work, we will extend our approaches in
order to identify other trends in performance counters.
The Length of the Performance Test. We evaluate our
approach by examining likelihood of missing unique (i.e., non-
repetitive) data if we stop the test early. However, it is
impossible to run the test forever to know all the possible
data that may generated from the test. Therefore, we run the
test for 24 hours as an initial test length. The evaluation
of our approach may have different results if a different
stopping point is chosen. However, our approach not only
recommends when to stop the test, but calculates the likelihood
that future performance counters will be repetitive. Therefore,
performance analysts should have more confidence in our
approach. Future evaluations of our approach against different
initial test lengths can address this threat.

VIII. CONCLUSION

Performance testing is critical to ensuring the performance
of large-scale software systems. Determining the length of
performance tests is a challenging, yet important, task for
performance testers. Therefore, we propose an approach to
automatically recommend when to stop a performance test.
Our approach measures the repetitiveness of the data that is
generated since the start of the performance test. Repetitive-
ness of performance counters is due to repeating values or
repeating trends in the counters. If the repetitiveness of per-
formance counters stabilizes, then our approach recommends
that the test be stopped.

The highlights of this paper are:
• We propose an approach to measure the repetitiveness of

performance counters.
• We propose an approach to automatically recommend

when to stop a performance test based on the repetitive-
ness of performance counters.

• Our approach recommends a stopping time that is close
to the most cost-effective stopping time (i.e., the stop-
ping time that minimize the duration of the test and
maximizes the amount of information about the system’s
performance provided by performance testing).
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