
Assessing the Performance of AI-Generated Code:
A Case Study on GitHub Copilot

Shuang Li
School of Computer Science

Wuhan University
Wuhan, China

shuangli.cs@whu.edu.cn

Yuntao Cheng
School of Computer Science

Wuhan University
Wuhan, China

cytzzz@whu.edu.cn

Jinfu Chen∗
School of Computer Science

Wuhan University
Wuhan, China

jinfuchen@whu.edu.cn

Jifeng Xuan∗
School of Computer Science

Wuhan University
Wuhan, China

jxuan@whu.edu.cn

Sen He
Department of Systems and Industrial Engineering

University of Arizona
Tucson, United States

senhe@arizona.edu

Weiyi Shang
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

wshang@uwaterloo.ca

Abstract—The integration of Large Language Models (LLMs)
into software development tools like GitHub Copilot holds the
promise of transforming code generation processes. While AI-
driven code generation presents numerous advantages for soft-
ware development, code generated by large language models may
introduce challenges related to security, privacy, and copyright
issues. However, the performance implications of AI-generated
code remain insufficiently explored. This study conducts an
empirical analysis focusing on the performance regressions of
code generated by GitHub Copilot across three distinct datasets:
HumanEval, AixBench, and MBPP. We adopt a comprehensive
methodology encompassing static and dynamic performance
analyses to assess the effectiveness of the generated code. Our
findings reveal that although the generated code is functionally
correct, it frequently exhibits performance regressions compared
to code solutions crafted by humans. We further investigate
the code-level root causes responsible for these performance
regressions. We identify four major root causes, i.e., inefficient
function calls, inefficient looping, inefficient algorithm, and in-
efficient use of language features. We further identify a total of
ten sub-categories of root causes attributed to the performance
regressions of generated code. Additionally, we explore prompt
engineering as a potential strategy for optimizing performance.
The outcomes suggest that meticulous prompt designs can
enhance the performance of AI-generated code. This research
offers valuable insights contributing to a more comprehensive
understanding of AI-assisted code generation.

Index Terms—Code generation, Software performance, Github
Copilot, Program analysis

I. INTRODUCTION

The integration of large language models (LLMs) into

software development tools has introduced a new era of AI-

powered coding assistants. These LLM-based tools, such as

GitHub Copilot, ChatGPT, and CodeWhisperer, are redefining

how developers write code. One typical example is GitHub

Copilot, a tool that leverages LLMs to aid programmers by

suggesting code completions and functionalities. The LLM-

∗Corresponding authors.

based code generation tools offer the potential to enhance

developer productivity and streamline development processes.

While Copilot offers the potential to enhance developer pro-

ductivity, ensuring the quality of the generated code remains

a crucial area of investigation. Prior research has extensively

studied and reported challenges related to correctness [35, 56,

57], security [40, 16, 28], and privacy [37, 25, 55] associated

with code generated by LLMs. These studies highlight the

need for continuous improvement in the overall quality of

LLM-generated code. However, the performance implications

of AI-generated code are a critical yet unexplored area.

Performance is a critical aspect of software quality. Software

performance regressions may affect application responsive-

ness, resource consumption, and overall user experience. The

efficiency of code can be particularly crucial in performance-

sensitive domains such as high-frequency trading, real-time

systems, and large-scale data processing. Given the potential

for AI-generated code to either enhance or degrade perfor-

mance, it is imperative to evaluate its performance character-

istics, including the risk of performance regressions. There is a

gap in understanding whether these AI assistants can facilitate

the generation of high-performing code.

To fill this gap, we design an experimental setup that

involves generating code using GitHub Copilot and evaluating

its performance regressions using both static analysis tools and

dynamic profiling. To ensure the broad applicability of our

findings, we select three diverse and representative datasets,

i.e., HumanEval, AixBench, and MBPP. The static analysis

is supported by tools such as Qodana, Spotbugs, and PMD,

which are adept at identifying a variety of performance regres-

sion code issues. For dynamic analysis, we choose cProfile,

Memory-profiler, and Psutil to measure critical performance

metrics such as runtime, memory usage, and CPU utilization.

Our study finds that AI-generated code, although func-

tionally correct, often exhibits performance regressions when

compared to canonical solutions. We identify several root



causes that contribute to these regressions, including inefficient

function calls, suboptimal looping constructs, and inefficient

use of language features. Furthermore, we demonstrate that

prompt engineering can be an effective technique to reduce

the performance regressions of AI-generated code.

To facilitate research reproducibility, we make the original

datasets and scripts available in our replication package [3].

Our contributions are summarized below:

• Performance assessment of Copilot-generated code:
We assess the performance regressions of code generated

by GitHub Copilot compared to human-written solutions.

• Performance regression root causes of Copilot-
generated code: We qualitatively analyze the root causes

of performance regression in the Copilot-generated code,

providing valuable insights into potential shortcomings of

current AI-powered coding assistants.

• Prompt engineering for performance in Copilot-
generated code: We explore the usage of prompt engi-

neering, a technique where developers tailor instructions

provided to Copilot, to optimize the performance of

generated code.

II. BACKGROUND AND MOTIVATING EXAMPLE

A. GitHub Copilot

GitHub Copilot is an AI-assisted programming tool that

enhances developer productivity by providing code generation

services. GitHub Copilot empowers programmers by offering

various forms of code completion. This functionality can be

particularly beneficial in scenarios where developers have

a clear understanding of the desired outcome but require

assistance in translating that concept into functional code.

Copilot offers two primary methods for code completion:

• Developers can select a specific section of code and re-

quest Copilot to automatically complete it. This function-

ality leverages the surrounding code context to generate

relevant suggestions.

• Developers can use natural language comments to de-

scribe their desired functionality. Copilot then analyzes

these comments and suggests code that aligns with the

described requirements.

Copilot supports a variety of popular programming languages,

including Python, JavaScript, TypeScript, Ruby, Go, and

Java [18]. In this study, we leverage Copilot’s capabilities

to generate code for datasets encompassing two specific lan-

guages: Python and Java. This focus allows us to conduct

a focused analysis of the performance implications of AI-

generated code within these widely used languages.

B. A motivating example of using Copilot to generate code

While GitHub Copilot offers significant potential for de-

velopers, a critical aspect to consider is the performance of

the generated code. Here, we present a motivating example

highlighting this challenge. One wants to develop a function to

determine if a given integer is a prime number. To achieve this,

one uses GitHub Copilot within the Visual Studio Code [19]

from typing import List

1 def factorize(n: int) -> List[int]:
2 """ Return list of prime factors of given 
3 integer in the order from smallest to largest.
4 Each of the factors should be listed number of
5 times corresponding to how many times it
6 appears in factorization.
7 Input number should be equal to the product of
8 all factors
9 >>> factorize(8)
10 [2, 2, 2]
11 >>> factorize(25)
12 [5, 5]
13 >>> factorize(70)
14 [2, 5, 7]
15 ""”

METADATA = {
'author': 'jt‘,
'dataset': 'test'

}

1 def check(candidate):
2 assert candidate(2) == [2]
3 assert candidate(4) == [2, 2]
4 assert candidate(8) == [2, 2, 2]
5 assert candidate(3 * 19) == [3, 19]

GitHub Copilot Suggestions
- Suggestion 1

1 def factorize(n: int) -> List[int]:
2 """ Return list of prime factors of given 
3 integer in the order from smallest to largest.
4 Each of the factors should be listed number of
5 times corresponding to how many times it
6 appears in factorization.
7 Input number should be equal to the product of
8 all factors
9 >>> factorize(8)
10 [2, 2, 2]
11 >>> factorize(25)
12 [5, 5]
13 >>> factorize(70)
14 [2, 5, 7]
15 ""”
16 result = []
17 i = 2
18 while i <= n:
19 if n % i == 0:
20 result.append(i)
21 n //= I
22 else:
23 i += 1
24 return result

Fig. 1: An example of generating the function to determine

all prime factors of a given number from HumanEval-25.py.

environment to generate the function. The generated code,

while functionally correct, exhibits performance regressions.

As illustrated in Figure 1, the generated code employs a naive

approach that iterates from 2 to the original number, leading

to inefficiency. This example emphasizes the potential for AI-

generated code to introduce performance regressions. While

Copilot can produce functional code, it may not always prior-

itize optimal performance. Our study aims to bridge this gap

by analyzing the performance characteristics of code generated

by GitHub Copilot. By understanding these characteristics,

we can develop best practices and techniques to optimize

performance and unlock the full potential of AI-powered

coding assistants.

III. CASE STUDY SETUP

A. Dataset

Evaluating the quality and effectiveness of large lan-

guage models (LLMs) in code generation requires special-

ized datasets designed to assess correctness and executability.

These datasets typically include unique identifiers (IDs), nat-

ural language descriptions, function names (or specifications),

and corresponding test cases. Our study explores three widely

used datasets for code generation evaluation, focusing on both

Python and Java languages:

• HumanEval: This handcrafted Python dataset by Chen et

al. consists of 164 problems [7]. Each problem provides a

function name, function body, associated test cases, and

canonical solution. These problems focus on core pro-

gramming skills like semantic understanding, algorithm

design, and basic math.

• MBPP: MBPP is a Python dataset containing 974 prob-

lems [4]. Each problem is presented with a brief descrip-

tion and corresponding test cases.

• Aixbench: Designed for Java code generation,

Aixbench [22] offers 187 problems, along with

function signatures and test cases.

The overview of datasets is shown in Table I. HumanEval

and MBPP datasets are chosen for their broad acceptance

within the research community, as highlighted by Zheng

et al. [62] and Zan et al. [60]. These datasets are widely

recognized for their robustness and relevance in code genera-

tion and performance evaluation. The canonical solutions are



TABLE I: Overview of datasets used in our study

Dataset Language #Instances Year Reference

HumanEval Python 164 2021 [7]

AixBench Java 187 2022 [22]

MBPP Python 974 2021 [4]

authored by senior developers, representing high-quality and

efficient solutions for specific problems, as documented by

prior studies [7, 4]. This selection provides a solid foundation

for benchmarking AI-generated code against well-established

standards and effectively assessing performance regression.

B. Experimental setup

In this subsection, we describe the process of collecting the

generated code and performance data for each question in our

study datasets. Figure 2 illustrates the overall process of our

approach. We follow four steps to collect the needed data. In

the first step, we prepare prompts by parsing the three datasets,

i.e., HumanEval, AixBench, and MBPP. In the second step,

for each prepared prompt, we feed the prepared prompt to

GitHub Copilot to generate code. In the third step, we filter

the generated code using test cases. Finally, we analyze the

performance regressions of the generated code.
Step 1: Preparing prompt. The data from HumanEval,

MBPP, and Aixbench datasets are stored in JSON files. We

first parse these files to extract relevant code information. New

files are created in either .py or .java format for each code

snippet requiring completion. As an example in Figure 3, the

4.py file is extracted from the corresponding HumanEval JSON

file. The extracted function name, parameters, and comments

are used as the prompt for Copilot.

Step 2: Generating code. In this step, we use Copilot to

generate code for each prompt of each question. In detail, we

leverage GitHub Copilot within the VSCode [50] environment

to generate code for each prompt. We open each newly

created file, activating the command panel with Ctrl+Enter,

and Copilot provides 1-10 code completion suggestions. We

consistently accept the first suggestion (see Figure 1) for

consistency. This process is repeated for all files requiring

completion across all datasets. Generated code files are named

sequentially, i.e., HumanEval-0 to -163, MBPP-1 to -974, and

AixBench-0 to -186.

Step 3. Filtering generated code. In this step, we filter the

generated code from the last step by executing the correspond-

ing test case. We execute the corresponding test cases on each

generated code to evaluate correctness. Code that compiles

successfully and passes the tests is retained. This filtering

process resulted in correctness rates of 81.7% (HumanEval),

87.9% (MBPP), and 50.3% (Aixbench).

Step 4. Analyzing performance regressions. To compre-

hensively evaluate the performance regressions of generated

code, we employ both static and dynamic analyses to examine

the aforementioned filtered generated code. Static analysis

is used to identify factors that may lead to performance

regressions, while dynamic analysis observes differences in

runtime, CPU usage, and memory consumption.

1) Static performance regression analysis: We use three

static analysis tools: Qodana [45], Spotbugs [48], and

PMD [41] to investigate potential performance regression

issues in the generated code. Qodana is designed for Python

programs. It integrates with CI processes and provides in-

depth inspections across multiple languages, identifying errors,

code smells, and standard violations. Spotbugs is an open-

source tool for Java, which focuses on detecting bugs and

vulnerabilities, with an emphasis on runtime errors and non-

standard practices. PMD can identify potential flaws and

complexity issues, promote code style consistency, and focus

on optimization opportunities.

Since built-in rules in the three tools might not comprehen-

sively cover performance regression, we develop custom rules

based on extensive literature research and industry documen-

tation. We use keywords such as “performance degradation”,

“performance regression”, “anti-pattern”, and “code smell” to

search in ACM Digital Library, IEEE Xplore Digital Library,

Springer Link Digital Library, and Google Scholar. Based on

the relevant literature retrieved from the above paper databases,

we manually filter and obtain the code performance regression

rules. In addition, we find some code performance regression

rules in industrial documentation such as SonarQube [47]. This

search result covers anti-patterns, code smells, and predefined

PMD rules related to performance. The customized rules

are categorized into six aspects: Performance Regression,

Bad Practice, Dodgy Code, Error Prone, Bad Design, and

Multithreading, to provide a structured approach to identi-

fying performance regression. Finally, we identify a total of

159 rules related to performance regressions, i.e., “Manually

copying data between two arrays is inefficient. Please use a

more efficient native array assignment method instead” [41].

For Spotbugs, we use its Idea-based plugin. Initially, we

open a given project in Idea for inspection. Subsequently, we

scan the project using the Spotbugs plugin. We can then obtain

the performance regression results of Spotbugs detection. For

PMD, we first create a new XML file and include all custom

rules within the <ruleset> element. We then define a

<rule> element for each rule and set various attributes for the

rule within this element. Next, we write XPath expressions or

Java classes to implement the matching logic for correspond-

ing rules. For Qodana, we first create new projects on Qodana

Cloud. We then upload the HumanEval and MBPP datasets to

projects. In this way, Qodana can automatically identify and

highlight potential performance regression issues.

2) Dynamic performance regression analysis: Dynamic

analysis is conducted on Python datasets from HumanEval

and MBPP, focusing on runtime, memory usage, and CPU

utilization. We conduct this analysis using three profiling tools:

cProfile [1]: A Python library for performance analysis,

providing metrics like the number of function calls and time

spent in functions.

Memory-profiler [14]: A module for tracking memory con-

sumption, allowing for the decoration of functions to monitor

memory usage.



AixBench

HumanEval

MBPP

Parsing dataset

Extracting code
and comment

Creating
prompt

Process

Data

Condition

For each prompt

Executing
test case Pass

Comparing
generated code 
to canonical code

Yes

Excluding
generated code

No Canonical
code

Generated
code

Generated
code

Step3.Filtering generated code Step4. Analyzing performance regressions

Step1.Preparing prompt Prompts of
multiple questions

Source data

Step2.
Generating

code

Accepting
first

suggestion

Static performance
regerssion analysis

Dynamic performance
regression analysis

Utilizing
Qodana,

Spotbugs,
PMD

Potential
performance
regressions

Utilizing
cProfile,
Memory-
profiler, 
Psutil

Runtime
Memory

CPU

Fig. 2: An overview of our approach to collecting data.

Fig. 3: Examples of prompt preparation, corresponding canon-

ical solution, and the test case from the HumanEval dataset.

Psutil [15]: A library for process and system utilization

information, particularly useful for CPU monitoring.

The dynamic analysis involves running the generated code

and collecting data on its performance metrics. This data will

be used to evaluate the performance characteristics of the

code. Each tool will target a specific aspect of performance,

with cProfile for runtime, memory-profiler for memory, and

Psutil for CPU usage. The hardware configuration for the

experiment includes an Intel Core i9-13900K processor, 128

GB of RAM, 1 TB SSD for primary storage, 8 TB HDD for

secondary storage, and the system operates on Ubuntu 22.04.4

LTS. By following the experimental setup, we aim to achieve

a thorough and systematic evaluation of the performance

regressions of AI-generated code, considering both static and

dynamic aspects, and providing actionable insights for code

optimization and tool improvement.

IV. CASE STUDY RESULTS

We present our case study results by addressing three re-

search questions, covering motivation, approach, and findings.

A. RQ1: How prevalent are performance regressions in gen-
erated code by Copilot?
Motivation: While prior research has focused on evaluating

the correctness and security of AI-generated code, perfor-

mance regression has received less attention. However, in-

tuitively, AI-generated code models may not fully grasp the

developer’s performance goals, potentially leading to code that

prioritizes functionality over efficiency. On the other hand,

training data for code generation models might not explicitly

emphasize performance considerations, impacting the mod-

els’ ability to generate efficient code. Given these potential

shortcomings, it’s crucial to investigate the prevalence of

performance regressions in AI-generated code. Understanding

the scope of this issue will inform future research directions

and development efforts for AI-assisted coding tools.
Approach: Our approach involves two strategies to evaluate

the performance of code generated by GitHub Copilot. In par-

ticular, for static performance regression analysis, we employ

industry-standard tools, i.e., Spotbugs and PMD, to scan the

generated Java code in the AixBench dataset. These tools are

equipped with pre-defined rules that can detect performance

regressions within the code. The detailed configuration of these

rules is available in the replication package we provided. For

Python code in the HumanEval and MBPP datasets, we use

Qodana, a cloud-based static analysis platform to identify

potential performance regressions specific to Python code.

To facilitate efficient analysis, we create new projects and

establish a dedicated scan workflow within Qodana Cloud.

This workflow enables Qodana to automatically identify and

highlight potential performance-related code issues within the

generated Python code.
For dynamic performance regression analysis, we compare

the generated code with canonical solutions from the Hu-

manEval and MBPP datasets. Using the dynamic performance

regression detection modules, we conduct dynamic perfor-

mance regression analysis on these two datasets’ generated

and canonical code sets. The Python scripts generated for

the HumanEval and MBPP datasets are typically short and

have brief single-run execution times. To generate more robust

performance data, we adopt a technique called repetitive

iteration measurement [29, 10, 27]. This technique extends

the runtime of the generated code by increasing the number

of iterations within the test cases, allowing profiling tools to

capture more comprehensive performance data. We achieve



Fig. 4: An example of increasing the number of iterations

within the test case of Figure 3.

this extension by adding a for loop at the beginning of the test

cases. This loop causes the existing test cases to be executed

repeatedly. Figure 4 illustrates this modification for the script

shown in Figure 3. Once the iterations has been increased,

we encapsulate each script from the HumanEval and MBPP

datasets within a function. We then use the cProfile module to

profile these functions. Extracting the “cumtime” metric from

the profiling results reveals the script’s overall runtime.

We use both domain-level performance metrics, i.e., execu-

tion time, and physical-level performance metrics, i.e., CPU

and memory usage, as measurements of performance regres-

sions. To monitor memory usage during script execution, we

add the “@profile” decorator at the beginning of each function.

This decorator activates the “memory usage” function, which

collects the memory footprint of the function’s execution.

Similarly, we leverage the “cpu percent” function from the

psutil to capture CPU usage during script execution.

Results: Performance regressions are not rare instances in
code generated by Copilot. We detect 8 and 38 suspicious

low-performing code snippets in Spotbugs and PMD results,

respectively. These findings suggest a high likelihood of per-

formance regressions within the generated Java code. For the

Python code in the HumanEval and MBPP datasets, Qodana

identifies 14 and 274 instances of potential performance re-

gressions, respectively.

In terms of dynamic performance regression analysis, we

observe that while the code generated by Copilot occasion-

ally outperforms the canonical code, it typically exhibits a

substantial performance regression. We define a performance

regression as significant if the generated code’s performance is

over 20% worse than the canonical code’s performance [59]. In

the HumanEval dataset, 31 out of 134 scripts show significant

runtime discrepancies (see Figure 5). We observe 14 scripts

with substantial memory usage disparities and 54 with notable

CPU utilization gaps in the HumanEval dataset. This results

in 79 scripts exhibiting significant regression in at least one

performance metric when compared to the canonical code.

The MBPP dataset presents a different set of disparities.

226, 14, and 265 scripts contain performance regression in

runtime, memory usage, and CPU utilization, respectively.

Table II presents the performance regressions observed in

these datasets, showing the number of notable performance

regressions among scripts that passed the test cases.

Physical performance metrics are important comple-
mentary indicators of performance regressions in gener-
ated code. We use the two physical performance metrics,

i.e., CPU utilization and memory usage, to measure perfor-

mance regression. Our findings indicate that when considering

physical performance metrics, we are able to identify addi-

tional instances of performance regression that might have

(a) Execution time

(b) Memory usage

(c) CPU utilization

Fig. 5: Performance comparison between generated code and

canonical code for each prompt in the HumanEval dataset.

been overlooked if we had relied solely on execution time.

Specifically, within the HumanEval dataset, we find 39 and

11 code instances exhibiting performance regressions in terms

of CPU utilization and memory usage even though their

execution time seemed acceptable. These findings emphasize

the importance of considering a multi-faceted approach to

performance evaluation during code generation.

The performance regressions identified in code gen-

erated by Copilot can have broader implications for

software systems. Our findings underscore the need for

careful evaluation of AI-generated code, especially in

performance-critical applications. The findings suggest

the need for more frequent performance assurance

activities (like performance testing) in practice.



TABLE II: Number of identified performance regression in code generated by Copilot

Static performance regression analysis Dynamic performance regression analysis

Dataset #Passed instances (percentage) SpotBugs PMD Qodana Execution time Memory usage CPU Utilization

HumanEval 134 (81.7%) N/A N/A 14 31 14 54
MBPP 856 (87.9%) N/A N/A 274 226 14 265

AixBench 88 (50.3%) 8 38 N/A N/A N/A N/A

B. RQ2: What are the root causes in Copilot-generated code
that lead to performance regression?

Motivation: In RQ1, we find that there are prevalent perfor-

mance regressions in the code generated by Copilot. While

identifying these regressions is crucial, a more profound

understanding of the root causes is essential for mitigating

their impact. By pinpointing the reasons and patterns that lead

to performance regressions, we can provide valuable insights

that can inform the development of Copilot itself, potentially

guiding the AI model toward generating more performant

code. We can also inform developers with guidance on how

to recognize potential performance pitfalls during the code

generation process with Copilot.

Approach: To investigate the underlying root causes re-

sponsible for performance regressions in Copilot-generated

code, we employ a qualitative research approach known as

open coding. This method involves manually examining code

samples, allowing us to uncover root causes that contribute to

performance regressions. We recognize that directly analyzing

code root causes can introduce potential subjectivity and bias.

To mitigate this concern, we follow a rigorous process inspired

by prior research methodologies [61, 10]:

• Dual coding. Two authors independently analyze a con-

sistent set of generated code instances with identified per-

formance regressions of at least one performance metric,

alongside their canonical code. We identify 24, 29, and

266 unique code instances with performance regression

in HumanEval, AixBench, and MBPP, respectively. This

step is critical for surfacing any inconsistencies in the

interpretation of code root causes.

• Disagreement resolution. When discrepancies arise be-

tween the initial analyses, a third author facilitates a

discussion. This collaborative review refines and aligns

the identified root causes for performance regressions.

• Iterative analysis. The examination is repeated in an

iterative process until no new root causes of code-related

performance regressions are discovered, indicating that a

comprehensive understanding of the prevalent root causes

has been achieved.

To quantify the reliability of our dual coding analysis, we

calculate the Cohen’s Kappa statistic, which yielded a consid-

erable agreement score of 0.88 [34].

Results: We identify four major root causes of perfor-
mance regressions from the code generated by Copilot.
Our in-depth analysis of code samples exhibiting performance

regressions yields four key categories of root causes at the

code level, along with ten sub-categories. These categories

are detailed in Table III. Below, we discuss each root cause

category with corresponding code examples for illustration.

1 for (int i = array.length - 1; i > 0; i--) {
2 int rand = (int) (Math.random() * (i + 1));
3 int temp = array[i];
4 array[i] = array[rand];
5 array[rand] = temp;
6 }

(a) Inefficient API Usage from AixBench-11

1 def is_simple_power(x, n):
2 if x == 1:
3 return True
4 if x < n:
5 return False
6 if x % n != 0:
7 return False
8 return is_simple_power(x // n, n)

(b) Excessive Recursion from HumanEval-76

Fig. 6: Examples of inefficient function calls.

1) R1 Inefficient Function Calls: Performance regression

is often attributable to suboptimal function call choices, in-

cluding the use of inefficient APIs and excessive recursion

leading to deep stack issues.

R1-1 Inefficient API Usage. Selecting the correct functions

and APIs has a significant impact on performance. The

generated code often opts for less efficient functions when

more optimal methods are available to enhance efficiency. For

example, in the code snippet shown in Figure 6 (a) from

AixBench-11, the generated code uses the Math.random() API

to generate random double numbers and then convert them to

int type. This approach is less efficient in terms of performance

compared to directly using the random.nextInt() API.

R1-2 Excessive Recursion. Recursive functions are used in

the generated code. In code implementation, employing recur-

sive functions can lead to excessive stack depth when handling

large data ranges, thus impacting performance. For example,

in the code shown in Figure 6 (b) from HumanEval-76, the

function is simple power(x, n) is designed to check if the

number x is the power of another number n. However, this

recursive function may suffer from performance regression due

to increased recursion depth when faced with very large values

of x or when n is close to 1.

2) R2 Inefficient Looping: Performance regressions are

frequently linked to inefficient looping. For instance, opera-

tions such as string concatenation within loops, multiple nested

loops, and object creation inside loops can lead to significant

performance declines. These root causes particularly affect the

efficiency of code when handling large amounts of data.

R2-1 String Concatenation in Loops. Strings are

immutable, and using the + operator to concatenate strings

creates a new string object. Performing such operations

frequently within a loop, especially when n is large, can lead

to substantial memory allocation and release, thus potentially

reducing the efficiency of code execution. An example of this



TABLE III: Root causes of performance regression from the Copilot-generated Code

Dataset
Inefficient Function Calls Inefficient Looping Inefficient Algorithm Inefficient Use of Language Features

Inefficient
API usage

Excessive
Recursion

ALL
String

Concatenation
in Loops

Nested
Looping

Object
Creation
in Loops

ALL
Missed

Mathematical
Optimizations

Suboptimal
Conditional

Logic
ALL

Underutilization of
Language Features

Unused
Variables

Inefficient
Exception
Handling

ALL

HumanEval 8 1 9 2 4 1 7 2 1 3 5 0 0 5

AixBench 9 1 10 1 4 1 6 1 1 2 3 1 7 11

MBPP 53 6 59 16 40 10 66 53 23 76 54 6 5 65

1 def string_sequence(n: int) -> str:
2 result = ’’
3 for i in range(n + 1):
4 result += str(i) + ‘ ’
5 return result[:-1]

(a) String Concatenation in Loops from HumanEval-15

1 def sort_matrix(M):
2 n = len(M)
3 for i in range(n):
4 for j in range(n-i-1):
5 if sum(M[j]) > sum(M[j+1]):
6 M[j], M[j+1] = M[j+1], M[j]
7 return M

(b) Nested Looping from MBPP-12

1 def add_K_element(test_list, K):
2 res = []
3 for i in test_list:
4 temp = []
5 for j in i:
6 temp.append(j+K)
7 res.append(tuple(temp))
8 return (res)

(c) Object Creation in Loops from MBPP-363

Fig. 7: Examples of inefficient looping.

code is shown in Figure 7 (a) from HumanEval-15.

R2-2 Nested Looping. The generated code exhibits issues

with nested loops. In the code snippet shown in Figure 7

(b) from MBPP-12, a double loop is used for comparing and

swapping rows of a matrix. This nested looping structure,

when handling larger matrices, leads to a time complexity of

O(n2), resulting in significant performance regression.

R2-3 Object Creation in Loops. Creating objects repeatedly

within loops can negatively impact performance due to exten-

sive memory allocation and frequent garbage collection. In

Figure 7 (c) from MBPP-363, the code example demonstrates

a performance regression, where a new temp list is created

within each iteration of a loop.

3) R3 Inefficient Algorithm: Our analysis finds that the

generated code may employ algorithms that are less efficient

than canonical solutions. In particular, we identify two sub-

categories of inefficient algorithms.

R3-1 Missed Mathematical Optimizations. The generated

code may not always leverage mathematical optimizations

to their full potential. In Figure 8 (a) from MBPP-335, the

generated code iterates over the array through the loop and

accumulates them one by one. However, from a mathematical

perspective, the sum of an arithmetic sequence can be directly

calculated using a formula, which is more efficient and avoids

unnecessary loops.

R3-2 Suboptimal Conditional Logic. The use of complex

or unnecessary conditional statements (if-else) can introduce

performance regression. As shown in Figure 8 (b) from

HumanEval-13, when calculating the greatest common divi-

# Generated code
1 def ap_sum(a,n,d):
2 total = 0
3 for i in range(n):
4 total += a + i * d
5 return total

# Canonical solution 
1 def ap_sum(a,n,d):
2 total = (n * (2 * a + (n - 1) * d)) / 2
3 return total

# Generated code
1 def greatest_common_divisor(a:int,b:int)->int:
2 while a != b:
3 if a > b:
4 a -= b
5 else:
6 b -= a
7 return a

# Canonical solution
1 while b:
2 a, b = b, a % b
3 return a

(a) Missed Mathematical Optimizations from MBPP-335

(b) Suboptimal Conditional Logic from HumanEval-13

Fig. 8: Examples of inefficient algorithm.

sor (GCD), the generated code implementation reduces the

difference between the two numbers by repeatedly subtracting

the smaller number from the larger one, increasing the run-

time. This inefficient conditional logic results in unnecessary

performance regression.

4) R4 Inefficient Use of Language Features: The gen-

erated code may exhibit shortcomings in performance in its

utilization of the programming language’s built-in features and

functionalities.

R4-1 Underutilization of Language Features. Sometimes

the generated code fails to effectively leverage the features

of the programming language, as demonstrated in Figure 9

(a) from MBPP-688. When calculating the magnitude of a

complex number, the generated code manually computes it,

not fully utilizing Python’s built-in capabilities for handling

complex numbers. Using Python’s cmath module or the built-

in complex type and abs function could offer performance

benefits, as built-in operations are typically closer to the

hardware level and more optimized.

R4-2 Unused Variables. When generating code, Copilot

sometimes produces unnecessary or redundant code, such as

assigning values to variables that are not read or used in

subsequent parts of the program. This not only increases

the complexity of the code but can also affect its execution

efficiency. In Figure 9 (b) from MBPP-45, the example of the

generated code shows that although the main purpose of the

code is to compute the greatest common divisor (GCD) of

a list of numbers, the code includes operations for assigning

initial values to num1 and num2.

R4-3 Inefficient Exception Handling. The generated code

includes improper exception handling, which can become a

performance bottleneck in scenarios requiring frequent calls

(such as in loops or core processing logic). In Figure 9 (c)

from AixBench-72, the generated code contains issues with ex-



# Generated code
1 def len_complex(a,b):
2 x=a**2
3 y=b**2
4 z=x+y
5 length=z**0.5
6 return length

# Canonical solution
1 def len_complex(a,b):
2 cn=complex(a,b)
3 length=abs(cn)
4 return length

1 def get_gcd(l):
2 num1 = l[0]
3   num2 = l[1]
4   gcd = num1
5   for i in range(2, len(l)):
6     num2 = l[i]
7     while(num2):
8       num1, num2 = num2, num1 % num2
9     gcd = num1
10  return gcd

(b) Unused Variables from MBPP-45

1 public <T> T newInstance(Class<T> clazz) {
2 try{
3 return clazz.newInstance();
4 }catch (InstantiationException|IllegalAccessException e){
5 throw new RuntimeException(e);
6 }

(c) Inefficient Exception Handling from AixBench-72

(a) Underutilization of Language Features from MBPP-688

Fig. 9: Examples of inefficient use of language features.

ception handling, which may lead to performance regression.

The code frequently throws and catches specific exceptions

such as InstantiationException and IllegalAccessException,

which respectively indicate problems with class instantiation

and access. These exceptions are rewrapped and thrown as

RuntimeException, a practice that obscures the specific cause

of the errors, affecting the performance of the code.

Developers should be aware of these common ineffi-

ciencies and apply best practices in code review and

testing. Furthermore, the root causes can contribute to

a more comprehensive understanding of AI-assisted

code generation and can inform the development of

future tools and best practices for developers.

C. RQ3: Can prompt engineering optimize AI-generated code
for performance?

Motivation: Building upon the significant prevalence of per-

formance regressions identified in AI-generated code in RQ1

and RQ2, this research question aims to investigate the poten-

tial mitigation strategies. Since modifying the underlying AI

model of GitHub Copilot might not be readily feasible, we ex-

plore prompt engineering as a promising approach to improve

the performance characteristics of the generated code. Our

goal is to use prompts to guide Copilot to generate code that

is both functionally correct and optimized for performance.

By effectively incorporating performance considerations into

prompts, developers can potentially improve overall develop-

ment productivity and the performance of the generated code.

Approach: We follow three steps to evaluate prompt engi-

neering for performance in AI-generated code.

In the first step, we design prompts. This step involves

designing two types of prompts, i.e., general prompts and

specific prompts based on the root causes of performance

regressions identified in RQ2.

General Prompt: Complete the function with better-
performing Python/Java code. Use efficient function calls and
looping structures, use efficient algorithms, avoid unnecessary
complexity and waste of resources, ensure that the code is
concise, and make full use of language features. The general

prompt aims to enhance performance across a wide range of

code generation tasks.

Specific Prompts: Based on the performance regression root

causes identified in RQ2, we develop four specific prompts.

• For code with inefficient function calls: Be mindful to
choose better-performing function interfaces when calling
functions, avoiding unnecessary deep recursion.

• For code with inefficient looping: Avoid string concate-
nations and assignments within loops, and optimize the
code structure to reduce nested loops.

• For code with inefficient algorithms: Be sure to use
efficient algorithms, minimize unnecessary conditional
statements, and for mathematical problems, prioritize
algorithms that can exploit mathematical properties.

• For code with inefficient use of language features: In-
tegrating programming language features, using efficient
built-in functions of programming language, avoiding
poor exception handling, and reducing unused variables.

In the second step, we generate code for the scripts from

the HumanEval, AixBench, and MBPP datasets by applying

general prompt engineering. We then conduct static and dy-

namic analysis on the code generated with general prompts.

Next, we compare the performance obtained in this stage with

the previous baseline results.

In the final step, we regenerate code using specific prompts.

Based on the scripts after the general prompt, we use specific

prompts on the scripts with root causes in RQ2. We then

perform static and dynamic analysis on the resulting code and

analyze the performance of this code against the baseline and

general prompt results.

Results: Prompt engineering can effectively improve the
performance of Copilot-generated code. Table IV clearly

shows that applying general prompts resulted in a reduction

in performance regressions across all three datasets, i.e.,

HumanEval, AixBench, and MBPP. This reduction is further

amplified when specific prompts are applied, targeting iden-

tified root causes. For example, in the AixBench dataset, the

number of performance regressions drops from 38 (baseline

approach) to 29 with general prompts and further down to 20

with specific prompts.

Dynamic analysis reinforces the positive impact of prompt

engineering. In both HumanEval and MBPP datasets, all three

key performance metrics (execution time, memory usage, and

CPU utilization) exhibit a decrease in performance regressions

after applying general or specific prompts. For instance, the

HumanEval dataset saw a reduction in performance regression

instances from 54 (baseline approach) to 38 with specific

prompts applied. This indicates that prompt engineering can



TABLE IV: The number of performance regression instances before and after general and specific prompt engineering in static

and dynamic analyses

Prompt
Static performance regression analysis Dynamic performance regression analysis

HumanEval MBPP AixBench HumanEval MBPP

Qodana Qodana Spotbugs PMD Execution time Memory CPU Execution time Memory CPU

No prompt (baseline) 14 274 8 38 31 14 54 226 14 265

General prompt 10 265 6 29 18 13 45 174 9 233

Specific prompt 9 259 4 20 14 13 38 168 8 212

effectively optimize the performance of Copilot-generated

code during runtime.

The most effective specific prompt is for code with
inefficient looping. In the experiment with specific prompts,

we obverse that specific prompts targeting inefficient looping

deliver the most significant performance improvements. This

can be attributed to the relatively straightforward nature of

these issues and the ease with which code modifications can

be guided through specific prompts. This insight suggests

that addressing inefficient looping through prompt engineering

could be a priority for achieving performance gains in AI-

generated code.

Prompt engineering is most successful in optimizing
execution time and CPU utilization. Prompt engineering

effectively improves execution time and CPU utilization, as

evidenced by reduced performance regressions for these met-

rics. However, the improvements in memory usage are less

prominent. We hypothesize that the reasons for this may

include the complexity of memory optimization, which often

involves intricate data structures and algorithmic changes that

are not as directly addressed by our current prompt engineer-

ing strategies. Additionally, memory management is highly

dependent on the runtime environment and garbage collection

mechanisms, which may not be fully captured by our prompt

directives. Further research is needed to develop more effective

prompts for memory optimization.

Both general and specific prompts contribute to per-

formance improvement of AI-generated code, with

specific prompts demonstrating a significant impact

on inefficient looping. While execution time and CPU

utilization benefit greatly from prompt engineering,

memory usage improvements require further research

to fully understand and address the underlying reasons.

V. DISCUSSION

Performance regressions of AI-generated code across
languages. While AI-generated code can be functionally cor-

rect, it often exhibits performance regressions compared to

human-written code. Additionally, our study indicates a higher

prevalence of performance regressions in Java-based (25% in

AixBench) code generated by Copilot compared to Python

(8% in HumanEval and 21% in MBPP). The disparity in

performance regressions between Java and Python may be

attributed to differences in language constructs, compiler op-

timizations, or the specific challenges each language presents

to the AI model. The datasets we utilized are valuable for

our study due to their established use in prior research

and comprehensive coverage of typical programming tasks.

However, they might not fully capture the complete spectrum

of performance-critical code. Despite these limitations, our

selection of datasets provides a solid foundation for evaluating

AI-generated code, particularly in Java and Python, offering a

meaningful perspective on the capabilities and limitations of

current LLMs in generating efficient code.

The reasons of MBPP dataset has much more per-
formance regressions. We speculate several factors might be

at play: (1) The lack of clear prompts in MBPP compared

to HumanEval might lead to ambiguities for Copilot. (2)

MBPP’s complexity, particularly with math-related questions,

poses greater challenges for Copilot. The length of generated

code in MBPP varies significantly based on the question

difficulty. This variability might introduce additional com-

plexity for Copilot’s generation process, potentially impacting

performance. (3) It’s interesting to note that the creators

of Codex (the foundation for Copilot), also developed the

HumanEval dataset. This potentially means Copilot might have

been trained on tasks similar to HumanEval, leading to better

performance on this dataset compared to MBPP.

Prompt engineering for the performance of AI-generated
code. Despite the potential of specific prompts to mitigate

performance regressions, a significant portion of performance

regressions remains, suggesting a need for more sophisticated

AI models that can better comprehend code performance. This

may involve advanced machine learning techniques that can

better predict and prioritize optimization opportunities. We de-

signed two types of prompts, i.e., general prompts and specific

prompts based on the root causes of performance regressions.

In our approach, we utilized one-shot learning, providing a

baseline evaluation. Nonetheless, we recognize the potential

of more sophisticated prompt strategies like few-shot learning

and chain-of-thought prompting to improve the performance of

AI-generated code. Future research is warranted to explore the

effectiveness of these deeper prompt strategies in mitigating

performance regressions in AI-generated code.

Further Research on the performance regression of
AI-generated code. We investigate the performance regres-

sions of code generated by GitHub Copilot, based on the

GPT model [38], considered representative of code gener-

ation LLMs. This suggests that the observed performance

regressions might extend to other LLMs utilizing similar

architectures. By employing both static and dynamic analysis



techniques, we have provided a comprehensive evaluation of

performance regressions. This dual approach helps mitigate the

limitations of relying solely on one type of analysis, ensuring a

more holistic view of code performance. Our findings point to

several areas for further research and development, including a

more granular analysis of performance regressions in different

programming languages, the development of more advanced

AI models capable of understanding and generating high-

performance code, and the creation of a wider array of prompts

to tackle the variability in performance regression root causes.

VI. THREATS

External validity. Our findings are based on three open-

source datasets, i.e., HumanEval, AixBench, and MBPP. While

valuable, these datasets might not fully represent the spectrum

of performance-critical code in diverse real-world applications.

This study focuses on Java and Python, and results might not

generalize directly to other programming languages. Perfor-

mance regressions may significantly differ due to language

features, compiler optimizations, and running environments.

While GitHub Copilot, based on the GPT-3 model, represents

code generation LLMs, our findings may not fully apply to

other LLMs with different architectures or training data. Future

work can incorporate diverse datasets, languages, and LLMs

to develop a more generalized understanding of AI-generated

code performance regressions.

Internal validity. We employ three static analysis tools (e.g.,

Qodana, Spotbugs) and three dynamic profilers (e.g., cProfile)

to detect potential performance regressions. These tools were

chosen for their established use in prior research and their

robust support for the programming languages. These tools

may not identify all performance regressions, potentially lead-

ing to an incomplete understanding of some root causes. To

mitigate this limitation, we employed a combination of static

and dynamic analysis techniques for a more comprehensive

assessment of performance regressions. Future research can

explore additional techniques or tools to uncover more com-

plex performance problems within AI-generated code. Man-

ually classifying reasons for performance regressions in AI-

generated code can introduce subjective factors. To mitigate

this, we employ two authors for independent code examina-

tion. Disagreements are resolved with a tie-breaker to ensure

consistency. We calculate Cohen’s Kappa statistic of 0.88,

indicating considerable agreement [34]. Further user and case

studies could strengthen this area and provide deeper insights

into the rationale behind these regressions. Our approach

relies on specific performance metrics (e.g., CPU and memory

usage) chosen based on the software systems’ nature. While

these are common choices, selecting appropriate metrics can

require system-specific expertise. Future work could explore

including more performance metrics tailored to the character-

istics of the subject systems.

Construct validity. Dynamic analysis using profilers can be

influenced by environmental factors and noise. To mitigate

this, we employ a clean environment and execute the generated

code multiple times. However, some noise is inherent in per-

formance monitoring. Future studies could consider increasing

repetitions based on time and resource constraints.

VII. RELATED WORK

AI-assisted code generation. Extensive prior research has

explored automated code generation. Existing techniques fall

into two main categories: learning-based and retrieval-based

approaches. The learning-based approach focuses on extract-

ing natural language features from training data and using

them for code generation. It can be further subdivided into

supervised learning [32, 58, 42, 26, 52, 49] and pre-trained

model approaches [13, 21, 2, 51, 36, 31]. Supervised learning

methods often employ sequence-to-sequence models, which

follow an encoder-decoder structure. Pre-trained models, on

the other hand, leverage self-supervised training on vast

amounts of unlabeled data. Notably, the Transformer archi-

tecture is prevalent in pre-trained models for code generation.

Researchers have developed specialized pre-trained models

for the code domain, achieving impressive results in code

generation tasks. Given the vast size of the code generation

solution space, retrieval-based approaches incorporate similar

code retrieval to assist the decoder in generating code [12, 23,

20, 39, 63]. This approach effectively reduces the decoding

space, leading to improved quality in the generated code.

Assessing the quality of code generation techniques. Many

studies have evaluated the quality of code generation tech-

niques or tools, e.g., ChatGPT, Copilot, and CodeWhisperer,

primarily focusing on whether these tools produce code that

fulfills its intended function. Studies like Yetistiren et al. [56]

highlighted GitHub Copilot’s ability to generate valid code

with a high success rate. Sobania et al. [46] found no sig-

nificant difference in correctness between Copilot and other

approaches. Similarly, Nguyen and Nadi [35] and Burak et

al. [57] evaluate code correctness, efficiency, and overall

quality, with Burak et al. observing improvements in gen-

erated code over time. However, recent research has begun

to emphasize user experience and the broader impact of

these tools on developer productivity. Barke et al. [5] showed

that while Copilot might not directly shorten development

time, it often serves as a valuable starting point, though

challenges remain in understanding, editing, and debugging

generated code snippets. Sila et al. [30] compared human-

written code with AlphaCode-generated code, emphasizing the

need for developer review to identify performance bottlenecks.

Coignion et al. [9] found that although LLM-generated code

performs well in some cases, it is slower than 27% of

human-written code on the LeetCode dataset. Liu et al. [33]

found three instances of inefficient implementations within the

HumanEval ground truth, which caused slow performance on

inputs of reasonable size. The prior studies underscore the

need for a more comprehensive evaluation methodology that

considers not only functional correctness but also potential

performance implications. Hou et al. [24] found performance

limitations in GPT-4-generated code, which can be partially

addressed through optimization. Garg et al. [17] proposed



leveraging LLMs with prompt engineering to optimize code

performance, showing effective improvements in addressing

performance regressions. However, a comprehensive analysis

of performance regressions in AI-generated code is still needed

to identify root causes and guide further improvements.

Code performance analysis. Extensive research has been

conducted to analyze performance at the code level, which

is typically divided into two main categories: static code

performance regression analysis and dynamic performance

regression analysis. Static analysis examines code without ex-

ecution, identifying potential performance regressions through

code structure and patterns, e.g., performance anti-pattern [8,

43, 11]. Many static analysis tools have also been proposed

to analyze code performance regression. For instance, Qo-

dana [45], developed by JetBrains, is a comprehensive static

analysis engine that supports identifying a wide array of

issues, including performance regressions. Other tools like

Spotbugs [48] and PMD [41] are tailored for Java, focusing

on detecting bugs. Dynamic analysis involves running the code

and measuring performance in a real-world environment. This

approach provides insights into the actual runtime behavior of

the code by executing unit tests [44, 6] and profiling [54, 53].

VIII. CONCLUSION

In this work, we investigate the performance regressions of

code generated by GitHub Copilot, a large language model

(LLM) code generation tool. Our findings demonstrate that

while Copilot effectively produces functionally correct code, it

often falls short in terms of performance compared to human-

written solutions. Analysis reveals that common code-level

root causes, such as inefficient function calls and inefficient

looping, contribute to these performance regressions. Our

exploration of prompt engineering suggests its potential as

a strategy for mitigating these performance regressions and

improving the performance of AI-generated code. Overall, this

study highlights the potential of LLMs for code generation,

while also emphasizing the need for further development to

optimize their output for performance-critical applications.

ACKNOWLEDGMENT

This work is partly supported by the National Natural

Science Foundation of China (Grant Nos. 62302347 and

62141221).

REFERENCES

[1] Python Software Foundation. 2001-2024. The Python Profilers. Ac-
cessed: 2024-4-25. 2024. URL: https : / / docs .python .org /3 / library /
profile.html.

[2] Wasi Uddin Ahmad et al. “Unified Pre-training for Program Under-
standing and Generation”. In: Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2021, On-
line, June 6-11, 2021. Association for Computational Linguistics,
2021, pp. 2655–2668.

[3] Assessing the Performance of AI-Generated Code: A Case Study on
GitHub Copilot. https : / /anonymous .4open.science/ r /Performance-
copilot-9E1D.

[4] Jacob Austin et al. “Program synthesis with large language models”.
In: arXiv preprint arXiv:2108.07732 (2021).

[5] Shraddha Barke, Michael B. James, and Nadia Polikarpova.
“Grounded Copilot: How Programmers Interact with Code-Generating
Models”. In: Proc. ACM Program. Lang. 7.OOPSLA1 (2023), pp. 85–
111.

[6] Jinfu Chen et al. “IoPV: On Inconsistent Option Performance Varia-
tions”. In: Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December
3-9, 2023. ACM, 2023, pp. 845–857.

[7] Mark Chen et al. “Evaluating large language models trained on code”.
In: arXiv preprint arXiv:2107.03374 (2021).

[8] Tse-Hsun Chen et al. “Detecting performance anti-patterns for appli-
cations developed using object-relational mapping”. In: 36th Interna-
tional Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014. ACM, 2014, pp. 1001–1012.

[9] Tristan Coignion, Clément Quinton, and Romain Rouvoy. “A Perfor-
mance Study of LLM-Generated Code on Leetcode”. In: Proceedings
of the 28th International Conference on Evaluation and Assessment
in Software Engineering. 2024, pp. 79–89.

[10] Zishuo Ding, Jinfu Chen, and Weiyi Shang. “Towards the use of the
readily available tests from the release pipeline as performance tests:
are we there yet?” In: ICSE ’20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020.
ACM, 2020, pp. 1435–1446.

[11] Imara van Dinten et al. “The slow and the furious? Performance
antipattern detection in Cyber-Physical Systems”. In: J. Syst. Softw.
210 (2024), p. 111904.

[12] Dawn Drain et al. “Generating Code with the Help of Re-
trieved Template Functions and Stack Overflow Answers”. In: CoRR
abs/2104.05310 (2021).

[13] Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for Pro-
gramming and Natural Languages”. In: Findings of the Association
for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020. Vol. EMNLP 2020. Findings of ACL. Association
for Computational Linguistics, 2020, pp. 1536–1547.

[14] 2024 Python Software Foundation. memory-profiler 0.61.0. Accessed:
2024-4-25. 2024. URL: https://pypi.org/project/memory-profiler/.

[15] 2024 Python Software Foundation. psutil 5.9.8. Accessed: 2024-4-25.
2024. URL: https://pypi.org/project/psutil/.

[16] Yujia Fu et al. “Security Weaknesses of Copilot Generated Code in
GitHub”. In: CoRR abs/2310.02059 (2023).

[17] Spandan Garg, Roshanak Zilouchian Moghaddam, and Neel Sundare-
san. “Rapgen: An approach for fixing code inefficiencies in zero-
shot”. In: arXiv preprint arXiv:2306.17077 (2023).

[18] Inc. GitHub. About GitHub Copilot Individual. Accessed: 2024-4-22.
2024. URL: https: / /docs.github.com/en/copilot /copilot- individual/
about-github-copilot-individual.

[19] Inc. GitHub. Getting started with GitHub Copilot. Accessed: 2024-
4-22. 2024. URL: https://docs.github.com/en/copilot/using- github-
copilot/getting-started-with-github-copilot.

[20] Daya Guo et al. “Coupling Retrieval and Meta-Learning for Context-
Dependent Semantic Parsing”. In: Proceedings of the 57th Confer-
ence of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers.
Association for Computational Linguistics, 2019, pp. 855–866.

[21] Daya Guo et al. “GraphCodeBERT: Pre-training Code Representa-
tions with Data Flow”. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[22] Yiyang Hao et al. “Aixbench: A code generation benchmark dataset”.
In: arXiv preprint arXiv:2206.13179 (2022).

[23] Shirley Anugrah Hayati et al. “Retrieval-Based Neural Code Genera-
tion”. In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium, October 31 -
November 4, 2018. Association for Computational Linguistics, 2018,
pp. 925–930.

[24] Wenpin Hou and Zhicheng Ji. “A systematic evaluation of large lan-
guage models for generating programming code”. In: arXiv preprint
arXiv:2403.00894 (2024).

[25] Yizhan Huang et al. “Do Not Give Away My Secrets: Uncovering
the Privacy Issue of Neural Code Completion Tools”. In: CoRR
abs/2309.07639 (2023).

[26] Srinivasan Iyer et al. “Mapping Language to Code in Programmatic
Context”. In: Proceedings of the 2018 Conference on Empirical



Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018. Association for Computational Linguistics,
2018, pp. 1643–1652.

[27] Mostafa Jangali et al. “Automated Generation and Evaluation of JMH
Microbenchmark Suites From Unit Tests”. In: IEEE Trans. Software
Eng. 49.4 (2023), pp. 1704–1725.

[28] Raphaël Khoury et al. “How Secure is Code Generated by ChatGPT?”
In: IEEE International Conference on Systems, Man, and Cybernetics,
SMC 2023, Honolulu, Oahu, HI, USA, October 1-4, 2023. IEEE,
2023, pp. 2445–2451.

[29] Christoph Laaber and Philipp Leitner. “An evaluation of open-
source software microbenchmark suites for continuous performance
assessment”. In: Proceedings of the 15th International Conference on
Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May
28-29, 2018. ACM, 2018, pp. 119–130.

[30] Sila Lertbanjongngam et al. “An Empirical Evaluation of Competitive
Programming AI: A Case Study of AlphaCode”. In: 16th IEEE
International Workshop on Software Clones, IWSC 2022, Limassol,
Cyprus, October 2, 2022. IEEE, 2022, pp. 10–15.

[31] Yujia Li et al. “Competition-Level Code Generation with AlphaCode”.
In: CoRR abs/2203.07814 (2022).

[32] Wang Ling et al. “Latent Predictor Networks for Code Generation”.
In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association for Computer
Linguistics, 2016.

[33] Jiawei Liu et al. “Is your code generated by chatgpt really correct?
rigorous evaluation of large language models for code generation”.
In: Advances in Neural Information Processing Systems 36 (2024).

[34] Mary L McHugh. “Interrater reliability: the kappa statistic”. In:
Biochemia medica 22.3 (2012), pp. 276–282.

[35] Nhan Nguyen and Sarah Nadi. “An Empirical Evaluation of GitHub
Copilot’s Code Suggestions”. In: 19th IEEE/ACM International Con-
ference on Mining Software Repositories, MSR 2022, Pittsburgh, PA,
USA, May 23-24, 2022. ACM, 2022, pp. 1–5.

[36] Erik Nijkamp et al. “CodeGen: An Open Large Language Model
for Code with Multi-Turn Program Synthesis”. In: The Eleventh
International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[37] Liang Niu et al. “CodexLeaks: Privacy Leaks from Code Generation
Language Models in GitHub Copilot”. In: 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-
11, 2023. USENIX Association, 2023, pp. 2133–2150.

[38] OpenAI. Powering next generation applications with OpenAI Codex.
Accessed: 2024-7-31. 2024. URL: https://openai.com/index/codex-
apps/.

[39] Md. Rizwan Parvez et al. “Retrieval Augmented Code Generation and
Summarization”. In: Findings of the Association for Computational
Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 16-20 November, 2021. Association for Computational
Linguistics, 2021, pp. 2719–2734.

[40] Hammond Pearce et al. “Asleep at the Keyboard? Assessing the
Security of GitHub Copilot’s Code Contributions”. In: 43rd IEEE
Symposium on Security and Privacy, SP 2022, San Francisco, CA,
USA, May 22-26, 2022. IEEE, 2022, pp. 754–768.

[41] 2024 PMD. PMD:An extensible cross-language static code analyzer.
Accessed: 2024-4-25. 2024. URL: https://pmd.github.io/.

[42] Maxim Rabinovich, Mitchell Stern, and Dan Klein. “Abstract Syntax
Networks for Code Generation and Semantic Parsing”. In: Proceed-
ings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers. Association for Computational Linguistics,
2017, pp. 1139–1149.

[43] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring.
“On the Validity of Performance Antipatterns at Code Level”. In:
Softwaretechnik-Trends 39.4 (2019), pp. 32–34.

[44] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring.
“PeASS: A Tool for Identifying Performance Changes at Code Level”.
In: 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019.
IEEE, 2019, pp. 1146–1149.

[45] 2000-2024 JetBrains s.r.o. About Qodana. Accessed: 2024-4-25. 2024.
URL: https://www.jetbrains.com/help/qodana/about-qodana.html.

[46] Dominik Sobania, Martin Briesch, and Franz Rothlauf. “Choose
your programming copilot: a comparison of the program synthesis
performance of github copilot and genetic programming”. In: GECCO
’22: Genetic and Evolutionary Computation Conference, Boston,
Massachusetts, USA, July 9 - 13, 2022. ACM, 2022, pp. 1019–1027.

[47] 2024 sonarqube. Sonarqube: a code quality management platform.
Accessed: 2024-4-28. 2024. URL: https://www.sonarqube.org/.

[48] SpotBugs:Find bugs in Java Programs. Accessed: 2024-4-25. 2024.
URL: https://spotbugs.github.io/.

[49] Zeyu Sun et al. “TreeGen: A Tree-Based Transformer Architecture
for Code Generation”. In: The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press,
2020, pp. 8984–8991.

[50] Visual Studio Code - Code Editing. https://code.visualstudio.com/.
[51] Yue Wang et al. “CodeT5: Identifier-aware Unified Pre-trained

Encoder-Decoder Models for Code Understanding and Generation”.
In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021. Association for
Computational Linguistics, 2021, pp. 8696–8708.

[52] Bolin Wei et al. “Code Generation as a Dual Task of Code Summa-
rization”. In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. 2019,
pp. 6559–6569.

[53] Lingmei Weng et al. “Effective Performance Issue Diagnosis with
Value-Assisted Cost Profiling”. In: Proceedings of the Eighteenth
European Conference on Computer Systems, EuroSys 2023, Rome,
Italy, May 8-12, 2023. ACM, 2023, pp. 1–17.

[54] Dacong Yan, Guoqing Xu, and Atanas Rountev. “Uncovering perfor-
mance problems in Java applications with reference propagation pro-
filing”. In: 34th International Conference on Software Engineering,
ICSE 2012, June 2-9, 2012, Zurich, Switzerland. Ed. by Martin Glinz,
Gail C. Murphy, and Mauro Pezzè. IEEE Computer Society, 2012,
pp. 134–144.

[55] Zhou Yang et al. “Gotcha! This Model Uses My Code! Eval-
uating Membership Leakage Risks in Code Models”. In: CoRR
abs/2310.01166 (2023).

[56] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. “Assessing the quality
of GitHub copilot’s code generation”. In: Proceedings of the 18th
International Conference on Predictive Models and Data Analytics
in Software Engineering, PROMISE 2022, Singapore, Singapore, 17
November 2022. ACM, 2022, pp. 62–71.

[57] Burak Yetistiren et al. “Evaluating the Code Quality of AI-Assisted
Code Generation Tools: An Empirical Study on GitHub Copilot,
Amazon CodeWhisperer, and ChatGPT”. In: CoRR abs/2304.10778
(2023).

[58] Pengcheng Yin and Graham Neubig. “A Syntactic Neural Model for
General-Purpose Code Generation”. In: Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers.
Association for Computational Linguistics, 2017, pp. 440–450.

[59] Joy He-Yueya et al. “Solving math word problems by combin-
ing language models with symbolic solvers”. In: arXiv preprint
arXiv:2304.09102 (2023).

[60] Daoguang Zan et al. “Large language models meet nl2code: A
survey”. In: arXiv preprint arXiv:2212.09420 (2022).

[61] Yi Zeng et al. “Studying the characteristics of logging practices
in mobile apps: a case study on F-Droid”. In: Empirical Software
Engineering 24.6 (2019), pp. 3394–3434.

[62] Zibin Zheng et al. “A survey of large language models for code:
Evolution, benchmarking, and future trends”. In: arXiv preprint
arXiv:2311.10372 (2023).

[63] Shuyan Zhou et al. “DocPrompting: Generating Code by Retrieving
the Docs”. In: The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net, 2023.


