An Experience Report of Generating Load Tests
Using Log-recovered Workloads at Varying
Granularities of User Behaviour

Jinfu Chent, Weiyi Shang{, Ahmed E. Hassan}, Yong Wango, Jiangbin Lino
Department of Computer Science and Software Engineering, Concordia University, Montredl, Canadat
School of Computing, Queen’s University, Kingston, Canada 1
Alibaba Group, Hangzhou, China ©
{fu_chen, shang} @encs.concordia.caf, ahmed@cs.queensu.caf, {wangyong.wy, jiangbin.lin} @alibaba-inc.come

Abstract—Designing field-representative load tests is an es-
sential step for the quality assurance of large-scale systems.
Practitioners may capture user behaviour at different levels of
granularity. A coarse-grained load test may miss detailed user
behaviour, leading to a non-representative load test; while an
extremely fine-grained load test would simply replay user actions
step by step, leading to load tests that are costly to develop,
execute and maintain. Workload recovery is at core of these load
tests. Prior research often captures the workload as the frequency
of user actions. However, there exists much valuable information
in the context and sequences of user actions. Such richer
information would ensure that the load tests that leverage such
workloads are more field-representative. In this experience paper,
we study the use of different granularities of user behaviour, i.e.,
basic user actions, basic user actions with contextual information
and user action sequences with contextual information, when
recovering workloads for use in the load testing of large-scale
systems. We propose three approaches that are based on the three
granularities of user behaviour and evaluate our approaches
on four subject systems, namely Apache James, OpenMRS,
Google Borg, and an ultra-large-scale industrial system (SA)
from Alibaba. Our results show that our approach that is
based on user action sequences with contextual information
outperforms the other two approaches and can generate more
representative load tests with similar throughput and CPU usage
to the original field workload (i.e., mostly statistically insignificant
or with small/trivial effect sizes). Such representative load tests
are generated only based on a small number of clusters of users,
leading to a low cost of conducting/maintaining such tests. Finally,
we demonstrate that our approaches can detect injected users in
the original field workloads with high precision and recall. Our
paper demonstrates the importance of user action sequences with
contextual information in the workload recovery of large-scale
systems.

Index Terms—Workload recovery, Load tests, Software log
analysis, Software performance

I. INTRODUCTION

Large-scale software systems (e.g., Amazon AWS and
Googles Gmail) have brought a significant influence on the
daily lives of billions of users worldwide. For example, Netflix
services 150 million subscribers across the globe [1]. As a
result, the quality of such systems is extremely important.
Failures of such planet-scale systems can result in negative
reputational and monetary consequences [2], [3]. Quite often

failures in such systems are load and performance-related
rather than due to functional bugs [4].

Hence, load tests are widely used in practice to ensure the
quality of such systems under load. The goal of a load test
is to ensure that a system performs well in production under
a realistic field workload. Therefore, one must first recover a
workload [5], [6] then design a load test based on the recovered
workload [7]-[11].

The recovery of a field-representative workload is a chal-
lenging task. In particular, one must achieve a balance between
the level of granularity of the workload and the cost to conduct
a load test with such a workload. All too often, in practice,
the recovered workloads are too coarse, i.e., over simplified
workloads. For example, the SPECweb96 Benchmark defines
a workload that only specifies the probability of accessing
files such as “files less than 1KB account for 35% of all
requests” [12]. Such coarse-grained workloads fail to capture
the variance of user behaviour, leading to non-representative
load tests.

On the other extreme, a workload can simply replay the
exact field workload step by step. Although, such a workload
replicates the exact user behaviour, conducting a load test
using such a workload and maintaining such a workload are
extremely costly. First of all, due to the large amount of
users of these systems, replaying the exact workload requires
the load tests to simulate every user with a great amount
of contextual information and complexity. One would also
need to develop simulation code for each specific sequence
of events. In addition, since it is almost impossible to observe
the exact same workload twice, one would constantly need to
update such a detailed workload.

To reach a desirable level of granularity for a workload,
prior work often clusters user bahaviour based on important
aspects in the workload [11], [13], [14]. With the clusters
of users, instead of maintaining millions or billions of user
profiles, a workload is designed based on representative user
behaviours from a considerably smaller number of clusters.
For example, a recent workload clustering approach clusters
users by the frequency of different user actions [11]. However,
due to the high variability of users in ultra-large-scale software

systems, we argue that solely considering the frequency of
actions is too coarse; instead the sequence and the context of
user actions can make workloads much more representative
to the actual field. Consider the following example: one user
repetitively reads small pieces of data from a file then writes
each of the small pieces back to the file; while another user
interactively reads and writes a large number of small pieces of
data to a file. A workload should capture both users differently.
However, only considering the frequency of actions (read and
write) would not differentiate the workloads of these two users.
Adding more detailed information about these user actions
would lead to a finer granularity of workload which in turn
might be too costly to recover, execute and maintain.

Therefore, in this paper, we report on our experience in
understanding the impact of adding different levels of details
in the recovered workloads for load tests. We first replicate a
prior approach that captures the frequency of basic actions [11]
(we refer to this approach as Action). Afterwards, we design
an approach that enriches the basic user actions with their
context values (we refer to this approach as ActionContext).
Finally, we design an approach that augments ActionContext
with the frequently-appearing sequences of actions (we refer
to this approach as ActionSequence). The three approaches use
the frequency of actions, the frequency of enriched actions and
the frequency of sequences of enriched actions, respectively,
as signatures for each user, then group the users into clusters.
Afterwards, we automatically generate load tests based the
signature of the representative (center) user in each cluster.

Our study is performed on two open source systems: Apache
James and OpenMRS, and two commercial systems: Google
Borg and an ultra-large-scale software system from Alibaba
(we refer to it as SA in the rest of the paper). We compare
our three approaches by recovering workloads based on the
execution logs from the subject systems, generating load tests,
and running the automatically generated load tests on the
subject systems. In particular, we answer these two research
questions:

RQI1: How field-representative are our generated work-
loads?

ActionSequence generates the most field-
representative workloads. When conducting load
tests using ActionSequence, the throughput of 10
out of 14 user actions as well as the CPU usage
are either statistically insignificant to the original
workload or differ with a small/trivial effect size.
How many clusters of users are captured by each
of our recovery workload approaches?

The number of clusters of users is not overwhelming.
The most field-representative workload ActionSe-
quence is based on eight to 39 clusters of users,
which is only three to six clusters more than a
less field-representative workload ActionContext. The
least field-representative workload Action is based on
as few as two clusters of users.

RQ2:

The rest of the paper is organized as follows: Section II

discusses the background and the related work to this paper.
Section III describes our approaches in detail. Section IV
presents our case study setup. Section V presents our case
study results by answering our two abovementioned research
questions. Section VI discusses other usage scenarios for our
approaches. Section VIII discusses Section VII discusses the
challenges that lessons learned from the industrial evaluation.
Finally, Section IX concludes the paper.

II. BACKGROUND AND RELATED WORK

Workload recovery is an essential part in the performance
assurance of large-scale systems. Prior research proposes
approaches for recovering workloads to assist in the design
of load tests [15], validating whether load tests are field-
representative as production [11], optimizing system per-
formance [16], [17] and detecting system performance is-
sues [11], [13], [14], [18], [19]. All above prior work illus-
trates the value and importance of recovering representative
workloads.

Prior approaches for recovering and replaying workloads
can be categorized along the granularity of the captured user
actions. One may choose a coarse-granularity by recovering
only the type of workload from a system, or to the other
extreme, considering each individual user and replaying their
individual workload one by one. One may anonymize all
high-level user behaviours and only consider the physical
metrics such as CPU [13], [14], I/O [20]-[23] and other
system resources [24]. One may choose a finer granularity by
building complex models such as Hidden Markov Models [21]
to capture the details for each user. A pilot study by Cohen et
al. [14] demonstrates that grouping workloads into a smaller
number of clusters outperforms having one unified workload.
Intuitively, recovering a workload at a too fine or too coarse
grained detail is neither desired. A too coarse-grained approach
may miss the important characteristics of user behaviour,
leading to a non-representative workload, while a too fine
grained approach may lead to a workload that is costly to
replay and maintain.

To achieve an optimal granularity of user behaviour, prior
research often chooses event or action-driven approaches for
workload recovery [11], [15]-[18]. However, there exists ex-
tensive research on execution log analysis that demonstrates
the value of considering contextual information and sequence
of actions for various software engineering tasks [25]-[34].
Such extensive usage of contextual information and user action
sequences in log analysis motivates our approach to leverage
the similar information to recover richer workloads from
execution logs for generating load tests.

As an experience report, our focus is primarily on exploring
whether research approaches work in practice. Based on our
industrial experience, this was not the case. Hence we had
to propose two novel approaches. In particular compared to
prior research, our work uses more valuable contextual and
action sequence information from execution logs to recover
workloads. The next section presents our three approaches to
cluster user actions, contextual information and user action

TABLE I
OUR RUNNING EXAMPLE OF EXECUTION LOG LINES WITH EXTRACTED
USER ACTIONS AND CONTEXT VALUES.

Ti User Log line Action Byte
00:00.00 Alice GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7204
00:00.92 Dan GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7216
00:01.52 Bob GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 1249
00:01.54 Alice DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
00:02.04 Alice GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7227
00:02.26 Bob DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0

00:0241 Bob
00:02.58 Dan
00:03.42 Bob
00:03.78 Alice
00:04.13 Bob
00:04.38 Bob
00:05.69 Dan

POST //192.168.165.219:8080/0openmrs/ws/rest/v1/person/addPerson Add 2008
POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/addPerson Add 8109
GET //192.168.165.219:8080/0penmrs/ws/rest/v1/person Search 1247
DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
POST //192.168.165.219:8080/openmrs/ws/rest/v1/person/addPerson Add 2010
GET //192.168.165.219:8080/0penmrs/ws/rest/v1/person Search 7213

00:06.06 Alice GET //192.168.165.219:8080/openmrs/ws/rest/v1/person Search 7231
00:07.31 Dan DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
00:07.41 Dan GET //192.168.165.219:8080/0penmrs/ws/rest/v1/person Search 7221

00:07.81 Alice
00:09.08 Dan
00:10.18 Bob
00:10.32 Alice

POST //192.168.165.219:8080/0openmrs/ws/rest/v1/person/addPerson Add 2006
DELETE //192.168.165.219:8080/openmrs/ws/rest/v1/person Delete 0
GET //192.168.165.219:8080/0penmrs/ws/rest/v1/person Search 1251
POST //192.168.165.219:8080/openmrs/ws/rest/v 1 /person/addPerson Add 8121

00:10.52 Dan POST //192.168.165.219:8080/openmrs/ws/rest/v 1/person/addPerson Add 2012
00:11.02 Bob POST //192.168.165.219:8080/openmrs/ws/rest/v 1 /person/editPerson Edit 868
00:11.47 Dan POST //192.168.165.219:8080/openmrs/ws/rest/v 1/person/editPerson Edit 881
00:12.12 Alice POST //192.168.165.219:8080/openmrs/ws/rest/v 1/person/editPerson Edit 877

sequences from execution logs for recovering a workload for
load testing.

III. OUR APPROACHES OF RECOVERING A WORKLOAD FOR
LOAD TESTING

In this section, we present our approaches to automatically
recover workloads using system execution logs. An overview
of our recovery process is shown in Figure 1. In total, our
recovery process consists of six steps: A) extracting user
actions, B) enriching user actions with context, C) identifying
frequent action sequences, D) grouping similar frequent action
sequences, E) grouping users into clusters and F) generating
load tests. Our Action workloads are generated by steps A, E
and F of our recovering process. Our ActionContext workloads
are generated by steps A, B, E and F. Our ActionSequence
workloads are generated by all the steps.

A. Extracting user actions

User actions are a typical source of information to recover
workload [11]. Therefore, in this step, we extract user actions
from execution logs that are generated during the execution
of a software system. Execution logs record system events
at runtime to enable monitoring, remote issue resolution and
system understanding [35]. Each line of an execution log
contains a corresponding action and its contextual information
(e.g., user names and data sizes). In this step, we first parse the
execution logs by identifying the actions and their contextual
information. For example, in Table I, we extract four types
of actions from the logs that are generated by OpenMRS. We
also extract the Timestamp, the User and the Byte values as the
contextual values of each action. After extracting user actions,
the workload signature of each user can be represented by
one point in an n-dimensional space (where n is the total
number of extracted actions), i.e., the n-dimension vector for
each user records the number of occurrence of each action
with each action type mapped to one dimension. Such vectors
are directly fed into step E to recover our Action workload.
Table II shows the vectors of the frequency of user actions
from our running example.

TABLE II
FREQUENCY OF ACTIONS FOR USERS IN OUR RUNNING EXAMPLE FOR THE
Action WORKLOADS.

User actions
Search | Add | Edit | Delete
Alice 3 2 1 2
Bob 3 2 1 2
Dan 3 2 1 2
TABLE III

FREQUENCY OF ENRICHED ACTIONS (WITH CONTEXT) FOR USERS IN OUR
RUNNING EXAMPLE FOR THE ActionContext WORKLOADS.

Enriched actions
Searchl Search2 | Addl Add2 | Editl Deletel
Alice 0 3 1 1 1 2
Bob 3 0 2 0 1 2
Dan 0 3 1 1 1 2

B. Enriching user actions with context

Each instance of a user action is associated with a context,
which may contain useful information to represent workload.
For example, a disk read event is often associated with the
size of the read. However, a disk read event with a large
size versus one with a small size of data may correspond to
different user behaviours. A small disk read may correspond
to a user reading a data index while a large disk read may
correspond to the actual data reading. Therefore, in this
step, we enrich the recovered user actions by considering
their context values. In particular, we split each action into
multiple ones by categorizing the context values. For example,
a disk read action may become two different actions, i.e., a
large_read_disk and a small_read_disk. In particular, we use
Jenks Natural Breaks [36] on the context values of each action.
Jenks Natural Breaks is a one-dimension number clustering
algorithm, which minimizes each class’s average deviation
from the class mean, while maximizing each class’s deviation
from the means of the other clusters. In our running example,
we consider the Byte value of each action as its context and for
the Search action, we split it into two actions: Searchl (1,247
bytes to 1,251 bytes) and Search2 (7,204 bytes to 7,231 bytes).

After this step, the workload signature of each user becomes
a vector where each dimension is the number of occurrence of
each enriched user action. Such vectors are directly fed into
step E to recover our ActionContext workload. Table III show
the vectors of enriched user actions from our running example.

C. Identifying frequent action sequences

Users often perform multiple actions frequently together. In
order to capture these actions, we identify action sequences
that frequently appear during system execution.

1) Splitting user action sequences: We first group all user
actions by each user and sort the actions by their timestamp,
in order to generate a sequence of actions for each user. Such
sequences are often very long, consisting of thousands of
actions; while each user may not perform all the action at
once, i.e., a user may perform two series of actions with a long
period of idling time in between. Therefore, we wish to split
the long user action sequences into smaller ones. One naive
approach to split long user action sequences is to consider the

A. B. Enriching
Extracting User actions user actions
user actions with context

Execution
logs

Software system

Enriched
user actions

C. Identifying frequent action sequences)

Group
enriched
actions by
users

C.1 Splitting
user action [—>|
sequences

C.2 Extracting
frequent sub-
sequences

Sequence of actions
by each user

List of users

j Frequent action
sequences

[]

F. Generating load tests

E. Grouping users into clusters

D. Grouping similar frequent action sequences

Frequent action

process

F.1 Generating a . E.1
workload for load |—> F.2 Exccuting the Hierarchical
load test Ny
tests clustering

data

—>» Dendrogram
cutting

sequences after

D.2 Transforming vectors of]
frequent action sequences
with the distance matrix

D.1 Computing
distance matrix

transformation

Distance
matrix

]
. J

Fig. 1. An overview of our workload recovery process.

time interval between two actions, i.e., if there is a long time
interval between two actions, the sequence is split into two
actions. However, some actions may actually require a long
time to finish, leading to the long wait between two actions.
In such cases, the naive approach may incorrectly split the
sequences. Therefore, we wish to identify the actions, where
the long running time is due to the idling between two septate
actions. We leverage a heuristic that considers the relationship
between context values and the time interval of each user
action as an indicator of the type of wait.

For example, a data read action with a large data size may
take longer time than a small size. Based on this intuition, we
build a linear regression model using the associated context
values of each action as independent variables and its time
interval to the next action as the dependent variable. With the
linear regression model, if an action has a time interval higher
than the predicted value with a residual that is greater than
50%, our process considers that the user has idled after the
action. In our running example, we split user Dan’s events
into three sequences: Search2— Deletel— Search2— Deletel,
Search2—Add2 and Addl—Editl.

2) Extracting frequent sub-sequences of actions: We aim
to mine frequent sub-sequences in order to represent the
series of actions that a user may often perform. An ex-
ample frequent sub-sequence can be a user first read-
ing small data (to locate the data using an index) before
repetitively reading large data (reading the actual data),
i.e., Small_Read— Large_Read— Large_Read— Large_Read.
We apply a suffix array structure and the Longest Common
Prefix (LCP) algorithm to mine frequent sub-sequences for
each sequence of user actions. Such an approach has been
used in prior research to uncover usage patterns from exe-
cution logs [37]. We re-implemented the same algorithm as
prior research [37]. Due to the limited space, our detailed
implementation can be found in our replication package.'. In
our running example, one of the frequent sub-sequences that
we extract is Search2— Deletel, which is identified originally
from the sequence Search2— Deletel—Search2— Deletel.

Since some sub-sequences may be trivial (too short) or do
not frequently appear (too rare), we rank the extracted sub-
sequences based on the frequency of their occurrence and the

Thttps://github.com/senseconcordia/ASE2019Data.

TABLE IV
FREQUENCY OF FREQUENT ACTION SEQUENCES IN OUR RUNNING
EXAMPLE FOR THE ActionSequence WORKLOADS.

Frequent action sequences
Addl— | Add2— | Search1— | Searchl — | Search2— | Search2— | Search2—
Editl Editl Delete] — | Editl Addl Add2 Deletel
Addl
Alice 0 1 0 0 1 0 2
Bob 0 0 2 1 0 0 0
Dan 1 0 0 0 0 1 2

frequency of events in the actual sub-sequence, as follows
rank = a X #occurrence + (1 — a) X #events (1)

where #occurrence is the frequency of a sub-sequence’s
occurrence and Fevents is the number of events in the
sub-sequence. « is a weight factor for the number of sub-
sequence’s occurrence. We determine « as 0.5 since we con-
sider the #occurrence and #events to be equally important.
We use the rank value to keep the top sub-sequences such that
the kept sub-sequences cover more than 90% of all actions.
We call these kept sub-sequences as frequent action sequences.

After extracting the frequent action sequences, the workload
of each user is represented by one point in an n-dimensional
space (where 7 is the total number of identified frequent action
sequences), i.e., a vector for each user where each dimension
is the frequency of each frequent action sequence. Table IV
shows the result of frequent action sequences in our example.

D. Grouping similar frequent action sequences

The extracted frequent action sequences are not inde-
pendent from each other. Intuitively, for example, two fre-
quent action sequences Readl—Read2— Read2—Readl and
Readl—Read2—sReadl are similar. One user may only have
Readl—Read2—Read2— Readl and another user may only
have Readl—Read2—Readl. The two users may be consid-
ered completely different if we do not consider the similarities
between the two frequent action sequences.

1) Computing distance matrix: For all the frequent ac-
tion sequences, we calculate the distance between each pair
of them using the normalized Levenshtein distance [38].
For example, the normalized Levenshtein distance between
Readl—Read2—Read2— Readl and Readl—Read2—Readl
is 0.75.

2) Transforming vectors of frequent action sequences with
the distance matrix: In order to address the similarities be-

TABLE V
RESULT OF FREQUENT ACTIONS SEQUENCES AFTER TRANSFORMATION
BASED ON DISTANCE MATRIX FOR ActionSequence WORKLOAD.

Frequent action sequences
Addl— | Add2— | Searchl— | Searchl — | Search2— | Search2— | Search2—
Editl Editl Deletel — |Editl Addl Add2 Deletel
Addl
Alice 0.5 1 1 0.5 2 1.5 2.5
Bob 0.5 0.5 233 1.67 0.67 0 0.67
Dan 1 0.5 0.67 0.5 1.5 2.0 2.5

tween frequent action sequences, we apply a vector transfor-
mation based on the distance matrix as follows:

23 2 - 2
vector" = (s, shy |

12

Ay, dy oo dy

where wvector* is the final vector for user w, s; is the
frequency of frequent action sequence n for user u and d is
the normalized Levenshtein distance between frequent action
sequence 1 and frequent action sequence n. We perform a
vector transformation in our running example and the result is
shown in Table V.

E. Grouping users into clusters

In order to reach a desirable level of granularity for a
workload, in this step, we apply a clustering algorithm to group
users into clusters.

1) Hierarchical clustering: We apply a hierarchical cluster-
ing to cluster users based on the Pearson distance. We choose
hierarchical clustering since it is suitable for data with arbitrary
shape and there is no need to determine a specific number of
clusters beforehand [39]. In addition, hierarchical clustering
performs well in prior research of workload recovery [11],
[40]. In our approach, hierarchical clustering first considers
each user as an individual cluster. Afterwards, we merge the
most neighbouring clusters into a new cluster and recalculate
the Pearson distance matrix between each two clusters based
on average linkage.

2) Dendrogram cutting: Hierarchical clustering can be vi-
sualized using a dendrogram. Such a dendrogram must be cut
with a horizontal line at a particular height to create our clus-
ters. In practice, one may choose a desired level of granularity
in a recovered workload by cutting the dendrogram at different
heights, in order to retrieve a different number of clusters.
To avoid any subjective bias, we use the Calinski-Harabasz
stopping rule [41] to perform our dendrogram cutting. Prior
research notes that the Calinski-Harabasz stopping rule outper-
forms other rules when clustering workload signatures [42].
The Calinski-Harabasz index measures the dissimilarity of
the intra-cluster variance and the similarity of inter-cluster
variance. In our running example, Alice, Bob and Dan are all
grouped into one cluster for the Action workload. Users Alice
and Dan are grouped into one cluster while Bob is in another
cluster for the ActionSequence and ActionContext workloads.

F. Generating load tests

In the final step of our process, we generate the load tests
as the final outcome of our approach.

1) Generating a workload for load tests: We identify a
representative user in each cluster of users to generate a
workload for load testing. We apply the Partitioning Around
Medoids [43] (PAM) algorithm to identify the representative
point of each cluster. PAM is based on the k representative
medoids among the instances of the clustering data. PAM is an
iterative process of replacing representative instances by other
instances until the quality of the resulting clustering cannot be
improved. The quality is measured by the medoids with the
smallest average dissimilarity to all other points. In our case,
we set the k as 1 since we only choose one user to represent
each cluster. We then iterate each user inside the cluster to
find the best representative user based on PAM.

After obtaining a representative user for each cluster, we
obtain a vector (s¥, ;s) for that user where s¥ is
the number of occurrences of frequent action sequences n
from user u, for the ActionSequence workload. We use the
frequency of occurrences of each frequent action sequences
from the representative user to calculate a probability of
occurrence of that frequent action sequence. Then, we generate
the synthesized workload based on such probability of frequent
action sequences. In our running example, the center of the
cluster that consists of users Alice and Dan is user Dan. Then
to generate a workload for user Alice in the load test, we
replace the corresponding actions into Search2— Deletel with
a probability of 50%, Search2—Addl with a probability of
25% and Add2— Edit] with a probability of 25%, because each
of them has a frequency of two, one and one, respectively (see
Table IV).

For the Action and the ActionContext workload, this step is
similar to above but instead a probability of having an action
or enriched action is calculated. For the Action workload, since
all the users are in one cluster, the load test is generated
based on the probability of having each action shown in
Table 11, i.e., the Search, Add, Edit and Delete actions have a
probability of 37.5%, 25%, 12.5% and 25%, respectively. For
the ActionContext workload, users Alice and Dan are in one
group with exactly the same distribution frequency of actions
with context values. Therefore, the generated load test where
the Search2 action has a probability of 37.5%, the Add1, Add?2,
and Edit] actions each have a probability of 12.5%, and the
Deletel action has a probability of 25%.

2) Executing load tests: Finally, our approach executes the
load tests based on FIO [44] and JMeter [45]. For software
systems that cannot be directly driven by FIO [44] and
JMeter [45], our approach outputs simulated execution logs.
Such systems can generate the load test by directly replaying
the workload based on our simulated execution logs line by
line.

IV. CASE STUDY SETUP

In this section, we present the setup of our case study.

A. Subject systems

We choose two open-source systems including Apache
James and OpenMRS, as well as two industrial systems

TABLE VI
OVERVIEW OF OUR SUBJECT SYSTEMS.

Subjects Version SLOC (K) # Users # lines of logs (K)
Apache James 2321 37.6 2,000 134
OpenMRS 2.0.5 67.3 655 231
Google Borg May 2011 N/A 4,895 450
SA 2018 N/A >>5,000 >1,500

including Google Borg, and one large software system (SA) as
our subject systems. Apache James is a Java-based mail server
developed by the Apache Foundation. OpenMRS is an open-
source health care system to develop to support customized
medical records. OpenMRS is a web system developed using
the Model-View-Controller (MVC) architecture. Google Borg
is a large-scale cluster management system that are used
to manage internal workloads and schedule machines, jobs
and tasks. SA is an ultra-large-scale cloud computing service
application that is deployed to support business worldwide
and used by a hundred of millions of users. Due to a Non-
Disclosure Agreement (NDA), we cannot reveal additional
details about the system. We do note that the SA system is
one of the largest in the world in its domain with a long
development history. All our subject systems cover different
domains and are studied in prior research [46]-[49]. The
overview of the four subject systems is shown is Table VI.

B. Data collection

In this subsection, we present how we collect execution logs
in order to study the use of our different workload approaches.
In particular, for the two open source systems (Apache James
and OpenMRS), we deployed the systems in our experimental
environment and conducted load tests to exercise the systems.
We then collected execution logs that are generated during the
load tests. We also collected the CPU usage of both systems
by monitoring the particular process of the system with a
performance monitoring tool named Pidstat [S0] for every five
seconds. The data from the two industrial systems are from
real end users. The production deployment of SA provides the
CPU usage of the system, while Google Borg does not provide
the CPU usage (hence, we do not evaluate that aspect for this
system). We discuss the details of our data collection for each
of our subject systems. The details of our data collection can
be found in our replication package.

a) Apache James: We use JMeter to create load tests
that exercise Apache James. We replicate a similar workload
to prior research [46]. In particular, we simulated 2,000 email
users who send, receive and read different sizes of emails with
and without different sizes of attachment. Users may only read
the email header or load the entire email.

We deploy Apache James on a server machine with an Intel
Core i7-8700K CPU (3.70GHz), 16 GB memory on a 3TB
SATA hard drive. We run JMeter on a machine with Intel Core
i5-2400 CPU (3.10GHz), 8 GB memory and 320GB SATA
hard drive to generate a two-hours workload.

b) OpenMRS: We used the default OpenMRS demo
database in our load tests. The demo database contains data for
over 5K patients and 476K observations. OpenMRS contains

four typical scenarios: adding, deleting, searching and editing
operations. We designed the load tests that are composed
of various searches of patients, concepts, encounters, and
observations, and addition, deletion and editing of patient
information. To simulate a more realistic workload, we added
random controllers in JMeter to vary the workload.

We deployed the OpenMRS on two machines, each with
Intel Core i5-2400 CPU (3.10GHz), 8 GB memory, 512GB
SATA hard drive. One machine is deployed as application
server and the other machine as a MySQL database server.
OpenMRS provides a web-based interface and RESTFul ser-
vices. We used the RESTFul API from OpenMRS and ran
JMeter on another machine with the same specification to
simulate users in the client side with an eight-hours workload.

c) Google Borg: We used a publicly-available open
dataset from the Google Borg system [51]. The data is pub-
lished by Google with a goal of workload related research. Due
to the large size of Google Borg data, we only picked the first
part of data to analyze, which consists of 83 minutes of data
from the entire Google Borg cluster. Due to the inaccessibility
of the Google Borg system, we could not run load tests directly
on the system. In the data from Google Borg, there exists no
information about users. However, the workload is described
as jobs. Therefore, we considered each job as a user when
applying our approach on the Google Borg data.

d) SA: We retrieved the execution logs and the corre-
sponding CPU usage from SA that is deployed in production
and is used by real users. The SA is deployed on a cluster with
more than a thousand machines. Due to the NDA, we cannot
mention the detailed information of the hardware environment
and the usage scenarios of SA.

C. Preliminary analysis: clustering tendency

Before we answer the research questions for our case study,
we first conduct a preliminary analysis on the clustering
tendency of the data from our subject systems. If the users
from our subject systems have random behaviour and do not
appear to have inherent groups of similar behaviours, the data
from our subject systems would be unsuitable for our study.

Therefore, we calculated Hopkins Statistic to assess the
cluster tendency of our data. Hopkins Statistic is a statistical
hypothesis test that can be used to accept or reject the random
position hypothesis [52]. The value of the Hopkins Statistic
ranges from O to 1. A value of 1 means that the data has
a high cluster-tendentious, a value of O indicates the data
is uniformly distributed (not cluster-tendentious). Similar to
previous research [52], we used 0.5 as the threshold to reject
the alternative hypothesis. If the value of the Hopkins Statistic
is higher than 0.5, we consider that the data has a high cluster-
tendentious. We used the function hopkins of the clustertend
package in R to calculate the Hopkins Statistic. We observe
that our data has a high cluster-tendentious with Hopkins
Statistic values that range between 0.80 to 0.99 with an average
of 0.92 across all of our subject systems. Since the Hopkins
Statistic values are higher than 0.5, we reject the alternative
hypothesis and confirm that our data is suitable for our study.

V. CASE STUDY RESULTS

In this section, we present our case study results by answer-
ing two research questions.

RQI: How field-representative are our generated workloads?

Motivation. In order to illustrate a practical impact, we wish
to first examine whether the generated workloads can lead
to similar system behaviour and performance as the original
system workload. If the system behaviour and performance
that are produced by the generated workloads are drastically
different from the original workload, such automatically gen-
erated workloads are not field-representative and hence would
not be useful in practice.
Approach. We use all three workload approaches (Action,
ActionContext and ActionSequence) to generate load tests
based on the execution logs of the subject systems. The
execution logs from Google Borg do not contain any context
values, hence we only use the Action and ActionSequence
approaches to generate load tests for Google Borg. When
running the generated load tests, we monitor the behaviour
and the performance of the systems. For the behaviour of the
system, we measure the throughput of each type of action
for every minute during the execution of the load tests. For
the system performance, we measure the CPU usage of the
particular process of the system. In the load tests, we use a
performance monitoring tool named Pidstat [50] to collect the
physical performance for every five seconds. For our subjects
Apache James, OpenMRS and SA, we are able to run the
generated load tests directly on the system to measure system
behaviour and performance. However, for the subject Google
Borg, we cannot directly run the load tests since we do not
have access to the system. Therefore, we cannot measure
the system performance. Since we can generate simulated
execution logs for load tests, we use the simulated execution
logs to compute the throughput of each type of user action.
We perform statistical analysis to examine the existence of
significant differences between the generated workloads and
the original workload, in terms of the throughput of each ac-
tion and the CPU usage. We use the Mann-Whitney U test [53]
to determine if there exists a statistically significant difference
(i.e., p-value < 0.05). We choose the Mann-Whitney U test
because it does not enforce any assumptions on the distribution
of the data. Reporting only the statistical significance may lead
to erroneous results (i.e., if the sample size is very large, p-
value can be small even if the difference is trivial). Hence, we
use Cliff's delta to quantify the effect size [54]. The smaller the
effect sizes, the more similar the workload is to the original
workload. Since statistical tests do not consider the trend of
the actions, we visualize the differences between the number
of each type of actions during execution from the load tests
and the original workload using cumulative density graphs.
Results. The load tests from our recovered workloads have
similar system behaviour to the original workload. The
results of throughput of actions between the original workload
and the generated load tests are shown in Table VII. In 11
out of 14 user actions in all the subject systems, at least one

TABLE VII
COMPARING THROUGHPUT BETWEEN THE ORIGINAL WORKLOAD AND
THE GENERATED WORKLOADS.

OpenMRS
Action Add Delete
Throughput | Comparing with original | Throughput | Comparing with original
(per minute) | p-value effect size | (per minute)| p-value effect size
Original 143 N/A N/A 91 N/A N/A
Action 173 «0.0001 0.52 (large) 87| <0.0001 0.14 (small)
ActionContext 105 | <0.0001 0.96 (large) 69| <0.0001 0.83 (large)
ActionSequence 155/ <0.0001 0.23 (small) 83/<k0.0001 0.26 (small)
Action Exit Search
Throughput | Comparing with original | Throughput | Comparing with original
(per second) | p-value effect size | (per second)| p-value effect size
Original 92 N/A N/A 131 N/A N/A
Action 88|<0.0001 0.15 (small) 110| <0.0001 0.48 (large)
ActionContext 119]«0.0001 0.87 (large) 165 | <0.0001 0.88 (large)
ActionSequence 71]<0.0001 0.45 (medium) 149] «0.0001 0.43 (medium)
Apache James
Action Send Receive
Throughput | Comparing with original | Throughput | Comparing with original
(per minute)| p-value effect size |(per minute)| p-value effect size
Original 339 N/A N/A 127 N/A N/A
Action 253|<0.0001 0.39 (medium) 213|«0.0001 0.68 (large)
ActionContext 318|<0.0001 0.30 (small) 149] «0.0001 0.44 (medium)
ActionSequence 338 0.002 0.18 (small) 129| <0.0001 0.13 (small)
SA
Action Action A Action B
Throughput | Comparing with original | Throughput | Comparing with original
(per minute) | p-value effect size | (per minute)| p-value effect size
Original — N/A N/A — N/A N/A
Action — 0.58 0.89 (large) — 1 «<0.0001 0.79(large)
ActionContext — 0.58 0.06 (trivial) —| <0.0001 0.99(large)
ActionSequence — 0.89 0.01 (trivial) — 0.49 0.17(small)
Google Borg
Action Submit Schedule
Throughput | Comparing with original | Throughput | Comparing with original
(per minute) [p-value | effect size | (per minute)| p-value effect size
Original 4,022 N/A N/A 3,840 N/A N/A
Action 3,985 0.82 0.02 (trivial) 3971 0.84 0.02 (trivial)
ActionSequence 4,192 0.51 0.06 (trivial) 3,849 0.98 0.003 (trivial)
Action Fail Finish
Throughput | Comparing with original | Throughput | Comparing with original
(per minute) [p-value | effect size | (per minute)| p-value effect size
Original 613 N/A N/A 2,236 N/A N/A
Action 647 0.006 0.25 (small) 2,679 0.007 0.42 (medium)
ActionSequence 608 0.68 0.04 (trivial) 1,793 0.007 0.45 (medium)
Action Evict Kill
Throughput | Comparing with original | Throughput | Comparing with original
(per minute) [p-value | effect size | (per minute)| p-value effect size
Original 933 N/A N/A 217 N/A N/A
Action 428 0.06 0.44(medium) 151]<0.0001 0.34 (medium)
ActionSequence 1,258 0.05 0.31(medium) 162 0.37 0.08 (trivial)

Note: Bold font indicates that the Toad tests from the corresponding approaches are
representative to the original workload (p-value <0.05, or effect sizes trivial or small).

40000

30000

20000

cumulative #actions

10000

— Original
Action

=+ ActionContext

== ActionSequence

0 30 % 120

60
elapsed time (minute)

Fig. 2. Cumulative density plot of the number of user actions from the original
workload and the generated load tests for the Receive action in Apache James.

workload is field-representative (bold in Table VII). Even the
most coarse-grained workload Action has a similar system
behaviour in five out of 14 user actions; while the most
fine-grained workload ActionSequence has a similar system
behaviour in 10 out of 14 user actions.

TABLE VIII
COMPARING CPU USAGE BETWEEN ORIGINAL WORKLOAD AND THE
LOAD TESTS GENERATED BY OUR WORKLOAD APPROACHES.

Comparing with original

Action ActionContext ActionSequence
Subjects p-value | effect size | p-value effect size p-value | effect size
Apache James| <0.0001 |0.63 (large) | <0.0001| 0.98 (large) |<<0.0001|0.18 (small)
OpenMRS | <0.0001 |0.78 (large) | <<0.0001| 0.61 (large) |<0.0001|0.26 (small)
SA < 0.0001 [0.55 (large) | <0.0001 [0.47 (medium) | <0.0001|0.29 (small)

Note: The bold fond indicates the most field-representative workload.

The load tests generated by ActionSequence outperform
the ones from Action and ActionContext. We observe that in
10 out of 14 user actions, ActionSequence outperforms Action
and ActionContext when comparing the throughput of the user
actions. For example, for the Send action in Apache James,
the load test from ActionSequence generates 337 actions per
minute which is much closer to the original workload (339
actions per second) than Action (253 actions per minute)
and ActionContext (318 actions per minute). We also use
cumulative density graph to evaluate the trend of each action
between the original and the load tests that are generated
from our different workloads. The x-axis of the graphs is the
elapsed time of the load tests and the y-axis of the graph is
the total number of actions. Due to space limitation, we only
present the cumulative density graph for one action of Apache
James (see Figure 2). The detailed cumulative density graph
for each user action can be found in our replication package.
The graphs show that the trend of the Receive action from the
ActionSequence workload is much closer to original workload
than the Action and ActionContext workloads. In particular,
Figure 2 shows that the total of number of user actions from
the Action workload is far from the original.

The ActionSequence workloads produce system perfor-
mance closer to the original workload than the Action and
ActionContext workloads. Shown in Table VIII, the effect
sizes are always trivial or small between the CPU usage during
the load tests that are generated from the ActionSequence
workloads and the original workload. On the other hand, the
effect sizes of CPU usage differences are medium to large
when comparing the original workload with the Action and
ActionContext workloads.

RQ2: How many clusters of users are captured by each of our
recovery workload approaches?

Motivation. Our workloads may contain a large number of
clusters of users, leading to a too-fine of a granularity for load
tests. If our workloads consist of an overwhelming amount of
clusters, they would not be useful for practitioners due to the
large overhead of developing the infrastructure to execute such
workloads, as well as executing and maintaining them.
Approach. We use all the workloads of each of our approaches
to generate load tests for the four subject systems. We compare
the number of clusters of users that are recovered by each
workload. Afterwards, we manually examine each cluster of
users to understand the differences between our different
workload recovery approaches.

Results. Our approaches do not generate an overwhelming
number of clusters. The numbers of generated user clusters

TABLE IX
NUMBER OF USER CLUSTERS FOR EACH OF OUR WORKLOAD

APPROACHES.
Subjects Action ActionContext | ActionSequence
Apache James 2 35 39
OpenMRS 3 2 8
Google Borg 20 20 25
SA 2 10 13

are shown in Table IX. Although including richer user infor-
mation in our workloads, we do not generate an overwhelming
number of clusters. In particular, Google Borg and SA are both
large-scale systems with a large amount of end users, while
our process only generates a maximum of 25 and 13 clusters
for the ActionSequence approach for Google Borg and SA,
respectively. However, the granularity of the Action workloads
is very coarse. In particular, for the three subject systems, i.e.,
Apache Jame, OpenMRS and SA, the Action workload only
consists of two to three clusters of users. Such a small number
of clusters helps explain the results from RQ1 where the Action
workload is not able to generate field-representative load tests.
On the other hand, the most field-representative workload from
RQIl, i.e., the ActionSequence workloads, consists of only
three to six more clusters than the ActionContext workloads.
Such a small number of clusters of users make it possible to
manually examine each cluster to qualitatively understand the
field workload.

We manually examine each cluster of users and aim to
understand the difference between the recovered clusters for
the ActionSequence and ActionContext workload recovery
approaches. We identify three typical scenarios that cause the
differences. 1) Orders of actions. Some users have the same
distribution of actions but they are ordered differently. Such
differences are not captured by ActionContext workloads. 2)
Similar sequences of actions but different distribution. User
may have the same action sequences but the general distribu-
tion of each sequence of actions is different. ActionContext
workloads would consider the users into different clusters
while ActionSequence workloads group the users together.
3) Varying frequency of actions. Some users have the same
distribution of action sequences although their frequencies are
varying differently. ActionContext workloads would consider
the users in the different clusters while ActionSequence work-
loads consider them the same. Such scenarios show that the
ActionSequence considers a different levels of granularities of
user behaviours which may explain the differences in clusters.

VI. DISCUSSION

In this section, we discuss the use of our three workload
recovery approaches to detect unseen workloads and a sensi-
tivity analysis.

A. Detecting unseen workload

One of the challenges of designing load tests is keep-
ing the load tests field-representative as the user workloads
evolve [55], [56]. When there exist users with unseen work-
load, practitioners should be informed in order to act ac-
cordingly. For example, if the unseen workload is due to

new user behaviours, one may wish to update the load
tests. On one hand, if the recovered workloads from our
approaches are too fine-grained, our approaches would report
false-positively unseen workloads, leading to additional wasted
costs to practitioners. On the other hand, if our recovered
workloads are too coarse-grained, we may miss the reporting
of unseen workloads, leading to load tests that are not field-
representative. Therefore, we study the use of our workload
recovery process to detect unseen workloads by injecting users
with unseen workloads into our existing data. We injected four
types of unseen workloads, that are typically used in prior
research [56], [57].

o Extra actions. We randomly pick one action that is not
the most frequent action. Then we replace all occurrences
of the picked action by the most frequent action.

e Removing actions. We randomly pick an action type and
remove all occurrences of the action from a user.

e Double context values. For every action with a context
value, we change the context value by doubling it.

e Reordering actions. For all the actions that are performed
by a user, we randomly reorder the actions.

For every type of unseen workload, we randomly select
one user and alter the data from the user to inject the
unseen workload. We apply each of our approaches to recover
workloads from the data with only one user injected with
an unseen workload. In particular, if one user is located in
one cluster without any other users, we consider that the user
has an unseen workload (the user is not similar to any other
one). If the user is indeed injected with an unseen workload,
we consider it as a true-positive detection. Any normal user
located in a one-user cluster will be considered as a false-
positive detection. We repeat this process 10 times, with every
time injecting a random user with an unseen workload, for
every type of unseen workload. In total, for our four subject
systems, we have 160 sets of data, each of them having
one user injected with an unseen workload. We generate 160
workloads to detect those users. We define precision as the
number of the true-positive detection divided by the total
number of users that are in a one-user cluster; recall as the
number of the true-positive detection divided by the total
number of users with injected unseen workloads.

ActionContext and ActionSequence workloads can accu-
rately detect the injected users with an unseen workload.
The results of detecting injected users with an unseen work-
load is shown in Table X. The results show that ActionContext
workloads have a precision between 0.75 to 1 with an average
of 0.86 and a recall between 0.2 to 0.9 with an average of 0.58.
The ActionSequence workloads achieve a precision between
0.75 to 1 with an average of 0.87 and a recall between 0.3 to
1 with an average of 0.79. However, the Action workloads
have both low average precision (0.47) and recall (0.29).
The precision and recall of the ActionSequence workloads are
generally consistently high across all subject systems for all
types of injected unseen workloads. The only exception is
Apache Jame with a lower recall in detecting Extra actions

TABLE X
RESULTS OF PRECISION AND RECALL IN DETECTING INJECTED UNSEEN
WORKLOADS.

Apache James
Action ActionContext | ActionSequence
Unseen workload type [precision recall | precision recall | precision recall

Extra actions 1.00 0.30 0.80 0.40 0.80 0.40

Removing actions 1.00 0.40 0.75 0.30 0.75 0.30

Double context values 0 0 0.90 0.90 0.90 0.90

Reordering actions 0 0 0.75 0.30 0.89 0.80

Average 0.50 0.18 0.80 0.48 0.84 0.60
OpenMRS

Action ActionContext | ActionSequence

Unseen workload type [precision recall | precision recall | precision recall

Extra actions 0.86 0.6 0.86 0.60 0.89 0.80
Removing actions 0.88 0.70 0.73 0.80 0.69 0.90
Double context values 0 0 0.75 0.60 0.75 0.60
Reordering actions 0 0 1.00 0.30 091 1.00
Average 0.44 0.33 0.84 0.58 0.81 0.83
Google Borg

Action ActionSequence

Unseen workload type [precision recall | precision recall

Extra actions 0.90 0.90 0.90 0.90

Removing actions 0.83 0.50 0.89 0.80

Double context values 1.00 0.10 0.90 0.90

Reordering actions 091 0.50 0.90 0.87

Average 0.91 0.50 0.90 0.87

SA
Action ActionContext | ActionSequence
Unseen workload type [precision recall | precision recall | precision recall
Extra actions 1.00 0.80 0.89 0.80 0.90 0.90
Removing actions 088 0.7 0.89 0.80 0.89 0.80
Double context values 0 0 1.00 0.90 1.00 0.90
Reordering actions 0 0 1.00 0.20 0.90 0.90
Average 0.47 0.38 0.95 0.68 0.92 0.88
Action ActionContext | ActionSequence

precision recall | precision recall | precision recall
All average 0.47 0.29 0.86 0.58 0.87 0.79
Note: Values in bold font indicate the best performing approach for each setting.

and Removing actions workloads. We find that the Apache
James mail server has a small number of action types (cf.
Section IV), while adding extra actions and removing actions
may still generate a user with a high similarity to a previously
recovered cluster of users.

ActionSequence workloads have a similar precision but
much higher recall than ActionContext workloads. Table X
shows that on average ActionSequence achieves a similar
precision (0.87) as ActionContext (0.86) while the recall of
ActionSequence (0.79) is much higher than that of ActionCon-
text (0.56). ActionSequence considers finer-grained informa-
tion than ActionContext, hence intuitively, providing a higher
ability to uncover more unseen workloads. In particular, in all
the cases, ActionSequence has a higher or similar recall as
ActionContext. On the other hand, even though in some cases
when ActionContext has a higher precision, the difference is
rather small.

B. Sensitivity analysis

Our workload recovery process leverages several tech-
niques, such as hierarchical clustering, which may be replaced
by other similar techniques. Our process also leverages thresh-
old values. For example, the residual value for the linear
regression prediction that is used to split user action sequences
is set to 0.5 in our process. The « value to rank frequent action
sequences is also set to 0.5. In order to better understand the

TABLE XI
COMPARING THE RESULTS OF CHOOSING DIFFERENT THRESHOLD VALUES
AND CLUSTERING ALGORITHM FOR APACHE JAMES.

Send action

Changed residual=0.25 residual=0.75 a=0.25 a=0.75 with Mean shift

Default p-value [effect size| p-value [effect size| p-value effect size|p-valueeffect size|p-value [effect size
residual=0.5, a=0.5, 0.9 0.01] 091 0.01] 0.001 0.19] 099 0.0001 | 0.0001 022
hierarchical clustering (trivial) (tivial) (small) (trivial) (small)

Receive action

Changed residual=0.25 residual=0.75 =025 a=0.75 with Mean shift

Default p-value[effect size |p-value]effect size | p-value[effect size | p-value[effect size p-value [effect size
residual=0.5, o=0.5, 0.9 0.01 0.9 0.01[0.005 0.15| 099 0.0001| 025 0.07
hierarchical clustering (trivial) (trivial) (small) (trivial) (trivial)

sensitivity of our workloads to these thresholds, we individ-
ually increased each threshold value to 0.75 and decreased
the threshold value to 0.25. We also change the clustering
algorithm to Mean shift [58]. We choose Mean shift, since
similar to hierarchical clustering, Mean shift does not require
us to pre-specify the number of clusters. We re-generated the
ActionSequence workload and calculated the throughput of
each action for each subject system. We used the ActionSe-
quence workload in this analysis because ActionSequence is
the best performing workload shown in our evaluation results
(c.f. Section V) and the ActionSequence covers all the steps
of all our three workload recovery approaches.

We compared the throughput of each action with the de-
fault threshold and the clustering algorithm using the Mann-
Whitney U test and Cliff’s delta. We observed that our ap-
proaches are insensitive to both the residual and « thresholds.
In addition, the effect size between the hierarchical clustering
and Mean shift is trivial or small. Table XI only shows the
results of such a comparison for Apache James which is
the most peculiar workload in our subject systems. Other
comparison results are in our replication package.

VII. CHALLENGES AND LESSONS LEARNED FROM THE
INDUSTRIAL EVALUATION OF OUR APPROACHES.

In this section we discuss the learned lessons and faced
challenges during the implementation and evaluation of our
approaches in industry. In particular, the first author of this
paper was embedded on site with the industrial team for over
half a year to enable a faster feedback loop from practitioner
— ensure the smooth adoption of our approaches in a large-
scale complex industrial setting. Our documented challenges
and lessons can assist researchers and practitioners who would
like to integrate their research in complex industrial settings.

A. Domain knowledge is crucial for the successful transfer of
research to practice.

Our approaches depend on the availability and quality of
the important knowledge that resides in system execution logs.
Due to the large scale and complexity of the logs in System A,
we often faced the challenge that we may not fully understand
the information that is communicated in the logs, making
it challenging for us to determine the important contextual
information to include and analyze by our approaches.

How to address: At a first attempt, we naively included all log
information for our analysis. We ended up observing that such
an attempt introduced noise which negatively impacted our
results. Hence, the first author flew down to spend six months

on site at Alibaba, where he held several in-person scrum
meetings with developers and operators of System A, in order
to better understand the information that is communicated in
System As logs. These meetings helped the academic team and
the industrial team get a better understanding of the problem
at hand as well as the strengths and limitations of the research
solutions. Being on site helped the academic team create a
strong relation with the industrial team as well. Such a relation
enabled a much faster and more open feedback loop.
Lessons learned: Good domain knowledge is crucial in log
analysis and workload recovery. Blindly applying log analysis
techniques on large-scale complex logs may not achieve the
expected goal. One should work closely with practitioners to
leverage their valuable knowledge about their logs.

B. Team support is crucial for the successful transfer of
research to practice.

1) Customization of tooling: We started our research work-
ing on open-source systems. Such open-source systems com-
monly use standard load driver tools such as JMeter. However,
industrial systems are commonly tested using various in-house
custom tools. Such tools hinder us from demonstrating and
evaluating our work. It is often costly, time-consuming and
sometimes impossible to design and implement a specific load
replay tool for each system.

How to address: Working closely with the practitioners of
Alibaba, we gained a deeper understanding of their in-house
load replay tools. We observed that many of them support the
direct reading of logs and the replaying of the exact workload
based on such logs. Therefore, we provided an option in our
toolset for the direct driving of a load test using widely used
tools (like JMeter), or the transformation of our generated load
test into logs, which can be fed to the customized load replay
tools from Alibaba.

Lessons learned: There exists a strong need for future research
in load replay using more flexible frameworks in order to avoid
practitioners having to implement customized toolsets.

2) Addition of needed log lines when not all information
is available: Not all the needed information was available in
the logs when we started our research on Alibabas system.
In particular, the log data was not perfectly designed for our
approach and important information was missing.

How to address: Working closely with the practitioners, we
requested the addition of new logging probes. In order to
demonstrate the values of our requests, we conducted several
additional analyses.

Lessons learned: The technical support and quick turn-around
from the industrial team were extremely crucial in addressing
this challenge. However, even with all the logging probes in
place, we had to wait till the builds with such probes were
deployed long enough in the field for us to have sufficient
data for our approaches.

3) Setting up a realistic industrial environment: The con-
text of the load testing environment has an important influence
on the performed load tests. For example, there should be a
large amount of realistic data in a database before one can

test a database-driven application. Using open source systems,
it is relatively easy to create a load testing environment that
is similar to widely adopted benchmarks. However, setting
up such an environment in an ultra-large-scale industrial
environment is extremely challenging.

How to address: To make our automatically generated load
tests run successfully, we had the luxury of being strongly
supported by the infrastructure team of Alibaba. In particular,
we were provided with a testing environment that is a replica
of the field environment from which we collected the analyzed
logs. However, such a solution is not optimal and may not be
cost-effective, especially for practitioners that do not have di-
rect access to infrastructures that are similar to their deployed
systems.

Lessons learned: Preparing the load testing environment is an
important, challenging and yet open problem for load testing
practices and research. Technical and infrastructural support is
crucial in overcoming this challenge.

C. Coping with the large scale industrial data

Our experiments on open-source systems are conducted

with a limited scale of data. When adopting our approach using
the industry scale data of Alibaba, our approach did not scale
well. The statistical analyses and clustering techniques often
suffered from poor scalability.
How to address: In order to ease the adoption of our ap-
proach on industry scale data, we optimized our solution by
learning some threshold values by pre-processing the logs and
caching the thresholds across runs. For example, learning the
best threshold values to categorize contextual values is time
consuming. We can save the learned thresholds and use them
directly to generate the categorized contextual values in logs
since such thresholds rarely change within a specific context.
Lessons learned: One should not assume that a successful
research tool can directly scale to industrial data. Optimization
for the particular industrial setting is important.

VIII. THREATS TO VALIDITY

External validity. Our evaluation is conducted on data from
two open source and two industrial systems. Although our
subject systems cover different domains and sizes, our evalu-
ation results may still not generalize to other systems. Given
the automated nature of our process, others can study its
effectiveness on their own data sets using our replication script.
Internal validity. Our approaches depend on the availability
and quality of system execution logs. If a system records
limited information about user actions in the execution logs,
our approaches may not perform as expected. The evaluation
of approaches uses the system CPU usage that is recorded
by Pidstat. The quality and the frequency of recorded CPU
usage can impact the internal validity of our study. Currently,
our approach only categorizes numerical contextual values due
to the characteristics of the logs in our subject systems. Future
work can complement our approach by consider categorizing
string literals. Our approach depends on various statistical
analyses. Therefore, for small systems with a small amount

of data, our approach may not perform well due to the nature
of statistical analyses.

Construct validity. There exists other aspect of system ba-
haviour and performance. We focus on the throughput and
CPU usage due to special need of SA from our industrial
collaborator. Future study may investigate the impact on other
system aspects to complement our findings. Due to inaccessi-
bility of the subject system, the workloads on Google Borg is
based on simulated execution logs, instead of actually running
the load tests on Google Borg. Therefore, the evaluation results
may be different if we were able to run the load tests on the
actual Google Borg cluster. In the evaluation of our approaches
to detect users with unseen workloads, we only injected four
types of unseen workloads. Similar evaluation approaches
based on mutation techniques have been often used in prior
research [59], [60]. However, these unseen workloads may not
be the same as in real life. In addition, there may exist other
ways to inject unseen workload to complement our results.

IX. CONCLUSIONS

Workload recovery from end users is an essential task for
the load testing of large-scale systems. In this paper, we
conduct a study on recovering workloads at different levels
of granularity of user behaviours to automatically generate
load tests. We design three approaches that are based on
user actions, user actions with contextual information and user
action sequences with contextual information, to generate load
tests on two open source systems and two industrial systems.
We find that our richest approach which uses user action
sequences with contextual information outperforms the other
two approaches. In most cases, the throughput and CPU usage
from the load tests that are generated from the user action
sequence based workload outperform the other two, and are
statistically insignificant relative to the original workload or
with small or trivial effect sizes. Such a field-representative
workload is generated only using a small number of clusters
of users. In addition, we find that the recovered workloads
from our approaches can also be used to detect injected users
with unseen workloads with a high precision and recall.

Our paper has the following contributions:
o To the best of our knowledge, our approach is the first

large-scale study on the use of different granularity of
recovered user details for load testing.

« To the best of our knowledge, our approaches are the first
ones in the field to leverage user contextual information
and frequent action sequences in workload recovery.

o Our approaches have been adopted in practice to assist in
the testing and operation of an ultra-large-scale industrial
software system.

ACKNOWLEDGEMENT

We would like to thank Alibaba for providing access to their
system used in our study. The findings and opinions expressed
in this paper are those of the authors and do not necessarily
represent or reflect those of Alibaba and/or its subsidiaries
and affiliates. Moreover, our results do not reflect the quality
of Alibaba’s products.

[1]

[2]

[3]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

S. Fiegerman, “Netflix adds 9 million paying subscribers, but stock
falls,” https://www.cnn.com/2019/01/17/media/netflix-earnings-q4/
index.html, January 2019, (Accessed on 03/29/2019).

F. Company, “How one second could cost amazon 1.6 billion in sales,”
Jul 2012. [Online]. Available: https://www.fastcompany.com/1825005/
how-one-second-could-cost-amazon- 16-billion-sales

“Geeking with greg: Marissa mayer at web 2.0,
//glinden.blogspot.com/2006/1 1/marissa-mayer-at-web-20.html,
(Accessed on 04/01/2019).

E. J. Weyuker and F. I. Vokolos, “Experience with performance test-
ing of software systems: issues, an approach, and case study,” IEEE
transactions on software engineering, vol. 26, no. 12, pp. 1147-1156,
2000.

S. Elnaffar and P. Martin, “Characterizing computer systems workloads,”
Submitted to ACM Computing Surveys Journal, 2002.

M. C. Calzarossa, L. Massari, and D. Tessera, “Workload character-
ization: A survey revisited,” ACM Comput. Surv., vol. 48, no. 3, pp.
48:1-48:43, 2016.

M. Andreolini, M. Colajanni, and P. Valente, “Design and testing of
scalable web-based systems with performance constraints,” in FIRB-
Perf Workshop on Techniques, Methodologies and Tools for Performance
Evaluation of Complex Systems (FIRB-Perf 2005), 19 September 2005,
Torino, Italy, 2005, pp. 15-25.

D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A synthetic workload
generation technique for stress testing session-based systems,” [EEE
Trans. Software Eng., vol. 32, no. 11, pp. 868-882, 2006.

N. Snellman, A. Ashraf, and I. Porres, “Towards automatic performance
and scalability testing of rich internet applications in the cloud,” 2011,
pp. 161-169.

J. A. Meira, E. C. de Almeida, G. Sunyé, Y. L. Traon, and P. Valduriez,
“Stress testing of transactional database systems,” JIDM, vol. 4, no. 3,
pp. 279-294, 2013.

M. D. Syer, W. Shang, Z. M. Jiang, and A. E. Hassan, “Continuous
validation of performance test workloads,” Automated Software Engi-
neering, vol. 24, no. 1, pp. 189-231, 2017.

“The workload for the specweb96 benchmark,” September 2003.
[Online]. Available: https://www.spec.org/web96/workload.html

W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Automated
detection of performance regressions using regression models on
clustered performance counters,” in Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, ser. ICPE *15.
New York, NY, USA: ACM, 2015, pp. 15-26. [Online]. Available:
http://doi.acm.org/10.1145/2668930.2688052

I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox,
“Capturing, indexing, clustering, and retrieving system history,” in
Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, ser. SOSP "05. New York, NY, USA: ACM, 2005, pp.
105-118.

C. Vogele, A. van Hoorn, E. Schulz, W. Hasselbring, and H. Krcmar,
“WESSBAS: extraction of probabilistic workload specifications for
load testing and performance prediction - a model-driven approach
for session-based application systems,” Software and System Modeling,
vol. 17, no. 2, pp. 443-477, 2018.

J. Summers, T. Brecht, D. Eager, and A. Gutarin, “Characterizing the
workload of a netflix streaming video server,” in 2016 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). 1EEE, 2016,
pp. 1-12.

H. Xi, J. Zhan, Z. Jia, X. Hong, L. Wang, L. Zhang, N. Sun, and G. Lu,
“Characterization of real workloads of web search engines,” in 2011
IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2011, pp. 15-25.

A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, and D. Dietz,
“An industrial case study of customizing operational profiles using log
compression,” in Proceedings of the 30th International Conference on
Software Engineering, ser. ICSE ’08. New York, NY, USA: ACM,
2008, pp. 713-723. [Online]. Available: http://doi.acm.org/10.1145/
1368088.1379445

T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser,
and P. Flora, “Finding and evaluating the performance impact of
redundant data access for applications that are developed using
object-relational mapping frameworks,” IEEE Trans. Softw. Eng.,

http:

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

vol. 42, no. 12, pp. 1148-1161, Dec. 2016. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2553039

A. Haghdoost, W. He, J. Fredin, and D. H. C. Du, “On the accuracy
and scalability of intensive I/O workload replay,” in 15th USENIX
Conference on File and Storage Technologies, FAST 2017, Santa Clara,
CA, USA, February 27 - March 2, 2017, 2017, pp. 315-328.

N. J. Yadwadkar, C. Bhattacharyya, K. Gopinath, T. Niranjan, and
S. Susarla, “Discovery of application workloads from network file
traces,” in 8th USENIX Conference on File and Storage Technologies,
San Jose, CA, USA, February 23-26, 2010, 2010, pp. 183-196.

A. Busch, Q. Noorshams, S. Kounev, A. Koziolek, R. H. Reussner,
and E. Amrehn, “Automated workload characterization for I/O per-
formance analysis in virtualized environments,” in Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering,
Austin, TX, USA, January 31 - February 4, 2015, 2015, pp. 265-276.
B. Seo, S. Kang, J. Choi, J. Cha, Y. Won, and S. Yoon, “IO work-
load characterization revisited: A data-mining approach,” IEEE Trans.
Computers, vol. 63, no. 12, pp. 3026-3038, 2014.

E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, 2017, pp. 153-167.

T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of the
system: A case study of logging and telemetry at microsoft,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), May 2016, pp. 92-101.

A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in
log analysis,” Commun. ACM, vol. 55, no. 2, pp. 55-61, Feb. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2076450.2076466

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in 24th IEEE International
Conference on Software Maintenance (ICSM 2008), September 28 -
October 4, 2008, Beijing, China, 2008, pp. 307-316.

——, “Automated performance analysis of load tests,” in 25th IEEE In-
ternational Conference on Software Maintenance (ICSM 2009), Septem-
ber 20-26, 2009, Edmonton, Alberta, Canada, 2009, pp. 125-134.

X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu, “Logmaster: Mining
event correlations in logs of large-scale cluster systems,” in Proceedings
of the 2012 IEEE 31st Symposium on Reliable Distributed Systems, ser.
SRDS ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
71-80. [Online]. Available: http://dx.doi.org/10.1109/SRDS.2012.40

I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer invariant-
constrained models,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE 11. New York, NY, USA:
ACM, 2011, pp. 267-277. [Online]. Available: http://doi.acm.org/10.
1145/2025113.2025151

1. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with csight,”
in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014,
pp. 468-479. [Online]. Available: http://doi.acm.org/10.1145/2568225.
2568246

W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics applications
when deploying on hadoop clouds,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 402—411. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486842

Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering
Companion, ser. ICSE "16. New York, NY, USA: ACM, 2016, pp. 102—
111. [Online]. Available: http://doi.acm.org/10.1145/2889160.2889232
S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:
ACM, 2018, pp. 60-70. [Online]. Available: http://doi.acm.org/10.1145/
3236024.3236083

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated
approach for abstracting execution logs to execution events,” Journal of
Software Maintenance and Evolution: Research and Practice, vol. 20,
no. 4, pp. 249-267, 2008.

G. F. Jenks, “The data model concept in statistical mapping,” Interna-
tional yearbook of cartography, vol. 7, pp. 186-190, 1967.

M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting opera-
tional profiles from execution logs using suffix arrays,” in ISSRE 2009,
20th International Symposium on Software Reliability Engineering,
Mysuru, Karnataka, India, 16-19 November 2009, 2009, pp. 41-50.
M. Mednis and M. Aurich, “Application of string similarity ratio and
edit distance in automatic metabolite reconciliation comparing recon-
structions and models,” Biosystems and Information technology, vol. 1,
pp. 14-18, 01 2012.

D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,”
Annals of Data Science, vol. 2, no. 2, pp. 165-193, 2015.

W. Shang, A. E. Hassan, M. Nasser, and P. Flora, “Automated detection
of performance regressions using regression models on clustered per-
formance counters,” in Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering. ACM, 2015, pp. 15-26.

T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics-theory and Methods, vol. 3, no. 1, pp. 1-
27, 1974.

M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser, and
P. Flora, “Continuous validation of load test suites,” in Proceedings of the
5Sth ACM/SPEC international conference on Performance engineering.
ACM, 2014, pp. 259-270.

L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.

Axboe, “axboe/fio,” Mar 2019. [Online]. Available: https://github.com/
axboe/fio

“Apache jmeter - apache jmete,” https://jmeter.apache.org/, (Accessed
on 03/29/2019).

R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu, “A framework to evaluate
the effectiveness of different load testing analysis techniques,” in 2016
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2016, Chicago, IL, USA, April 11-15, 2016, 2016, pp.
22-32.

T-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora,
“Cacheoptimizer: Helping developers configure caching frameworks for
hibernate-based database-centric web applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2016, pp. 666-677.

T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan, and W. Shang,
“Studying the effectiveness of application performance management
(apm) tools for detecting performance regressions for web applications:
an experience report,” in Proceedings of the 13th International Confer-
ence on Mining Software Repositories. ACM, 2016, pp. 1-12.

A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems
(EuroSys), Bordeaux, France, 2015.

“pidstat(1): Report statistics for tasks - linux man page,” https://linux.
die.net/man/1/pidstat, (Accessed on 04/06/2019).

“Google ai blog: More google cluster data,” https://ai.googleblog.com/
2011/11/more-google-cluster-data.html, (Accessed on 04/04/2019).

A. Banerjee and R. N. Dave, “Validating clusters using the hopkins
statistic,” in 2004 IEEE International Conference on Fuzzy Systems
(IEEE Cat. No. 04CH37542), vol. 1. 1EEE, 2004, pp. 149-153.

N. Nachar et al., “The mann-whitney u: A test for assessing whether
two independent samples come from the same distribution,” Tutorials in
Quantitative Methods for Psychology, vol. 4, no. 1, pp. 13-20, 2008.
L. A. Becker, “Effect size (es),” Accessed on October, vol. 12, no. 2006,
pp. 155-159, 2000.

T. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan, M. N. Nasser,
and P. Flora, “Analytics-driven load testing: An industrial experience
report on load testing of large-scale systems,” in 39th IEEE/ACM Inter-
national Conference on Software Engineering: Software Engineering in
Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28,
2017, 2017, pp. 243-252.

C. A. Cunha and L. M. e Silva, “Separating performance anomalies
from workload-explained failures in streaming servers,” in 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (ccgrid 2012). 1EEE, 2012, pp. 292-299.

(571

(58]

[59]

[60]

L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly?
application change? or workload change? towards automated detection
of application performance anomaly and change,” in 2008 IEEE Inter-
national Conference on Dependable Systems and Networks With FTCS
and DCC (DSN). 1EEE, 2008, pp. 452-461.

D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 5, pp. 603-619, May 2002. [Online]. Available:
http://dx.doi.org/10.1109/34.1000236

J. Svajlenko, C. K. Roy, and J. R. Cordy, “A mutation analysis based
benchmarking framework for clone detectors,” in 2013 7th International
Workshop on Software Clones (IWSC). 1EEE, 2013, pp. 8-9.

J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 1EEE, 2015, pp. 131-140.

