Log4Perf: suggesting and updating
logging locations for web-based systems’
performance monitoring

Kundi Yao, Guilherme B. de Padua,
Weiyi Shang, Catalin Sporea, Andrei
Toma & Sarah Sajedi

Empirical Software Engineering
An International Journal

ISSN 1382-3256

Empir Software Eng
DOI 10.1007/s10664-019-09748-z

VOLUME 22, NUMBER 3, June 2017

EMPIRICAL

SOFTWARE

ENGINEERING

NATIONAL JOURNA

Ep

ITORS-IN-CHIEF:

ROBERT FELDT
THOMAS ZIMMERMANN

@ Springer

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer
Science+Business Media, LLC, part of
Springer Nature. This e-offprint is for personal
use only and shall not be self-archived in
electronic repositories. If you wish to self-
archive your article, please use the accepted
manuscript version for posting on your own
website. You may further deposit the accepted
manuscript version in any repository,
provided it is only made publicly available 12
months after official publication or later and
provided acknowledgement is given to the
original source of publication and a link is
inserted to the published article on Springer's
website. The link must be accompanied by
the following text: "The final publication is
available at link.springer.com”.

@ Springer

Empirical Software Engineering
https://doi.org/10.1007/510664-019-09748-z

®

Log4Perf: suggesting and updating logging locations = check for
for web-based systems’ performance monitoring updates

Kundi Yao' @ . Guilherme B. de Padua' - Weiyi Shang - Catalin Sporea? -
Andrei Toma? . Sarah Sajedi?

Published online: 26 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Performance assurance activities are an essential step in the release cycle of software sys-
tems. Logs have become one of the most important sources of information that is used to
monitor, understand and improve software performance. However, developers often face the
challenge of making logging decisions, i.e., neither logging too little and logging too much
is desirable. Although prior research has proposed techniques to assist in logging decisions,
those automated logging guidance techniques are rather general, without considering a par-
ticular goal, such as monitoring software performance. In this paper, we present Log4Perf,
an automated approach that provides suggestions of where to insert logging statement with
the goal of monitoring web-based systems’ CPU usage. In the first part of our approach,
we leverage the performance model’s prediction errors to suggest the need for updating
logging locations when software evolves. In the second part of our approach, we build
and manipulate a statistical performance model to identify the locations in the source code
that statistically significantly influence CPU usage. To evaluate Log4Perf, we conduct case
studies on two open source systems, i.e., CloudStore and OpenMRS, and one large-scale
commercial system. Our evaluation results show that our approach can suggest the need for
updating logging locations and identify the logging locations that can be kept unchanged.
We manually examine the logging locations that are newly suggested or deprecated. We
find that our approach can build well-fit statistical performance models, indicating that such
models can be leveraged to investigate the influence of locations in the source code on per-
formance. The suggested logging locations are often in small and simple methods that do
not have logging statements, and are not performance hotspots. Our approach can be used
to complement traditional approaches that are based on software metrics or performance
hotspots. In addition, we identify seven root-causes of these suggested or deprecated log-
ging locations. Log4Perf is integrated into the release engineering process of the commercial
software to provide logging suggestions on a regular basis.

Keywords Software logs - Logging suggestion - Performance monitoring -
Performance modeling - Performance engineering

Communicated by: Vittorio Cortellessa

b4 Kundi Yao
ku_yao@encs.concordia.ca

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09748-z&domain=pdf
http://orcid.org/0000-0002-3756-4673
mailto: ku_yao@encs.concordia.ca

Empirical Software Engineering

1 Introduction

The rise of large-scale software systems, such as web-based systems like Amazon, has
imposed an impact on people’s daily lives. The increasing importance and complexity
of such systems make their quality a critical, yet a hard issue to address. Failures in
such systems are more often associated with performance issues, rather than with fea-
ture bugs (Weyuker and Vokolos 2000). Therefore, performance assurance activities are an
essential step in the release cycle of large software systems.

Monitoring performance of large systems is a crucial task of performance assurance
activities. In practice, performance data is often collected either based on system-level infor-
mation (Cohen et al. 2005), such as CPU usage, or application-level information, such as
response time or throughput. In particular, Application Performance Management tools,
such as Kieker (Van Hoorn et al. 2012), are widely used in practice. They collect perfor-
mance data from the systems when they are running in the field environment. However,
such system-level or application-level performance data often leads to the challenges of
pinpointing the exact location in the source code that is related to performance issues.

On the other hand, the valuable information in logs are widely used in practice to improve
the quality of large software systems (Kernighan and Pike 1999; Jiang et al. 2009; Chen
et al. 2014; 2016; Shang et al. 2015). Prior research proposed and used logs to moni-
tor and improve software performance (Jiang et al. 2009; Chen et al. 2014; 2016; Shang
et al. 2015). The success of those performance assurance techniques depends on the well-
maintained logging infrastructure and the high quality of the logs. Although prior research
has proposed various approaches to improve the quality of logs (Zhao et al., 2017; Fu et al.
2014; Zhu et al. 2015; Yuan et al. 2011, 2012; Li et al. 2017, 2017), all of these approaches
consider logs in general, i.e., not considering the particular need of using logs for perfor-
mance assurance activities. Therefore, the suggested improvement of logs may not be of
interest in performance assurance activities.

Making it worse, software ever evolves while the locations in the source code that
contributes to performance modeling also evolve. Intuitively, keeping the update-to-date
logging locations requires repetitive performance testing and evaluation in order to under-
stand the performance and the generated logs in the up-to-date version of the systems.
However, such a repetitive process not only requires extra effort but may also impact the
developer and operators who leverage logs. For example, our prior work requires up to 50
hours of 10 iterations of performance testing to suggest logging locations for a single release
of a software system (Yao et al. 2018).

In order to address the above challenges, in this paper, we present an approach that
automatically provides logging location suggestion for web-based systems based on the
particular interest in performance modeling. Our approach consists of two parts as follows:

Part 1: We leverage statistical analysis to evaluate whether there is a need for updating
logging locations, in order to reduce the needed resources for performance testing and eval-
uation. If the existing logging locations can still model system performance (such as CPU
usage) in a new version, we suggest not to update the logging locations. In addition, if there
is a need for updating logging locations, our approach evaluates the performance prediction
power of every existing logging location to determine whether any of them should be kept
in the new version.

Part 2: By knowing that there is a need for updating logging locations, our approach
first automatically insert logging statements into the source code. After iteratively conduct-
ing performance tests with the system, our approach builds statistical performance models
to represent the system performance (such as CPU usage) using logs that are generated by

@ Springer

Empirical Software Engineering

the automatically inserted logging statements in the source code. By improving and ana-
lyzing statistical performance models, our approach identifies the logging statements that
are statistically significant in explaining the system performance. Such logging statements
are suggested to practitioners as potential logging locations for the use of performance
assurance activities.

We evaluate our approach with two open source systems, namely OpenMRS and Cloud-
Store, and one commercial system. Our evaluation results' show that we can identify the
releases without the need for updating logging locations and the logging locations that can
be kept unchanged across releases. By focusing on the suggestion of logging locations, we
find that we can build statistical performance models with R? between 26.9% and 90.2%.
By studying the suggested logging locations, we find that they all have a high influence
on the CPU usage. These locations cannot be identified using code complexity metrics
nor detected as performance hotspots. Finally, we manually identified seven root-causes of
newly suggested or deprecated logging locations.

This paper makes the following contributions:

— To the best of our knowledge, our work is the first to provide logging suggestions with
the particular goal of performance monitoring.

— We propose a statistically rigorous approach to identifying source code locations that
can statistically explain the CPU usage.

— The outcome of our approach can complement the use of traditional code metrics and
performance hotspots to assist performance engineers in practice.

— We introduce our approach on suggesting the need for updating logging locations when
software evolves.

— We identify seven root-causes of suggesting or deprecating logging locations. Future
research can prioritize on these root-causes in logging decision suggestions.

Our previous work (Yao et al. 2018) published in the 9th ACM/SPEC International Con-
ference on Performance Engineering (ICPE 2018) with title “Log4Perf: Suggesting Logging
Locations for Web-based Systems’ Performance Monitoring” focused on automatically sug-
gesting logging locations in source code where can help monitor the CPU usage (part 2).
However, one of the major challenges of adopting our existing work in practice is the
resource needed for iterative performance testing and evaluation. In order to address such a
challenge, in this paper, we extend our prior work to help practitioners determine when and
where to update logging locations for system performance monitoring (part 1).

Our approach is already adopted in an industrial environment and is integrated
into a continuous deployment environment. Developers receive logging suggestions
from our automated approach regularly to better monitor the system performance in
the field.

The rest of this paper is organized as follows: Section 2 presents our automated approach
to suggest logging locations. Section 3 and 4 present the case study setup and the results
of evaluating our approach by answering five research questions. Section 5 discuss related
topics based on the results. Section 6 presents the prior research that is related to this paper.
Section 7 presents the threats to the validity of our study. Finally, Section 8 concludes this

paper.

I'The data and setup of our evaluation is shared online: https:/github.com/KDYao/Log4Perf_Replication
Package.

@ Springer

https://github.com/KDYao/Log4Perf_ReplicationPackage
https://github.com/KDYao/Log4Perf_ReplicationPackage

Empirical Software Engineering

2 Approach

In this section, we present our approach on suggesting logging locations for software per-
formance monitoring. Our approach consists of two major parts, where each of them aims
to address the challenges of identifying logging locations for performance monitoring. In
particular, in order to reduce the large amounts of resource needed for performance testing
and evolution to suggest logging locations, our approach first applies statistical modeling
and analysis to determine whether there is a need for updating logging locations, and which
existing logging locations can be kept without changing. Second, once the need for updating
logging locations is identified, our approach automatically provides suggestions on logging
locations based on iterations of performance testing and modeling. The general overview of
our approach is shown in Fig. 1.

Part 1: Identifying the Need for Updating Logging Locations

In this subsection, we present the part 1 of our approach that automatically determines the
need for updating logging locations. Intuitively, developers may run performance testing
and evaluation with multiple iterations for every version of the software. However, such iter-
ations of performance testing are extremely resource-heavy for development team, leading
to the delay of having logging statements in the software. Moreover, the need for updating
logging locations does not mean that every existing logging location needs to be dis-
carded. Simply discarding all existing logging locations is impetuous because some logging
locations may still potentially influence performance, though they may not perform as sig-
nificant as they were. Such logging locations should be kept in order to complement the new
logging locations from re-applying our logging suggestion approach to the updated software
system.

Therefore, this part of our approach 1) checks the effectiveness of the existing logging
locations and 2) suggests which logging statements can be kept in the new version in order
to minimize the iterations of performance testing.

The overview of this part of the approach is shown in Fig. 2.

Step 1.1: Checking Effectiveness of the Existing Logging Locations

We aim to identify whether the existing logs in the system are already effective in mod-
eling the system performance (like CPU usage). If the model built from existing logging
locations cannot provide an accurate prediction, we need to identify new logging locations
for the software. We use the prediction errors as a measurement to evaluate the existing
logging locations and model on the new version of the system. While we conduct the per-
formance test, we measure the performance counters, i.e., CPU usage, while collecting the
logs generated from the existing logging locations. In particular, we choose CPU usage in
our approach. There exist other important performance metrics such as memory usage and
response time. One may consider using other metrics in this approach.

Part 1: Identifying the need . . .
X N Part 2: Suggesting logging
Source of updatlng logging eed to update Yes—> locations
code locations
New version

Fig.1 An overview of our approach

@ Springer

Empirical Software Engineering

Iterating 100 times
Resampled data’ Ok.j version
prediction error

l‘a«»a\culaling

prediction error

N
Performance

1.1.2 Blilding statistical
acting perforfance models
using|existing logs

- N
statistical Eﬂe(_:\lvensss (?1 th
Vs existing logging
analysis locations

T Iculating
predictiorn
New version

prediction error

N
Statistical model
for the old
version

Source
code

N
Performance
data

(a) Step 1.1: checking effectiveness of the existing logging locations
b

+| Statistical mod_el for »| Prediction efror

the new version

. . statistical Final decision on log
Iterating 100 times analysis > metric replacement

New version

] random Peﬁormance P(ediction error
Log metric replacement data with one with one metric
p metric replaced replaced

(b) Step 1.2: identifying the logging statement that can be kept in the new version

Fig.2 An overview of the part 1 of our approach that determines the need for updating logging locations

1.1.1 Extracting Log Metrics

We run performance tests for our subject systems and monitor their CPU usage during the
test. After the performance test, we parse the generated logs (including both web logs and
execution logs) that are already generated during the execution of the system. In particular,
we keep the time stamp of the logs and the event of the logs (e.g., a RESTFul web request).

We then calculate log metrics based on those logs. Each value of each log metric L is the
number of times that each logging location or web request executes during the period. For
example, if a log event user login is executed 10 times during a 30-second time period, the
metric user login’s value is 10 for that period. Table 1 shows an illustrative example piece
of data for 10 time periods (300 seconds) from two logs: one web log (index.jsp) and web
execution log (user login).

1.1.2 Building Statistical Performance Models using Existing Logs

We follow a model building approach that is similar to the approach from prior software
performance research (Shang et al. 2015; Cohen et al. 2005; Xiong et al. 2013). We build
a linear regression model (Freedman 2009) to model the CPU usage of the software. We
choose linear regression model because: 1) the goal of the approach is not to build a perfect
model but to interpret the model easily instead, and 2) prior research used such modeling
techniques to model software performance (Cohen et al. 2005; Xiong et al. 2013; Farshchi
et al. 2015).

We use the log metrics that are generated from existing logs as independent variables.
All these independent variables are used to build a model and explain the changes of the
dependent variable. The linear regression model is built using the glm() function in R.
The dependent variable of the model is the performance metrics that are collected during
applying the load on the software system, i.e., CPU usage.

@ Springer

Empirical Software Engineering

Table 1 An illustrative example of log metrics and performance metric data from the old version

Log metrics Performance metric

Time periods user login index.jsp CPU

1 second — 30 second 30 14 146.39
31 second — 60 second 36 21 187.17
61 second — 90 second 20 15 137.68
91 second — 120 second 19 17 134.03
121 second — 150 second 26 22 165.16
151 second — 180 second 17 19 143.21
181 second — 210 second 13 14 126.35
211 second — 240 second 27 24 157.5

241 second — 270 second 24 13 139.81
271 second — 300 second 26 16 151.93

The formula of the performance model built from our illustrative example will be as
follows:

CPU =B + a1 x user_login + ay x index.jsp M

where S is the intercept and o and «, are the coefficients. By building the model, we can
obtain a formula as follows:

CPU =712+ 1.83 x user_login + 1.953 x index.jsp 2
1.1.3 Calculating Prediction Error

We use the built performance model from the last step and the logs to predict the CPU
usage. We compare the predicted value and the actual value of the system and calculate
|predictedCPU — actual CPU|

. actualCPU o) .
error of the new version represents how well can the existing logging locations model the

CPU usage of the new version of the system. Table 2 shows an illustrative example of log
metrics and CPU usage data from the new version of the system. The table also shows the
predicted CPU value from the model that is built from step 1.1.2 and the corresponding
prediction error.

Intuitively, one may use a threshold (e.g., 5%) to determine whether the prediction error
is too high, i.e., the need for updating the logging locations. However, such thresholds
may vary between systems, releases, or even different workloads. In addition, the choice of
thresholds is typically based on experience or gut feeling. Therefore, we use the old version
to calculate prediction error using its performance testing data as a baseline.

It is obvious that directly using both the model and data from the old version (although
from different runs) would have a lower prediction error than using the model from the old
version and data from the new version. In order to avoid such bias, we use bootstrap (Boot-
strap 2017) to generate a new dataset from the old version to calculate the distribution of
prediction error from the old version. Bootstrap will randomly resample existing data with
replacement in order to reduce the bias. By using bootstrap we can derive more robust
and statistical rigorous result as a baseline for comparison. We resample the data in the
illustrative example and the data after resampling is shown in Table 3.

prediction error as

. The distribution of the prediction

@ Springer

Empirical Software Engineering

Table 2 An illustrative example of log metrics and performance metric data from the new version and
prediction error

Performance Predicted

Log metrics metric performance metric

Time periods user login index.jsp CPU CPU Prediciton error
1 second — 30 second 25 15 135.15 146.24 8.2%
31 second — 60 second 21 25 166.03 158.45 0.4%
61 second — 90 second 41 31 188.61 206.76 9.6%
91 second — 120 second 30 17 148.99 159.29 6.9%
121 second — 150 second 26 12 131.97 142.21 7.8%
151 second — 180 second 29 21 152.5 165.27 8.4%
181 second — 210 second 33 24 158.01 178.45 13.0%
211 second — 240 second 41 19 172.79 183.32 6.1%
241 second — 270 second 35 16 149.29 166.49 11.5%
271 second — 300 second 21 22 144.53 152.59 5.6%

Finally, with the two distribution of prediction errors at hand, we compare the two
distributions similar to previous studies (Chen et al. 2016a), using Wilcoxon rank sum
test (Moore et al. 2012) and Cliff’s d (1993). In particular, Wilcoxon rank sum test is used
to compare the mean values of prediction errors and determine whether two distributions of
prediction errors are significantly different from each other. If our predictions vary a lot from
each other, our suggested logging locations may not be a suitable option for an upgraded
system. We consider the results reside in 95% confidential interval (p-value < 0.05) as indi-
cators of statistically significant difference. However, even if two datasets are significantly
different, the actual effect may be negligible. Therefore, we also calculate the actual effect
size using Cliff’s d, to further illustrate the impact size on predicted CPU usage changes.

Table3 Log metrics and performance metric data after resample from the illustrative example in Table 1 and
prediction

Performance Predicted

Log metrics metric performance metric
Time periods user login index.jsp CPU CPU Prediction error
1 second — 30 second 36 21 187.17 178.08 4.9%
31 second — 60 second 13 14 126.35 122.33 3.2%
61 second — 90 second 13 14 126.35 122.33 3.2%
91 second — 120 second 13 14 126.35 122.33 3.2%
121 second — 150 second 24 13 139.81 140.51 0.5%
151 second — 180 second 13 14 126.35 122.33 3.2%
181 second — 210 second 30 14 146.39 153.43 4.8%
211 second — 240 second 20 15 137.68 137.09 0.4%
241 second — 270 second 13 14 126.35 122.33 3.2%
271 second — 300 second 17 19 143.21 139.41 2.7%

@ Springer

Empirical Software Engineering

Cliff’s d is widely used in previous studies to quantify difference between two datasets.
The threshold of Cliff’s d is defined as:

negligible if Cliff’'s d < 0.147
small if 0.147 < Cliff’s d < 0.33
medium if 0.33 < Cliff’s d < 0.474
large if Cliff’sd > 0.474

effect size =

In our illustrative example, by comparing the distribution of prediction errors in the old
version and the new version (the prediction error column in Tables 2 and 3), the p-value
from the Wilcoxon rank sum test is 0.0003 and Cliff’s d is 0.96 (large effect size). From the
result, we can tell that there exists a significant difference between the prediction errors, and
the magnitude of such difference is large. This result points out that the previous predic-
tion model is not capable of explaining the CPU usage changes accurately after the system
update, the replacement of deprecated prediction model is needed.

We repeat this process (starting from resampling the old version’s data with bootstrap)
for 100 times. For each time, we provide results of whether the two sets of distributions
are statistically significant and its effect size. We report the results to developers in order to
determine the need for updating logging locations.

Step 1.2: Identifying the Logging Statement that can be Kept in the New Version

In this step, we identify the logging statements that still can help model CPU usage in
the current model and the ones that cannot. In general, we replace the values of each log
metric by random values and evaluate the impact on model prediction error. If the prediction
error is significantly increased, it means this metric still helps model CPU usage. Hence, the
logging location of the metric should be kept. On the other hand, if the prediction error is
not impacted significantly by replacing the metric, the logging location of the metric would
not help model CPU usage. Therefore, the logging location should be removed.

In particular, for each metric in the model, we replace its values by randomly selecting a
value from the range between its minimum and maximum values in the original data. After
replacing these values, we re-calculate the distribution of prediction errors. We compare
the distribution of prediction errors with and without replacing values of that metric using
Wilcoxon rank sum test and Cliff’s d. Then we evaluate whether to keep the metric based
on whether the difference is statistically significant (p-value < 0.05) and its effect sizes.

In our illustrative example, we replace the log metric index.jsp from Table 2 by a ran-
dom variable and recalculate the prediction error as shown in Table 4. From our illustrative
example, the p-value from the Wilcoxon rank sum test is 0.8534 and Cliff’s d is 0.06 (negli-
gible effect). This result indicates that the CPU usage does not have a significant and large
difference, even when we replace the value of a metric by random values. In this case,
the corresponding log metric does not contribute to explaining the CPU usage anymore, so
such metric should be replaced. In order to reduce the bias from our metric value random
replacement, we repeat this process by 100 times, similar to step 1.1.

Part 2: Suggesting Logging Locations

From the last part of our approach, we know whether there is a need for updating log-
ging locations for performance monitoring and whether any existing logging locations can
be kept. With such knowledge, in this subsection, we present the part 2 of our approach
that automatically suggests logging locations for software performance monitoring. To
reduce the performance overhead caused by introducing instrumentation into the source
code, we first leverage the readily available web logs to build a statistical performance

@ Springer

Empirical Software Engineering

Table 4 Log metrics and performance metric data after replacing the index.jsp metric from the illustrative
example in Table 2 to random values and prediction error

Performance Predicted

Log metrics metric performance metric

Time periods user login index.jsp CPU CPU Prediciton error
1 second — 30 second 25 26 135.15 167.72 24.1%
31 second — 60 second 21 28 166.03 164.30 1.0%
61 second — 90 second 41 28 188.61 200.90 6.5%
91 second — 120 second 30 22 148.99 169.06 13.4%
121 second — 150 second 26 28 131.97 173.45 31.4%
151 second — 180 second 29 15 152.50 153.56 0.7%
181 second — 210 second 33 15 158.01 160.88 1.8%
211 second — 240 second 41 26 172.79 197.00 14.0%
241 second — 270 second 35 29 149.29 191.87 28.5%
271 second — 300 second 21 19 144.53 146.73 1.5%

model, and we identify the web requests that are statistically significantly performance-
influencing. In the second step, we only focus on the methods that are associated with the
performance-influencing web requests and identify which method is statistically signifi-
cantly performance-influencing. Finally, we focus on the basic blocks in the source code
that are associated with the performance-influencing methods, and we identify and suggest
the code blocks where logging statements should be inserted.

For each step, we apply a workload on the subject system while monitoring its perfor-
mance. Afterward, we build a statistical model for the performance of the subject system
using the readily available web logs and the automatically generated logs from instru-
mentation during the workload. Using the statistical performance model, we identify the
statistically significant performance-influencing logging statements.

The overview of the part 2 of our approach is shown in Fig. 3.

Step 2.1: Identifying Performance-Influencing Web Requests

In the first step, we aim to identify the source code associated with web requests that
influence system performance.

2.1.1 Parsing Web Logs

Similar to step 1.1.1, we parse the generated web logs. We then calculate log metrics
based on the web logs. In order to illustrate our approach, we show an illustrative example
of log metrics with the two web requests index.jsp and purchase.jsp in Table 5.

2.1.2 Building Statistical Performance Models using Web Logs

We first follow a model building approach that is similar to step 1.1.2. After building a
linear regression model for the CPU usage of the software, we examine each independent
variable, i.e., log metric, to see how statistically significant it is to the model’s output, i.e.,
CPU usage. In particular, we only consider the log metrics that have p-value < 0.05. Since
each log metric represents the number of times that the associated source code of each web
request executes, the significance of a log metric shows whether the execution of the web

@ Springer

Empirical Software Engineering

Build

Step 2.1: Identifying performance-influencing web requests

erformance
test

2.1.1 Parsing

Web logs Log metrics

Source
code

System

N
Performance
model

e
counter

weblogs

2.1.2 Building statistical
performance models using

influencing
web requests

logging statements test
into methods System with
method
instrumentation

Step 2.2: Identifying performance-influencing methods N
Web logs and

2.2.1 Automatically inserting logs

Performance|

l

Log metrics
2.2.2 Reducing
log metrics

2.2.3 Building
statistical

N
Performance

> counter

odel

performance
models using both
web logs and our
generated logs

AN
Log metrics

N
Performance-
——
methods
Step 2.3: per basic code block N
Web logs and
ur g
Performance] logs
System with test
’ block
ically inserting ~ {instrumentation N
— logging statements Performance
into basic code blocks counter
Performance-
influencing
basic code
blocks

Reducing
log metrics

N
Performance
model

Building statistical
performance
models using both
web logs and our
generated logs

Suggested
logging
locations

Data System

<

Loop

Data
processing
steps

Fig.3 An overview of the part 2 of our approach that suggests logging locations for performance monitoring

log associated source code has a statistically significant influence on the software CPU
usage. Based on the list of statistically significant log metrics, we identify the performance-
influencing web requests.

From our illustrative example shown in Table 5, we build a linear regression model where
only purchase.jsp is significant in the model while index.jsp is not. Therefore, we only keep
purchase.jsp in the model.

Table 5 An illustrative example of log metrics with two web requests and performance metric data

Log metrics

Performance metric

Time periods index.jsp purchase.jsp CPU

1 second — 30 second 33 78 170.01
31 second — 60 second 15 53 112.42
61 second — 90 second 53 62 138.09
91 second — 120 second 32 59 119.74
121 second — 150 second 45 68 142.03
151 second — 180 second 31 61 126.82
181 second — 210 second 29 49 110.10
211 second — 240 second 24 55 116.28
241 second — 270 second 19 58 127.21
271 second — 300 second 36 54 119.67

@ Springer

Empirical Software Engineering

Table 6 An illustrative example of log metrics with one web request and two associated methods and
performance metric data

Log metrics Performance metric

Time periods index.jsp check_inventory make_payment CPU

1 second — 30 second 48 48 26 168.02
31 second — 60 second 42 41 22 156.47
61 second — 90 second 29 37 17 126.10
91 second — 120 second 45 49 24 163.77
121 second — 150 second 33 51 26 147.41
151 second — 180 second 41 63 33 177.98
181 second — 210 second 39 42 21 158.92
211 second — 240 second 36 58 27 149.21
241 second — 270 second 25 55 27 138.03
271 second — 300 second 42 46 24 168.25

Step 2.2: Identifying Performance-Influencing Methods

In the second step, we focus only on the performance-influencing web requests, and we
aim to identify which methods in the source code are statistically significantly influencing
performance (CPU usage). To reduce the performance overhead of the instrumentation, we
note that every time we only focus on one performance-influencing web request. If multiple
web requests are found performance-influencing, we repeat this step for every one of them.

2.2.1 Automatically Inserting Logging Statements into Methods

In this step, we automatically insert a logging statement into every method that is
associated with the performance-influencing web requests. We use source code analysis
frameworks, such as Eclipse JDT (2017) and .NET Compiler Platform (“Roslyn”) (2017),
to parse the source code and to identify the associated methods in the source code. We auto-
matically insert a logging statement based on Log4;2 2 or Log4Net 3 and Log4Net.Async * at
the beginning of each method source code. Since the goal of our approach is only suggesting
the location to insert logging statement, we only print the time stamp and the method signa-
ture using the logging statement. After re-building the systems and applying performance
tests to each subject system, logs will be generated automatically.

Similar to step 2.1, we parse both the web logs and the logs that are generated by our
inserted logging statement. Then we generate log metrics based on these logs.

In our illustrative example, we may identify that purchase.jsp calls two methods:
check_inventory and make_payment. We automatically insert a logging statement into each
method. The new illustrative data of at the method level is shown in Table 6.

2.2.2 Reducing Metrics

Intuitively, methods that never execute during a workload do not influence the CPU usage
of the system. Although the methods with a constant number of execution times could have

Zhttps://logging.apache.org/log4j/2.x/
3https://logging.apache.org/log4net/
“https://github.com/cjbhaines/Log4Net. Async/

@ Springer

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4net/
https://github.com/cjbhaines/Log4Net.Async/

Empirical Software Engineering

performance influence, such impact cannot be quantified by our analysis, since we cannot
measure the CPU usage variance that is introduced by such method. Hence, we first remove
any log metric that has constant values in the dataset. Methods may often be called together,
or one method may always call another one. In such cases, not all methods need to be logged.
Hence, we perform a correlation analysis on the log metrics (Kuhn 2008). We used the
Pearson correlation coefficient among all metrics from one environment. We find the pair
of log metrics that have a correlation value higher than 0.9. From these two log metrics, we
remove the metric that has a higher average correlation with all other metrics. For example,
among metrics A, B and C, if metrics A and B have the highest correlation 0.95, we need
to remove one metric between them from the dataset. If we find the correlation between A
and C (e.g., 0.7) is higher than the correlation between B and C (e.g., 0.6), we will remove
metric A, which has a higher average correlation with other metrics, from our dataset. We
repeat this step until there exists no correlation higher than 0.9.

We then perform redundancy analysis on the log metrics. The redundancy analysis would
consider a log metric redundant if it can be predicted from a combination of other met-
rics (Harrell 2001). We use each log metric as a dependent variable and use the rest of the
log metrics as independent variables to build multiple regression models. We calculate the
R? of each model and if the R? is larger than a threshold (0.9), the current dependent vari-
able (i.e., log metric) is considered redundant. We then remove the metric with the highest
R? and repeat the process until no log metric can be predicted with R? higher than the
threshold. For example, if method foo can be linearly modeled by the rest of the metrics
with RZ > 0.9, we remove the metric for method foo.

By performing this step on our illustrative data in Table 6, we only keep two log metrics
index.jsp and check_inventory.

2.2.3 Building Statistical Performance Models using Both Web Logs and our Generated
Logs

In this step, we build a similar statistical model as step 2.2. As a difference, we do not
include the log metrics from web logs that are found not performance influencing from step
2.2. We follow the same model building process and the same way of identifying statisti-
cally significant log metrics. The outcome of this step is the methods that are statistically
significantly performance-influencing. After building the linear regression model using our
illustrative data in Table 6 with only two log metrics index.jsp and check_inventory, we can
obtain a formula as follows:

CPU = 48.56 + 1.84 x index.jsp + 0.75 x check_inventory 3)
Step 2.3: Identifying Performance-Influencing Basic Code Blocks

A method may be long and may consist of many basic blocks. It may be the case that
only a small number of basic blocks are performance-influencing. Therefore, in the final
step, we focus only on the performance-influencing methods, and we aim to identify which
basic code block is performance-influencing. Similarly, every time we only focus on one
method. If multiple methods are found performance-influencing, we repeat this step for each
method.

We use the code analysis frameworks to identify basic blocks of each performance-
influencing methods. If a performance-influencing method only contains one basic block,
i.e., there is no inner block that exists in that specific method (e.g., getter and setter meth-
ods), we do not proceed with this step. For the methods with multiple basic blocks, similar

@ Springer

Empirical Software Engineering

to step 2.2, we automatically insert logging statement into every basic block and generate
log metrics by both the web logs and our generated logs. We also follow a similar approach
as step 2.2 to identify which code block is statistically significantly influencing performance
(CPU usage). We then automatically suggest inserting logging statements into the corre-
sponding basic code blocks. If none of the log metrics from basic blocks are significant, we
suggest developers insert logging statement at the beginning of the method itself.

From our illustrative example, function check_inventory contains two basic blocks (e.g.,
for block and if block) inside the method body. In order to track the execution path within
the method, we insert logging statements into each block recursively.

function int check_inventory(item){
products <- product list in storage
for each p in products do
log.info("check inventory:4")
if (p.id == item.id) then
log.info("check inventory:6")
return getProductCount (p.id)
end if
end for
end function

After inserting logging statements into the block level, the data in our illustrative example
is shown in Table 7. We use the data to build a performance model. By examining the model,
only two log metrics index.jsp and check_inventory:6 are statistically significant. Therefore,
we only keep the logging locations that correspond to these two metrics, and the formula of
the final performance model is as follows:

CPU =40.52 +2.42 x check_inventory : 6 “)

Table 7 An illustrative example of log metrics with one web request, two block-level logs and performance
metric data

Log metrics Performance metric

Time periods index.jsp check_inventory:4 check_inventory:6 CPU

1 second — 30 second 39 851 45 144.67
31 second — 60 second 51 824 37 141.80
61 second — 90 second 25 903 34 104.97
91 second — 120 second 56 741 42 159.13
121 second — 150 second 44 698 48 157.26
151 second — 180 second 48 598 45 156.16
181 second — 210 second 35 642 47 144.50
211 second — 240 second 42 796 39 135.40
241 second — 270 second 47 674 41 145.82
271 second — 300 second 36 563 46 142.87

@ Springer

Empirical Software Engineering

Table 8 Overview of of the releases of our subject systems to evaluate part 2

Subjects Version SLOC (K) # files # methods
CloudStore v2 7.7 98 995
OpenMRS 2.0.5 67.3 772 8,361

ES 2017 > 2,000 > 9,000 > 100, 000

3 Case Study Setup

In this section, we present the setup of our case study, including the subject systems, the
workload, and the experimental environment.

3.1 Subject Systems and their Workloads

We evaluate our approach with open-source software, including OpenMRS and CloudStore,
and one commercial software, ES. Since we need to consider the evolution of each subject
systems, we identify different releases of each subject system. During our study, we find that
CloudStore only has two releases and there only exist minor (like documentation) changes
between the two releases. Therefore, we only consider one release from CloudStore in this
study. In addition, we find that OpenMRS 2.0 and 2.1 consist parallel development. Hence,
we suggest logging locations for OpenMRS 2.0 and 2.1 separately. The details of each
subject system are shown in Tables 8 and 9.

OpenMRS is an open-source patient-based medical record system commonly used in
developing countries. OpenMRS is built by an open community that aims to improve health-
care delivery through a robust, scalable, user-driven, open source medical record system
platform. Their application design is customizable with low programming requirements,
using a core application with extendable modules. We choose OpenMRS since it is highly
concerned with scalability and its performance has been studied in prior research (Chen et al.
2016b). OpenMRS provides a web-based interface and RESTFul services. We deployed
the OpenMRS version 2.0.5 and the data used are from MySQL backup files that are pro-
vided by OpenMRS developers. The backup file contains data for over 5K patients and
476K observations. We use the RESTFul API test cases created by Chen et al. (2016b). The
test simulates 30 users. The tests are composed of various searches, such as: by patient,
concept, encounter, and observation, and editing/adding/retrieving patient information. The
tests include randomness to simulate real-world workloads better. We randomly choose how

Table 9 Overview of each release of the subject systems to evaluate part 1

Project Version compare # Source lines added # Source lines deleted # Source file changed
OpenMRS 2.0.5 t0 2.0.6 544 83 29

2.1.0t02.1.1 499 64 24

2.11t02.1.2 273 74 21

2.12t02.1.3 261 31 9
ES 2018Jan to 2018Mar > 30K > 20K > 300

2018Mar to 2018Apr > 30K > 20K > 500

2018Apr to 2018Jun > 20K > 10K > 200

@ Springer

Empirical Software Engineering

many times each user send each web request. In addition, the choice of sending which web
request is randomized, and the input content of each web request is randomized as well. We
keep the workload running for five hours. To minimize the noise from the system warmup
and cool-down periods, we do not include the data from the first and last half an hour of
running the workload. In the end, we keep four hours of data from each performance test.

CloudStore is an open-source sample e-commerce web application developed to be used
for the analysis of cloud characteristics of systems, such as capacity, scalability, elastic-
ity, and efficiency. It follows the functional requirements defined by the TPC-W standard
for verifiable transaction processing and database benchmarks data (TPC-W 2017). It was
developed to validate the European Union funded project called CloudScale (2017). We
choose CloudStore due to its importance in improving cloud systems performance and scal-
ability. It has also been studied in prior research (Chen et al. 2016b). We deployed the
CloudStore version v2 and the data used was generated using scripts provided by Cloud-
Store developers. The generated data for CloudStore contains about 864K customers, 777K
orders, and 300 items. We use the test cases created by Chen et al. (2016b) to cover search-
ing, browsing, adding items to shopping carts, and checking out. The test simulates 150
users and we run the performance tests with the same length as OpenMRS.

ES is a commercial software that provides government-regulation related reporting ser-
vices. The service is widely used as the market leader of its domain. Compare to the other
two systems, ES is a larger-scale system, which serves customers worldwide and is currently
undergoing active maintenance and development activities on a daily basis. Because of a
non-disclosure agreement, we cannot reveal additional details about the system. We do note
that it has over ten years of history with more than two million lines of code that are based
on Microsoft .Net. We run a typical loading testing suite as the workload of the system.

3.2 Experimental Environment

The experimental environment for the open-source software is set up on three separate
machines. The first machine is the database server; the second is the web server in which
the web application was deployed and, finally, the third machine simulates users using the
JMeter load driver (Apache JMeter 2015). These machines have the same hardware config-
uration, which is 8 G of RAM and Intel Core i5-4690 @ 3.5 GHz quad-core CPU. They all
run the Linux operating system and are connected to a local network.

We use PSUtil (2017) to monitor the CPU usage of the software. To minimize the noise
of other background processes, we only monitor the process of the subject system that is
under the workload. We monitor the CPU usage during the workload for every 10 seconds.
In particular, similar to prior research (Syer et al. 2017; Alghmadi et al. 2016), CPU per-
centage of the monitored process between two timestamps are calculated as the CPU usage
of the corresponding workload during the period. In our case study, we only consider CPU
usage while one may consider using other metrics such as memory and response time to
complement the case study of our approach.

The experimental environment for ES is an internal dedicated performance testing envi-
ronment, also with three machines. The testing environment is deployed with performance
monitoring infrastructure. Similar to the open-source software, we monitor the CPU usage
of the process of ES for every 10-seconds and use a logging library to generate automatically
instrumented logs.

To combine the two datasets of performance metrics (CPU usage) and logs, and to further
reduce the impact of recording noises, we calculate the mean values of the performance
metrics in every 30 seconds. Then, we combine the datasets of performance metrics and

@ Springer

Empirical Software Engineering

system throughput based on the time stamp on a per 30-seconds basis. A similar approach
has been applied to address mining performance metrics challenges (Foo et al. 2010). We
use Log4J2’s asynchronous logging to generate the automatically instrumented logs since it
is shown to have the smallest performance overhead (Log4J Async 2017).

4 Case Study Results

In this section, we present our case study results by answering five research questions. For
each research question, we present the motivation of asking the question, our approach to
answer it and its corresponding results.

4.1 RQ1: How Often do Logging Locations Need to be Updated?

Motivation Source code changes are inevitable during the software development process. It
is not realistic to expect logging locations to perform as significant indicators to explain the
variance of performance variances at all times. Performance influential logging locations
should also be updated as source code evolves.

The goal of this RQ is to evaluate if our proposed approach can determine the need for
updating logging locations.

Approach We apply our approach to release 2.0.5, 2.0.6, 2.1.0 and 2.1.3 of OpenMRS. We
also apply our approach to the four releases from ES. For each release, we make our decision
of whether to update logging locations based on the distribution of model prediction errors
(see Section 2, the distribution is generated from 100 times bootstrap resampling to evaluate
prediction error). In addition, for the releases that we decide to update logging locations, we
apply our approach to select the logging locations to be kept. The metric of this RQ is the
number of subject releases that needs an update to their logging locations.

Results We use our approach to identify the need for updating logging locations. Tables 10
and 11 show our results in the need for updating logging locations. The prediction errors
between every two releases are repeated 100 times for every release. If the majority results
indicate that there exists significant difference with medium or large effect sizes between
two releases, we consider that the model from the old release is not applicable to explain the
CPU usage in the new release, i.e., there is a need for updating logging locations for better
performance modeling. For example, in Table 10, number 100 in the large effect size row
means that, in the 100 times of bootstrapping, for all 100 times, there exists a statistically
significant difference between the prediction error in the old release and in the new release.
Therefore, we decide to replace the model. The number 29 at the row of medium effect
size and the number 71 at the row of small effect size row imply that out of the 100 times
bootstrapping, only 29 times there exists statistically significant differences with medium
effect sizes and in 71 times, there exist only small effect sizes. Hence, we conservatively
keep the model.

In three releases in our experiment, we make the decision of updating logging locations.
In these releases, all prediction errors have statistically significant differences between old
and new releases with large effects sizes. On the other hand, for the releases that we decide

@ Springer

Empirical Software Engineering

Table 10 Decisions of the need for updating logging locations for OpenMRS

VERSIONS

Version 2.05->2.06 | 2.1.0->2.1.1 | 2.1.1 ->2.1.2 2.12->2.1.3
p-value >0.05 0 0 0 0
Large 100 0 0 100
. Medium 0 29 0 0
Effect size when p-value <0.05 Smmall 0 il 00 0
Negligible 0 0 0 0
Decision Replace Keep Keep Replace
Replace Keep Keep Replace
100%
80%
O P-value>0.05
60% ..
O Negligible effect
40%
@ Small effect
20% .
B Medium effect
0%
2.0.5-->2.0.6 2.1.0-->2.1.1 2.1.1-->2.1.2 2.1.2 -->2.1.3 W Large effect

to keep the logging locations, the majority of the prediction errors have insignificant differ-
ences, or with small or negligible effect sizes. The clear difference between the results when
we decide to keep and to update logging locations indicates that our approach can be easily
adopted by practitioners without a need for tuning thresholds. By comparing the results in
Table 9, we find that between those releases where logging locations changes are suggested,
there does not always exist larger sizes of code churn. Therefore, simply deciding whether
to update logging statements from the magnitude of source code changes is untenable.

Table 11 Decisions of the need for updating logging locations for ES

Version 2018Jan —>2018Mar | 2018Mar —>2018Apr 2018Apr —>2018Jun
p-value >0.05 18 93 0
Large 0 0 100
. Medium 0 0 0
Effect size when p-value <0.05 Smmall 7 0 0
Negligible 60 7 0
| Decision Keep Keep Replace N
Keep Keep Replace

100%
80%
60%
40%
20%

0%

2018JAN --> 2018MAR

2018MAR --> 2018APR
VERSIONS

2018APR --> 2018JUN

OP-value>0.05

O Negligible effect
@ Small effect

m Medium effect

B Large effect

@ Springer

Empirical Software Engineering

Most of the old logging locations are suggested to be discarded if there is a need for
update logging locations. We choose versions where we decide to update logging locations
from Tables 10 and 11. Based on the result from step 1.1, we only focus on the releases
where performance model updates are needed, to evaluate the necessity of replacing each
logging location. Similarly, the process is also repeated 100 times. If the majority of the
comparison results indicate the significant difference and non-negligible effect size, this
implies that such metric has sufficient power to explain the model, thus we decide to keep
the corresponding log metric. For example, in Table 12, both logging locations at Concept-
Servicelmpl.300 and ConceptServicelmpl.929 have all 100 times with p-value smaller than
0.05, i.e., replacing the metrics of each logging location with random variables would not
impact the model. Therefore, both logging locations should be discarded.

As we can see in Tables 12 and 13, most of the previously suggested logging locations
should be discarded after software system updates. According to our result, replacing most
of the existing logging locations with random data does not produce a statistically significant
impact on the model. Therefore, most of the existing logging locations would not influence
CPU usage in the new version. The only outstanding logging location is BaseOpenmrsOb-
ject.81 in OpenMRS when updating from release 2.1.2 to 2.1.3. Replacing this logging
location with random data would introduce statistically significantly different prediction
errors, while the effect sizes are small in most of the iterations. We first made a decision
to discard this logging location. However, when applying our approach to suggest logging
locations for OpenMRS 2.1.3, this location is suggested by our approach again. This result
shows that even the small significant impact on the model is important.

We use our approach to suggest the need for updating logging locations in a new version
of the system. If it is decided to update logging locations, most of the existing logging
locations need to be discarded.

Table 12 Decisions of discarding or keeping each logging locations in OpenMRS

Version 2.0.5->2.0.6 2.1.2->2.1.3
Logging locations ConceptServicelmpl.300 | ConceptServicelmpl.929 | BaseOpenmrsObject.81
p-value >0.05 100 100 0
Large 0 0 0
. . Medium 0 0 0
#Effect Size when p-value <0.05 Small 0 0 36
Negligible 0 0 14
Decision Discard Discard Keep
Discard Discard Keep
100%
80%
60% O P-value>0.05
40% .
20% O Negligible effect
0% B Small effect
CONCEPTSERVICE CONCEPTSERVICE BASEOPENMRS X
IMPL.300 IMPL.929 OBJECT.81 B Medium effect
2.0.5-->2.0.6 2.1.2-->2.1.3 @ Large effect
VERSIONS

@ Springer

Empirical Software Engineering

Table 13 Decisions of discarding or keeping each logging locations in ES

Version 2018Apr —>2018Jun
Logging locations X52 X3 X24 X43 X0
p-value >0.05 100 100 100 100 80
Large 0 0 0 0 0
. Medium 0 0 0 0 0
Effect Size when p-value <0.05 Small 0 0 0 0 0
Negligible 0 0 0 0 20
Decision Discard | Discard | Discard | Discard Discard
Discard Discard Discard Discard Discard
100%
80%
60% O P-value>0.05
40% O Negligible effect
20% @ Small effect
0% .
B Medium effect
X52 X3 X24 X43 X0

Large effect
2018APR --> 2018JUN u &

VERSIONS

4.2 RQ2: How Well can we Model System Performance (CPU Usage)?

Motivation The success of our approach depends on the ability to build well fit statisti-
cal models for CPU usage. The goal of this RQ is to assess the ability to build statistical
models for CPU usage. If the models built by our approach are of low quality, we cannot
use such models to understand the influence of logged source code locations (i.e., log met-
rics) to the CPU usage. Additionally, the automatically inserted logging statements have
an impact on CPU usage. If the CPU usage is influenced by those inserted logging state-
ments, instead of the existing source code itself, our model cannot be used to identify
performance-influencing source code locations to log.

Furthermore, if we identify too many locations that are statistically significantly influ-
encing CPU usage, it is not practical for developers to log all locations nor can developers
thoroughly investigate every location to ensure the need for logging. Besides, if all the iden-
tified locations are already well logged, developers may not need our approach’s logging
suggestion.

Approach We focus on 2.0.5 of OpenMRS, v2 of CloudStore, and one release of ES. We
measure the model fit to assess the quality of the statistical models for software CPU usage.
In particular, we calculate the R? of each model to measure model fit. If the model perfectly
fits the data, the R? of the model is 1, while a zero R? value indicates that the model does not
explain the variability of the dependent variable (i.e., performance metric). We also count
the number of logging locations that are suggested by our approach. For every suggested
logging location, we manually examine whether there already exists a logging statement.
The invocation of logging statements themselves has a performance overhead. There-
fore, we measure the influence of the inserted logging statement to the fit of the model.
We consider the invocation to the logging library itself as a method to monitor and create a

@ Springer

Empirical Software Engineering

log metric measuring the times that the logging library is called to generate logs. For every
model that we built in our case study, we add the new log metric as an independent variable.
By adding this independent variable into the model, we can study whether the log metric
provides an increase of R2, which represents the additional explanatory power of the exe-
cution of the inserted logging statement to the CPU usage. The increase of R? measures
the explanatory power of the model that is provided only by the execution of the logging
statements, but not the software system itself.

The metric that we use to assess the goal is the R? values of each model and the increased
R? values from the metric of the logging statement itself.

Results Table 14 shows the model fit of every performance model built to suggest logging
locations for the three subject systems. Each row of the table is a performance model. The
steps in the first column of the table show that whether the model is built from which step
in our approach (step 2.1 to 2.3 in Section 2). The “Web request name” and the “Method
name/Block location” columns show the logging location added in each step of the per-
formance modeling. The two columns under R? show the R? of models that are with and
without considering the overhead of logging statements themselves. The difference between
the values of these two columns is preferred to be small, to show that the overhead of the
logging statement themselves do not impact the validity of the models.

Our statistical performance models have an R? of 26.9% and 90.2%. Such values of the
model fit confirm that our performance models can well explain CPU usage. In addition,
although we do not require a perfect model to interpret the influence of logging locations on
CPU usage, a model with a very low model fit would introduce threats to the validity of our
results. By looking closely at the models, we can see that the models with our automatically
inserted logging statement typically has higher R? than the models that are only using web
logs. For example, by insert logging statements into two methods in OpenMRS, the fit of the
performance model almost doubles (from 26.9% to 46.3%). However, the models that are
with inserted logging statements into basic code blocks have a relatively smaller increase of
R? in comparison to the ones with method-level logging. In the same example of OpenMRS,
inserting the logs into basic code blocks only provides 1.6% increase of the RZ.

Our approach does not suggest an overwhelming amount of logging locations for per-
formance modeling. In total, our approach suggests three, two, and four locations for
CloudStore, OpenMRS, and ES respectively. We consider such an amount of suggestion as
an appropriate amount for practitioners. By measuring the total number of methods in the
subject systems, we only suggest to log in less than 0.5% of them. By providing such sug-
gestions to our industrial practitioners, we also received the feedback that such an amount
of suggestions is not overwhelming. Hence, practitioners can allocate resource to examine
each suggestion and make the final decision of whether to insert logging statements to those
locations. Moreover, by manually examining each of the logging locations, we find that
none of the suggested logging locations contain logging statements. This implies that
our approach may provide additional information about the CPU usage other than what is
already known by developers.

The automatically inserted logging statements’ overhead does not contribute signifi-
cantly to the performance models. We find that the log metric that measures the execution
of the logging statements provides only little explanatory power to the models. In particular,
the maximum of the increase of the R? is only 3.4% (see Table 14). Therefore, the inserted
logging statement do not have a large impact to bias the explanatory power of our suggested
logging locations.

@ Springer

Empirical Software Engineering

so[13 93 Jo yied [[ny oy pue sowreu o5exoed ay) Surmoys Inoyim ‘@deds Jo JIWI] Y} 0} ANP SIWEU I[1J) PUEL SAWELU POYJAUW Y} ‘SIWeU SSe[d Ay} Juasaxd ATuo ap

[opow ooueuiojrad oy ur JuedIUSIS AIe SPOYIAUL AY) JO AUOU JBY) SUBdW , d0ULdIUSIS ON],,

Kpoq poyjeuw oy} Ul O0[q dISeq QU0 Sey A[UO POYIOW) Jey) sueaw , Jo0[q ON,,

Z201q ‘pAIL
%0E9L %00°9L £3y001q°¢ary O 1sanbar gom
XY201q ‘Z3Y
%08°0L %08°0L I20[q° 191y Vv 1sonbar gop uonEuRUINNSUL YO0[q YA ¢ daIS L,
Odpory
%y %06°CY Oo¢ary D 1senbax gop
VIN %00°0¢ (osurdyTUSIS ON) g 1sonbar qom
Ouzery
%01 9L %06°SL Qurory Vv 1sonbar gom uonEIuLWINNSUL POYIAW YIA ¢ dorg
V/N %08° eV V/N Aruo s3of qap i1 daig
sq
0€6 01 676 2ul] ‘el [dwyesiaregidosuo)
%00°8t %06° LY 20¢€ 01 00¢ 2uIf ‘eael1dwyesraregidesuo) dasuod uoneUdWNISUI Y20[q I ¢ dog
(O1deouo)asre303 [dwpediaregideouo)
%08’ Ly %0€ 9% ()sydaouo)v1e8 [dwrediaragidoouo) dasuod uoneUAWNISUI poylaul I ;7 daig
VIN %06'9C VIN £[uo s3o1 qap 11 darg
SAWuedo
%0918 %018 €7 01 ¢¢7 aur] ‘eael [dwpoequai . JOoIeas/e10)spnoyo,, uoneuAWNISUI Yo0[q YA ¢ doig
%0CT18 %00°8L Qroypny Agrypury [durjoequiai «{JOTB3S/I01SPNO[D,
%08 6 %0y 6 (12019 ON)(uotssogIuaLN)5 [dwjoeq .Anq/a1015pNO[d,,
%0508 %0S°8L (312019 ON) (O11N19NPOIJI9T I9[[0NU0D)IWOH . /2101SpNOJD,, uoneuAWNISUI poylaul I 7 daig
VIN %0T 06 VIN A[uo s301 qop T daig
2101S pnoyD
JLIjoU B SB Juawale)s 3ur3so] i reuiduQ
A UOTJBOO0] JO0[g/ouWeu POyISA oureu jsenbar qop :sdoyg

yoroxdde 1no £q 3nq spopow ourwLIogsad [BOSHEIS) JO SAN[BA Ly L 3|qel

pringer

a's

Empirical Software Engineering

The logging locations suggested by our approach can help model CPU usage with a
high model fit. None of those locations initially contain a logging statement.

4.3 RQ3:How Large is the Performance Influence by the Suggested Logging
Locations?

Motivation In the previous research question, we find that, with our approach, we can
suggest logging locations that are statistically significant for performance modeling. Even
though these logging locations are statistically significant, the effect of the logging location
may still be negligible. Therefore, the goal of this RQ is to examine the magnitude of the
influence on the CPU usage by our suggested logging locations.

Approach Similar to RQ2, we focus on 2.0.5 of OpenMRS, v2 of CloudStore, and one
release of ES. To understand the magnitude of the influence on the CPU usage by our
suggested logging locations, we first calculate Pearson correlation between the system per-
formance, i.e., CPU usage, and with the appearance of the suggested logging locations.
Higher correlation implies that the suggested logging locations may have a higher influence
on the CPU usage.

To quantify the influence, we follow a similar approach used in prior research (Shihab
etal. 2011; Mockus 2010). To quantify this magnitude, we set all of the metrics in the model
(each as a suggested logging location) to their median value and record the predicted CPU
usage. Then, to measure the effect of every logging location, we keep all of the metrics at
their median value, except for the metric whose effect we wish to measure. We increase the
median value of that metric by 10%. We re-calculate the CPU usage by our prediction mod-
els after increasing the metric value by 10%. We then calculate the percentage of difference
(as the metric to answer this RQ) caused by increasing the value of that metric. For exam-
ple, if the CPU is predicted to be 60% at all metrics with median value, then after increasing
the metric median value by 10%, the CPU is predicted to be 90%, the effect is 0.5, i.e.,
90% — 60%

60%
a higher chance of execution the suggested logging location may increase the CPU usage.

The effect implies that if we were able to control all other logging locations the same but
only increase the frequency of one logging location by 10%, the performance impact will
be 60% higher. This approach permits us to study metrics that are of different scales, in con-
trast to using odds ratios analysis, which is commonly used in prior research (Shihab et al.
2010).

. The effect of a metric can be positive or negative. A positive effect means that

Results The appearance of the suggested logging locations influences the CPU usage.
Table 15 presents the influences of our suggested logging locations on the CPU usage. Each
row in the table corresponds to a logging location, where the column “Web request name”
and “Method name/Block location” columns indicate where the logging locations are. The
rest of the columns present the influence of each logging locations. For example, the col-
umn “Pearson correlation” presents the correlation between each metric logging location
and the CPU usage.

The results in Table 15 show that the appearance of the suggested logging locations
typically has a strong correlation to the CPU usage. In CloudStore, all of the logging
locations have a strong correlation to the CPU usage, while the correlations are moderate
in OpenMRS. The relative effect shows the influence of one method while control-
ling all other methods. Daolmpl.getCurrentSession() in CloudStore has the largest effect

@ Springer

Empirical Software Engineering

Table 15 The influences of our suggested logging locations on system performance (CPU usage)

Suggested logging locations Influence
Web request name Method name/Block location Pearson correlation Relative effect
(add 10%)

Cloud store
cloudstore/ HomeController.getProductUrl() +0.80 +1.9%
cloudstore/buy Daolmpl.getCurrentSession() +0.70 +12.4%
cloudstore/search ItemDaolmpl.find AlIBy Author() +0.87 +6.0%
cloudstore/search ItemDaolmpl.java, line 233 to 243 +0.73 +2.5%

OpenMRS
concept/ ConceptServicelmpl.getFalseConcept() +0.51 +1.9%
concept/ ConceptServicelmpl.getAllConcepts() +0.53 +2.2%
concept/ ConceptServicelmpl.java, line 300 to 302 +0.56 +2.5%
concept/ ConceptServicelmpl.java, line 929 to 930 +0.56 +2.2%

ES
Web request A filel.m() —-0.27 —3.4%
Web request A file2.n() +0.81 +11.7%
Web request C file3.0() —0.40 —8.0%
Web request C file4.p() +0.56 +4.9%
Web request A filel, block.r —0.26 —3.9%
Web request A file2, block.x +0.78 +11.1%
Web request C file3, block.y —0.11 —2.8%
Web request C file4, block.z +0.86 +8.8%

A relative positive effect means that more appearances of the logging location may result in CPU usage
increase

We only present the class names, the method names and the file names due to the limit of space, without
showing the package names and the full path of the files

when the appearance of the method is 10% larger than its median value: the CPU usage
increases 12.4%. Table 15 shows that even method with a small effect, e.g., ConceptServi-
celmpl.getFalseConcept(), can increase the CPU usage by 1.9% if increasing its appearance
by 10%.

The influence on the CPU usage may be both positive or negative. We find that some
suggested logging locations in ES may have a negative influence on the CPU usage of the
system, i.e., the higher the appearance of the logging location, the lower the CPU usage. By
manually examining those methods, we find that these methods are related to synchronized
external dependency, i.e., the invocation of these methods will cause the system to wait,
leading to lower CPU usage. On the other hand, we did not find any concurrency-related
anomalies, which may lead to a similar negative influence on CPU usage. Our identified
cases of negative influences are often caused by executing the part of the software that
is rather with light-load instead of heavy-load. By having these logs, developers can con-
sider addressing such synchronized dependency based on how often real-life users call these
methods.

@ Springer

Empirical Software Engineering

Our suggested logging locations have influences on the CPU usage; while such influence
can be both positive and negative.

4.4 RQ4: What are the Characteristics of the Suggested Logging Locations?

Motivation In the previous research questions, we leverage our approach to suggest logging
locations to assist in performance modeling. If we can study the characteristic of these
locations in the source code being performance influential, we may provide more general
guidance for a developer to log similar locations in the source code.

Furthermore, prior research has proposed various techniques to provide general guidance
focus logging locations on large and complex methods (Fu et al. 2014; Zhu et al. 2015),
or to monitor hot methods in performance. Our approach may be of less interest if prior
techniques also suggest such locations to log. The goal of this RQ is to examine whether our
approach suggests logging locations that can also be suggested by prior research on general
logging guidance.

Approach Similar to RQ 2 and 3, we focus on 2.0.5 of OpenMRS, v2 of CloudStore, and
one release of ES. For each of the suggested logging locations, we manually examine the
surrounding source code to understand their characteristics. In particular, the metrics to
answer this RQ are as follows. First of all, we use the size of the source code, such as
lines of code, one of the factors that prior study used to model logging decisions (Zhu et al.
2015). Moreover, uncertainty concerning control flow branches is also considered in logging
decisions (Zhao et al. 2017). Therefore, we measure the source lines of code (SLOC) of
the suggested methods and blocks and the cyclomatic complexity of the methods that are
suggested to be logged. Furthermore, in order to identify the hot methods in the systems, we
massively instrument the execution of all subject systems with JProfiler and Visual Studio
Profiling tool (JProfiler 2017; Visual Studio Profiling 2017). We measure both inclusive
and exclusive execution time of each method and rank all the methods by their execution
time. We examine whether our suggested methods are one of the hot methods, i.e., with the
highest executed time.

Results The suggested logging locations are not in complex methods. By measuring the
SLOC and cyclomatic complexity, we find that the suggested logging locations are in the
methods with small sizes and low complexity. The methods that are suggested to be logged
have a SLOC of 4, 5 and 15 in CloudStore, and methods in OpenMRS consists of only 3
and 6 SLOC. In ES, all suggested methods have a SLOC less than 35. Similarly, the values
of the cyclomatic complexity of the suggested methods in CloudStore are only 1, 2 and 2;
the same values are merely 1 and 2 in OpenMRS. The small sizes and the low complexity of
the methods imply that practitioner may use our approach in tandem with other approaches
that are based on source code metrics.

Most of the suggested logging locations are not the performance hotspot. By examining
the results of detecting hotspots using both inclusive and exclusive execution time, we find
that our suggested logging locations are not typical performance hotspots. In particular, only
one of the logging locations (ItemDaolmpl.findAlIByAuthor()) is in the top 10 of hotspots
in the source code (excluding methods in the library). We consider the reason is that our
approach does not aim to identify the methods that are invoked often, but the ones that can
explain the variance of CPU usage. Therefore, our approach may complement the detection
of performance hotspots in performance assurances activities.

@ Springer

Empirical Software Engineering

The suggested logging locations are typically not in complex methods nor performance
hotspots. Performance engineers can use our approach to complement those traditional
measurements in performance engineering activities.

4.5 RQ5: What are the Root Causes of the Suggested Logging Location Changes?

Motivation From the previous research question, we find that some of the previously
suggested logging locations can no longer provide enough explanatory power to interpret
performance (e.g., CPU usage) variances in our target systems. However, the reasons behind
such replacements are still obscure. The goal of this research question is to understand the
root-causes of causes of such replacement. The identified root-causes can provide more
information for the practitioners to support their proactive logging decisions.

Approach In order to untangle the possible reasons behind a required logging replacement,
we manually examine the code commits between two consecutive software releases if there
exist a suggested replacement by our approach.

First of all, for both the existing and suggested logging locations, we review the direct
source code changes within the current method or control block. However, such an intu-
itive approach barely provide any useful information, since our suggested logging locations
usually reside in non-complex and short methods, which are rarely changed. Regardless of
stability in these methods, we find that the performance influencing locations in the source
code are more likely to be introduced by methods in its invocation tree. Hence, we examine
the call hierarchy of method that contains the logging location and explore the derivation of
CPU usage changes. This would inform us which part of the source code may potentially
impact CPU usage.

Although source code changes can explain most of the variations in CPU usage, other
potential factors, such as database schemas updates, can also contribute to significant
deviance in CPU usage prediction. In that case, we also gather changes to all artifacts in
each project made between the consecutive releases, such as configuration file changes and
database updates, to synthesize a comprehensive understanding of the rationale behind those
related source code changes.

Since ES is a large-scale system, there exist thousands of source code files changed
between every two releases. During the evaluation process, we can hardly guarantee the
overall understanding of this system due to its overwhelming size. Except for comparing the
difference between two consecutive releases, especially in source code and configuration
changes, we need some external assistance from developers with experience in the system.
To further understand the root-causes behind the changes to logging locations, we consulted
several senior developers of ES. If there still exist undetermined changes, we turn to the
developers who are responsible for those specific code commits.

There is not numerical metric but rather the categories of root-causes that we use to
answer this RQ.

Results After examining the related source code and other artifact changes, we identify the
possible root-causes behind performance influencing logging locations and deprecations.
The result is shown in Table 16. The columns of the table correspond to the root-causes and
each row of the table corresponds to a logging location. A check mark (v') shows that the
logging location in the row is introduced due to the corresponding root-cause of the column.

Database Query Changed For database centric systems, database schema updates together
with queries modifications widely exist. During the execution of a database query, the web

@ Springer

Empirical Software Engineering

SN NS S S N NS NS

2

SO S S

~

SO S S

8¢X

LTX

PIX

[49:¢

€rX

1£9:¢

£X

0X

98] u0sId

1201 3doouo)
18199[qostuuadaseg
18€ I91Uunoouyg

cgrusned

909 U0SIod

109 u0sIod

L1€ uosIog

G TeuIo
111°9INQLI)UOSIog

626 1dweoiazegideouo)
00¢ 1dwpeotaregidaouo)

unf810¢

1dvg10z sq

€1
ere®TIT

907C

$0T SYNudO

spoypowr Ann

ydeis [reo oy ur
spoyloul I1ayjo
wIoIj doudnyyuy

sagueyd
sonradoig

UOIBI0AUL
aannadoy

paje[aI 1)1y
[euonipuod

K1onb

paSueyo
eyep oalsuadxyg Aronb aseqereq

omaw 307

UOTSIOA 100lo1g

uonesa1dap 10 uonsa33ns uoneoo] Jur330[Jo sasned-)001 A[qISSOd

UOTJBUWLIOJUT OINAW F07]

Juaweoedar s Juswalels Sur33o[pulyeq d[euoney 9| d|qeL

pringer

NS

Empirical Software Engineering

server hangs and waits for responses from the database server, thus leads to a lower CPU
usage on the web system. When complex query logic is changed, for example when retriev-
ing less information after query updates, it might take database server a shorter time to
respond, thus such change leads to the variance in CPU usage.

In our case studies, ES is a data-centric system with frequent updates related to its
database. For example, X3 exists inside a method that frequently retrieves and updates data
in the database. However, except for the update data itself, more information that is related
to this data is also eagerly fetched from the database. Such behavior is identified in prior
research as one of the performance anti-patterns of database-centric systems (Chen et al.
2014).

According to the issue report that is associated with the corresponding code changes, we
find these newly fetched data are used as input parameters for a function modification. With
this change inside database query, the extra fetches procedure may result in the variance of
CPU usage variance.

Expensive Data Query Web-based systems build an intuitive interface for users to manip-
ulate and view their data. However, fetching a large amount of data from the database can
be costly, since the resources of the web server are not fully utilized when it is waiting for
the database server to respond. The importance and prevalence of I/O related performance
regressions have motivated prior research to proposed techniques for automated detection
of those regressions (Bezemer et al. 2014). Performance optimizing in such locations may
significantly enhance system efficiency and improve the users’ experience. Our approach
can successfully suggest to log in methods where complex database queries with massive
or expensive data manipulation are located.

Take X24 in ES as an example of an expensive data query, this method invokes a
complex SQL query. Although we admit that such a complex query is important for the
system feature and sometimes cannot be avoided, such a large-scale data query may be
extremely influential to the CPU usage once it is invoked. Accordingly, the method is
marked as one of our suggested logging locations. Between these two releases, we find
several query changes in X24. The code changes are with newly added access-right filtra-
tion and database structure update, which may be responsible for the update to logging
decisions.

Another example of expensive data query is ConceptServicelmpl.300. As it is shown in
the following code snippet, once this logging location is invoked, a method call will retrieve
all the concepts from database and sort them according to input parameters. By default, the
concepts are sorted by conceptld. Our logging location indicates once the method getAll-
Concepts is invoked with sortBy parameter value is null, it will introduce significant impact
on CPU usage variance.

@Transactional (readOnly=true)
public List<Concept> getAllConcepts(String sortBy, boolean
asc, boolean includeRetired) throws APIException {
if (sortBy == null) {
LogClass.getLog () .info ("ConceptServiceImpl:300") ;
sortBy="conceptId";

}

return dao.getAllConcepts (sortBy,asc, includeRetired) ;

@ Springer

Empirical Software Engineering

Conditional Filter Related In our approach, inserted logging statements are simply used to
pinpoint source code locations, and monitor the trajectory of the system’s runtime execution
flow. However, if a conditional statement is introduced or modified in the source code, a
new route could possibly be executed in the call graph during runtime. In that case, our
prediction model together with its metrics can also be affected.

X52 and X28 in ES are mainly responsible for fetching a certain type of special data in the
database. In the new version of the system, whether to retrieve the data is determined by a
newly added condition. Due to the performance impact of the data retrieval, such conditions
are flagged by our approach as suggested logging locations.

In OpenMRS version 2.0.5, we notice that logging location ConceptServicelmpl.929,
which resides in method getFalseConcept(), is usually invoked inside condition judgements.
In other words, once this method is executed, we know the execution flow steps into a
different branch that can be influential to CPU usage. We can understand the importance of
such methods in predicting software CPU usage. However, its explanatory power reduces
significantly after the system update. By checking the source code, we find that a newly
added filtering condition may prohibit function getFalseConcept() and its related methods
from being executed.

From the following code we can find that function getFalseConcept() will set a boolean
concept value as a property variable. Although this value is not directly related invoked
in the current method body, the condition is later accessed from other methods within the
running system and causes CPU usage variances.

@Override
@Transactional (readOnly=true)
public Concept getFalseConcept () {
LogClass.getLog() .info ("ConceptServiceImpl:929") ;
if (falseConcept == null) {
setBooleanConcepts () ;
}

return falseConcept;

Repetitive Invocation Repetitive invocation indicates methods or other code elements that
locate in an iterative process. This kind of repetitive execution can significantly slow down
system efficiency and prolong processing time (Sandoval Alcocer et al. 2016), depends on
the complexity of logic inside the loop and number of iterations. Such a phenomenon is also
studied in prior research as a One-by-One Processing anti-pattern (Chen et al. 2014). The
following examples illustrate CPU usage variance behind logging locations with repetitive
invocations.

An example for repetitive invocation would be Person.601 and Person.608, both of
these two locations reside in the same method getPersonName() in OpenMRS. In this
method, all known names of a person are retrieved and iterated through two for loops.
The first suggested logging locations reside in the first loop which gets a person’s pre-
ferred name. Similarly, the second logging location resides in another loop right after the
first for loop. The second for loop iterates through all names of a person. After select-
ing a valid preferred name from the person, the method returns a person’s name only if
it is not empty. In this context, we consider that this kind of iteration can explain the
rationale behind these performance-influential logging locations. Similarly, X/7 from ES

@ Springer

Empirical Software Engineering

also follows this root-cause, where database access inside a loop is suggested as a logging
location.

if (getNames () != null && getNames().size() > 0) {
for (PersonName name : getNames()) {
if (name.isPreferred() && !name.isVoided())

LogPackage.LogClass.getLog () .info ("Person:601") ;
return name;

}
}

for (PersonName name : getNames()) {
LogPackage.LogClass.getLog () .info ("Person:606") ;
if (!name.isVoided())
return name;
}

Properties Changes Although analyzing CPU usage variances from static source code
changes is feasible in some extends, the runtime information can also be important to deter-
mine source code’s execution path. For example, getter and setter methods are commonly
used to read and store property values, and they do not usually have a complex structure
and logic inside the method body. However, the property value can possibly be used as
conditions when processing some performance influential methods. In that case, properties
changes are considered one of the potential performance influencing factor.

When comparing OpenMRS version 2.1.2 and 2.1.3, we find a newly suggested logging
location Concept.1027, which locates inside a method getRetired(). The method decides
whether a “retired” property should be added and updated. It may seem not very influential
from the method itself, but we find that the value of this property is used to filter out unqual-
ified conditions. We find that this property value is used in a performance influential logging
location ConceptServicelmpl.300. From its call graph we notice a method getAllConcepts(),
which fetches all sorted concepts from database. In addition, method getAllConcepts() takes
a boolean-typed parameter “islncludeRetired”, which decides if retired concepts will be
returned. Different SQL query command will be generated upon the “retired” property
value. Therefore, in spite of being in the seemingly negligible CPU usage influence from
getter and setter methods, such locations may become the root-cause of substantial CPU
usage variances.

The logging locations suggested by our approach can help model CPU usage with a
high model fit. None of those locations initially contain a logging statement.

Influence from other Methods in the Call Graph According to our previous finding, the
suggested logging locations are located inside the non-complex and short methods. The
reason these functions are selected as our target is most likely due to a complex method in
its call graph. To be more specific, when our logging statement is executed, it is usually
accompanied by other complicated logics or database interactions from its invocation tree.

Here we would like to take Concept.1027 as an example again. When we trace its call
graph, we find that delegated properties and requested resources are fetched and stored iter-
atively for all concepts. Therefore, the method that calls Concept. 1027 may be responsible

@ Springer

Empirical Software Engineering

for CPU usage variances. However, since this method is part of a packed RESTFul module,
our logging statements can only mark its invoked method as performance influential loca-
tion. The result also shows that our suggested logging locations can interpret performance
influential locations that relate to external function invocations.

Another example would be Person.186 from OpenMRS 2.1.3. The suggested logging
location resides in method getBirthDateTime, which first fetches a person’s time and date
of birth, then format it according to a date-time pattern. This method is invoked when
editing a person’s information. All attributes of the current person’s object will be copied
to a newly initiated object by sequence, which makes the current method together with
all related attributes resetting methods produce CPU usage variance. After comparing the
source code changes between the two releases, we find that most of the changes are related
to database access of the Patient object, which is inherited from Person object. Such changes
may potentially influence initializing person objects and cause an impact on the CPU usage
variation.

Our suggested logging locations have influences on the CPU usage; while such influence
can be both positive and negative.

Utility Methods Apart from the root-causes that we list above, there is another spe-
cial root-cause that associates with the utility methods. Utility methods usually indicate
low-level functions that are frequently invoked and widely used across the system. If
a utility method is suggested as a performance influential logging location, it would
be difficult to identify the real root-causes of this kind of logging location’s appear-
ance or replacement, since the method is usually invoked by a large number of methods
across the whole project. However, the extensive invocation also makes monitoring such
utility methods beneficial for performance monitoring and source code optimization
purposes.

For example in ES, X0 locates at the entry of a utility method that is widely leveraged by
a large number of other methods in the system. As one of the most invoked utility methods,
we find hundreds of related methods in the call hierarchy graph. In addition, a large number
of source code changes locates in those methods. Furthermore, we also notice that some
front-end source code (like javascript files) changes may also increase uncertainty to the
CPU usage.

4.5.1 Static Analysis to Suggest Logging Locations

By learning the above seven root-causes of logging location changes, one may consider
leveraging static analysis to detecting such a root-cause. By examining the code and the con-
text of each root-cause, we find that applying static analysis to accurately suggest logging
location changes is challenging.

For two root-causes, i.e., expensive data query and repetitive invocation, it is not chal-
lenging to detect the root-causes in the code changes. However, not all of the cases are
performance influential. For example, some database query changes may only have a neg-
ligible impact on CPU usage. In addition, prior research (Chen et al. 2014) also detects
repetitive invocation as an anti-patterns, while the impact depends on the number of
repetitions in runtime.

For one pattern, expensive data query, one may need to ease the detection of the root-
cause with a fine-tuned heuristic. Static analysis with sub-optimal heuristic may generate a
large number of false positives.

@ Springer

Empirical Software Engineering

Finally, for four patterns, i.e., conditional filter related, properties changes, influence
from other methods in the call graph and utility methods, it would be challenging to detect
the root-cause. The dependency between the code change and the impact can be indirect
or distant to each other in the call graph. Future research may investigate the possibility of
detecting such root-causes.

The challenging nature of detecting these root-causes statically illustrates the need for an
approach that automatically suggests logging locations for performance monitoring.

We identify seven root-causes of logging location changes, including database query
changed, expensive data query, conditional filter related, repetitive invocation, properties
changes, influence from other methods in the call graph and utility methods. We find
the root-causes behind the existence and deprecation of suggested logging locations stem
from a various of combined factors.

5 Discussion
In this section, we discuss the related topics based on our results.
5.1 Not all Web Requests Need Additional Logging

After applying our approach, inserting logging statements may not provide statistically sig-
nificantly more explanation power to the model. For example, in the Web Request B of ES,
after inserting logging statements into all associated method, none of them are statistically
significant in the performance model. Such results imply that over-inserting logging state-
ments into the source code may only provide repetitive information that is already available
from other logs while leading to more noise to practitioners (Yuan et al. 2014). By looking
at the web request and the methods that do not need additional logging, we find that these
cases are typically simple sequential executions with low complexity. For example, Item-
Daolmpl.findAllIByAuthor() in CloudStore has a loop as an extra basic block. However, our
results show that inserting logging statement into the loop would not improve the perfor-
mance model. That implies that the number of iterations of the loop may not influence CPU
usage significantly.

5.2 How Long do we Need to Test Performance to Suggest Logging Locations?

Performance testing is a time-consuming task (Alghmadi et al. 2016). However, our
approach requires multiple iterations conducting performance tests. Even though it is
straightforward to deploy the multiple performance tests in separate testing environments to
reduce the time, such a solution may still be resource-costly. In order to minimize the cost of
the resource, we investigate whether we may shorten the duration of the performance tests
and still yield similar results.

For every performance test, we take the data from the period of the first hour, the first
two hours and the first three hours. We then follow the same steps as Section 2 and examine
whether we can suggest the same locations to insert logging statements. We find that we can
achieve the same logging suggestions by only running one hour, two hours and three hours
of the test in four, one, and six models, respectively. We need the complete four hours only
in two models. This result shows that practitioners may be able to reduce the test duration
in practice to receive the suggestion in a timelier manner.

@ Springer

Empirical Software Engineering

5.3 Aggressiveness of Updating Logging Locations

In our case study, interestingly we find that our previously removed logging location can
by suggested again. In Table 12, if we remove metric BaseOpenmrsObject.81 due to its
small effect size on CPU usage variance, the logging location will be suggested again
in the new performance model. This implies that our decision on removing the logging
location may be too aggressive since extra resources are needed when our approach sug-
gests the logging location back into the source code. However, we consider this decision
is a tradeoff that should be determined by the practitioners when using our approach.
On one hand, not removing the logging locations that have small effect sizes may saves
resources when determining the logging locations for the new version. On the other
hand, the logging locations may be associated with other locations in the source code
that provides more contribution to the system’s performance modeling. However, since
the old logging location with small effect sizes is kept in the code, it may prevent us
to identify other locations that potentially be more important due to their correlations.
Hence, to avoid such cases, we opt for a more aggressive decision in our case studies
(see Section 4).

6 Related Work

In this section, we present the prior research related to this paper in two major topics: soft-
ware performance and software logging. In particular, for the top of software performance,
we discuss 1) software performance monitoring, 2) software performance modeling and 3)
performance regression and benchmarks. For the topic of software logging, we discuss 1)
assisting logging decisions and 2) software log evolution.

6.1 Software Performance
6.1.1 Software Performance Monitoring

There exist four typical levels of software monitoring techniques. The first, system moni-
toring, monitors the status of a running software based on the performance counters from
the system. Examples of such counters include CPU usage, memory usage, and 1/O traf-
fic. Rich data from these counters are widely used to monitor system performance (Cohen
et al. 2005), allocate system resources and plan capacities (Zhuang et al. 2015) or predict
system crash (Cohen et al. 2004). Despite the usefulness of such data, the lack of domain
knowledge of the software running on top of the system makes the data difficult to use for
improving the system in a detailed level (like improving source code).

The second type of widely used techniques is based on massive tracing. The tracing
information records every function call that is invoked during the running of the system.
Prior research leverages the tracking information to system quality and efficiency (Zhang
and Ernst 2014; 2015). In order to generate such tracing information, tools such as JPro-
filer (2017) is widely used in practice and research. The challenge of leveraging such tracing
information is the extra overhead from the tracing tools. Such overhead prevents the use of
tracing in a large-scale system or during the field running of the system, hence tracing is
often used in the development environment by developers. Nevertheless, Maplesden et al.
took advantage of patterns in tracing information. They built an automated tool to detect

@ Springer

Empirical Software Engineering

such patterns with the goal of improving the performance investigations and the systems’
performance (Maplesden et al. 2015, 2015) .

To minimize the overhead from tracing, techniques are proposed to only trace a selected
set of function calls, such that the tracing information from the field is possible to be
monitored. For example, Application Performance Management tools (Ahmed et al. 2016)
typically choose REST API call entry points to monitor. However, trace information is often
generated automatically without the interference of developers’ knowledge. The collected
trace information may not all be needed for developers’ particular purpose while the actually
needed information may be missing.

The third type of monitoring technique is based on logging. Developers write logging
statements in the source code to expose valuable information of runtime system behavior.
A logging statement, e.g., logger.info(“static string”’+ variable), typically consists of a log
level (e.g., trace/debug/info/warn/error/fatal), a logged event using a static text, and vari-
ables that are related to the event context. During system runtime, the invocation of these
logging statements would generate logs that are often treated as the most important, some-
times only, source of information for debugging and maintenance of large software systems.
The logging information is generated based on developers’ knowledge of the system, and
it is flexible to monitor various information in the code. Due to the extensive value in logs,
prior research has proposed to leverage logging data to improve the efficiency and quality
of large software systems (Jiang et al. 2009; Chen et al. 2014; 2016; Shang et al. 2015). The
advantage of using logging to monitor and analyze system performance motivates our work.
In particular, with our approach, the prior research that depends on logging may benefit
from the extra information that is captured from the suggested logging statements.

Finally, there exist techniques that reside in the system kernel such as JVM, to pro-
file and monitor performance. Just-in-time (JIT) compilers are widely adopted to improve
runtime performance by converting bytecode to more efficient machine code on the fly.
While JIT is running, it collects profiling information for hot loops (iteration exceeds a
threshold) at runtime. The profiler will trace the executions inside the loops (JIT 2018;
JVM 2018). Since programs usually spend most time executing the minority amount of
code, the Java Hotspot VM architecture will identify and spend most attention on perfor-
mance critical parts at runtime, then avoid compiling the infrequently executed code (The
Java HotSpot Performance Engine Architecture 2010). Yin et al. (2018) introduce a new
approach for fine-grained methods profiling and code warm-up with low overhead. Com-
pare to previous profilers, which usually cause significant overhead to the system or lack
detailed information about the execution path, the approach uses machine code instead
of byte code to expedite the profiling efficiency. The approach optimizes the code cache
to perform ahead-of-time code warm-up and reduce the JIT overhead at runtime. Fur-
thermore, the authors suggest that practitioners should optimize performance for every
system according to its own application scenarios, instead of simply adopting universal
solutions.

6.1.2 Performance Modeling

Performance modeling is a typical practice in system performance engineering. Due to the
more complex nature of performance problems in distributed systems, simple raw metrics
might not be enough. Therefore, Cohen et al. introduced the concept and use of signa-
tures and clustering from logging data and system metrics to detect system states that are
of significant impact in the system’s performance (Cohen et al. 2005). With such data,
Cohen et al. (2004) used TAN (Tree-Augmented Bayesian Networks) models to model the

@ Springer

Empirical Software Engineering

high-level system performance states based on a small subset of metrics without a pri-
ori knowledge of the system. Brebner et al. have application performance management
(APM) data in multiple industry projects to build performance models. However, the mod-
els that depend on APM can get very complex, and customization is needed (Brebner
2016). In order to improve the quality of performance modeling and prediction. Stew-
art et al. (2007) consider the inconsistency of usage in enterprise and large e-commerce
systems. In their work, they modeled using measurement data and transaction mix, and
they report a better prediction quality instead of the existing scalar workload volume
approach.

Since there could be too many performance metrics to be used in performance modeling,
different previous researches address the issue. Xiong et al. (2013) propose an automatic
creation and selection of multiple models based on different metrics. They execute tests on
virtual machines using standard performance benchmarks. Shang et al. (2015) present an
approach to automatically group metrics in a smaller number of clusters. They used regres-
sion models on injected and real-life scenarios, and their approach outperforms traditional
approaches.

Besides the use of regression models, other statistical techniques have been used to
facilitate the communication of results, such as control charts (Nguyen et al. 2012). Many
different modeling approaches have been summarized by Gao et al. in three categories:
rule-based models, data mining models and queueing models. In their work, they used the
models to compare the effectiveness of load testing and provide insights on how to better
do load testing (Gao et al. 2016). Farshchi et al. (2015) build correlation model between
logs and operation activity’s effect on system resources. Such correlation is later leveraged
to detect system anomalies.

The rich usage of performance modeling supports our approach that leverages such
model to suggest logging locations. We iteratively find the best logging locations that would
provide the most significant explanatory power to the performance of the system.

6.1.3 Performance Regression and Benchmarks

In performance engineering, benchmarks can be utilized to compare the performance of
various aspects of systems and their performance, such as CPUs, databases, information
retrieval systems (Sim et al. 2003; Waller et al. 2015). As source code changes introduced in
the software release cycle, performance regression is one of the most significant factors to
assure the quality of the software system. One of the usage scenarios of these benchmarks
is in the detection of performance regression.

To detect performance regression, Chen and Shang (2017) analyze over 1,000 commits
from two large software systems and detect performance regression by running tests and
performance micro-benchmarks repetitively, then apply a statistically rigorous approach to
examine if a performance degradation occurs. Then they link the source code changes to
performance regression and summarize the root-causes of performance degradation. How-
ever, their approach may not apply to software systems without mature performance testing
or benchmarking infrastructure.

Van Hoorn et al. (2009) systematically introduced Kieker, a system run-time monitor-
ing framework, to continuous monitoring and collecting system runtime behavior. This
tool employs aspect-oriented programming which allows non-intrusive trace-based per-
formance monitoring, the authors evaluate the extra performance overhead using two

@ Springer

Empirical Software Engineering

micro-benchmarks, the result shows implementing Kieker has low overhead to original sys-
tem performance. However, application-level monitoring tools cannot pinpoint the exact
source code locations which could potentially influence system performance.

Bezemer and Zaidman (2014) propose an approach based on a combination of associ-
ation rules and performance counters, in order to locate bottlenecks in the system. Such
locations of bottlenecks can be used as a starting point which can be later be leveraged
for possible performance improvement. The evaluation of the technique on two case stud-
ies shows the high accuracy in detecting performance bottlenecks and the starting point of
performance improvement is shown to be with high precision.

Waller et al. (2015) investigate regression benchmarks on performance monitoring and
including performance benchmarks into continuous integration. According to their findings,
the authors suggest that performance should be integrated into the software development
process from the start, instead of being after releases. Furthermore, the authors also men-
tion that the main challenge in performance regression analysis is to locate code changes
that may trigger such regression. This motivates our research to investigate performance
influences from the source code level.

Ahmed et al. (2016) analyze the effectiveness of Application Performance Management
(APM) tools for detecting performance regression. From their study, they find commercial
APM tools perform better than open-source ones in detecting performance regression.

In the first part of our approach, we leverage a modeling approach that detects the devi-
ation of system performance from logs, which can be further leveraged as an indicator to
detect performance regression.

6.2 Software Logging
6.2.1 Assistin Logging Decisions

Although logging is a significant technique for software performance monitoring, the log-
ging practice, in general, is not as straightforward as one would expect. Logging involves
a trade-off between the overhead it can generate and have the appropriate information.
In previous work, Zhao et al. proposed an algorithm that touches such trade-offs. They
increase the debugging assertiveness by automatically placing logs based on an overhead
limit threshold (Zhao et al. 2017). Even if no overhead existed, there is still a need to balance
between too much information and too little information (Fu et al. 2014).

Aiming to support the logging decisions, previous research has contributed in ways to
understand, automate and suggest opportunities of where to log. Fu et al. performed an
empirical study on industry systems categorizing logged snippets of code. Their work also
revealed the possibility of predicting where to log according to the extracted logging fea-
tures (Fu et al. 2014). Zhu et al. follow up this work and predict where to log as suggestions
to developers (2015). Similarly, a tool called Errlog presented by Yuan et al. indicated
the benefits of automatically detecting logging opportunities for failure diagnosis using
exception patterns and failure reports (2012).

Previous research also presented other aspects to consider when taking logging deci-
sions. Li et al. modeled which log level should be used when adding new logging
statements (2017). In a different work, Li et al. studied log changes and modeled those
log changes to provide a just-in-time suggestion to developers for changing logs (2017).
Different previous research has presented what to log for a diverse set of concerns. Yuan
et al. presented LogEnhancer that adds causally-related information to existing logging
statements. Their focus was on software failures and software diagnosability (Yuan et al.

@ Springer

Empirical Software Engineering

2011). Despite the above research effort, there exists no research focus on providing log-
ging suggestions with the goal of monitoring system performance. In contrast with previous
research, this paper focuses on logging suggestion for performance.

6.2.2 Software Log Evolution

Although logging statements are designed to generate important information during run-
time systems, the lack of stableness of logs makes it difficult for log management and
maintenance. Kabinna et al. (2016) study the logging libraries migrations based on Apache
Software Foundation (ASF) projects. Their research indicates nearly 14% of those projects
went through logging library changes at least once. Kabinna et al. (2016, 2018) also investi-
gate the log stability of four open source applications and find 20 to 45 percent of the logging
statements are changed at least once since created. And they also discuss the features which
may impact the stability of logging statements.

Shang et al.(2011, 2014) study the evolution of logs in two open source and one industrial
software. Their result shows that logging changes occur across all versions, which may
potentially lead to vulnerable functionality of log processing apps. They find only 15% of
the changes are unavoidable and error-prone, while the majority of logging changes are
either avoidable or recoverable. They suggest system developers to avoid modifying logging
statements as much as possible.

7 Threats to Validity

This section discusses the threats to the validity of our paper.
7.1 External Validity

Our evaluation is conducted on CloudStore, OpenMRS, and ES. The open source sys-
tems are adopted in prior performance engineering research studying these systems’
workload (Chen et al. 2016b). The scale and the importance of ES make performance a crit-
ical matter for it and makes identifying logging locations challenging. The activeness in the
development of ES makes it very costly to re-evaluate the logging locations often. Hence,
part 1 of our approach is important for practitioners to adopt our approach in their actual
work environment. Nevertheless, more case studies on other software in other domains are
needed to evaluate our approach. All our subject systems are developed based on either
Java or .Net. Our approach may not be directly applicable to other programming languages,
especially dynamic languages such as Python. Further work may investigate approaches to
minimize the uncertainty in performance characterization of dynamic languages.

Our approach currently only focuses on web applications. We leverage web logs in the
first step in order to scope down the amount of source code to instrument. However, other
researchers and practitioners may adapt our approach by applying our approach by starting
on a few hot locations in the source code. Yet, without evaluation with such an approach,
we cannot claim the usefulness of our approach to other types of systems.

We apply our approach to six releases of open source web-based systems. We agree
that having more releases of the evaluation can further strengthen our paper. Our statistical
analysis is based on a large number of data points from each version. While we agree that we
can always increase the number of versions, the current setting does not impact the validity
of our statistical analysis.

@ Springer

Empirical Software Engineering

In this paper, we focus on pinpointing performance influential source code locations
using inserted logging statements. However, external changes like configuration changes,
API migrations, database structure updates, and workload variances can also potentially
affect system performance. In our testing environment, we minimize the external influences
by applying the same workload and identical database copy for different versions of the
same branch. But these factors should still be noticed for practitioners when implementing
our approach.

7.2 Internal Validity

Our approach is based on the CPU usage that is recorded by Psutil. The quality of recorded
CPU usage can impact the internal validity of our study. Similarly, the frequency of record-
ing the CPU usage by Psutil may also impact the results of our approach. Further work may
further evaluate our approach by varying such frequency. Our approach depends on building
statistical models. Therefore, with a smaller amount of CPU usage data, our approach may
not perform well due to the quality of the statistical model. Determining the optimal amount
of CPU usage data needed for our approach is in our plan. Although our approach builds
statistical models using logs, we do not aim to predict nor claim the causal relationship
between the dependent variable and independent variables in the models. The only purpose
of building regression models is to capture the relation between logs and CPU usage.

7.3 Construct Validity

Our approach uses linear regression models to model CPU usage. Although linear regres-
sion models have been used in prior research in performance engineering (Shang et al. 2015;
Xiong et al. 2013), there exist other statistical models that may model CPU usage more accu-
rately. Our goal is not to accurately predict CPU usage but rather capture the relationship
between logs and CPU usage. Further work may investigate the use of other models.

Aspect-oriented programming (AOP) is widely adopted to add behaviors without bring-
ing extra impact on business core logic (Li et al. 2018). Using AOP frameworks to inject
logs is a more convenient methodology. During our development of the toolset, we tried
to use AOP instead of directly injecting logging statements. However, the open source
projects (such as OpenMRS) are heavily based on their own AOP framework. Our log-
ging AOP often have conflicts with their AOP framework and we tried to keep their
existing implementation untouched as much as we can to avoid potential bias. Using the
directly logging framework to insert logging statements makes the tool more applicable to
be adopted. In addition, we consider that this decision would not impact our experimental
results.

We chose to design our approach in an aggressive manner when deciding potential
logging locations. For example, we choose a low p-value to ensure the statistical signifi-
cance of the logging location. Our approach may miss potential possible logging locations.
However, our goal is to prioritize on the precision of the suggestion hence making the sug-
gestion less intrusive to practitioners. By working with our industrial collaboration, we find
that a large number of logging suggestions can be overwhelming since practitioners pre-
fer to manually verify each logging location before having actual changes to the source
code.

@ Springer

Empirical Software Engineering

The overhead of the logs may influence CPU usage. Although we evaluate the impact
of logs on the CPU usage by examining the explanatory power of logging statements them-
selves, the overhead may still impact the results of our approach. Minimizing such overhead
is in our further plan.

Our evaluation of our approach is based on modeling CPU usage. There exist other per-
formance metrics, such as memory and response time, that can be modeled by logs when
evaluating our approach. Also, the performance of the subject systems is recorded while
running their performance tests. If a logging location is not executed by performance tests,
it cannot be identified by our approach. To address this threat, we sought to use the per-
formance test that mimics the field workload from our industrial collaborators. However,
a different workload may lead to different performance influencing locations in the source
code. Therefore, when applying our approach, practitioners should always be aware of the
impact of the workload (the performance tests on the system). Hence, evaluation with more
performance metrics and more performance tests may lead to a better understanding of the
usefulness of our approach.

Although we suggest logging locations for performance assurance activities, we do not
claim that they are the only relevant logging locations. Additionally, the R? of our models
is between 26.9% and 90.2%. The R? shows that logs cannot explain all the variance in
the CPU usage. The unexplained variance of CPU usage may due to other performance
influencing source code or external influence of the system (e.g., network latency). In our
future work, we plan to model other influencing factors of the CPU usage to improve our
approach.

Our approach is based on automated code analysis and code manipulation when changing
and rebuilding the software is needed. Such an approach may require extra resources to the
system infrastructure. In our future work, we plan to alter the source code adaptively during
the runtime of performance testing or in the field to improve our approach.

In our context, suggested logging locations are derived from our prediction model.
Although their usefulness is validated through a statistically rigorous approach, the actual
efficacy is still undetermined. Consequently, we consult several senior developers about our
suggested logging locations for both versions. For all the suggested logging locations in ES,
we received the confirmation on the validity of our suggestions.

8 Conclusion and Future Work

Logging information is one of the most significant sources of data in performance moni-
toring and modeling. Due to the extensive use of logs, all too often, the success of various
performance modeling and analysis techniques often rely on the availability of logs. How-
ever, existing empirical studies and automated techniques for logging decisions do not
consider the particular need for system performance monitoring. In this paper, we pro-
pose an approach to automatically suggest where to insert logging statements with the goal
of support performance monitoring for web-based systems. Our approach suggests insert-
ing logging statement into the source code locations that can complement the explanation
power of statistical performance models. Moreover, our approach suggests the need for
updating logging locations when system evolves. By evaluating our approach on two open
source systems (CloudStore and OpenMRS) and one commercial system (ES), we find that
our approach suggests logging locations that improve the statistical performance models
and those suggested logging locations have a high influence on system performance (CPU

@ Springer

Empirical Software Engineering

usage) while not being traditional complex methods nor performance hotspots. In addition,
after applying our approach on suggesting logging locations on multiple releases of our
subject systems, we manually identified root-causes of logging statement suggestion and
deprecation. Practitioners can integrate our approach into the release pipeline of their sys-
tem to have logging suggestions periodically. In addition, the root-causes can be leveraged
by researchers to prioritize their future research in suggesting logging decisions.

Future work Our future work lies in three aspects. First of all, we plan to improve our
study based on more aspects of performance metrics (like memory and response time) and
more types of system (like desktop systems and mobile apps). Second, we plan to apply
more sophisticated modeling techniques to enhance our approach and provide more accurate
logging location suggestion. Finally, we plan to investigate whether we can use data from
actual users from the field to suggest logging locations.

Acknowledgments We would like to thank ERA Environmental Management Solutions for providing
access to the enterprise system used in our case study. The findings and opinions expressed in this paper
are those of the authors and do not necessarily represent or reflect those of ERA Environmental Manage-
ment Solutions and/or its subsidiaries and affiliates. Moreover, our results do not reflect the quality of ERA
Environmental Management Solutions’ products.

References

The Java HotSpot Performance Engine Architecture (2010) Slowly Changing Dimensions. https://www.
oracle.com/technetwork/java/whitepaper-135217.html. Oracle

.NET Compiler Platform ("Roslyn”) (2017) .NET Compiler Platform ("Roslyn”). https://github.com/dotnet/
roslyn

Ahmed TM, Bezemer C, Chen TH, Hassan AE, Shang W (2016) Studying the effectiveness of applica-
tion performance management (apm) tools for detecting performance regressions for web applications:
an experience report. In: Proceedings of the 13th International Conference on Mining Software
Repositories, MSR ’16. ACM, New York, pp 1-12

Alghmadi HM, Syer MD, Shang W, Hassan AE (2016) An automated approach for recommending when to
stop performance tests. In: 2016 IEEE International conference on software maintenance and evolution
(ICSME), pp 279-289

Apache JMeter (2015) Apache: Jmeter. http://jmeter.apache.org/. Accessed: 2015-06-01

Bezemer C, Milon E, Zaidman A, Pouwelse J (2014) Detecting and analyzing i/o performance regressions.
Journal of Software: Evolution and Process 26(12):1193-1212. https://doi.org/10.1002/smr.1657. https://
onlinelibrary.wiley.com/doi/abs/10.1002/smr.1657

Bezemer CP, Zaidman A (2014) Performance optimization of deployed software-as-a-service applications. J
Syst Softw 87:87-103. https://doi.org/10.1016/j.jss.2013.09.013

Bootstrap (2017) Bootstrap. https://cran.r-project.org/web/packages/bootstrap/bootstrap.pdf. Accessed:
2017-02-27

Brebner PC (2016) Automatic performance modelling from application performance management (apm)
data: an experience report. In: Proceedings of the 7th ACM/SPEC on International Conference on
Performance Engineering, ICPE *16. ACM, New York, pp 55-61

Chen J, Shang W (2017) An exploratory study of performance regression introducing code changes. In: 2017
IEEE international conference on software maintenance and evolution ICSME). IEEE, pp 341-352

Chen TH, Shang W, Hassan AE, Nasser M, Flora P (2016) Cacheoptimizer: Helping developers configure
caching frameworks for hibernate-based database-centric web applications. In: Proceedings of the 24th
ACM SIGSOFT international symposium on the foundations of software engineering, FSE *16

Chen TH, Shang W, Hassan AE, Nasser M, Flora P (2016) Cacheoptimizer: Helping developers configure
caching frameworks for hibernate-based database-centric web applications. In: Proceedings of the 2016
24th ACM SIGSOFT international symposium on foundations of software engineering, FSE 2016. ACM,
New York, pp 666-677

@ Springer

https://www.oracle.com/technetwork/java/whitepap er-135217.html
https://www.oracle.com/technetwork/java/whitepap er-135217.html
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
http://jmeter.apache.org/
https://doi.org/10.1002/smr.1657
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1657
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1657
https://doi.org/10.1016/j.jss.2013.09.013
https://cran.r-project.org/web/packages/bootstrap/bootstrap.pdf

Empirical Software Engineering

Chen TH, Shang W, Jiang ZM, Hassan AE, Nasser M, Flora P (2014) Detecting performance anti-patterns
for applications developed using object-relational mapping. In: Proceedings of the 36th international
conference on software engineering, ICSE 2014. ACM, New York, pp 1001-1012

Chen TH, Shang W, Jiang ZM, Hassan AE, Nasser M, Flora P (2016) Finding and evaluating the performance
impact of redundant data access for applications that are developed using object-relational mapping
frameworks. IEEE Trans Softw Eng PP(99):1-1

CIiff N (1993) Dominance statistics: ordinal analyses to answer ordinal questions. Psychol Bull 114(3):494

CloudScale (2017) CloudScale Project. http://www.cloudscale-project.eu/

Cohen I, Chase JS, Goldszmidt M, Kelly T, Symons J (2004) Correlating instrumentation data to system
states: a building block for automated diagnosis and control. In: OSDI, vol 4, pp 16-16

Cohen I, Zhang S, Goldszmidt M, Symons J, Kelly T, Fox A (2005) Capturing, indexing, clustering, and
retrieving system history. In: Proceedings of the twentieth ACM symposium on operating systems
principles, SOSP ’05. ACM, New York, pp 105-118

Eclipse JDT (2017) Eclipse Java development tools (JDT). http://www.eclipse.org/jdt/

Farshchi M, Schneider JG, Weber I, Grundy J (2015) Experience report: Anomaly detection of cloud appli-
cation operations using log and cloud metric correlation analysis. In: 2015 IEEE 26th international
symposium on software reliability engineering (ISSRE), pp 24-34

Foo KC, Jiang ZM, Adams B, Hassan AE, Zou Y, Flora P (2010) Mining performance regression test-
ing repositories for automated performance analysis. In: 2010 10th international conference on quality
software (QSIC). IEEE, pp 3241

Freedman DA (2009) Statistical models: theory and practice. Cambridge University Press, Cambridge

Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T (2014) Where do developers log? an empirical
study on logging practices in industry. In: Companion proceedings of the 36th international conference
on software engineering, ICSE companion 2014. ACM, New York, pp 24-33

Gao R, Jiang ZM, Barna C, Litoiu M (2016) A framework to evaluate the effectiveness of different load
testing analysis techniques. In: 2016 IEEE International conference on software testing, verification and
validation (ICST), pp 22-32

Harrell F (2001) Regression modeling strategies 2001. Springer CrossRef Google Scholar, Nashville

Van Hoorn A, Rohr M, Hasselbring W, Waller J, Ehlers J, Frey S, Kieselhorst D. (2009) Continuous
monitoring of software services: Design and application of the Kieker framework

Van Hoorn A, Waller J, Hasselbring W (2012) Kieker: a framework for application performance monitor-
ing and dynamic software analysis. In: Proceedings of the 3rd ACM/SPEC international conference on
performance engineering, ICPE "12. ACM, New York, pp 247-248

Jiang ZM, Hassan AE, Hamann G, Flora P (2009) Automated performance analysis of load tests. In: ICSM
’09: 25th IEEE international conference on software maintenance

JIT (2018) Tracing just-in-time compilation. https://en.wikipedia.org/wiki/Tracing_just-in-time_compilation

JProfiler (2017) JProfiler. https://www.ej-technologies.com/products/jprofiler/overview.html

JVM (2018) Jvm jit compilation as a way of performance optimisation. https://jakubstransky.com/2018/01/
15/java-jvm-jit-compilation- performance-optimisation/

Kabinna S, Bezemer C, Shang W, Hassan AE (2016) Logging library migrations: a case study for the apache
software foundation projects. In: Proceedings of the 13th international conference on mining software
repositories. ACM, pp 154-164

Kabinna S, Bezemer C, Shang W, Syer MD, Hassan AE (2018) Examining the stability of logging statements.
Empir Softw Eng 23(1):290-333

Kabinna S, Shang W, Bezemer C, Hassan AE (2016) Examining the stability of logging statements. In: 2016
IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER), vol 1,
pp 326-337, https://doi.org/10.1109/SANER.2016.29

Kernighan BW, Pike R (1999) The practice of programming. Addison-Wesley Longman Publishing Co., Inc.,
Boston

Kuhn M (2008) Building predictive models in r using the caret package. Journal of Statistical Software
Articles 28(5):1-26

Li H, Chen THP, Hassan AE, Nasser M, Flora P (2018) Adopting autonomic computing capabilities in
existing large-scale systems: an industrial experience report. In: Proceedings of the 40th international
conference on software engineering: software engineering in practice. ACM, pp 1-10

Li H, Shang W, Hassan AE (2017) Which log level should developers choose for a new logging statement?
Empir Softw Eng 22(4):1684-1716

Li H, Shang W, Zou Y, Hassan AE (2017) Towards just-in-time suggestions for log changes. Empir Softw
Eng 22(4):1831-1865

Log4J Async (2017) Log4J Async. https://logging.apache.org/log4j/2.x/manual/async.html

@ Springer

http://www.cloudscale-project.eu/
http://www.eclipse.org/jdt/
https://en.wikipedia.org/wiki/Tracing_just-in-time_compilation
https://www.ej-technologies.com/products/jprofiler/overview.html
https://jakubstransky.com/2018/01/15/java-jvm-jit-compilation-performance-optimisation/
https://jakubstransky.com/2018/01/15/java-jvm-jit-compilation-performance-optimisation/
https://doi.org/10.1109/SANER.2016.29
https://logging.apache.org/log4j/2.x/manual/async.html

Empirical Software Engineering

Maplesden D, von Randow K, Tempero E, Hosking J, Grundy J (2015) Performance analysis using subsum-
ing methods: an industrial case study. In: Proceedings of the 37th international conference on software
engineering - Volume 2, ICSE ’15. IEEE Press, Piscataway, pp 149-158

Maplesden D, Tempero E, Hosking J, Grundy JC (2015) Subsuming methods: Finding new optimisa-
tion opportunities in object-oriented software. In: Proceedings of the 6th ACM/SPEC international
conference on performance engineering, ICPE *15. ACM, New York, pp 175-186

Mockus A (2010) Organizational volatility and its effects on software defects. In: Proceedings of the Eigh-
teenth ACM SIGSOFT international symposium on foundations of software engineering, FSE *10. ACM,
New York, pp 117-126

Moore DS, Craig BA, McCabe GP (2012) Introduction to the practice of statistics. WH Freeman, New York

Nguyen TH, Adams B, Jiang ZM, Hassan AE, Nasser M, Flora P (2012) Automated detection of perfor-
mance regressions using statistical process control techniques. In: Proceedings of the 3rd ACM/SPEC
international conference on performance engineering, ICPE *12. ACM, New York, pp 299-310

PSULtil (2017) PSULtil. https://github.com/giampaolo/psutil

Sandoval Alcocer JP, Bergel A, Valente MT (2016) Learning from source code history to identify per-
formance failures. In: Proceedings of the 7th ACM/SPEC on international conference on performance
engineering, ICPE *16. ACM, New York, pp 37-48, https://doi.org/10.1145/2851553.2851571

Shang W, Hassan AE, Nasser M, Flora P (2015) Automated detection of performance regressions using
regression models on clustered performance counters. In: Proceedings of the 6th ACM/SPEC interna-
tional conference on performance engineering, ICPE °15. ACM, New York, pp 15-26

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2011) An exploratory study
of the evolution of communicated information about the execution of large software systems. In: 2011
18Th working conference on reverse engineering, pp 335-344. https://doi.org/10.1109/WCRE.2011.48

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2014) An exploratory study
of the evolution of communicated information about the execution of large software systems. Journal of
Software: Evolution and Process 26(1):3-26

Shihab E, Jiang ZM, Ibrahim WM, Adams B, Hassan AE (2010) Understanding the impact of code and
process metrics on post-release defects: a case study on the eclipse project. In: Proceedings of the 2010
ACM-IEEE international symposium on empirical software engineering and measurement, ESEM ’10.
ACM, New York, pp 4:1-4:10

Shihab E, Mockus A, Kamei Y, Adams B, Hassan AE (2011) High-impact defects: a study of breakage
and surprise defects. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on foundations of software engineering, ESEC/FSE ’11. ACM, New York, pp 300-310

Sim SE, Easterbrook S, Holt RC (2003) Using benchmarking to advance research: a challenge to soft-
ware engineering. In: proceedings of the 25th international conference on software engineering. IEEE
Computer Society, pp 74-83

Stewart C, Kelly T, Zhang A (2007) Exploiting nonstationarity for performance prediction. In: ACM SIGOPS
operating systems review, vol 41. ACM, pp 31-44

Syer MD, Shang W, Jiang ZM, Hassan AE (2017) Continuous validation of performance test workloads.
Autom Softw Eng 24(1):189-231. https://doi.org/10.1007/s10515-016-0196-8

TPC-W (2017) TPC Benchmark W (TPC-W). http://www.tpc.org/tpcw/

Visual Studio Profiling (2017) Visual Studio Profiling. https://docs.microsoft.com/en-us/visualstudio/
profiling

Waller J, Enmke NC, Hasselbring W (2015) Including performance benchmarks into continuous integration
to enable devops. ACM SIGSOFT Software Engineering Notes 40(2):1-4

Weyuker E, Vokolos F (2000) Experience with performance testing of software systems: issues, an approach,
and case study. Transactions on Software Engineering 26(12):1147-1156

Xiong P, Pu C, Zhu X, Griffith R (2013) vperfguard: an automated model-driven framework for applica-
tion performance diagnosis in consolidated cloud environments. In: Proceedings of the 4th ACM/SPEC
international conference on performance engineering, ICPE 13. ACM, New York, pp 271-282

Yao K, B de Padua G, Shang W, Sporea S, Toma A, Sajedi S (2018) Log4perf: Suggesting logging locations
for web-based systems’ performance monitoring. In: Proceedings of the 2018 ACM/SPEC international
conference on performance engineering. ACM, pp 127-138

Yin F, Dong D, Li S, Guo J, Chow K (2018) Java performance troubleshooting and optimization at Alibaba.
In: Proceedings of the 40th international conference on software engineering: software engineering in
practice, ICSE-SEIP ’18. ACM, New York, pp 11-12, https://doi.org/10.1145/3183519.3183536

Yuan D, Luo Y, Zhuang X, Rodrigues GR, Zhao X, Zhang Y, Jain PU, Stumm M (2014) Simple testing
can prevent most critical failures: an analysis of production failures in distributed data-intensive sys-
tems. In: Proceedings of the 11th USENIX conference on operating systems design and implementation,
OSDI’14. USENIX Association, Berkeley, pp 249-265

@ Springer

https://github.com/giampaolo/psutil
https://doi.org/10.1145/2851553.2851571
https://doi.org/10.1109/WCRE.2011.48
https://doi.org/10.1007/s10515-016-0196-8
http://www.tpc.org/tpcw/
https://docs.microsoft.com/en-us/visualstudio/profiling
https://docs.microsoft.com/en-us/visualstudio/profiling
https://doi.org/10.1145/3183519.3183536

Empirical Software Engineering

Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S (2012) Be conservative: Enhancing
failure diagnosis with proactive logging. In: OSDI ’12: Proceedings of the 10th USENIX conference on
operating systems design and implementation, vol 12, pp 293-306

Yuan D, Zheng J, Park S, Zhou Y, Savage S (2011) Improving software diagnosability via log enhance-
ment. In: ASPLOS ’11: Proceedings of the 16th international conference on architectural support for
programming languages and operating systems

Zhang S, Ernst MD (2014) Which configuration option should i change? In: Proceedings of the 36th
international conference on software engineering, ICSE 2014. ACM, New York, pp 152-163

Zhang S, Ernst MD (2015) Proactive detection of inadequate diagnostic messages for software configuration
errors. In: Proceedings of the 2015 international symposium on software testing and analysis, ISSTA
2015. ACM, New York, pp 12-23

Zhao X, Rodrigues K, Luo Y, Stumm M, Yuan D, Zhou Y (2017) The game of twenty questions: Do you
know where to log? In: Proceedings of the 16th workshop on hot topics in operating systems, HotOS
’17. ACM, New York, pp 125-131

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D (2015) Learning to log: Helping developers make informed
logging decisions. In: Proceedings of the 37th international conference on software engineering - volume
1, ICSE ’15. IEEE Press, Piscataway, pp 415-425

Zhuang Z, Ramachandra H, Tran C, Subramaniam S, Botev C, Xiong C, Sridharan B (2015) Capacity plan-
ning and headroom analysis for taming database replication latency: Experiences with linkedin internet
traffic. In: Proceedings of the 6th ACM/SPEC international conference on performance engineering,
ICPE *15. ACM, New York, pp 39-50

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Kundi Yao is a master student in the Department of Computer Sci-
ence and Software Engineering at Concordia University, Montreal,
Canada. He obtained his B.Eng. from Wuhan University of Technol-
ogy, China. His research interests lie within software performance
engineering, software log analytics, and mining software repositories.
Contact him at ku_yao@encs.concordia.ca.

Guilherme B. de Padua is currently a backend software developer
with a constant concern for software reliability, performance and
traceability through logs. He holds a Masters degree in Software
Engineering at the Department of Computer Science and Software
Engineering at Concordia University, Montreal, Canada. Before and
during his Master’s research he had already 7 years of experience
in the software industry working with a variety of software systems.
He obtained his B.Eng. in Computer Engineering from Universidade
Federal de Itajuba, Brazil.

@ Springer

Empirical Software Engineering

Weiyi Shang is an assistant professor in the Department of Computer
Science and Software Engineering at Concordia University, Montreal.
His research interests include big-data software engineering, soft-
ware engineering for ultra-large-scale systems, software log mining,
empirical software engineering, and software performance engineer-
ing. Shang received a PhD in computing from Queen’s University,
Canada. Contact him at shang@encs.concordia.ca.

Catalin Sporea is a senior software engineer at ERA Environmen-
tal Management Solutions. He received a Master of Science degree
in Computer Engineering from the Technical University of Cluj
Napoca, Romania, as well as a certificate in Information and Secu-
rity Analysis from HEC Montreal. His specialization is in security
of online data transactions and database structures with extensive
experience in the banking industry, with a particular interest in
big data applications to enterprise and industry. Contact Catalin at
steve.sporea@era-ehs.com.

Andrei Toma is an analyst and project manager with ERA Envi-
ronmental Solutions, in Montreal, Canada. He has worked on ERA’s
EH&S software development for the last 17 years and his teams suc-
cessfully completed projects related to complex data structures and
data processing. His major contributions are in the areas of solution
concept and design, analysis and validation of proposed solutions,
risk analysis, functional analysis, data analysis / data modeling and
business process modeling. From time to time he enjoys taking chal-
lenges in SQL performance improvements. You can reach him at
andrei.toma@era-ehs.com

@ Springer

Empirical Software Engineering

Affiliations

Sarah Sajedi is a cofounder of ERA Environmental Management
Solutions, B.Sc. in chemistry from Concordia University, Canada.
She is the recipient of the Canadian Advanced Technology Alliance
Sara Kirke award for innovation and corporate leadership, and was
a national finalist for the RBC Women Entrepreneurs Sustainabil-
ity Award for work in developing tools for manufacturers to become
more sustainable as well as for implementing sustainable practices
into her organization. She has been a certified ECO Environmen-
tal Professional and educator. Sajedi has been leading a team of
scientists and software engineers for over twenty five years, focus-
ing on big data, automation, and predictive analysis. Contact her at
sarah.sajedi @era-ehs.com.

Kundi Yao' © . Guilherme B. de Padua' - Weiyi Shang - Catalin Sporea? -

Andrei Toma? - Sarah Sajedi?

Guilherme B. de Pddua
g-bicalh@encs.concordia.ca

Weiyi Shang
shang @encs.concordia.ca

Catalin Sporea
steve.sporea@era-ehs.com

Andrei Toma
andrei.toma@era-ehs.com

Sarah Sajedi

sarah.sajedi @era-ehs.com

Montreal, QC, Canada

@ Springer

Department of Computer Science and Software Engineering, Concordia University,

ERA Environmental Management Solutions, Montreal, QC, Canada

http://orcid.org/0000-0002-3756-4673
mailto: g_bicalh@encs.concordia.ca
mailto: shang@encs.concordia.ca
mailto: steve.sporea@era-ehs.com
mailto: andrei.toma@era-ehs.com
mailto: sarah.sajedi@era-ehs.com

	Log4Perf: suggesting and updating logging locations for web-based systems' performance monitoring
	Abstract
	Introduction
	Approach
	Case Study Setup
	Subject Systems and their Workloads
	Experimental Environment

	Case Study Results
	RQ1: How Often do Logging Locations Need to be Updated?
	Motivation
	Approach
	Results

	RQ2: How Well can we Model System Performance (CPU Usage)?1007
	Motivation
	Approach
	Results

	RQ3: How Large is the Performance Influence by the Suggested Logging Locations?
	Motivation
	Approach
	Results

	RQ4: What are the Characteristics of the Suggested Logging Locations?
	Motivation
	Approach
	Results

	RQ5: What are the Root Causes of the Suggested Logging Location Changes?
	Motivation
	Approach
	Results
	Database Query Changed
	Expensive Data Query
	Conditional Filter Related
	Repetitive Invocation
	Properties Changes
	Influence from other Methods in the Call Graph
	Utility Methods

	Static Analysis to Suggest Logging Locations

	Discussion
	Not all Web Requests Need Additional Logging
	How Long do we Need to Test Performance to Suggest Logging Locations?
	Aggressiveness of Updating Logging Locations

	Related Work
	Software Performance
	Software Performance Monitoring
	Performance Modeling
	Performance Regression and Benchmarks

	Software Logging
	Assist in Logging Decisions
	Software Log Evolution

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Conclusion and Future Work
	Future work

	References
	Affiliations

