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Automated Generation and Evaluation of JMH
Microbenchmark Suites from Unit Tests

Mostafa Jangali, Yiming Tang∗, Niclas Alexandersson, Philipp Leitner, Jinqiu Yang, Weiyi Shang

Abstract—Performance is a crucial non-functional requirement of many software systems. Despite the widespread use of performance
testing, developers still struggle to construct and evaluate the quality of performance tests. To address these two major challenges,
we implement a framework, dubbed ju2jmh, to automatically generate performance microbenchmarks from JUnit tests and use
mutation testing to study the quality of generated microbenchmarks. Specifically, we compare our ju2jmh generated benchmarks
to manually-written JMH benchmarks and to automatically generated JMH benchmarks using AutoJMH framework, as well as
directly measuring system performance with JUnit tests. For this purpose, we have conducted a study on three subjects (Rxjava,
Eclipse-collections, and Zipkin) with ∼454K source lines of code (SLOC), 2,417 JMH benchmarks (including manually-
written and generated AutoJMH benchmarks) and 35,084 JUnit tests. As a result, the ju2jmh generated JMH benchmarks consistently
outperform using the execution time and throughput of JUnit tests as a proxy of performance and JMH benchmarks automatically
generated using AutoJMH framework while being comparable to JMH benchmarks manually written by developers in terms of tests’
stability and ability to detect performance bugs. Nevertheless, ju2jmh benchmarks are able to cover more of the software applications
than manually-written JMH benchmarks during the microbenchmarking execution. Furthermore, ju2jmh benchmarks are generated
automatically, while manually-written JMH benchmarks requires many hours of hard work and attention, therefore our study can reduce
developers’ effort to construct microbenchmarks. In addition, we identify three factors (too low test workload, unstable tests and limited
mutant coverage) that affect a benchmark’s ability to detect performance bugs. To the best of our knowledge, this is the first study aimed
at assisting developers in fully automated microbenchmark creation and assessing microbenchmark quality for performance testing.

Index Terms—Performance, Performance Testing, Performance Microbenchmarking, JMH, Performance Mutation Testing
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1 INTRODUCTION

P ERFORMANCE is a crucial non-functional requirement
of software systems. Performance can directly impact

user-perceived software quality while using systems. Per-
formance testing [1] aims to assess several non-functional
attributes of systems, such as the execution duration of a
process, response time, stability, and resource usage. How-
ever, in order to evaluate overall software systems, state-of-
the-art performance testing practices typically involve rela-
tively large-scale and long-running tests [2], which are time-
consuming, difficult to be fully automated, and not easy
to reconcile with continuous integration (CI) practices [3].
To address these issues, several approaches of performance
unit testing, such as performance microbenchmarking, have
been proposed for the precise performance evaluation of
small-scale and isolated source code segments. Performance
microbenchmarking is executed at a similar level of granu-
larity as unit tests, e.g., method level or even a statement
level [4], [5]. The goal of performance microbenchmark-
ing frameworks is to detect performance bugs as early as
possible by, for example, checking and testing each system
build [6]–[8]. Due to the numerous challenges of perfor-
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mance microbenchmarking, such as unreliable results [9],
[10], the need for in-depth knowledge of methodology [11],
[12], and a lack of appropriate tooling [3], [13], [14], sev-
eral performance microbenchmarking frameworks, includ-
ing JMH in the Java ecosystem, have been proposed to
automate performance microbenchmarking.

However, developers still encounter a number of diffi-
culties when implementing performance microbenchmark-
ing. On the one hand, developers struggle to construct
correct microbenchmarks. Prior studies [14], [15] reveal that,
as opposed to JUnit functional tests, only a few open-
source projects use microbenchmarking frameworks to as-
sess performance. The challenges of microbenchmark de-
sign [16] and configuration [17]–[19] (e.g., microbenchmarks
may be “over-optimized” by JIT, resulting in muddled time
measures.) hinder developers from effectively exploiting
performance microbenchmarks [4], [16], [20], [21]. On the
other hand, assuring microbenchmark quality is a signifi-
cant concern. Microbenchmarks can be rendered ineffective
and error-prone due to a variety of causes. For example,
a prior study [5] highlights five problematic JMH practices
which are common in open-source software.

In light of the fact that many projects lack microbench-
marks but do have unit tests [14], [15], we propose automat-
ically deriving performance microbenchmarks from JUnit
tests for performance testing, and speculate that such de-
rived performance microbenchmarks are preferable to using
JUnit tests directly to measure system performance (e.g., by
measuring the execution duration of unit tests, as currently
practiced in some related work [3], [15]). Specifically, we
implement a framework dubbed ju2jmh that developers
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can use to automatically obtain a performance test suite,
without manual development effort. To assuage developers’
concerns about microbenchmark quality assurance (as men-
tioned above) and validate our hypothesis that derived mi-
crobenchmarks are superior to using JUnit tests to measure
system performance directly, we then use mutation testing
to examine our produced microbenchmarks and compare
them to manually-written JMH benchmarks, automatically
generated JMH benchmarks using AutoJMH framework,
and directly measuring the execution time and throughput
of JUnit tests. We design and implement a microbench-
mark evaluation framework dubbed Performance Mutation
Testing (PMT) framework, which includes five performance
mutation operator APIs for reproducing performance bugs
(i.e., inject performance bugs into the source code), based
on five common performance bug patterns highlighted in
recent studies [22], [23]. The framework enables us and
developers to automatically reproduce performance bugs in
any desired source code location and evaluate any specific
performance microbenchmark.

We evaluate the quality of microbenchmark suites gen-
erated from ju2jmh by using PMT, and based on three
projects with ∼454K source lines of code (SLOC), 2,417
JMH benchmarks (2,262 manually-written and 155 gen-
erated using AutoJMH) and 35,084 JUnit tests: Rxjava1,
Eclipse-collections2, Zipkin3.

Our study addresses the following research questions:

– RQ1: How stable are automatically generated per-
formance microbenchmarks?
We use two metrics to assess microbenchmark stabil-
ity, and both reveal that JMH benchmarks generated
by ju2jmh (hereafter abbreviated as ju2jmh bench-
marks) significantly outperform JUnit tests in all
studied cases and are comparable to human-written
JMH benchmarks and AutoJMH benchmarks. Be-
cause ju2jmh benchmarks are fundamentally JMH
benchmarks, the conclusion that ju2jmh benchmarks
are comparable to manually-written JMH bench-
marks is reasonable. However, ju2jmh benchmarks
are generated automatically, while JMH benchmarks
are typically written by developers, therefore our
tool can reduce developers’ effort to construct mi-
crobenchmarks.

– RQ2: Can performance microbenchmarks detect ar-
tificial performance bugs from mutation testing?
Generated ju2jmh benchmarks outperform JUnit tests
and AutoJMH benchmarks in artificial performance
bug detection, but only in some cases outper-
form manually-written JMH benchmarks. However,
ju2jmh benchmarks are able to cover (execute) more
mutants (100%) than manually-written JMH bench-
marks (66%) during the microbenchmark execution,
suggesting that ju2jmh benchmarks can cover more
of the applications. In general, ju2jmh benchmarks
can detect a higher proportion of mutants exclusively
than other tests.

1https://github.com/ReactiveX/RxJava
2https://github.com/eclipse/eclipse-collections
3https://github.com/openzipkin/zipkin

– RQ3: Can performance microbenchmarks detect real
performance bugs?
According to our experiment of a real-world perfor-
mance bug and a similar artificially generated bug,
ju2jmh performs better than JUnit in detecting the
real bug and artificial bug. Furthermore, the artificial
bug and real-world bug affect benchmarks in a very
similar way.

– RQ4: What are the major factors affecting a mi-
crobenchmark’s ability to detect performance bugs?
We identify three common factors that jeopardize a
benchmark’s ability to identify performance bugs: (1)
Too low workload (this applies to generated ju2jmh
and JUnit tests, but not to manually-written JMH
benchmarks). (2) Unstable benchmarks. (3) Limited
mutant coverage as a result of inappropriate execu-
tion times (neither too low nor too high).

In conclusion, we compare our generated ju2jmh bench-
marks with manually-written JMH benchmarks and with
automatically generated JMH benchmarks using AutoJMH
framework, as well as using the execution time and through-
put of JUnit tests as a proxy of performance. The ju2jmh
benchmarks consistently outperform JUnit tests while being
comparable to manually-written JMH benchmarks and Au-
toJMH benchmarks in terms of microbenchmarks’ stability
and ability to detect performance bugs. However, the gener-
ated ju2jmh benchmarks can cover more of the applications
than manually-written JMH benchmarks. In addition, we
automate our approach for creating and assessing ju2jmh
benchmarks, whereas human-written JMH benchmarks re-
quire a considerable amount of human effort. Moreover,
although ju2jmh benchmarks and AutoJMH benchmarks
are both generated automatically, AutoJMH has several
serious restrictions. As a result, our technique successfully
aids developers in the microbenchmark construction, and
microbenchmark quality is assured. To further assess mi-
crobenchmark quality, we also reveal three factors that
affect microbenchmarks’ ability to detect bugs for future
microbenchmark enhancement.

Paper organization
Section 2 introduces background on performance mi-
crobenchmarking, while Section 3 discusses the related
studies on generating, assessing, and improving perfor-
mance microbenchmarks. In Section 4, we present the
overview of our study, which is comprised of two phases
discussed in Section 5 and Section 6, respectively. Section 7
presents the experiments for our study. In Section 8, we
clarify threats to the validity of our study. We conclude our
study and discuss future work in Section 9.

2 BACKGROUND

This section provides an overview of the performance mi-
crobenchmarking in the Java ecosystem and terminology
used throughout this paper.

2.1 Performance Microbenchmarking in Java.
Performance testing [1] aims to assess several non-
functional attributes of systems, such as the execution du-
ration of a process, response time, stability, and resource
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usage. In this study, we focus on unit-level (e.g., method)
performance testing of systems, known as performance mi-
crobenchmarking. In contrast to system-level testing, which
is for assessing the overall performance, and load (or stress)
testing, which is an end-to-end testing approach, perfor-
mance microbenchmarking aims to evaluate small units of
systems, like the throughput of a method, or the perfor-
mance of an algorithm.

Over the past few years, many Java frameworks such
as Caliper [24], JMH [25], AutoJMH [16], or JUnitPerf [26]
have provided microbenchmarking tooling. However, ev-
idence [14] in practice confirms that performance mi-
crobenchmarking is not yet as established as functional
unit testing or system performance testing. Users of these
frameworks must either create their own performance mi-
crobenchmarks from scratch (e.g., JMH benchmarks), auto-
matically generate and run JMH benchmarks by using an ex-
isting tool (e.g., AutoJMH benchmarks), which works only
under certain situations, or scaffold existing microbench-
marks (e.g., JUnitperf that applied on JUnit test cases). Only
a few open-source projects deploy any microbenchmarking
frameworks, and the projects often use JUnit functional tests
repeatedly to evaluate performance [14], [15]. Specifically,
they execute JUnit tests for a specific number of times or a
duration for an effective measurement of elapsing time or
throughput.

2.2 Java Microbenchmarking Harness (JMH)

Due to the numerous challenges of performance mi-
crobenchmarking, such as unreliable results [9], [10], the
need for in-depth knowledge of methodology [11], [12],
and a lack of appropriate tooling [3], [13], [14], several per-
formance microbenchmarking frameworks, including JMH
in the Java ecosystem, have been proposed to automate
performance microbenchmarking. JMH is a framework de-
veloped under the OpenJDK umbrella that enables users to
design and run repeatable performance microbenchmarks.
JMH, similar to JUnit, uses Java annotations to prepare the
testing environment for evaluating specific payloads (i.e., a
self-contained program that wraps the code segment that
is essential to system performance [16]) through several
metrics, such as the throughput of a method. A JMH bench-
mark class can contain several benchmarks, each of which is
tagged by an annotation @Benchmark and is usually designed
to test the methods of related source code classes.

Figure 1 depicts an example of a JMH benchmark class
from Eclipse-collections project. The methods with an-
notations @Setup and @TearDown are used to prepare and
clean up the microbenchmarking environment respectively
(equivalent to JUnit test fixtures), while the method with
@Benchmark (that is equivalent to @Test in JUnit) is used to
evaluate the performance of a functionality of MaxByIntTest
class. Benchmark fixtures can be optionally executed in
either the class scope or the benchmark scope to prepare or
clean up microbenchmarking environment. Methods tagged
by @Setup , such as the method setUp() in the Figure 1,
are executed before running the benchmarks (tagged by
@Benchmark), and similarly, methods tagged by @TearDown,
like the method tearDown() in the figure, are executed after
running the benchmarks.

Test case

Test suite

Test fixture

Figure 1: A JMH benchmark example from
Eclipse-collections project

JMH benchmarks can be designed to measure perfor-
mance, such as throughput or execution time, with flex-
ible and different configurations. However, a single JMH
benchmark iteration can encompass repetitive workload
executions. As a result, to facilitate the evaluation of mi-
crobenchmark quality, we use workload throughput over
a particular time period (designated “measurement time”
and set to 1 second by default, i.e., @Measurement(time =1))
as a metric for further study, rather than focusing on the
details of repetitive control flow in the benchmarks. Ac-
cordingly, the execution time of benchmarks is calculated by
average execution time = 1

throughput . In our experiments,
specifically, the metric is the number of operators executed
per second for a microbenchmark.

In general, JMH benchmarks have more advantages than
JUnit tests for evaluating performance. As previously men-
tioned, one common performance testing practice is to run
JUnit in a loop to measure performance [14], [15]. Although
JMH benchmarks also use a loop to execute the payload re-
peatedly, the elegant features provided in JMH benchmarks
lead to more accurate performance measurement results. For
example, JMH benchmarks perform warm-up iterations to
stabilize the system in order to avoid data noise caused by
the execution environment, can have benchmark fixtures to
prepare and clean-up the testing environment, and easily
handle running benchmarks through multiple iterations,
threads, and forks.

2.3 Mutation Testing

Mutation testing is a technique that aims to assess and
improve the efficacy of test suites in discovering faults [27].
This technique reproduces artificial bugs through several
predefined rules (i.e., mutation operators) that help in mea-
suring the efficiency of a test suite in detecting them [22].
Mutation testing for performance purposes, so-called per-
forming mutation testing, is a novel practice that raises

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3188005

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Concordia University Library. Downloaded on July 05,2022 at 23:40:04 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/eclipse/eclipse-collections
https://github.com/eclipse/eclipse-collections


4

many open challenges and questions to address. Recent
studies [3], [22] deploy mutation testing to address the
efficiency of performance benchmarks in discovering per-
formance bugs.

2.4 Detecting Real-world Performance Bugs

A performance bug could be detected by the covering
performance tests by searching for degradation in their
test results. For example, if we measure throughput of the
covering performance test and the throughput is decreased
significantly enough (e.g., 1%, 5%, and 10%), we consider
that the test detects some performance bugs. For mutation
testing, the test is run on both the system version with
and without artificial performance bugs, and the results
from the two versions are compared to determine whether
performance degradation exist or not (i.e., the mutant is
killed or not). For real-world performance bug detection,
the test is run on the parent system that is assumed to
contain a bug and the child system with new source code
changes where the bug fixes are applied. After comparing
two versions of test results, we can detect the existence of
the performance degradation as well (i.e., the real-world
performance bug is presented in the parent system).

3 RELATED WORK

In this section, we provide an overview of the related work
through three different perspectives.

Performance microbenchmarking. Recent studies deem
that performance testing frameworks should concentrate on
integrating with standard CI tooling and facilitating effec-
tive testing construction techniques [3], [15], [28]. Perfor-
mance microbenchmarking is a software solution for short-
term performance testing by integrating CI techniques,
however, it is less established and commonly used than
unit testing or system performance testing. Only a few
open-source projects use performance unit testing frame-
works, whereas many others rely on JUnit functional tests
to assess performance [14], [15]. Design [16] and config-
uration [17]–[19] challenges (e.g., microbenchmarks may
be “over-optimized” by JIT, resulting in muddled time
measures.) hinder developers from effectively exploiting
performance microbenchmarks [4], [16], [20], [21]. To reduce
difficulties, Ding et al. [8] utilize JUnit tests to assess the
performance properties of systems. Rodriguez-Cancio et al.
[16] propose AutoJMH, an automated approach that can
take one source code segment and one covering unit test
as input and generates a full JMH microbenchmark for that
segment [16]. However, AutoJMH is limited to manually
configuring specific single statements and has preconditions
that prevent developers from testing a large portion of
the source code. In addition, the tool is obsolete because
it has not been maintained or updated since August 12,
2016. In this study, we implement an automated tooling
framework, ju2jmh, for widely exploiting JMH performance
microbenchmarks.

Empirical studies on performance bugs. Performance-
related bugs are well-known as a threat to users’ positive
perception of software systems. Moreover, since perfor-
mance bugs are usually difficult to reproduce, it takes a long

time to detect and fix them, such as 1,075 days on average
to discover and fix 36 performance bugs in Jin et al. [29].
Nistor et al. [13] disclose that, compared to reasoning about
functional bugs, developers have little support for reasoning
about performance bugs. In addition, more experienced
developers are required to address performance bugs [30].

Recent studies have identified commonly reported per-
formance bugs, which can serve as a guideline for repro-
ducing and fixing bugs. Radu and Nadi [23] provide a data-
set, NFBugs, including eight performance bug patterns from
a total of 138 non-functional bug fixes in 67 open-source
projects in Java or Python. Delgado-Pérez et al. [22] review
prior empirical studies on performance bugs [31]–[36] and
summarize seven performance anti-patterns. Laaber and
Leitner [3] insert slowdowns (i.e., Thread.sleep(...)) into
the most used API(s) of subjects to pause execution of the
program and to simulate the presence of a performance bug.

Assessing the quality of performance tests. Leitner and
Bezemer [15] and Stefan et al. [14] study Java open-source
systems in terms of the quality and quantity of systems’
JMH benchmarks. Recent studies [3], [37], [38] claim sta-
bility is a crucial quality attribute of performance tests. In
addition, prior work [3], [22] deems the bug detection ability
of performance tests as another essential quality factor.
Ding et al. [8] discuss the ability of readily available unit
tests in detecting reported performance issues. As a result,
they reveal eight factors to make a (unit) test effective at
discovering performance bugs in a release pipeline.

Recent studies [3], [22] deploy mutation testing to ad-
dress the ability of JMH microbenchmarks in discovering
reproduced performance bugs. Laaber and Leitner [3] pro-
pose an approach to assess JMH microbenchmarks in dis-
covering injected slowdowns. Delgado-Pérez et al. [22] use
seven performance anti-patterns as means to assess JMH mi-
crobenchmarks in discovering performance bugs. However,
both studies have limited flexibility with several manual
actions that hinder followers from effectively performing
their approaches in practice. In this study, we propose the
first performance mutation framework to assess the quality
and efficiency of performance tests automatically.

4 STUDY OVERVIEW

This section provides an overview of our study methodol-
ogy4, which primarily consists of two phases: (1) generating
microbenchmarks using ju2jmh5. (2) evaluating microbench-
marks using mutation testing. In the next two sections, we
discuss each phase in detail.

Figure 2 depicts an overall workflow of our method-
ology. To prepare our experiment, we begin by searching
through test packages to extract desired JMH microbench-
marks and JUnit test suites, as well as setting up the
performance (unit) testing environment. We then deploy
ju2jmh to generate JMH microbenchmarks from JUnit test
suites. In addition, we also deploy AutoJMH framework to
generate JMH benchmarks for performance testing evalu-
ation. Given the produced microbenchmarks, we use our

4The data and scripts of our study are shared at https://github.
com/senseconcordia/JU2JMH-PMT-TSE-2021.

5The tool is publicly available at: https://github.com/alniniclas/
junit-to-jmh/
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PMT framework to inject performance bugs into the source
code, and evaluate the microbenchmarks’ quality in terms
of result variability and bug-detection ability. To further
study the microbenchmarks’ ability to detect performance
bugs, we also investigate the factors that may affect the
microbenchmarks’ detection of them.

JMH Benchmarks

JUnit Test Suites
Finding
Tests

ju2jmh

PMT 

Framework

Source Code



System

Mutants

Evaluation

Test 

Packages

ju2jmh Benchmarks

AutoJMH Benchmarks

Figure 2: Our methodology to address the quality of
performance microbenchmarks

Prior to beginning an experiment, preparation is needed.
It necessitates the extraction of JMH microbenchmarks and
JUnit test suites from the studied subjects for subsequent
analysis.

Human-written JMH microbenchmarks. JMH is a Java
microbenchmarking framework that has shown promise
in properly scaffolding payloads [16]. Existing JMH mi-
crobenchmarks of systems are usually developed under the
careful effort of the same developers who designed the
system. Since designing JMH benchmarks necessitates deep
knowledge of both system and the framework, developers
are hesitant to exploit and maintain them. In this study, we
have investigated existing human-written JMH microbench-
marks of systems. After building the systems, an executable
jar is created by automated building tools to assist testers
in executing JMH benchmarks of the system.

JUnit test suites. JUnit tests are designed to assess
whether unit elements of the software system are func-
tionally correct. Generally, JUnit tests do not tend to help
measure the performance, as they are highly vulnerable
to noisy environments. Ding et al. [8] utilize JUnit tests
to evaluate the performance of tests. Therefore, to assess
the performance of JUnit tests in our study, we measure
test throughput by repeatedly executing unit tests for a
given duration (e.g., one second). To do so, we deploy JUnit
@Rule to monitor individual test execution and quantify the
elapsed time in nanoseconds, allowing us to determine the
throughput of a test method (i.e., @Test). In our experi-
ments, we use a nested loop to measure the throughput
of a JUnit test method 30 times to serve as a baseline for
comparing different tests. The inner loop is used to measure
the throughput of the test by executing the test as many
times as the specific duration is reached. The outer loop is
used to measure the throughput of the test multiple times,
providing multiple data-points for the test.

AutoJMH microbenchmarks. Rodriguez-Cancio et al.
[16] propose AutoJMH, an automated approach that can take
one source code segment and one unit test that covers the
segment as input and generates a full JMH microbenchmark
for it [16]. Only single statements can be supplied as the
source code segment input for AutoJMH and the input
statements should be executed by at least one unit test.

The JMH benchmarks generated by AutoJMH, also known
as AutoJMH benchmarks, require a collection of variables
as input and the variable values are extracted from the
execution of covering unit tests from which the benchmarks
were derived. The purpose of AutoJMH benchmarks is
to measure the performance of input statements without
running the entire program. In addition, the tool is obsolete
because it has not been maintained or updated since August
12, 2016.

Regarding the similarities of AutoJMH and ju2jmh, they
both use JUnit tests as input and then automatically gener-
ate JMH benchmarks. However, AutoJMH and ju2jmh have
major differences. As defined above, AutoJMH executes
JUnit tests for one time to gather required data for building
JMH benchmarks, while ju2jmh benchmarks are designed
to repeatedly execute JUnit tests, as payload, to measure
their performance. Furthermore, AutoJMH benchmarks ex-
ecute input statements without executing the entire pro-
gram, while ju2jmh benchmarks execute input statements
(i.e., JUnit tests) by actually executing the program. Lastly,
AutoJMH requires manually specifying single statements as
input for JMH benchmark building, which means that the
number of generated JMH benchmarks is limited by the
number of input statements. However, ju2jmh benchmarks
are built on existing JUnit tests of programs, and the number
of JUnit tests of a well-known program is usually quite
large. As a result, in our experiment, the number of JMH
benchmarks generated by AutoJMH is significantly lower
than ju2jmh, which results in a much lower coverage of the
program for AutoJMH.

5 GENERATING MICROBENCHMARKS USING
ju2jmh
To demonstrate the feasibility of generating JMH bench-
marks from unit tests, we implement a tool dubbed
ju2jmh that can automatically generate ready-to-execute
JMH benchmarks from JUnit4 test suites. The main goal of
ju2jmh’s design is to be able to generate functionally correct
benchmarks from a wide variety of real-world unit tests
while minimizing performance overhead and complexity.

ju2jmh

 <<analyzes>>

<<generates>>

UnitTestClass

testCase1

testCase2

_Benchmark


UnitTestClass (copy)

testCase1 (copy)

testCase2 (copy)

testCase1_benchmark

testCase2_benchmark

<<executes>>

<<executes>>

Figure 3: Overview of the ju2jmh approach and its inputs
and outputs

Figure 3 depicts the basic benchmark generation proce-
dure of ju2jmh. The procedure consists of two main steps:
(1) Analysis step: the ju2jmh tool analyzes the existing
unit test classes in order to identify individual JUnit test
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public class MultiReaderFastListAsReadUntouchableTest {

  @Override
  @Test
  public void serialization() {
     MutableCollection<Integer> collection = this.getCollection();
     Assert.assertFalse(collection instanceof Serializable);
  }

  public static class _Benchmark extends JU2JmhBenchmark {

    @org.openjdk.jmh.annotations.Benchmark
    public void benchmark_serialization() throws Throwable {
      this.createImplementation() ;
      this.runBenchmark(this.implementation::
           serialization,(this.description("serialization"));

    }

 
    MultiReaderFastListAsReadUntouchableTest implementation;

    @java.lang.Override
    public void createImplementation() throws Throwable {
      this.implementation = new 
              MultiReaderFastListAsReadUntouchableTest();
    }

    @java.lang.Override
    public MultiReaderFastListAsReadUntouchableTest
                  implementation() {
      return this.implementation;
    }
  }
}

ju2jmh

public class MultiReaderFastListAsReadUntouchableTest {

  @Override
  @Test
  public void serialization() {
     MutableCollection<Integer> collection=this.getCollection();
     Assert.assertFalse(collection instanceof Serializable);
  }
}

an
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yz
es

generates

 executes 

benchmark
fixture

Original JUnit test Generated ju2jmh benchmark

benchmark
case

Copied from 

the JUnit test

ju2jmh
benchmark
runner

Figure 4: A real-life generated ju2jmh benchmark from Eclipse-collections,
MultiReaderFastListAsReadUntouchableTest.serialization(), and how it actually performs JMH rules

methods and other relevant test features; (2) Benchmark
generation step: the tool generates JMH benchmarks with
each benchmark method responsible for repeatedly execut-
ing (a copy of) a single unit test method as its payload.
For example, as shown in Figure 3, if ju2jmh is applied to
a unit test class called UnitTestClass, which contains two
unit test methods named testCase1 and testCase2, ju2jmh
first generates a copy of the UnitTestClass class, and then
generates a JMH benchmark class called _Benchmark that is
placed within this copy. The new benchmark class contains
two JMH benchmark methods, testCase1_benchmark and
testCase2_benchmark, whose responsibilities are to repeat-
edly execute testCase1 and testCase2 as their payloads.

In the analysis step, ju2jmh first identifies the individual
JUnit test methods that are expected to be converted
to JMH benchmarks. Next, ju2jmh detects any other
features of the test methods that are required for
proper execution, such as fixture methods, test rules,
and expected exceptions, all of which should be handled
explicitly by the generated benchmarks. The analysis
is performed using Apache Commons BCEL6 to statically
inspect the bytecode of all relevant JUnit test classes
(specified as input for the tool) in order to find test
methods (annotated by org.junit.Test), fixture methods
(annotated by org.junit.Before, org.junit.After,
org.junit.BeforeClass, or org.junit.AfterClass),
test rules (annotated by org.junit.Rule or
org.junit.ClassRule), expected exceptions (extracted
from the arguments of the org.junit.Test annotation), and
ancestor classes containing any of the above.

6A Java bytecode analysis tool from The Apache Software Founda-
tion: https://commons.apache.org/proper/commons-bcel/

In the benchmark generation step, ju2jmh uses the Java-
Parser7 library to parse Java source code and generate the
Abstract Syntax Tree (AST). This step consists of the follow-
ing activities: (1) copying the AST of each relevant JUnit test
class, (2) generating the AST for a corresponding _Benchmark

class that is customized based on the information gathered
in the analysis step, (3) inserting the generated benchmark
class into the AST of the copied JUnit test class as a static
member class, and (4) printing the results via a Java source
file. The generated benchmark class contains a JMH bench-
mark method for each of the JUnit test methods in the JUnit
class.

Each generated benchmark inherits the same superclass,
which implements the functionality required to execute
JUnit tests properly through the benchmark. The ju2jmh
benchmark superclass contains methods to help instantiate
and access a JUnit test class instance, methods to invoke
fixture methods of JUnit test class (including all fixture
methods from the superclasses), methods to apply all rules
of the JUnit test class and its superclasses, and a benchmark
execution method to execute the JUnit test methods. In
the cases with the expected exceptions, the ju2jmh bench-
mark superclass executes a different benchmark execution
method with the expected exceptions as an additional pa-
rameter.

In terms of the way ju2jmh works, class copies are
preferred over direct accessing the classes due to subtle
considerations. First, in the case where the tool creates a
copy of the JUnit test class rather than directly referencing
the original class, this processing allows future versions

7A tool for analyzing, transforming and generating Java codebase:
https://javaparser.org/
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of ju2jmh to make changes to the JUnit test methods in
order to improve the generated benchmarks, for example
by preventing optimizations such as dead code elimination.
Moreover, rather than making the generated benchmark
class a separate top-level class, it is inserted as a static
member of the copy to reduce the risk of naming conflicts
and to keep the benchmarks organized closely with the tests
they use as payloads.

Our approach ju2jmh has been implemented in Java
and integrated into the Gradle build system. JavaParser and
Apache Commons BCEL are the primary libraries used for
the unit test analysis and benchmark generation. The gen-
erated benchmarks are dependent on JMH [25] and JUnit48

libraries.

6 EVALUATING MICROBENCHMARKS USING MU-
TATION TESTING

In this section, we present the workflow of our PMT
framework for evaluating unit-level performance tests (mi-
crobenchmarks). First, the framework implements and em-
ploys five performance mutation operators that are derived
from common real-world performance bugs [3], [12], [22].
Second, it automatically injects performance bugs (based
on the five mutation operators) into the analyzed software
system and generates performance mutants (i.e., artificial
performance bugs). Then, the generated performance mu-
tants are executed against the to-be-evaluated performance
microbenchmarks. Furthermore, to better classify between
an actual slowdown (i.e., a performance bug) and a perfor-
mance fluctuation, we leverage hierarchical re-sampling [9],
[17] and two statistical measures, namely, Relative Standard
Deviation (RSD) [17], [37], [38] and Relative Confidence Interval
of means (RCI) [9], [17]. Last, the PMT framework computes
the mutation score, which is defined as the proportion of
the killed (detected) performance mutants, to assess the
effectiveness of performance microbenchmarks in detecting
performance bugs.

Calculation of
Mutation ScoreGeneration Validation

 Mutation
Operators Unit Tests

Performance
Mutants

Source
Code

Valid
Performance

Mutants

Performance
Benchmarks

Figure 5: Overview of our Performance Mutation Testing
framework.

6.1 Designing Mutation Operators for PMT

Our study aims at assisting developers in alleviating the
challenges of constructing and evaluating performance tests
rather than detecting performance bugs. To achieve our
study goal, we use PMT to inject artificial performance
bugs for further analysis. We evaluate performance tests by
comparing the test results on the systems with and without
performance bugs. Performance tests can help developers
reveal the effects that mutants have on the systems, detect

8A framework to write repeatable Java unit tests: https://junit.
org/junit4/

performance bugs and complement the omission of static
tools that may treat some code as syntactically correct but
cannot reveal its negative impact on performance.

A PMT framework requires specialized mutation op-
erators for generating performance mutants (i.e., software
versions with artificial performance bugs or slowdowns). In
this study, we expose five performance mutation operators
based on previous research on summarizing performance
anti-patterns [3], [22], [23], which we then implement in our
PMT framework.

In particular, Delgado-Pérez et al. [22] review prior em-
pirical studies on performance bugs [31]–[36] and summa-
rize seven performance anti-patterns, of which we employ
two patterns for designing our performance mutation op-
erators and exclude five others (three memory-related bug
patterns and two for future work). Radu and Nadi [23]
present the NFBugs dataset, which contains eight perfor-
mance bug patterns discovered after analyzing 36 perfor-
mance bug fixes from a total of 138 non-functional bug
fixes in 67 open-source Java or Python projects. We adopt
three performance anti-patterns from NFBugs and leave the
remaining five as future work. Furthermore, Laaber and
Leitner [3] propose inserting Thread.sleep(...) into source
code to slow down program execution for performance
mutation testing, which we also accept for the design of
our performance mutation operators. We selected the five
performance bug patterns because of the high availability
of source code statements that a pattern can be applied
to. Moreover, the five patterns do not require manipulating
multiple lines of source code, and generated bugs scarcely
tend to endanger the overall functionality.

In summary, we introduce a total of five performance
mutation operators based on prior studies on analyzing
performance bugs and implement them in our PMT frame-
work. Such performance mutation operators are not specific
to certain software systems and can be applied to any Java
system without manual effort. Moreover, the PMT frame-
work is extensible, allowing for the easy integration of new
performance mutation operators.

Below we describe the five performance mutation oper-
ators in detail, with a summary in Table 1.

– Primitive to Wrapper (PTW). Replacing a primitive
type (e.g., long) with its corresponding wrapper class
(i.e., Long) can lead to performance bug [23], since
primitive types are stored on the stack and provides
faster access. We include the built-in wrapper classes
for all primitive types, i.e., Byte, Boolean, Short,
Integer, Long, Float, Double, and Character.

– StringBuilder to StringBuffer (STS). Replac-
ing a java.lang.StringBuilder object with a
java.lang.StringBuffer object can result in perfor-
mance bug because StringBuilder is not synchro-
nized [23]. Apart from the difference in performance,
functionalities of these two classes are equivalent.
Therefore, we perform the operator only on method-
level to prevent propagation of changes.

– Enhanced For Loops (EFL). Replacing a traditional
for-loop with a for-each loop to iterate over an
array or a Collections class can introduce perfor-
mance bug because of extra calls. The semantics of
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the code is usually unaffected by such replacements.
However, if the loop counter is used in the for-loop,
the replacement may cause performance bug due to
the additional cost of calculating it.

– Swap of Operands in Condition (SOC). Reordering
the two operands in a compound OR condition if
the left operand is a variable or a Boolean literal
(i.e., True and False), and the right operand is a
method invocation. Forcing the evaluation of the
right operand (i.e., a method invocation) by placing
it as the left operand in a compound OR condition
may introduce slowdown since the method invo-
cation may not be executed originally as the right
operand [22].

– Simulation of Heavy-Weight Operations (HWO).
Injecting a delay (e.g, Thread.sleep(t)) can slow
down the program execution. In our study, we con-
sider injecting a delay as the first statement of each
JMH microbenchmark (annotated by @benchmark).
We chose the first statement as the candidate injec-
tion location since we expect to see that the delay is
executed definitively, i.e., the injected delay cannot
be affected by the data-flow and control-flow for
the code in this method. For example, if a delay is
injected into a branching statement, the delay may
never be executed depending on the branching con-
ditions. The HWO has been used in prior studies [3],
[22] to simulate slowdowns, however, it does not
represent real-world performance bugs. Neverthe-
less, we believe the HWO complements the other
mutation operators based on real-world performance
bugs and thus include HWO in this study.

6.2 Generating and Validating Performance Mutants
The PMT framework parses the source code of a target
system into Abstract Syntax Trees (ASTs) and looks for
opportunities to apply the five performance mutation oper-
ators on the parsed ASTs. For each applicable AST location
and each mutation operator, the PMT framework generates
one performance mutant. For example, the EFL mutation
operator can be applied to a subset of traditional for-loop
in one system, in Rxjava, the PMT framework finds 682
applicable locations and generates a total of 62 performance
mutants.

Note that if a mutant is killed by any functional test, it is
an invalid performance mutant since it breaks functionality.
The system’s regular behavior could be disrupted by the
presence of such mutants, which leads to the system’s
performance not being properly measured. Therefore, in
this study, we only consider performance mutants that do
not change system functionality and require performance
tests to detect. As a result, we introduce a validation step
in the PMT framework: All the generated performance
mutants are executed against the functional unit tests and
are excluded from the further step (i.e., calculating mutation
score) if one cannot make all the functional tests pass.

6.3 Calculating Mutation Score
Relying on the purpose of mutation testing in perfor-
mance that is introducing performance bugs deliberately, we

looked over the benchmark’s results against a valid mutant
to find significant differences. Recent studies [3], [22] have
been advocating statistical hypothesis tests (e.g., Wilcoxon
rank-sum test) to label a significant difference in results as
a performance bug, slow down, or the presence of artificial
bugs. However, prior studies [37] concluded that testing
with Wilcoxon rank-sum tests is not a suitable vehicle for
detecting performance degradation in cloud environments
due to high false-positive reported.

To better classify between an actual performance slow-
down and a performance fluctuation, we leverage hierar-
chical re-sampling [9], [17] and a statistical measure, i.e.,
Relative Confidence Interval of means (RCI) [9], [17].

For a benchmark that covers and executes any of gener-
ated performance bug, the PMT framework deploys pa [39]
to estimate the throughput’s RCI (of before and after the
bug injection) with bootstrap (i.e., re-samples) [40], [41]
using 10,000 bootstrap iterations [42]. Respectively, the size
of a performance bug can be defined as [1− UpperRCI ]
(in %), which reflects the effectiveness of mutant against
the benchmark. If the bug size is significant enough (e.g.,
≥ 5%), we can consider that the benchmark could detect
the injected performance bug (i.e., a killed mutant).

Last, the PMT framework calculates the mutation score
of performance microbenchmarks as the percentage of the
killed performance mutants. The calculated mutation score
helps evaluate the quality of one or a group of microbench-
marks. The microbenchmarks’ quality (and efficiency) in
discovering bugs increases as their mutation score rises.

One of the advantages of mutation testing is to find
deficiencies in tests and improve them, and improved tests
can be further utilized to detect real-world bugs [43]. That
is, we use artificial performance bugs to build and enhance
the tests, and such tests could be used in the future to
detect real-world performance bugs. If a performance test
can detect an artificial performance bug, it is more likely to
detect a real-world version of that bug.

6.4 Preliminary Analysis of PMT

To investigate the impacts of the five mutation operators,
we devise a preliminary analysis based on five JMH bench-
marks. We define the hitting_count as the total number of
times that a benchmark executes (hits) a mutant statement.
Furthermore, the hitting_ratio is the total number of times
that a mutant statement is executed per second.

To investigate how large the effect of each mutation
operator is when increasing hitting_ratio, we designed
five JMH benchmarks. Each related benchmark is executed
for 20 iterations against original source code and mutant
version five times, yielding 100 data points containing mea-
sured throughput for one second. If differences between
original results and mutant results increase, we assume that
the effect of the performance bug is increased.

Figure 6 presents box plots of the five benchmarks’
results for original and mutant executions, across increasing
the hitting_ratio. To study the difference between the orig-
inal microbenchmark execution and the microbenchmark
executions after bug injections, we present the upper bound
of estimated RCI in Table 2. The upper bound of RCI reflects
the minimum performance degradation caused by bugs.
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Table 1: Examples of the five mutation operators.

Operator Conditions Example

PTW
Candidate expression should be a variable from any
primitive types; i.e., byte, boolean, short, int,
long, float, double, and char.

- return this.count;
+ return ((Long)(this.count)).longValue();

(a) Counter.java (Commit: #8948b46, Eclipse-collections)

STS
This operator should manipulate one method at a time
to prevent propagation of changes.

- StringBuilder result = new StringBuilder();
+ StringBuffer result = new StringBuffer();

...
return result.toString();

(b) QueryRequest.java (Commit: #4fb8d5a, Zipkin)

EFL
Candidate loop should be a traditional for-loop that
contains a loop counter.

int i = 0;
- for (;i < subscribers.length; i++) {

+ for (Subscriber<? super R> o :subscribers){
+ i = subscribers.getIndexOf(o);

...}

(c) ParallelMap.java (Commit: #0df952e, Rxjava)

SOC

1) The left operand should be a variable or a Boolean
literal.
2) The right operand should be a method invocation
that never return Null.

- if (done || emitter.isCancelled())
+ if (emitter.isCancelled() || done)

(d) FlowableCreate.java (Commit: #0df952, Rxjava)

HWO This pattern is not subject to any conditions.

+ Thread.sleep(0,1);
...

return TreeBag.newBag();

(e) ImmutableEmptyBag.java (Commit: #8948b46,
Eclipse-collections)

In general, for all five mutation operators, when we
increased hitting_ratio, differences between original re-
sults and mutant results become more significant (the upper
bound of RCI decreases). However, we also observed that
the RCI upper bound of HWO (0.824) for 106 in Table 2
is greater than 105 (0.771), indicating that this conclusion
may not be applicable to a very high hitting_ratio for a
certain operator and the results may be limited by some
external factors, such as overheads and variations occur
due to hardware specific limitations. When hitting_ratio is
lower than 103 times, differences are not significant in PTW,
STS, and EFL with less than 1% performance degradation in
all cases. On the other hand, in SOC and HWO, differences
are significant in all hitting_ratio. In SOC and HWO,
hitting_count is fixed while hitting_ratio is increased.
This conveys that the effect of the two operators is high,
even with one execution.

To summarize, when a benchmark executes a buggy
statement (i.e., mutant statement) more times, the observed
difference in results generally increases. In addition, differ-
ences are significant in all hitting_ratio in SOC and HWO.

7 EMPIRICAL STUDY

In this section, we describe our empirical study to test our
hypothesis that the derived performance microbenchmarks

Table 2: The upper bound of RCI for the five mutation
operators with the increasing of hitting_ratio.

Operator
Hitting ratio

1 10 102 103 104 105 106

PTW 0.999 0.999 0.998 0.997 0.957 0.736 0.379
STS 1.0 1.0 0.998 0.990 0.932 0.959 0.687
EFL 0.997 1.0 0.998 0.998 0.986 0.967 0.920
SOC 0.843 0.848 0.847 0.847 0.854 0.840 0.826
HWO 0.878 0.877 0.864 0.820 0.800 0.771 0.824

from ju2jmh are preferable to using JUnit tests directly
as performance proxies. Furthermore, we compare our
derived microbenchmarks to human-written microbench-
marks to evaluate if the derived ones are superior than
human-written ones. Moreover, we compare our derived
microbenchmarks with those microbenchmarks automati-
cally generated by AutoJMH 9 to evaluate if ju2jmh outper-
forms the existing framework.

7.1 Study Subjects
In this section, we introduce the three study subjects in-
volved in this study. We experimented and evaluated our

9https://github.com/DIVERSIFY-project/autojmh-source-code
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Figure 6: Preliminary analysis of the five mutation operators. Each of paired boxes contains obtained 100 data points for
two cases of original source code executions and mutant executions, from each of five designed JMH benchmarks, across
increasing hitting_ratio. Each box contains 100 data points obtained from a relevant benchmark. Black boxes represent

data from original source code executions, and white boxes represent data from mutant executions.

two frameworks, i.e., ju2jmh and PMT, on three open-source
Java projects, Rxjava, Eclipse-collections, and Zipkin,
which have readily available JUnit test cases and JMH
microbenchmarks. The selected three open-source projects
are well-known, well-maintained, and were widely studied
in prior studies on performance microbenchmarking [3], [5],
[15], [17], [22], [37]. In addition, a recent study [5] lists the
three subjects among the top 25 projects with the highest
number of JMH micro-benchmarks.

Table 3 describes the detailed information of our stud-
ied subjects: the studied version (“Version”) (i.e., the most
recent version at the time our study began), the extracted
metadata from Github including the numbers of stars (col-
umn Stars) and the number of contributors (column Contr.),
the number of the source lines of code (column SLOC),
the total number of JMH benchmarks (column # JMH) and
selected JUnit test cases (column # JUnit).

Table 3: Overview of the studied subjects.

Version Stars Contr. SLOC # JMH # JUnit

RxJava 3 44.7k 277 311,975 1,217 9,825
Ec-collections 10.4.0 1.7k 88 135,017 986 24,758
ZipKin 2.7 14.4k 145 7,467 59 501

7.2 Experiment Settings

We deployed ju2jmh on three subjects’ JUnit test suites to
build 171, 366 ju2jmh benchmarks, of which 35, 084 were
evaluated in this study, accounting for 48% of total 72, 430
tests evaluated. Our PMT framework analyzed a total of
∼454K SLOC and generated ∼149K artificial performance
mutants, each of which was executed in a single position
of the source code. During the validation procedure, ∼99%
of the generated mutants were recognized as possibly valid
mutants.
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Table 4: Overview of the selected mutants and covering tests that are involved in our experiment.

Mutation Operator
RxJava Eclipse-collections Zipkin

# Mutants JMH ju2jmh* Auto.† # Mutants JMH ju2jmh* Auto.† # Mutants JMH ju2jmh* Auto.†

PTW 42 147 3074 42 18 121 418 18 30 21 119 30
STS 2 0 205 2 11 0 55 11 2 0 31 2

HWO 9 193 337 9 9 44 1226 9 2 6 21 2
EFL 8 121 573 8 8 0 174 8 6 11 33 6
SOC 5 0 10 5 3 8 132 3 0 0 0 0

Total 66 461 4199 66 49 173 2005 49 40 38 204 40
* equals to the number of JUnit tests
† AutoJMH benchmarks that is equal to the number of Mutants

Eclipse-collections includes a significant number of
JUnit tests that take roughly four months to run once; as a
result, we randomly selected ∼15% of them for examination
while studying all tests from two other subjects. Afterward,
in order to to have a fair and feasible evaluation approach,
we selected a subset of the generated mutants with a wide
variety of characteristics while considering all possible tests
that cover them. To increase the chance of evaluating more
tests against a specific mutant, we selected each mutant
from the set of a class’s mutants in different packages of the
source code, as well as selecting mutants that are covered
by more JMH benchmarks and ju2jmh/JUnit tests.

Table 4 provides an overview of the mutants and tests
involved in our measurements. For each of five designed
mutation operators and across the three study subjects, we
present the number of selected mutants (column # Mutants),
all contained JMH benchmarks (column JMH), ju2jmh/JUnit
tests that cover any of the mutants (column JUnit/ju2jmh),
and generated AutoJMH benchmarks (column Auto.).

Our study establishes three performance oracles: (1) If
there is no source code update, the performance tests results
should remain relatively unchanged; (2) If the existence of
a performance bug is confirmed and covered by a per-
formance test, there should be a variation in the testing
results and such variation should be consistent with the
characteristics of the performance bug; (3) If a mutation
is injected and covered by a performance test, the testing
results should vary, and the magnitude of the results should
follow the same trend as the mutation triggered times.

7.3 Execution environment

To perform the execution procedure, we benefited from
the power of cloud computing resources as a real-world
environment. To have a consistent measurement process, for
all the experiments in this study, we deployed c2-standard-
4 (4 vCPUs, 16 GB memory) instances provided by Google
Cloud10. Instances are run on Debian GNU/Linux 10 (buster)
and OpenJDK 1.8. In total, our experiment consists of 99, 406
measurements, each containing 30 data points measured,
i.e., each data point is the number of executions of one
JMH microbenchmark case (annotated by @benchmark) in
one second. It took ∼1656 machine hours to complete all
the experiments in this study.

10https://cloud.google.com/

7.4 Results

We aim to answer three research questions. For each RQ, we
present the motivation to answer the RQ, our approach to
addressing the RQ, and the corresponding results.

RQ1: How stable are automatically generated perfor-
mance microbenchmarks?

Motivation
A very first question arising while adopting a performance
microbenchmarking is whether microbenchmarks (JMH,
AutoJMH, JUnit, or microbenchmarks from ju2jmh) are sta-
ble enough to detect meaningful variations in microbench-
marking results. In recent studies, non-determinism has
been identified as the main barrier to obtaining repeat-
able measurements in performance microbenchmarking. If
a performance microbenchmark is not stable enough, it can
report deceptive variations in microbenchmarking results
when there are not any. Various tools and techniques aim
at minimizing the effect of non-determinism at each level of
abstraction [9], [44], [45]. JMH has recently become popular
with achieving relatively stable performance results, while
any form of using JUnit tests as benchmarks has been
usually challenging and unstable. To evaluate the quality
of performance microbenchmarks, we first measure their
stability.

Approach
To answer RQ1, we studied the benchmarks in terms of their
result variability. We executed all benchmarks of subjects
individually in isolation. Each measurement consists of 30
iterations’ result of a benchmark, similar to the number of
trials in recent study [22].

To measure the stability of a benchmark, we have taken
two steps: one encloses the stability in comparison with
other benchmarks, while the other presents how soon a
benchmark becomes stable (see Section 6.3 for more details).

(1) Benchmark’s stability in comparison. In this step,
for each measurement, we compute the relative standard
deviation (RSD) across 30 iterations’ results to statistically
compare the benchmark’s stability with others. We assume
that benchmarks with RSD less than 1% are stable enough
for detecting performance bugs [17], while benchmarks
with RSD greater than 5% are unstable because it repre-
sents a relevant and clear variability in performance [38].
Due to the relatively large variation of benchmarks with
RSD between 1% and 5%, they are not stable enough for
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detecting small-size bugs, while they are still useful for
detecting large-size bugs. However, most of the generated
performance bugs do not have a large size and they might
not be detected by benchmarks with RSD between 1% and
5%.

(2) Benchmarks’ stability tendencies. If a performance
benchmark reaches a stable stage sooner than others, it
produces valuable results sooner. In this step, we devised a
heuristic statistical strategy to determine which benchmark
becomes stable first [37].

For each benchmark, we select i data points out of 30
iterations’ result to form an original set (Poriginali ), and
similarly, we select another i different data points to form
a microbenchmarking set (Pmicrobmi ). The selection size,
i, ranges from 2 up to 15 data points (i ∈ {2, 3, ..., 15}).
We repeat our selection strategy for 100 times, providing
100 pairs of {Poriginali , Pmicrobmi}. Following prior study’s
approach [17] and by deploying pa [39], we estimate the con-
fidence interval for the ratio of means with bootstrap [41],
using 100 bootstrap iterations for each of 100 pairs (that
resembles to the suggested 10,000 bootstrap iterations [42]).
Therefore, the width of estimated relative confidence inter-
val (RCIW) computed for each benchmark with i iterations,
that indicates how a benchmark’s results are spread and
variable around the mean.

Results

(1) Benchmark stability in comparison. Figure 7 is a box-
plot chart representing the distribution of RSD calculated
(in %) for all benchmarks, across three testing frameworks
and three subjects.

R
SD

(%
)
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1
2
3
4
5
6
7
8
9
10

RxJava Eclipse-collections Zipkin

JMH ju2jmh JUnit AutoJMH

Figure 7: Distribution of the variability, using RSD (in %)

According to Figure 7, the box-and-whisker of RSD of
ju2jmh benchmarks range from 0 % to 4.52% in Rxjava with
a median of 1.16%, while the box-and-whisker of RSD of
JUnit tests range from 0.01% to 7.24% with a median of
2.04% in the same subject. As we can see, JUnit tests have
a higher median and maximum of RSD than JMH and
AutoJMH benchmarks in Rxjava. Zipkin faces the same sit-
uation. For Eclipse-collections, JUnit tests have a higher
median RSD (1.84%) than ju2jmh benchmarks (0.45%) and a
higher maximum value in the box-and-whisker (3.34% vs.
0.96%), respectively. Because a larger RSD indicates that a
benchmark is more unstable, these results imply that ju2jmh
benchmarks are much more stable than JUnit tests in three
studied subjects.

Likewise, we can also compare the stability of ju2jmh
benchmarks and manually-written JMH benchmarks based
on Figure 7. The median RSD of JMH benchmarks
(0.57%) in Rxjava is smaller than ju2jmh benchmarks
(1.16%), however, it is greater than ju2jmh benchmarks
in Eclipse-collections (1.98% vs. 0.45%) and Zipkin

(0.72% vs. 0.49%), as shown in this figure. If only the
Eclipse-collections and Zipkin are considered, it appears
that ju2jmh benchmarks are more stable than manually-
written JMH benchmarks. However, when all three subjects
are considered, we can only conclude that ju2jmh bench-
marks beat JMH benchmarks in terms of stability in some
subjects and not in others. As a result, ju2jmh benchmarks
and manually-written JMH benchmarks are comparable.

Lastly, the stability of ju2jmh benchmarks can be also
compared with AutoJMH benchmarks according to Fig-
ure 7. In terms of the median RSD, in Rxjava, AutoJMH
benchmarks has a smaller value (0.37%) than ju2jmh bench-
marks (1.16%). However, in Eclipse-collections, the me-
dian RSD of ju2jmh benchmarks (0.45%) is smaller than
AutoJMH benchmarks (0.99%), and the box-and-whisker
length of ju2jmh benchmarks (0.96%) is also smaller than
AutoJMH benchmarks (3.05%), indicating that most of
ju2jmh benchmarks are more stable than AutoJMH bench-
mark in this study subject. In Zipkin, the stability of most of
ju2jmh benchmarks and most of AutoJMH benchmarks are
comparable because of the close median RSD values (0.49%
vs. 0.48%). Therefore, the stability of ju2jmh benchmarks are
comparable to AutoJMH benchmarks based on the evalua-
tion of these three subjects.

In conclusion, based on the comparisons between au-
tomatically generated ju2jmh benchmarks and the other
three microbenchmarks, we can infer that, although ju2jmh
leverages JUnit tests to generate microbenchmarks, the
ju2jmh microbenchmarks are more stable than the original
JUnit tests and their stabilities are comparable to manually-
written JMH benchmarks and AutoJMH benchmarks.

In Table 5, we focus on how benchmarks stable and
unstable are in detecting performance bugs. The table
presents the proportion of benchmarks that are stable
enough (RSD ≤ 1%) or unstable (RSD ≥ 5%).

Table 5: Stable and unstable benchmarks

Subject

Relative Standard Deviation
Stable (≤1%) Unstable (≥5%)

JMH ju2jmh JUnit Auto.† JMH ju2jmh JUnit Auto.†

RxJava 77.2% 43.8% 43.8% 81.1% 2.3% 3.9% 9.5% 7.5%
Ec-col.* 29.0% 91.5% 5.0% 51.0% 18.2% 1.7% 5.1% 6.1%
Zipkin 61.0% 84.6% 58.4% 82.5% 9.0% 0.0% 1.9% 0.0%
* Eclipse-collections
† AutoJMH

In Eclipse-collections and Zipkin, 91.5% and 84.6%
of ju2jmh benchmarks are recognized stable, significantly
higher than 5.0% and 58.4% for JUnit tests, 29.0% and 61.0%
for JMH benchmarks, and 51.0% and 82.5% for AutoJMH
benchmarks. In Rxjava, both ju2jmh and JUnit microbench-
marks produced equal number of stable benchmarks, but
9.5% of the JUnit tests are recognized unstable, higher than
3.9% for ju2jmh benchmarks. Despite the fact that JMH
benchmarks (77.2%) and AutoJMH benchmarks (81.1%) are
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more stable than ju2jmh benchmarks (43.8%), but in terms of
unstable benchmarks, ju2jmh benchmarks and JMH bench-
marks have very close values (3.9% vs. 2.3%) and ju2jmh
benchmarks are better than AutoJMH benchmarks (3.9%
vs. 7.5%). Based on these results, we can infer that ju2jmh
benchmarks are generally more stable than JUnit tests and
comparable to (or slightly more stable) manually-written
JMH benchmarks and AutoJMH benchmarks.

Furthermore, we also check whether JUnit tests re-
main stable after being converted to ju2jmh benchmarks. In
Rxjava, both ju2jmh and JUnit have the same amount of
stable tests. Specifically, 86.4% of JUnit tests that recognized
stable remain stable after being converted to ju2jmh bench-
marks, 0.9% of JUnit tests that recognized unstable become
stable, and 0.6% of JUnit tests that recognized stable become
unstable. For the unstable JUnit tests that become stable, we
rerun the associated ju2jmh benchmarks without warm-up
iterations, and all of the new results achieve a higher RSD
(%) ranging from 0.2% to 7.1% than the results with warm-
up iterations, thus the test stability has deteriorated in all
cases. As a result, warming up the system before running
the benchmark is critical to achieve the stability of ju2jmh
benchmarks in comparison to JUnit tests without warm-up
iterations. For the stable JUnit tests that become unstable,
we manually checked the source code and found that all
of these tests contain tasks that deal with asynchronous
executions, multiple threads or multiple processors, which
are restricted in ju2jmh benchmarks. Moreover, all the JUnit
tests in Eclipse-collections and Zipkin remain stable in
form of ju2jmh benchmarks, none of JUnit tests that recog-
nized unstable become stable, and none of JUnit tests that
recognized stable become unstable. In conclusion, a high
portion of JUnit tests remains stable after being converted
to ju2jmh benchmarks.

(2) Benchmarks’ stability tendencies. Figure 8 presents
the results of the second step, which encloses how bench-
marks grow more stable as the number of iterations in-
creases. Every box represents the distribution of calculated
RCIWs for all benchmarks of a testing framework with i
iterations. The greater the RCIW, the more variation (less
stability) there is in the result set. Accordingly, the larger
the box-and-whisker, the more variation of stability there is
between benchmarks of one type. For example, according
to Figure 8, a benchmark usually produces more variable
results through two iterations than a larger number of trials,
such as 15 iterations. It is noted that, to facilitate a better
comparison and clarification, we zoom in the chart so that a
few whiskers and one box are shown out of the presenting
range, but this does not affect the conclusion.

As illustrated in Figure 8, the median RCIW of JUnit tests
is always greater than ju2jmh, JMH, and AutoJMH bench-
marks, implying that JUnit tests are generally more unstable
than the other three types of microbenchmarks. Further-
more, based on the following analysis, we can conclude that
JMH, ju2jmh, and AutoJMH RCIWs are comparable among
these three studied subjects. The median RCIW of ju2jmh
benchmarks is always greater than JMH in Rxjava and
Zipkin, but their differences are significantly smaller than
the RCIW differences between JUnit tests and JMH/ju2jmh
benchmarks, indicating that although ju2jmh benchmarks
are more unstable than JMH benchmarks in these two sub-

jects, their difference is very limited. Rxjava faces the same
conclusions when ju2jmh is compared with AutoJMH. In
addition, the median RCIW of ju2jmh benchmarks is lower
than JMH and JUnit in Eclipse-collections, suggesting
that those benchmarks are more unstable than ju2jmh bench-
marks in this subject. Moreover, the median RCIW of ju2jmh
benchmarks is always comparable with AutoJMH bench-
marks in two subjects of Eclipse-collections and Zipkin.
Lastly, in all three subjects, ju2jmh benchmarks’ RCIWs are
converging with JMH and AutoJMH benchmarks’ RCIWs to
a higher level of stability, with a very near level of stability
after 15 iterations.

In conclusion, regarding stability assessing, both steps
yield identical results: (1) in all three studied subjects, the
generated ju2jmh benchmarks outperform JUnit tests; (2)
ju2jmh and manually-written JMH benchmarks are compa-
rable, but ju2jmh benchmarks outperform manually-written
JMH benchmarks in two out of three studied subjects. (3)
ju2jmh benchmarks are also comparable to AutoJMH bench-
marks.

RQ1 Takeaway

Both methodologies of evaluating microbenchmark
stability (using RSD and RCIW, respectively) reveal
that although ju2jmh leverages JUnit tests to gen-
erate benchmarks, ju2jmh benchmarks significantly
outperform JUnit tests in all studied subjects and
are comparable to manually-written JMH bench-
marks and AutoJMH benchmarks.

RQ2: Can performance microbenchmarks detect artifi-
cial performance bugs from mutation testing?

Motivation
While executing performance microbenchmarking, a per-
formance bug can make developers question whether it
comes from a noisy environment [37], [38], the benchmark’s
unstable quality [9], or even a bug. In RQ1, we assessed
the stability of benchmarks. However, the stability itself
is not sufficient for detecting performance bugs. A further
evaluation of benchmarks is needed on their ability to detect
performance bugs.

Approach
To address benchmarks’ ability in detecting bugs, we lever-
age the PMT framework presented in Section 6 to inject
artificial performance bugs into the source code. An artificial
performance bug could be observed by a covering perfor-
mance test by searching for degradations in its results. If the
performance test can detect an artificial bug, it is more likely
that the test can also detect a real-world similar performance
bug.

First, to generate artificial performance bugs, we applied
the PMT framework to the subject’s source code. We build
up a large number of systems versions, each containing one
performance bug injected setting at a single source code
location. Then, we extract all benchmarks that cover any of
the selected mutants. Afterwards, we execute benchmarks
that cover an injected performance bug, before and after
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Figure 8: The box-plots of calculated RCIW for all benchmarks of a testing framework, ranging the iteration number i,
i ∈ {2, 3, ..., 15}

injection, 30 times. Benchmarks are run in a sequence and
through an isolated and controlled environment.

Relying on the goal of mutation testing in performance
that is introducing performance bugs deliberately, we can
look over the benchmarks’ results to find any significant
difference. Recent studies [3], [22] have advocated using
hypothesis statistical tests (e.g., Wilcoxon rank-sum test) to
label a significant difference in results as a performance bug,
slowdown, or artificial bug. However, the prior study [37]
concludes that testing with Wilcoxon rank-sum tests, due
to high false-positive reported, is not a suitable vehicle for
detecting performance degradation in cloud environments.

In order to accurately assess the difference between the
microbenchmarking results before and after bug injection,
we used mutation scores (i.e., the percentages of killed
mutants defined in Section 6.3) to compare the analyzed
subjects. We first assume that a benchmark could only kill a
mutant if the throughput of the benchmark with the mutant
is significantly lower than the throughput in the original sys-
tem. For a studied benchmark, we estimate its confidence
interval for the ratios of means (RCI), and the ratios are
calculated based on the benchmark’s throughputs (of before
and after the bug injection) and by deploying bootstrap
technique [40], [41], using 10,000 bootstrap iterations [42]
with confidence level of 99%.

Therefore, the size of performance degradation caused
by a performance bug can be defined as,

bug size = [1− URCI ]

that URCI is the upper bound of estimated RCI. The upper
bound of estimated RCI, opposite to its lower bound, de-
notes the minimum bug occurring in the target system. We

calculate the bug size in % and it reflects the effectiveness
of mutant against the benchmark. We then assume three
different thresholds as the minimum performance degra-
dation that bugs produce, namely 1%, 5%, 10%, which has
been used in prior study [22]. The thresholds are chosen
from 1% to 10% because: (1) According to the preliminary
analysis results of PMT in Table 2, bug size in the mutation
operators SOC and HWO are always greater than 10%,
which is why we set a 10% threshold for them. Although
PTW, STS, and EFL mutation operators can/may achieve a
bug size of 10% as the hitting_ratio increases by a large
value, for consistency among different mutation operators,
we still keep 10% as upper bound for all mutations. (2) In
terms of selecting the lowest threshold, 1% is the lowest
threshold used in the prior work [22], and the bugs with bug
sizes less than 1% are difficult to detect. The three thresholds
are chosen from 1% with a high falsely reported positive
(bugs not caused by mutants) to 10% with a low falsely
reported positive. If a bug size is greater than the threshold,
there is a significant variation in results, which conveys that
the benchmark could kill the mutant (detect the injected
bug), and vice versa. The mutation score is then calculated
to compare ju2jmh benchmarks to manually-written JMH
benchmarks, JUnit tests, and AutoJMH benchmarks.

Results

Table 6 presents the percentage of tests that kill any of
mutants and Table 7 presents the calculated mutation score
over the three thresholds (columns 1%, 5% and 10%), for the
four testing frameworks (column FW) and the five mutation
types (columns PTW(%), STS(%), EFL(%), SOC(%) and
HWO(%)).
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Table 6: The percentage of tests that kill any of mutants from five operators, assuming that the mutant is killed if the
bug size ≥ 1%, 5%, and 10%.

Subject FW
PTW (%) STS (%) EFL (%) SOC (%) HWO (%) Total (%)

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

RxJava

JMH 34.6 6.1 0.6 - - - 37.1 8.2 3.3 - - - 55.4 41.4 35.7 44.0 21.4 16.0
ju2jmh 29.2 3.0 0.6 40.0 12.1 2.9 44.4 6.4 2.7 20.0 0.0 0.0 56.3 42.1 39.4 34.0 7.0 4.1
JUnit 6.5 0.7 0.1 21.4 4.3 0.9 10.8 3.3 0.3 0.0 0.0 0.0 42.1 39.4 38.5 10.6 4.3 3.2
AutoJMH 64.2 11.9 0.0 100 100 100 50.0 25.0 12.5 20.0 0.0 0.0 66.7 44.4 33.3 64.7 19.6 11.8

Ec-col.*
JMH 21.4 8.2 4.1 - - - - - - 0.0 0.0 0.0 54.5 50.0 50.0 28.9 18.4 15.6
ju2jmh 31.5 8.3 1.6 33.9 9.4 5.6 37.3 12.6 6.8 43.1 11.3 3.7 37.0 9.2 4.8 37.1 9.4 4.3
JUnit 20.3 5.5 1.1 35.8 11.3 7.5 36.7 13.2 6.8 40.9 10.6 3.7 18.2 7.3 4.2 25.2 7.8 3.9
AutoJMH 66.7 16.7 5.6 54.5 18.1 9.1 62.5 25.0 12.5 100 66.7 33.3 66.7 66.7 66.7 66.7 33.3 21.2

Zipkin

JMH 19.0 4.7 0.0 - - - 9.0 9.0 9.0 - - - 33.3 33.3 33.3 18.4 7.8 5.2
ju2jmh 12.6 2.5 0.8 25.8 16.1 0.0 30.3 0.0 0.0 - - - 47.6 33.3 33.3 21.0 7.3 3.9
JUnit 11.7 2.5 0.8 25.8 16.1 0.0 0.0 0.0 0.0 - - - 42.8 33.3 33.3 16.1 7.3 3.9
AutoJMH 36.7 10.0 3.3 100 100 0.0 50.0 0.0 0.0 - - - 100 100 100 43.2 16.2 8.1

Total

JMH 28.3 9.3 2.4 - - - 35.3 8.3 3.8 0.0 0.0 0.0 54.9 43.0 38.5 38.8 20.1 15.5
ju2jmh 29.0 3.7 0.8 37.6 12.4 3.4 42.3 7.7 3.7 42.0 10.5 4.2 42.5 16.8 12.7 34.6 7.9 4.2
JUnit 8.7 1.4 0.3 25.5 7.2 2.4 16.9 5.5 1.9 38.5 10.5 4.2 27.4 14.6 12.0 15.7 5.6 3.5
AutoJMH 55.6 12.2 2.2 66.7 40.0 20.0 54.5 18.1 9.1 50.0 25.0 12.5 70.0 60.0 55.0 58.7 22.3 13.2

Total (%) 19.5 2.7 0.5 32.1 10.2 2.9 30.2 6.6 2.7 38.9 10.3 3.6 32.9 15.0 11.7 25.8 7.4 4.4
* Eclipse-collections

Table 7: Mutation score of tests against the generated mutants from five operators, assuming that the mutant is killed if
the bug size ≥ 1%, 5%, and 10%.

Subject FW
PTW (%) STS (%) EFL (%) SOC (%) HWO (%) Total (%)

Coverage
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

RxJava

JMH 100 42.8 14.3 - - - 100 100 50.0 - - - 100 100 100 100 73.3 46.7 15 (22.7%)
ju2jmh 95.2 50.0 16.7 100 100 100 100 87.5 75.0 40.0 0.0 0.0 100 88.9 88.9 92.4 57.6 34.8 66 (100%)
JUnit 64.3 19.0 9.5 100 100 100 100 75.0 25.0 0.0 0.0 0.0 88.9 88.9 88.9 68.2 36.4 24.2 66 (100%)
AutoJMH 64.2 11.9 0.0 100 100 100 50.0 25.0 12.5 20.0 0.0 0.0 66.7 44.4 33.3 60.6 19.7 9.1 66 (100%)

Ec-col.*
JMH 71.4 42.9 28.6 - - - - - - 0.0 0.0 0.0 100 100 100 69.2 53.8 46.1 13 (26.6%)
ju2jmh 94.4 61.1 22.2 81.8 36.4 27.3 62.5 62.5 50.0 100 100 100 100 77.8 66.7 87.8 61.2 40.8 49 (100%)
JUnit 94.4 38.9 11.1 90.9 45.4 27.2 75.0 62.5 50.0 100 100 100 100 77.8 66.7 91.8 55.1 36.7 49 (100%)
AutoJMH 66.7 16.7 5.6 54.5 18.1 9.1 62.5 25.0 12.5 100 66.7 33.3 66.7 66.7 66.7 65.3 30.6 20.4 49 (100%)

Zipkin

JMH 16.7 8.3 0.0 - - - 25.0 0.0 0.0 - - - 50.0 50.0 50.0 22.2 11.1 5.6 18 (45.0%)
ju2jmh 40.0 10.0 3.3 100 100 0.0 66.7 0.0 0.0 - - - 100 100 100 50.0 17.5 7.5 40 (100%)
JUnit 36.7 10.0 3.3 100 100 0.0 33.3 0.0 0.0 - - - 100 100 100 42.5 17.5 7.5 40 (100%)
AutoJMH 36.7 10.0 3.3 100 100 0.0 50.0 0.0 0.0 - - - 100 100 100 45.0 17.5 7.5 40 (100%)

Total

JMH 53.8 26.9 11.5 - - - 62.5 50.0 25.0 0.0 0.0 0.0 90.0 90.0 90.0 60.9 43.5 30.4 46 (29.7%)
ju2jmh 76.7 38.9 13.3 86.7 53.3 33.3 77.2 54.5 45.4 62.5 37.5 37.5 100 85.0 80.0 80.0 48.4 29.7 155 (100%)
JUnit 61.1 20.0 7.8 93.3 60.0 33.3 72.7 50.0 27.2 37.5 37.5 37.5 95.0 85.0 80.0 69.0 37.4 23.9 155 (100%)
AutoJMH 55.6 12.2 2.2 66.7 40.0 20.0 54.5 18.1 9.1 50.0 25.0 12.5 70.0 60.0 55.0 58.0 22.6 12.2 155 (100%)

Total (%) 83.3 46.7 17.8 93.3 73.3 46.7 100 59.1 50.0 62.5 37.5 37.5 100 95.0 90.0 89.0 56.8 35.5 155 (100%)
* Eclipse-collections

Comparing ju2jmh benchmarks and JUnit tests: According
to column Total (%) in Table 6, across the three subjects
and for all three thresholds, more ju2jmh benchmarks kill
a mutant than JUnit tests. In total, from 4.2% to 34.6% of
all ju2jmh benchmarks kill a mutant, significantly higher
than 3.5% to 15.7% for JUnit. Furthermore, over large degra-
dations (≥10%), low and equivalent percentage of ju2jmh
and JUnit kill a mutant, while in small degradations (≥1%),
ju2jmh significantly outperforms JUnit.

Furthermore, according to column Total (%) in Table 7,
ju2jmh achieves a higher mutation score than JUnit, with
the exception of Eclipse-collections and the threshold
of 1%. In total, ju2jmh achieves the mutation score from
29.7% to 80.0%, higher than JUnit with the mutation score
of 23.9% to 69.0%. In Eclipse-collections and over the
threshold of 1%, the difference between ju2jmh benchmarks
and JUnit tests is slight (87.8 vs. 91.8). In other cases, ju2jmh
outperforms JUnit.

In conclusion, while both ju2jmh and JUnit tests cover all

of the mutants in the study, the percentage of ju2jmh bench-
marks that kill a mutant is higher than JUnit tests, implying
that for a given mutant operator, it is more likely to be killed
by ju2jmh benchmarks than JUnit tests. In addition, ju2jmh
benchmarks generally achieve higher mutation scores than
JUnit tests. Therefore, ju2jmh is more effective in detecting
performance bugs, regardless of the analysis perspective of
mutation operators or tests.

Comparing ju2jmh and JMH benchmarks: We first com-
pare percentage of ju2jmh and JMH benchmarks that kill a
mutant using the analysis of column Total (%) in Table 6. In
some cases, the percentage of ju2jmh benchmarks is greater
than that of JMH benchmarks, while in other cases, it is
lower. For example, 37.1% and 21.0% of ju2jmh benchmarks
in Eclipse-collections and Zipkin kill a mutant with bug
size ≥ 1%, higher than 28.9% and 18.4% of JMH bench-
marks. However, in other cases, ju2jmh benchmarks achieve
a smaller percentage.

We then compare the mutation scores of ju2jmh and
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JMH benchmarks according to Table 7. Column Total (%)
illustrates that ju2jmh benchmarks are more efficient than
JMH benchmarks in killing mutants in general. On average,
29.7% to 80.0% of mutants are killed by ju2jmh bench-
marks, higher than 30.4% to 60.9% by JMH benchmarks.
In more than half of the cases, ju2jmh benchmarks achieve
higher mutation scores than JMH benchmarks. Moreover,
although manually-written JMH benchmarks are not far
behind ju2jmh benchmarks in terms of mutation scores, they
cover far fewer mutants (29.7% vs. 100%).

As presented in Table 6 and Table 7, although there
are more percentages of JMH benchmarks that kill mu-
tants than ju2jmh benchmarks, the overall coverage of all
JMH benchmarks is much less than ju2jmh, implying that
ju2jmh benchmarks have more coverage diversity, whereas
manually-written JMH benchmarks are more specific to
certain mutants with less coverage diversity. The manually-
written JMH benchmarks would produce more accurate
results if they could achieve higher coverage. However,
this necessitates a great deal of manual effort, which is im-
practical in real-life development. Therefore, we can deduce
that ju2jmh benchmarks cover more mutants than manually-
written JMH benchmarks, and that the JMH benchmarks
necessitate proper enhancements, such as higher mutant
coverage, in order to achieve better results.
Comparing AutoJMH benchmarks with other tests: Sim-
ilarly, when the percentage of AutoJMH benchmarks that
kill a mutant is compared to those of other tests, Auto-
JMH benchmarks can have higher percentages than ju2jmh
benchmarks, according to column Total (%) in Table 6. How-
ever, both benchmarks can generally achieve 100% mutant
coverage, as presented in Table 7. In addition, AutoJMH
benchmarks have limitations that prevent them from being
trusted and valuable. First, according to Table 4, the number
of generated AutoJMH benchmarks is significantly lower
than the other tests, resulting in a limited data set for study.
Second, AutoJMH is obsolete as we mentioned in Section 4.
Third, AutoJMH is limited to manually configuring specific
single statements. Such reasons limit the spread and appli-
cation of AutoJMH.

Moreover, ju2jmh benchmarks achieve a higher mutation
score than AutoJMH benchmarks in all cases across the
three subjects and for all three thresholds, according to
column Total (%) in Table 7. In total, ju2jmh achieves the
mutation score of 29.7% to 80.0%, significantly higher than
12.2% to 58.0% for AutoJMH. In particular, in Rxjava and
Eclipse-collections, ju2jmh benchmarks have mutation
scores of at least 20.4% higher than AutoJMH benchmarks.

In conclusion, while both ju2jmh and AutoJMH bench-
marks cover all mutants, ju2jmh benchmarks achieve higher
mutation scores than AutoJMH benchmarks, indicating that
ju2jmh benchmarks are more effective than AutoJMH bench-
marks in detecting performance bugs.
Different effect of mutation operators’ diversity: Accord-
ing to row Total (%) in Table 6, which presents the percent-
age of benchmarks that kill a mutant, across the threshold of
1%, 61.2% of JMH benchmarks, 65.4% of ju2jmh benchmarks,
84.3% of JUnit tests, and 41.3% of AutoJMH benchmarks
failed in killing mutants. The highest percentage of bench-
marks kill mutants from SOC (see the total mutation score
in column SOC) with the percentage of 3.6% to 38.9%,

and the smallest percentage of benchmarks kill mutants
from PTW (column PTW) with the percentage of 0.5% to
19.5%. Moreover, mutants from HWO (column HWO) have
a strong effect on benchmarks, particularly where 11.7%
of benchmarks with a large bug size 10% is significantly
greater than 0.5% of benchmarks that kill a mutant from
PTW.

Table 7 yields the same finding, proving that different
mutation operators have different effects on microbench-
marks. According to row Total (%), which presents the
calculated mutation score across all tests of the three study
subjects, 35.5% to 89.0% of mutants are killed by the tests
in total. The highest mutation score is achieved by HWO
(column HWO)) where 90.0% to 100% of mutants are killed.
The smallest mutation score is for SOC (column SOC) where
37.5% to 62.5% of mutants are killed. Such large variations
in the results illustrate the diversity of mutant operators.
Exclusive mutation score: In order to provide more insight
into ju2jmh benchmarks, we define the exclusive mutation
score, which is the percentage of mutants that are exclusively
killed by a framework and not by others. We calculate the
exclusive mutation score for the four frameworks, across the
three subjects, for the five mutation operators, and over the
three thresholds. In total, over the threshold of 1%, ju2jmh
benchmarks achieve the exclusive mutation score of 3.2%,
higher than 2.2% for JMH benchmarks and 0.6% for JUnit
tests, but less than 6.5% for AutoJMH benchmarks. Over the
threshold of 5%, ju2jmh benchmarks achieve the exclusive
mutation score of 9.0%, considerably higher than 2.2% for
JMH, 0.6% for JUnit, and 6.5% for AutoJMH. Over the large
threshold of 10%, ju2jmh benchmarks achieve the exclusive
mutation score of 5.8%, higher than 0.6% for JUnit and 3.6%
for AutoJMH, but less than 8.7% for JMH. In conclusion,
most mutants are covered by multiple tests, with ju2jmh
benchmarks covering more mutants exclusively than JUnit
tests in all cases and JMH and AutoJMH benchmarks in the
majority of cases.

RQ2 Takeaway

ju2jmh benchmarks are more effective in detecting
performance bugs than JUnit tests and AutoJMH
benchmarks. ju2jmh benchmarks cover more mu-
tants than manually-written JMH benchmarks and
JMH benchmarks necessitate proper enhancements,
such as higher mutant overage, to achieve better
results. Furthermore, we discover that different
mutation operators can have various effects on
benchmarks. In general, ju2jmh benchmarks can
detect a higher proportion of mutants exclusively
than other tests.

RQ3: Can performance microbenchmarks detect real-
world performance bugs?
Motivation
One of the advantages of mutation testing is to find defi-
ciencies in tests and improve them, thus improved tests can
be further utilized for detecting real-world bugs [43]. We are
motivated to know if benchmarks with higher performance
mutation score can detect real-world performance bugs
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better. On the other hand, we tend to know how similarly
the generated mutants and real-world performance bugs
behave in affecting a covering performance test.

Approach
To answer the motivation questions, we check whether a
performance test is more likely to detect a similar real-world
performance bug if it is able to detect a mutant.

For a specific real performance bug inside a system’s
source code, we first find all JUnit tests and JMH bench-
marks that cover it. Next, we deploy ju2jmh to build
benchmarks from JUnit tests and deploy the PMT tool to
generate a mutant similar to the bug on the same source
code location. Last, we execute covering ju2jmh and JMH
benchmarks 30 times against the original system where the
bug is fixed, the parent system that still contains the bug,
and the system where the bug is replaced with a generated
mutant. Then, we compare mutation results with real bug
results. Accordingly, the tendency of performance tests in
detecting a mutant is compared with the tendency of them
in detecting real bugs.

Similar to previous research question, we predict the RCI
for both the original system and the system containing real-
world bugs (RCIbug) and predict the RCI for the original
system and its mutant version (RCImutant). Then, we com-
pare both calculated RCIs to find similarities between them.

The real-world explored performance bugs are extracted
from NFBugs dataset [23]. NFBugs is a dataset of 138 non-
functional bug fixes in 67 open-source projects in Java or
Python. NFBugs contains eight common performance bugs
patterns from performance bugs that are already fixed by
the projects’ community. The building of our PMT tool is
based on the real-world performance bugs collected from
NFBugs dataset.

In total, there are 13 fixing of real-world performance
bugs from 11 different projects in NFBugs dataset that are
supported in our PMT tool (i.e., the bug can be reproduced
by one of the five developed patterns). The 13 bug fixes are
from three bug patterns of PTW, EFL, and STS. However,
only one bug fix can be studied through this research
question’s experiment. For the rest of 12 bug fixes, in 11
of them, there is either no JMH/JUnit test in the system or
there is no JMH/JUnit test that covers any of fixed bugs, and
for the last bug fix, the corresponding system is no longer
available in public.

The performance bug exists in Storio11 and is fixed
through commit of #566d3e9. There are 21 Junit tests in
the system that cover the bug. Accordingly, we build 21
ju2jmh microbenchmarks and a mutant associated with the
bug. Lastly, we compare the mutation score of ju2jmh bench-
marks and JUnit tests.

Results
Figure 9 presents the calculated URCI for each of numbered
21 ju2jmh benchmarks and numbered 21 JUnit tests, against
the mutant and the real bug. Similar to the previous research
question, three thresholds (1%, 5% and 10%) are marked as
three minimum bug size that trigger the detection of bug.
If calculated URCI is below each of the three thresholds’

11https://github.com/pushtorefresh/storio.git

line, we conclude that the degradation is larger than the
minimum bug size. Table 8 summarizes Figure 9.

Table 8: Microbenchmarks that kill mutant and/or detect
performance bug, assuming that the mutant is killed or the

bug is detected if the bug size ≥ 1%, 5%, and 10%.

ju2jmh JUnit

Mutant Bug Mutant Bug

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

66.7 42.8 4.7 66.7 42.8 0.0 61.9 19.0 0.0 61.9 23.8 0.0

According to Figure 9 and Table 8, ju2jmh appears to
performs better than JUnit in either killing the mutant or
detecting the real-world bug. For the three thresholds of
bug sizes 1%, 5% and 10%, the percentage of ju2jmh bench-
marks that kill the mutants is 4.7% (benchmark #1), 42.9%
(benchmarks #1 to #9), and 66.7% (benchmarks #1 to #14)
respectively, better than JUnit tests with the percentage of
0.0%, 19.0% (benchmarks #1 to #4), and 61.9% (benchmarks
#1 to #13), indicating that ju2jmh benchmarks can detect the
mutant better than JUnit tests. Similarly, ju2jmh performs
better than JUnit in detecting real-world bugs. Over smaller
degradations (1% and 5%), 66.6% and 42.8% of ju2jmh
microbenchmarks detect the presence of the bug, higher
than 61.9% and 23.8% for JUnit tests. None of the ju2jmh
or JUnit tests can detect real-world bugs with a larger bug
size threshold (10%). As a result, ju2jmh performs better than
JUnit in both killing the mutant and detecting the bug.

According to Figure 9, both ju2jmh benchmarks and JU-
nit tests produce results with a similar distribution against
the mutant and the bug. On average, the differences of cal-
culated URCI between the mutant and the bug is 0.36% for
ju2jmh benchmarks and 0.26% for JUnit tests, enclosing the
similarities between results of benchmarks against the mu-
tant and results of benchmarks against the bug. However, in
all cases, the tendency of ju2jmh benchmarks in killing the
mutant or detecting the bug is higher than JUnit tests. ju2jmh
benchmarks have a lower calculated URCI value (higher
tendency) than JUnit tests from 0.3% to 2.98% in killing the
mutant, and from 0.23% to 2.63% in detecting the bug. In
conclusion, the distribution of ju2jmh benchmarks’ results
and JUnit test results is similar, but the tendency of ju2jmh
benchmarks in both killing the mutant and detecting the
bug is higher than JUnit tests.

RQ3 Takeaway

According to our experiment of a real-world perfor-
mance bug and a similar generated mutant, ju2jmh
performs better than JUnit in killing the mutant and
detecting the bug. Furthermore, the mutant and
real-world bug affect benchmarks in a very similar
way.

RQ4: What are the major factors affecting a microbench-
mark’s ability to detect performance bugs?
Motivation
To determine a performance microbenchmark is effective or
unsatisfactory, there are a number of metrics that require
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JUnit Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Mutant 0.9251 0.9386 0.9443 0.945 0.9504 0.9562 0.9584 0.959 0.9614 0.9714 0.9752 0.9781 0.9782 0.9921 0.9933 0.9934 0.999 1.0007 1.0017 1.0051 1.0861
Real-bug 0.938 0.9369 0.943 0.9429 0.9478 0.9566 0.9577 0.9583 0.9638 0.9697 0.9747 0.9779 0.9785 0.9934 0.9933 0.9913 0.9978 1.0028 1.001 1.0084 1.0696

0.89
0.91
0.93
0.95
0.97
0.99
1.01

bug_size = 1%

bug_size = 5%

bug_size = 10%

ju2jmh Benchmarks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Mutant 0.895 0.913 0.921 0.922 0.93 0.938 0.941 0.942 0.945 0.959 0.965 0.969 0.969 0.989 0.99 0.991 0.999 1.001 1.002 1.006 1.121
Real-bug 0.912 0.911 0.92 0.919 0.926 0.939 0.94 0.942 0.949 0.957 0.964 0.969 0.969 0.991 0.991 0.988 0.996 1.003 1.001 1.012 1.098

0.89
0.91
0.93
0.95
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0.99
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bug_size = 5%
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Figure 9: The calculated URCI for each of 21 ju2jmh benchmarks and 21 JUnit tests, against the mutant and the real bug.

further investigation and comparisons. In this section, we
highlight three causes that significantly affect the ability of
microbenchmarks to detect bugs. The causes c1 and c3 in the
following are derived from prior research [8]. We examine
three of the eight causes they identified and merge two
of them into c1. In addition, c2 is derived based on both
the prior work [3] and the aforementioned analysis of RQ
results.

c1. Too low workload: performance bugs could not
be detected in benchmarks with a modest workload of
payloads. In other words, most of mutants are killed by the
benchmarks with relatively large workload.

Ding et al. [8] point out that not enough microbenchmark
execution repetition could have a significant impact on a
performance microbenchmarks’ ability to find bugs. During
a microbenchmark execution, if we raise the number of
iterations of microbenchmark code, the workload can be
increased without exceeding the hardware limit. As a result,
we have combined these two reasons into one.

c2. Unstable microbenchmarks: Laaber and Leitner [3]
reveal that the variability of a benchmark has an impact
on benchmarking results. Furthermore, both RQ1 and RQ2
indicate that ju2jmh benchmarks outperforms JUnit tests
in all studied subjects and is comparable to JMH bench-
marks when two separate aspects are taken into account
(i.e., the microbenchmark stabilities and microbenchmark
ability to detect bugs). The same conclusions may imply that
microbenchmark stability affects microbenchmark ability to
detect bugs, which could be of interest.

c3. Limited mutant coverage: performance bugs are
generated by the PMT framework, however they only affect
one point in the source code (mostly one line of source code).
Therefore, to investigate this cause, we considered the total
number of times that the source code line containing bugs
(mutants) was hit during the microbenchmark execution as
a coverage metric. We claim that the more times a bench-
mark hits the buggy line, the more significant performance
degradation in microbenchmarking results exists.

Other causes: there are other known/unknown causes
for future study that might impact benchmarks in expos-

ing bugs. For example, benchmarks may access to IO/net-
work/resource [8], natural internal and external noises [37],
[38], ideal during execution [8], and the design of the bench-
mark itself [5]. These other causes are not evaluated here,
and are left for future research.

Approach

To answer RQ4, we examined each of the three aforemen-
tioned causes against all of the RQ2’s benchmark tests that
killed a mutant. Since there were not many benchmarks that
killed a mutant with the bug size ≥ 5% and 10%, we only
studied on the threshold of 1% as the minimum bug size.

To examine workload (c1), we take the throughput (ops/s)
of benchmarks as the metric. In addition, we take the RSD
(%) of benchmarks and the hitting count (/s) to study on
the second (c2) and third (c3) causes respectively. For each
metric (i.e., throughput/RSD/hitting ratio), we calculate the
number of benchmarks that could kill the mutant with dif-
ferent values of metrics for subsequent analysis. Specifically,
we split the range of all measurements (of a testing frame-
work and across all five mutant types) into four equal-size
groups from the minimum value to the maximum value in the
data-set. Then, we count the total number of benchmarks
that kill a mutant in each group.

In prior RQs, we compare ju2jmh to other testing frame-
works and find that ju2jmh outperform other testing frame-
works in general. Therefore, the question of why ju2jmh
outperforms other testing frameworks arises. The ju2jmh
benchmarks achieve 100% mutant coverage, which means
that each mutant must be executed. For mutants merely
covered by ju2jmh benchmarks, it is obvious that ju2jmh
benchmarks perform better due to mutant coverage. For
mutants covered by multiple tests, we perform a study on
them. We first select all mutants that are covered by all four
types of tests. We choose the top mutant cases where ju2jmh
benchmarks outperform other tests the most and conduct
manual analysis on them. For each of the five mutation
types, we extract a ranking list of the mutants for which
ju2jmh outperforms the other three frameworks in terms of
killing the mutants. The ranking is determined by the largest
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Table 9: The number of tests that killed any of mutants, according to the three causes with four groups of the related
metric, for the three testing frameworks, and across three studied subjects.

Subject Framework
c1: too low workload c2: unstable tests c3: limited coverage Total

g1 g2 g3 g4 g1 g2 g3 g4 g1 g2 g3 g4

RxJava

JMH 38 50 82 33 195 2 3 3 29 52 91 31 203
ju2jmh 32 115 193 1,088 1,328 83 7 4 79 870 424 55 1,428
JUnit 14 34 100 319 453 8 3 3 18 244 160 45 467
AutoJMH 3 1 4 32 35 1 0 4 3 2 28 7 40

Ec-col.*
JMH 23 23 2 2 40 5 4 1 2 22 18 8 50
ju2jmh 10 15 63 653 717 18 5 1 5 390 335 11 741
JUnit 9 10 42 441 485 12 4 1 4 149 336 13 502
AutoJMH 6 0 2 24 31 0 0 1 14 11 4 3 32

Zipkin

JMH 6 0 0 1 5 0 1 1 4 2 0 1 7
ju2jmh 1 4 9 29 39 3 0 1 2 12 12 17 43
JUnit 1 1 12 19 31 1 0 1 6 5 9 13 33
AutoJMH 2 0 6 10 11 5 0 2 1 7 4 6 18

Total 145
(4.1%)

253
(7.1%)

461
(12.9%)

2,651
(74.4%)

3,370
(94.6%)

138
(3.9%)

27
(0.8%)

23
(0.6%)

167
(4.7%)

1,766
(49.6%)

1,421
(39.9%)

210
(5.9%) 3,564

* Eclipse-collections

bug size difference between ju2jmh benchmarks and the tests
from the other three frameworks. If a mutant is covered by
multiple tests that are specific to a type, we choose the best
result as a representation of this test type. Then top five
mutants with the largest bug size difference between ju2jmh
benchmarks and the other tests are then selected. Lastly, we
manually inspect the top five cases, such as static analysis, to
determine why ju2jmh benchmarks outperform other tests.

Similarly, we follow the procedure from the manual
analysis above to study the reasons why the mutants can
only be killed by ju2jmh benchmarks but not by other tests.
We first extract all mutants that can only be killed by ju2jmh
benchmarks with three various thresholds for throughput
reduction (1%, 5% and 10%). For each threshold and mu-
tation operator type, after ranking ju2jmh benchmarks by
comparing the maximum difference of bug size between
them and the other tests, we choose the top cases to perform
the manual analysis.

Results

Table 9 presents the number of microbenchmarks that killed
a mutant according to each of four groups of the three
causes.

c1. Too low workload:
In total, 74.4% of mutants are killed by benchmarks with

the largest workload (column c1.g4), significantly higher
than three other groups. In all cases of column c1, ju2jmh,
JUnit, and AutoJMH significantly confirms our claim that
benchmarks with the largest workload are better in detect-
ing bugs, while JMH is against our claim.

In Rxjava, 1,088 (76.2%) ju2jmh benchmarks, 319 (68.3%)
JUnit tests, and 32 (80.0%) AutoJMH benchmarks belong to
the largest workload group (g4), while JMH benchmarks
are normally distributed among four groups and the largest
workload’s group contain only 16.3% of the benchmarks.
Furthermore, in Eclipse-collections and Zipkin, similar
findings are obtained in comparing ju2jmh, JUnit, and Au-
toJMH. However, JMH completely stands against our claim
in these two subjects where 23 (46%) Eclipse-collections
benchmarks and 6 (85.7%) Zipkin benchmarks belong to the
smallest workload’s groups (g1).

In conclusion, ju2jmh, JUnit, and AutoJMH all confirm
that benchmarks with the largest workload are better in
detecting performance bugs, but JMH does not necessarily
support this claim.

c2. Unstable microbenchmarks:
Column c2 of table 9 depicts a highly significant ef-

fect on stability, with the most stable benchmarks (column
c2.g1) killing 94.6% of mutants. All four test frameworks
confirm that most of mutants are killed by the most stable
benchmarks. Specifically, across the three subjects, 71.4%
to 96.1% of JMH benchmarks, 90.7% to 96.8% of ju2jmh
benchmarks, 93.9% to 97.0% of JUnit tests, and 61.1% to
96.9% of AutoJMH benchmarks belong to the most stable
benchmarks that killed a mutant.

In conclusion, microbenchmark stability has a significant
impact on detecting performance bug. The more stable
benchmarks can better detect performance bugs.

c3. Limited mutant coverage:
In general, results do not necessarily confirm that bench-

marks need higher hitting_ratio (e.g., column c3.g4) to
detect performance bugs. However, if the benchmark hit
the buggy statement with lower ratio (e.g., column c3.g1),
the mutant could not be killed by the benchmark. In total,
two middle groups (c3.g2 and c3.g3 killed 89.4% of all
mutants, and only 4.7% of mutants are killed in a situation
with the lowest hitting_ratio (c3.g1). As a result, we
can conclude that in order to detect performance bugs,
microbenchmarks require appropriate hitting_ratio val-
ues (not too high or too low). In other words, mutants
with too low hitting_ratio cannot sufficiently degrade
microbenchmarks. Moreover, microbenchmarks rarely hit
a mutant with a large hitting_ratio to make significant
degradations. The data trend indicating the number of
microbenchmarks detecting bugs decreases in an interval
with a high hitting_ratio reinforces the view stated in
section 6.4, implying that some external factors, such as
hardware limitations, may have an impact on microbench-
marks results.

According to Table 9, we can conclude that the positive
effect of each of the three discussed causes can result in
better detection of the performance bug. We conclude that
benchmarks with sufficient workload, higher stability, and
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appropriate coverage can better kill the mutant. The three
approaches of ju2jmh, JUnit, and AutoJMH confirm our
claim that benchmarks with the largest workload can better
detect bugs, while JMH does not necessarily confirm it. In
all cases, all four approaches confirm that the most stable
benchmarks can better detect bugs. Lastly, results do not
confirm that benchmarks need high coverage, but they need
an appropriate coverage of the bug to be able to detect the
bug.

Our manual study identified three reasons why ju2jmh
benchmark outperforms others. In particular, the experi-
ment yields five top-five cases (out of a total of 25) in
which the ju2jmh benchmark outperforms other tests the
most based on bug size. The maximum bug size difference
between ju2jmh benchmarks and other tests ranges from
0.5% to 97.2%. Among the 25 cases, AutoJMH benchmarks
are involved in the majority of cases (16 of 25), while JMH
benchmarks are involved in the fewest (4 of 25 cases). In
addition, we manually analyze another 27 cases where mu-
tants that can only be killed by ju2jmh. Based on the total 52
(i.e., 25+27) cases, we found the reasons why ju2jmh bench-
marks outperform other tests, which can be summarized as
follows: (1) In 28 cases, ju2jmh benchmarks hit the mutants
more often than the other frameworks (more than 4× to
400, 000×); (2) In 22 cases, ju2jmh benchmarks have higher
stability (lower RSD) than the other frameworks; (3) In 13
cases, ju2jmh benchmarks have a more proper workload size
(not too high or too low) than the other frameworks. The
detailed experiment results are attached to Table 10 in the
Appendix section.

In summary, to answer this RQ4, we used prior work
to derive three causes and conducted three experiments to
measure these three causes. The results indicate that (1)
Too low workload can prevent ju2jmh benchmarks from
detecting performance bugs effectively. The same conclu-
sion applies to JUnit tests and AutoJMH benchmarks, but
not to JMH benchmarks. (2) Unstable microbenchmarks can
also impede microbenchmarks from detecting bugs, and this
finding is not limited to a particular testing framework. (3)
Performance bugs are more likely to be detected in mi-
crobenchmarks with appropriate execution times for bugs
during the microbenchmarking period. Too low or too high
execution times can cause microbenchmarks to fail to detect
performance bugs.

RQ4 Takeaway

To answer this RQ, we exposed three causes that
can prevent microbenchmarks from detecting
performance bugs effectively: (1) Too low work-
load (this applies to generated ju2jmh, JUnit and
AutoJMH tests, but not to manually-written JMH
benchmarks). (2) Unstable benchmarks. (3) Limited
mutant coverage as a result of inappropriate execu-
tion times (neither too low nor too high).

8 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
study.

8.1 External Validity

We performed our evaluations on three popular open-
source Java software systems from a limited system set
that extensively deploys JMH along with JUnit. However,
the subjects’ JMH benchmarks are actively maintained by
professional development teams and include sufficient mi-
crobenchmarks, thus they are suitable to be used in our
experiments.

We developed five mutation operators in our PMT
framework, but there would be many other known/un-
known performance bug patterns in real-world systems. We
randomly selected our study mutants from a broad set of
generated mutants. Various mutants can have a wide range
of characteristics that our chosen mutants may not cover. In
the future, we will explore more mutants and extend our
framework to support more mutant types.

During our study, we found that some JUnit tests are
performance unit tests rather than functional unit tests. At
the time of writing, our tool does not distinguish them since
it is tricky to do so through static analysis of source code.
Future work may consider addressing this issue to improve
our existing approach.

8.2 Internal Validity

Monitoring performance is always challenging with noises
[9]. To minimize such errors as much as possible, (1) for
each measurement, we executed benchmarks for 30 itera-
tions each, (2) in isolated, controlled, and large-scale cloud
computing resources provided by Google Cloud, and (3) we
reduced random bias by performing an evaluation strategy,
i.e., bootstrapping.

Performance testing is vulnerable to environmental
noises and running performance tests on virtual computing
instances might affect the reliability of results more than on
bare-metal computing servers. However, bare-metal servers
are more expensive than cloud environments, and the data
noise produced by cloud-based studies is usually accept-
able. There exist many prior studies [3], [8], [22], [28], [37],
[38] that have been conducted on cloud environments for
performance testing. In addition, although the variability of
cloud environment can affect statistical analysis, we repeat
each test 30 times to mitigate data noise caused by such
variability.

9 CONCLUSION

The goal of performance microbenchmarking is to catch
degradations (e.g., slowdowns) as early as possible, such
as checking (and microbenchmarking) every build of the
system. In this paper, we look into how to help with mi-
crobenchmark construction and quality assurance. On the
one hand, our ju2jmh tool can automatically construct ready-
to-execute JMH benchmarks from a wide set of readily
available JUnit tests, that potentially relieve developers from
designing challenges and costs. One the other hand, we
implement a PMT framework to automatically assess the
quality of microbenchmarks in detecting bugs.

To further assess the quality of our automatically gener-
ated ju2jmh benchmarks, we devise a study to compare the
ju2jmh benchmarks to manually-written JMH benchmarks
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and using JUnit tests directly as performance proxies in
terms of microbenchmark stability and ability of perfor-
mance bug detection. For microbenchmark stability, gener-
ated ju2jmh benchmarks have been proven to be compa-
rable with manually-written JMH benchmarks, while they
significantly outperform JUnit tests in all analyzed subjects.
For microbenchmark efficiency, we can similarly conclude
that ju2jmh benchmarks outperform JUnit benchmarks and
are comparable with manually-written JMH benchmarks.
However, ju2jmh benchmarks are able to cover more of
the software applications than JMH benchmarks during
the microbenchmarking execution. In addition, when com-
pared to developing human-written JMH benchmarks, our
automated tool can save developers time and effort in
microbenchmark construction.

In future, we aim to extend the ju2jmh by handling
two common noises of dead code elimination and constant
folding [16]. Furthermore, our PMT framework is devel-
oped with five operators, while there would many other
performance bug patterns in reality. In future works, we
aim to advance the PMT with more mutation operators. In
addition, we would like to investigate and evaluate other
factors that may affect microbenchmarks’ ability to detect
performance bugs.
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