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Abstract

Researchers continue to demonstrate the benefits of Min-
ing Software Repositories (MSR) for supporting software
development and research activities. However, as the min-
ing process is time and resource intensive, they often create
their own distributed platforms and use various optimiza-
tions to speed up and scale up their analysis. These plat-
forms are project-specific, hard to reuse, and offer minimal
debugging and deployment support. In this paper, we pro-
pose the use of MapReduce, a distributed computing plat-
form, to support research in MSR. As a proof-of-concept,
we migrate J-REX, an optimized evolutionary code extrac-
tor, to run on Hadoop, an open source implementation of
MapReduce. Through a case study on the source control
repositories of the Eclipse, BIRT and Datatools projects, we
demonstrate that the migration effort to MapReduce is min-
imal and that the benefits are significant, as running time
of the migrated J-REX is only 30% to 50% of the original
J-REX’s. This paper documents our experience with the mi-
gration, and highlights the benefits and challenges of the
MapReduce framework in the MSR community.

1 Introduction

The Mining Software Repositories (MSR) field analyzes
and cross-links the rich data available in software repos-
itories to uncover interesting and actionable information
about software systems [[15]. Examples of software repos-
itories include source control repositories, bug reposito-
ries, archived communications, deployment logs, and code
repositories. Research in the MSR field has received an in-
creasing amount of interest.

Most MSR techniques have been demonstrated on large-
scale software systems. However, the size of data avail-
able for mining continues to grow at a very high rate. For

example, the size of the Linux kernel source code exhibits
super-linear growth [13]. MSR researchers continue to ex-
plore deeper and more sophisticated analysis across a large
number of long-lived systems. Robles et al. reported that
Debian, a well-known Linux distribution, doubles in size
approximately every two years [22]. Combined with the
huge system size, this may pose problems for analyzing the
evolution of the Debian system in the future.

The large and continuously growing software reposito-
ries and the need for deeper analysis impose challenges on
the scalability of MSR techniques. Powerful computers and
sophisticated software mining algorithms are needed to suc-
cessfully analyze and cross-link data in a timely fashion.
Prior research focuses especially on building home-grown
solutions for this. The authors of D-CCFinder [18]], a dis-
tributed version of the popular CCFinder [[17] clone detec-
tion tool, have improved their processing time from 40 days
on a single PC-based workstation (Intel Xeon 2.8GHz, 2
GB RAM) to 2 days on a distributed system consisting of
80 PCs. Their home-grown solution is reported to contain
about 20 kLOC of Java code, which must be maintained and
enhanced by these MSR researchers and does not directly
translate to other analyzers.

Tackling the problem of processing large software repos-
itories in a timely fashion is of paramount importance to the
future of the MSR field in general, as we aim to improve
the adoption rate of MSR techniques by practitioners. We
envision a future where sophisticated MSR techniques are
integrated into IDEs that run on commodity workstations
and that provide fast and accurate results to developers and
managers.

In short, one cannot require every MSR researcher to
have large and expensive servers. Furthermore, home-
grown solutions to optimize the mining performance require
huge development and maintenance efforts. Last but not
the least, the task of performance tuning turns our atten-
tion away from the real problem, which is to uncover the



interesting repository information. In many cases, MSR re-
searchers do not have the expertise required nor the interest
to improve the performance of their data mining algorithms.

Techniques are needed that hide the complexity of scal-
ing yet provide researchers with the benefits of scale. Re-
search shows that scaling out (distributed systems) is al-
ways better than scaling up (bigger and more powerful
machines) [20]. Off-the-shelf distributed frameworks are
promising technologies that can help our field.

In this paper, we explore one of these technologies,
called MapReduce [7]. As a proof-of-concept, we migrate
J-REX, an optimized evolutionary code extractor, to run on
the Hadoop platform. Hadoop is a popular open-source im-
plementation of MapReduce which is increasingly gaining
popularity and has proved to be scalable and of production
quality. Companies like Yahoo have Hadoop installations
with over 5,000 machines, and Hadoop is also used by the
Amazon computing clouds. With many companies involved
into its development and maintenance, Hadoop is rapidly
maturing. Through a case study on the source control repos-
itories of the Eclipse, BIRT and Datatools projects, we show
that the migration effort to MapReduce is minimal and that
the benefits are significant. The migrated J-REX solutions
are 4 times faster than the original J-REX. This paper docu-
ments our experience with the migration and highlights the
benefits and challenges of adopting off-the-shelf distributed
frameworks in the MSR community.

The paper is organized as follows. imposes re-
quirements for a general distributed framework to support

MSR research. MapReduce is explained in as
well as one of its open source implementations: Hadoop.

discusses our case study in which we migrate J-
REX, an evolutionary code extractor running on a single
machine, to Hadoop. The repercussions of this case study
and the limitations of our approach are discussed in
presents some related works. Finally,

tion /|concludes the paper and presents future work.

2 Requirements for a General Framework to
Support MSR Research

We seek four common requirements for large distributed
platforms to support MSR research. We detail them as fol-
lows:

1. Adaptability: The platform should take MSR re-
searchers minimal effort to migrate from their prototype so-
lutions, which are developed on a single machine.

2. Efficiency: The adoption of the platform should dras-
tically speed up the mining process.

3. Scalability: The platform should scale with the size
of the input data as well as with the available computing
power.

4. Flexibility: The platform should be able to run on
various types of machines, from expensive servers to com-
modity PCs or even virtual machines.

This paper presents and evaluates MapReduce as a pos-
sible distributed platform which satisfies these four require-
ments.

3 MapReduce

MapReduce [7] is a distributed framework for process-
ing vast data sets. It was originally proposed and used by
Google engineers to process the large amount of data they
must analyze on a daily basis.

The input data for MapReduce consists of a list of
key/value pairs. Mappers accept the incoming pairs, and
map them into intermediate key/value pairs. Each group
of intermediate data with the same key is then passed to a
specific set of reducers, each of which performs computa-
tions on the data and reduce it to one single key/values pair.
The sorted output of the reducers is the final result of the
MapReduce process. In this paper, we simplify the discus-
sion of MapReduce by assuming that mappers accept values
instead of key/value pairs.

To illustrate MapReduce, we consider an example
MapReduce process which counts the frequency of word
lengths in a book. The example process is shown in [Fig
Mappers accept every single word from the book,
and make keys for them. Because we want to count the fre-
quency of all words with different length, a typical approach
would be to use the length of the word as key. So, for the
word “hello”, a mapper will generate a key/value pair of
“S/hello”. Afterwards, the key/value pairs with the same
key are grouped and sent to reducers. A reducer, which re-
ceives a list of values with the same key, can simply count
the size of this list, and keep the key in its output. If a re-
ducer receives a list with key “5”, for example, it will count
the size of the list of all the words that have as length “5”. If
the size is “n”, it outputs an output pair “5/n” which means
there are “n” words with length “5” in the book.

The power and challenge of the MapReduce model re-
sides in its ability to support different mapping and reducing
strategies. For example, an alternative mapper implementa-
tion could map each input value (i.e., word) based on its
first letter and its length. Then, the reducers would process
those words starting with one or a small number of different
letters (keys), and perform the counting. This MapReduce
strategy permits an increasing number of Reducers that can
work in parallel on the problem. However the final output
needs additional post-processing in comparison to the first
strategy. In short, both strategies can solve the problem, but
each strategy has different performance and implementation
benefits and challenges.



Input data Intermediate data Output data

value key value

dog 3 dog

cat mapper 3 cat key | value

fish 4 fish 3 2
hello 5 hello 4 2
good mapper 4 good 5 3
night 5 night 6 1
happy mapper 5 happy
school 6 school

Figure 1. Example MapReduce process for counting the frequency of word lengths in a book.

Hadoop is an open-source implementation of MapRe-
duce [3]] which is supported by Yahoo and is used by Ama-
zon, AOL, Baidu and a number of other companies for their
distributed solutions. Hadoop can run on various operat-
ing systems such as Linux, Windows, FreeBSD, Mac OSX
and OpenSolaris. It not only implements the MapReduce
model, but also provides a distributed file system, called
the Hadoop Distributed File System (HDFS). Hadoop sup-
plies Java interfaces to simplify the MapReduce model and
to control the HDFS programmatically. Another advantage
for users is that Hadoop by default comes with some basic
and widely used mapping and reducing methods, for exam-
ple to split files into lines, or to split a directory into files.
With these methods, users occasionally do not have to write
new code to use MapReduce.

We used Hadoop as our MapReduce implementation for
the following four reasons:

1. Hadoop is easy to use. Researchers do not want
to spend considerable time on modifying their mining pro-
gram to make it distributed. The simple MapReduce Java
interface simplifies the process of implementing the map-
pers and reducers.

2. Hadoop runs on different operating systems. Aca-
demic research labs tend to have a heterogeneous network
of machines with different hardware configurations and
varying operating systems. Hadoop can run on most cur-
rent operating systems and hence to exploit as much of the
available computing power as possible.

3. Hadoop runs on commodity machines. The largest
computation resources in research labs and software devel-
opment companies are desktop computers and laptops. This

characteristic of Hadoop permits these computers to join
and leave the computing cluster in a dynamic and transpar-
ent fashion without user intervention.

4. Hadoop is mature and an open source system.
Hadoop has been successfully used in many commercial
projects. It is actively developed with new features and
enhancements continuously being added. Since Hadoop is
free to download and redistribute, it can be installed on mul-
tiple machines without worrying about costs and per seat
licensing.

Based on these points, we consider Hadoop as the most
suitable MapReduce implementation for our research. The
next section evaluates the ability of Hadoop, and hence
MapReduce, to satisfy the four requirements of

4 Case study

To validate the promise of MapReduce for MSR re-
search, we discuss our experience migrating an evolution-
ary code extractor called J-REX to Hadoop. J-REX is a
highly optimized evolutionary code extractor for Java sys-
tems, similar to C-REX [14]].

As shown in[Figure 2] the whole process of J-REX spans
three phases. The first phase is the extraction phase, where
J-REX extracts source code snapshots for each file from a
CVS repository. In the second phase, i.e. the parsing phase,
J-REX calls for each file snapshot the Eclipse JDT parser to
parse the Java code into its abstract syntax tree [[1], which
is stored as an XML document. In the third phase, i.e. the
analysis phase, J-REX compares the XML documents of
consecutive file revisions to determine changed code units,
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Figure 2. The Architecture of J-REX.

and generates evolutionary change data in an XML for-
mat [[16]. The evolutionary change data reports the evolu-
tion of a software system at the level of code entities such as
methods and classes (for example, “class A was changed to
add a new method B”). The architecture of J-REX is com-
parable to the architecture of other MSR tools.

The J-REX runtime process requires a huge amount of
I/O operations which are performance bottlenecks, and a
large amount of computing power when comparing XML
trees. The I/O and computational characteristics of J-REX
make it an ideal case study to study the performance ben-
efits of the MapReduce computation model. Through this
case study, we seek to verify whether the Hadoop solution
satisfies the four requirements listed in

1. Adaptability: We explain the process to migrate the
basic J-REX, a non-distributed MSR tool, to three differ-
ent distributed Hadoop solutions (DJ-REX1, DJ-REX2, and
DJ-REX3).

2. Efficiency: For all three Hadoop solutions, we com-
pare the performance of the mining process among desktop
and server machines.

3. Scalability: We examine the scalability of the
Hadoop solutions on three data repositories with varying
sizes. We also examine the scalability of the Hadoop solu-
tions running on a varying number of machines.

4. Flexibility: Finally, we study the flexibility of the
Hadoop platform by deploying Hadoop on virtual machines
in a multicore environment.

In the rest of this section, we first explain our experimen-
tal environment and the details of our experiments. Then,

Table 1. Disk performance of desktop and

server computers.

Cached read speed Cached write speed

Server 8,531 M B/sec 211M B/sec
Desktop 3,302M B/sec 107M B/ sec
Random read speed | Random write speed

Server 2,986M B/ sec 1,075M B/ sec
Desktop 1,488M B/sec 658M B/ sec

Table 2. Characteristics of Eclipse, BIRT and

Datatools.
Repository| #Source | Length #Revisions
Size Code of His-
Files tory
Datatools | 394M B 10,552 2 years 2,398
BIRT 810M B 13,002 4 years 19,583
Eclipse | 4.2GB 56,851 8 years 82,682

we discuss whether or not using Hadoop for software min-

ing satisfies the 4 requirements of

4.1 Experimental environment

Our Hadoop installation is deployed on 4 computers in a
local gigabit network. The 4 computers consist of 2 desktop
computers, each having an Intel Quad Core Q6600 @ 2.40
GHz CPU with 2 GB RAM memory, and of 2 server com-
puters, one having an Intel Core i7 920 @ 2.67 GHz CPU
with 8 Cores (Hyperthreading) and 6 GB RAM memory,
and the other one having an Intel Quad Core Q6600 @ 2.40
GHz CPU with 8 GB RAM memory and a RAIDS5 disk. The
8 core server machine has Solid State Disks (SSD) instead
of regular RAID disks. The difference in disk performance
between the regular disk machines and the SSD disk server
computer as measured by hdparm and iozone (64 kB block
size) is shown in The server’s I/O speed with SSD
drive is twice as fast as the machines with regular disk for
random I/O and turns out to be two and a half times for
cached operations.

The source control repositories used in our experiments
consist of the whole Eclipse repository and 2 sub-projects
from Eclipse called BIRT and Datatools. Eclipse has a large
repository with a long history, BIRT has a medium reposi-
tory with a medium length history, and Datatools has a small
repository with a short history. Using these 3 repositories
with different size and length of history, we can better eval-
uate the performance of our approach across subject sys-
tems. The repository information of the 3 projects is shown

in [Table 2



Table 3. Experimental results for DJ-REX in Hadoop.

Repsitory | Desktop | Server Strategy | 2nodes | 3nodes | 4 nodes

Datatools | 0:35:50 | 0:34:14 | DJ-REX3 | 0:19:52 | 0:14:32 | 0:16:40

DJ-REX1 2:03:51 | 2:05:02 | 2:16:03

DJ-REX2 | 1:40:22 | 1:40:32 | 1:47:26

BIRT | 2:44:09 1 20355 | pyREX3 | 1:08:36 | 0:50:33 | 0:45:16
DJ-REX3* — 3:02:47 —

Eclipse — 12:35:34 | DIJ-REX3 — — 3:49:05

4.2 Experiments

We conduct the following experiments:

1. Run J-REX without Hadoop on the BIRT, Datatools
and Eclipse repositories.

2. Run DJ-REX1, DJ-REX?2 and DJ-REX3 on BIRT with
2, 3 and 4 machines.

3. Run DJ-REX3 on Datatools with 2, 3 and 4 machines.
4. Run DJ-REX3 on Eclipse with 4 machines.
5. Run DJ-REX3 on BIRT with 3 virtual machines.

Only DJ-REX3 is applied in the last three experiments,
because the experimental results for the smallest system,
i.e. BIRT, already showed a significant speed improve-
ment compared to the other two distributed strategies and
the original, undistributed J-REX. The results of all five ex-
periments are summarized in and are discussed in
the next section. The row with DJ-REX3* corresponds to
the experiment that has DJ-REX3 running on 3 virtual ma-
chines.

4.3 Case study discussion

This section uses the experiment data results of
to discuss whether or not the various DJ-REX solutions

meet the 4 requirements outlined in
Adaptability

shows the implementation and deployment
effort required for DJ-REX. We first discuss the effort
devoted to porting J-REX to Hadoop. Then we present
the experience about configuring Hadoop to add in more
computing power. The implementation effort of the three
DJ-REX solutions decreases as we got more acquainted
with the technology.

Easy to experiment with various distributed solutions

As 1s often the case, MSR researchers do not have the
expertise required for nor do they have interest in improv-
ing the performance of their mining algorithms. The need

Table 4. Effort to program and deploy DJ-
REX.

J-REX Logic

MapReduce strategy for DJ-REX1
MapReduce strategy for DJ-REX2
MapReduce strategy for DJ-REX3
Deployment Configuration
Reconfiguration

No Change
400 LOC, 2 hours
400 LOC, 2 hours
300 LOC, 1 hours

1 hour
1 minute

Table 5. Overview of distributed steps in DJ-
REX1 to DJ-REX3.

Extraction | Parsing | Analysis
DJ-REX1 No No Yes
DJ-REX2 No Yes Yes
DJ-REX3 Yes Yes Yes

to rewrite an MSR tool from scratch to make it run on
Hadoop is not an acceptable option. If the programming
time for the Hadoop migration is long (maybe as long as
re-implementing it), then the chances of adopting Hadoop
become very low. In addition, if one has to modify a tool in
such an invasive way, considerably more time will have to
be spent to test it again once it runs distributed.

We found that applications are very easy to port to
Hadoop. First of all, Hadoop provides a number of de-
fault mechanisms to split input data across mappers. For
example, the “MultiFileSplit” class splits files in a direc-
tory, whereas the “DBInputSplit” class splits rows in a
database table. Often, one can reuse these existing mapping
strategies. Second, Hadoop has well-defined and simple
APIs to implement a MapReduce process. One just needs
to implement the corresponding interfaces to make a cus-
tom MapReduce process. Third, several code examples are
available to show users how to write MapReduce code with
Hadoop [3].

After looking at the available code examples, we found
that we could reuse the code for splitting the input data by
files. Then, we spent a few hours to write around 400 lines
of Java code for each of the three DJ-REX MapReduce
strategies. The programming logic of J-REX itself barely



Input data Intermediate data Output data
value key value
a_0.java ajava | a 0java key value
mapper

a l.java ajava | a ljava a.java | a.output

b _0.java b.java | b _0.java b.java | b.output

a_2java mapper ajava | a 2java

b_I.java b.java | b_ljava

Figure 3. MapReduce strategy for DJ-REX.
changed. OJ-REX on desktop | 0:35:50
The remainder of this section explains our three DJ-REX 2JREX on server | 0:34:14

MapReduce strategies. Intuitively, we need to compare the
difference between adjacent revisions of a Java source code EDJ-REX3 [ [E
file. We could define the key/value pair output of the map- ‘ : ‘ .
per function as (D1, a_0.java and a_1.java), and the re- 0:00:00 0:14:24 0:28:48 0:43:12

ducer function output as (revision number, evolutionary in-
formation). The key D1 represents the difference between
two versions, a_0.java and a_1.java represent the names
of two files. Because of the way that we partition the data,
each revision needs to be copied and transferred to more
than one mapper node, which generates extra overhead for
the mining process, and turned out to make the process
much longer. The failure of this naive strategy shows the
importance of designing a good strategy of MapReduce.

Therefore, we tried another basic MapReduce strategy,
as shown in This strategy performs much bet-
ter than our naive strategy. The key/value pair output of the
mapper function is defined as (file name, revision snapshot),
whereas the key/value pair output of the reducer function is
(file name, evolutionary information for this file). For ex-
ample, file “a.java” has 3 revisions. The mapping phase gets
file names and revision numbers as input, and sorts revision
numbers per file: (a.java,a-0.java), (a.java,a_l.java)
and (a.java,a_2.java). Pairs with the same key are then
sent to the same reducer. The final output for “a.java” is the
generated evolutionary information.

On top of this basic MapReduce strategy, we have im-
plemented 3 flavors of DJ-REX (Table 3)). Each flavor dis-
tributes a different combination of the 3 phases of the orig-
inal J-REX implementation (Figure 7). The first flavor is
called DJ-REX1. One machine extracts the source code of-
fline and parses it into AST form. Afterwards, the output
XML files are stored in the HDFS and Hadoop uses it to an-
alyze the change information. In this case, only 1 phase of J-
REX becomes distributed. For DJ-REX2, one more phase,

Figure 4. Running time comparison of J-REX
on a server machine and desktop machine
compared to the fastest DJ-REX3 for Data-
tools.

the parsing phase, becomes distributed. Only the extraction
phase is still non-distributed, whereas the parsing and anal-
ysis phases are done inside the reducers. Finally, DJ-REX3
is a fully-distributed implementation with 3 phases running
in a distributed fashion inside each reducer. The input for
DJ-REX3 is the raw CVS data and Hadoop is used through-
out all 3 phases.

Using files to partition input data is an intuitive and
often the most suitable option for many mining techniques
which want to explore the use of Hadoop.

Easy to deploy and add more computing power

It took us only 1 hour to learn how to deploy Hadoop in
the local network. To expand the experiment cluster (i.e., to
add more machines), we only needed to add the machines’
names in a configuration file and install Hadoop on those
machines. Based on our experience, we feel that porting
J-REX to Hadoop is easy and straightforward, and for sure
easier and less error-prone than implementing our own dis-
tributed platform.
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Figure 5. Running time of J-REX on a server
machine and desktop machine compared to
the fastest deployment of DJ-REX1, DJ-REX2
and DJ-REXS3 for BIRT.

OJ-REX on \
server
I 3:49:05

|12:35:34

mDJ-REX3

0:00:00 4:48:00 9:36:00  14:24:00
Figure 6. Running time of J-REX on a server
machine compared to DJ-REX3 with 4 work

nodes for Eclipse.

Efficiency

We now use our experimental data to test how much time
could be saved by using Hadoop for the mining process.
(Datatools) [Figure 5| (BIRT) and (Eclipse)
present the results of [Table 3]in a graphical way.

From (Datatools) and [Figure 5| (BIRT), we can

draw the following two conclusions. On the one hand, faster
and powerful machinery can speed up the mining process.
For example, running J-REX on a very fast server machine
with SSD drives for the BIRT repository saves around 40
minutes compared with running it on the desktop machine.
On the other hand, all DJ-REX solutions perform no worse
or even better than the J-REX solutions regardless of the
difference in hardware machinery. As shown in
the running time on the SSD server machine is almost the
same to that using DJ-REX1, which only has the analysis
phase distributed, since the analysis phrase is the shortest of
all three J-REX phases. Therefore, the performance gain of
DJ-REX is not significant. DJ-REX2 and DJ-REX3, how-
ever, outperform the server. The running time of DJ-REX3
on BIRT is almost one quarter of running it on a desktop
machine and one third the time of running it on a server
machine. The running time of DJ-REX3 for Datatools has
been reduced to around half the time taken by the desktop
and server solutions, and for Eclipse to around a quarter of
the time of the server solution. It is clear that the more we
distribute our process, the less time is needed.

DJ-REX1
DJ-REX2
DJ-REX3
DJ-REX1

B preprocess
H copy data
O process data

2 nodes

DJ-REX3
DJ-REX1

4 nodes | 3 nodes

DJ-REX3

0:00:00 0:57:36 1:55:12 2:52:48
Figure 7. Comparison of the running time of

the 3 flavors of DJ-REX for BIRT.

shows the detailed performance statistics of the
three flavors of DJ-REX for the BIRT repository. The to-
tal running time can be broken down into three parts: the
preprocess time (black) is the time needed for the non-
distributed phases, the copy data time (light blue) is the
time taken for copying the input data into the distributed
file system, and the process data time (white) is the time
needed by the distributed phases. In the running
time of DJ-REX3 is always the shortest, whereas DJ-REX1
always takes the longest time. The reason for this is that
the undistributed black parts dominate the process time for
DJ-REX1 and DJ-REX2, whereas in DJ-REX3 everything
is distributed. Hence, the fully distributed DJ-REX3 is the
most efficient one.

In[Figure 7] process data time (white) is decreasing con-
stantly. The MapReduce strategy of DJ-REX is basically
dividing the job by files which are processed independently
from each other in different mappers. Hence, one could ap-
proximate the job’s running time by dividing the total pro-
cessing time by the number of Hadoop nodes. The more
Hadoop nodes there are, the smaller the incremental bene-
fit of extra nodes. In addition, a new node introduces more
overhead, like network overhead or distributed file system
data synchronization. [Figure 7|clearly shows that copy data
time (light blue) is increasing when adding nodes and hence
that the performance with 4 nodes is not always the best one
(e.g. for Datatools).

Our experiments show that using Hadoop to support
MSR research is an efficient and viable approach that can
drastically reduce the required processing time.

Scalability

Eclipse has a large repository, BIRT has a medium-sized
repository and Datatools has a small repository. From
(Datatools), (BIRT), (Eclipse) and
(BIRT), it is clear that Hadoop reduces the running
time for each of the three repositories. When mining the
small Datatools repository, the running time is reduced to
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Figure 8. Running time comparison for BIRT
and Datatools with DJ-REX3.

virtual machines
OJ-REX on desktop | 2:44:09
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Figure 9. Running time of the basic J-REX on
a desktop and server machine, and of DJ-
REX-3 on 3 virtual machines on the same
server machine.

50%. The bigger the repository, the more time can be saved
by Hadoop. The running time can be reduced to 36% and
30% of the non-Hadoop version for the BIRT and Eclipse
repositories, respectively.

shows that Hadoop scales well for different
numbers of nodes (2 to 4) for BIRT and Datatools. We did
not include the running time for Eclipse because of its large
variance and the fact that we could not run Eclipse on the
desktop machine (we could not fit the entire data into the
memory). However, from we know that the run-
ning time for Eclipse on the server machine is more than 12
hours and that it only takes a quarter of this time (around
3.5 hours) using DJ-REX3.

Unfortunately, we found that the performance of DJ-
REX3 is not proportional to the amount of computing re-
sources introduced. From [Figure 8] we observe that adding
a fourth node introduces additional overhead to our process,
since copying input data to another node out-weighs the par-
allelizing tasks to more machines. The optimal number of
nodes depends on the mining problem and the MapReduce

strategies that are being used, as outlined in[Section 3]
Flexibility

Hadoop runs on many different platforms (i.e., Windows,
Mac and Unix). In our experiments, we used server ma-

chines with and without SSD drives, and relatively slow
desktop machines. Because of the load balance control in
Hadoop, each machine is given a fair amount of work.
Because network latency could be one of the major
causes of the data copying overhead, we did an experiment
with 3 Hadoop nodes running in 3 virtual machines on the
Intel Quad Core server machine. Running only 3 virtual ma-
chines increases the probability that each Hadoop process
has its own processor core, whereas running Hadoop inside
virtual machines should eliminate the majority of the net-
work latency. shows the running time of DJ-REX3
when deployed on 3 virtual machines on the same server
machine. The performance of DJ-REX3 in virtual machines
turns out to be worse than that of the undistributed J-REX.
We suspect that this happens because the virtual machine
setup results in slower disk accesses than deployment on a
physical machine. However, this could be improved by us-
ing a redundant storage array (RAID), or a networked stor-
age array, but this is future work. The ability to run Hadoop
in a virtual machine can be used to deploy a large Hadoop
cluster in a very short time by rapidly replicating and start-
ing up virtual machines. A well configured virtual machine
could be deployed to run the mining process without any
configuration, which is extremely suitable for non-experts.

5 Discussion and Limitations

MapReduce on other software repositories

Multiple types of repositories are used in the MSR field,
but in principle MapReduce could be used as a standard
platform to speed up and scale up different analyses. The
main challenge is deriving optimal mapping strategies. For
example, a MapReduce strategy could split mailing list
data by time or by sender name, when mining a mailing
list repository. Similarly, when mapping a bug reports
repository, the creator and creation time of the bug report
could be used as splitting criteria.

Incremental processing

Incremental processing is one possible way to deal with
large repositories and extensive analysis. Instead of pro-
cessing the data from a long history in one shot, one could
incrementally process the data on a weekly or monthly
basis. However, incremental processing requires more
sophisticated designs of mining algorithms, and sometimes
is just not possible to achieve. Since researchers are mostly
prototyping their ideas, a brute force approach might be
more desirable with optimizations (such as incremental
processing) to follow later. The low cost of migrating an
analysis technique to MapReduce is negligible compared
to the complexity of migrating a technique to support
incremental processing.



One-time processing

One-time processing involves processing a repository
once, and then storing it in a compact format for subse-
quent querying and analysis. Clearly, the cost of one-time
processing is not a major concern. However, we believe
that MapReduce can help in two ways: 1) scaling the
number of possible systems that can be analyzed, and 2)
speeding up the prototyping phase. Using a MapReduce
implementation, analyzing and querying a large system is
simply faster than when doing one-time processing without
MapReduce. Moreover, although one-time processing
might require a single pass through the data, it is often the
case that the developers of the technique explore a lot of
ideas as they are prototyping their algorithm and ideas,
and have to debug the technique. The repositories must be
analyzed time and time again in these cases. We believe
MapReduce can help speed up the prototyping phase and
offer researchers more timely feedback on their ideas.

Robustness

MapReduce and its Hadoop implementation offer a
robust computation model which can deal with different
kinds of failures at run-time. If certain nodes fail, the tasks
belonging to the failed nodes are automatically re-assigned
to other nodes. All other nodes are notified to avoid trying
to read data from the failed nodes. Dean et al. [[7]] reported
that MapReduce clusters with over 80 nodes can become
unreachable, yet the processing continues and finishes
successfully. This type of robustness permits the execution
of Hadoop on laptops and non-dedicated machines, such
that lab computers can join and leave a Hadoop cluster
rapidly and easily based on the needs of the owners. For
example, students can join a Hadoop cluster while they are
away from their desk and leave it on until they are back.

Current Limitations

Most of the current limitations are imposed by the imple-
mentation of Hadoop. Locality is one of the most important
issues for a distributed platform, as network bandwidth is a
scarce resource when processing a large amount of data. To
solve this problem, Hadoop attempts to replicate the data
across the nodes and to always locate the nearest replica of
the data. In Hadoop, a typical configuration with hundreds
of computers by default would have only 3 copies of the
data. In this case, the chance of finding required data stored
on the local machine is very small. However, increasing the
number of data copies requires more space and more time to
put the large amount of data into the distributed file system.
This in turn leads to more processing overhead.

Deploying data into the HDFS file system is another lim-
itation of Hadoop. In the current Hadoop version (0.19.0),
all input data needs to be copied into HDFS, which gives
much overhead. As [Figure 7] and [Figure 8| show, running

time with 4 nodes may not be the shortest one. Finding out
the optimal Hadoop configuration is future work.

6 Related Work

Automated evolutionary extractors, optimized mining
solutions and distributed computing platforms are the three
areas of research most related to our work.

Automated evolutionary extractors

Hassan developed an evolutionary code extractor for
the C language called C-REX [14]. The Kenyon frame-
work [6] combines various source code repositories into
one to facilitate software evolution research. Draheim et
al. created Bloof [8]], by which users can define custom
evolution metrics from CVS logs. Alonso et al. developed
Minero [5] which uses database techniques to integrate
and manage data from software repositories. Godfrey et
al. [[13] developed evolutionary extractors that use metrics
at the system and subsystem level to monitor the evolution
for each release of Linux. In addition, Qu et al. [23]
developed evolutionary extractors that track the structural
dependency changes at the file level for each release of
the GCC compiler. Gall et al. [10} [11] have developed
evolutionary extractors that track the co-change of files for
each changelist in CVS. Gall et al. [9] developed extrac-
tors which track source code changes. Zimmermann et
al. [24] present an extractor which determines the changed
functions for each changelist. All these tools can be easily
ported to the MapReduce framework.

Optimizing Mining Solutions

To the authors’ knowledge, there is only one related
work which tries to optimize software mining solutions on
large scale data, i.e. D-CCFinder [18}[19]. D-CCFinder is a
distributed implementation of CCFinder to analyze source
code with a large size and long history in a relatively short
time. Unfortunately, this implementation is homegrown
and specialized to CCFinder, not open to other MSR tech-
niques. More recently, the researchers behind D-CCFinder
proposed to run CCFinder on a grid-based system [[19]].

Distributed Platforms

There are several distributed platforms that implement
MapReduce. The prototypical one is from Google [7].
The Google platform makes use of Google’s file system,
called GFS [12]. Phoenix is another implementation of
the MapReduce model [21]]. Phoenix’s main focus is on
exploiting multi-core and multi-processor systems such as
the Playstation Cell architecture. GridGain [2] is an open
source implementation of MapReduce, but its main disad-
vantage is that it can only process data which can be stored
in a JVM heap space. For the large size of data that we usu-



ally process in MSR, this is not a good choice. We chose
Hadoop due to its simple design and its wide user base.

7 Conclusions and Future Work

A scalable software mining solution should be adaptable,
efficient, scalable and flexible. In this paper, we propose
to use MapReduce as a general framework to support re-
search in MSR. To validate our approach, we presented our
experience of porting J-REX, an evolutionary code extrac-
tor for Java, to Hadoop, an open source implementation of
MapReduce. Our experiments demonstrate that our new
solution (DJ-REX) satisfies the four requirements of scal-
able software mining solutions. Our experiments show that
running our optimized solution (DJ-REX3) on a small local
area network with 4 nodes requires 75% less time than the
time needed when running it on a desktop machine and 66%
less time than on a server machine.

One of our future goals is to dynamically control the
computation resources in our lab. If someone wants to pull
a machine out of the platform, we don’t want to reconfig-
ure the whole platform. If the machine becomes idle, one
should be able to plug it back into the platform. In addi-
tion, we also plan to experiment with other technologies like
HBase [4] to improve the current Hadoop deployment.
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