2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

Logging Library Migrations: A Case Study for the Apache
Software Foundation Projects

Suhas Kabinna!, Cor-Paul Bezemer!, Weiyi Shang?, Ahmed E. Hassan'

Software Analysis and Intelligence Lab (SAIL), Queen’s University, Kingston, Canada'’
Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada?,

{kabinna, bezemer, ahmed}@cs.queensu.cal, shang@encs.concordia.ca

ABSTRACT

Developers leverage logs for debugging, performance moni-
toring and load testing. The increased dependence on logs
has lead to the development of numerous logging libraries
which help developers in logging their code. As new libraries
emerge and current ones evolve, projects often migrate from
an older library to another one.

In this paper we study logging library migrations within
Apache Software Foundation (ASF) projects. From our man-
ual analysis of JIRA issues, we find that 33 out of 223 (i.e.,
14%) ASF projects have undergone at least one logging li-
brary migration. We find that the five main drivers for log-
ging library migration are: 1) to increase flexibility (i.e.,
the ability to use different logging libraries within a project)
2) to improve performance, 3) to reduce effort spent on code
maintenance, 4) to reduce dependence on other libraries and
5) to obtain specific features from the new logging library.
We find that over 70% of the migrated projects encounter
on average two post-migration bugs due to the new logging
library. Furthermore, our findings suggest that performance
(traditionally one of the primary drivers for migrations) is
rarely improved after a migration.

1. INTRODUCTION

Logging records useful information during system exe-
cution. The information is used for maintaining the sys-
tem [18, 19, 30], bug-fixing [15, 23, 29|, detecting anoma-
lies [23] and transferring knowledge [26]. Every logging
statement contains a textual part, which describes the con-
text, a variable part providing more information about the
context, and a log verbosity level. Figure 1 shows an exam-
ple of a logging statement in the code and the corresponding
log that is generated at runtime.

Traditionally, logging was done using simple print (e.g.
System.out.println) statements. Nowadays, a multitude of
logging libraries exist that abstract the intricacies of logging
and such libraries are used by most projects. The evolution
of logging libraries has lead to the emergence of many new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA

@ 2016 ACM. ISBN 978-1-4503-4186-8/16/05...$15.00

DOI: http://dx.doi.org/10.1145/2901739.2901769 .

154

2

Logging statement:
LOG.info("Created a new CustomerEntity {} as no matching persisted entity found.",
answer); [ Apache Camel ]

Generated log :
INFO Created a new CustomerEntity Customer{userName: james firstName: null
surname: null] as no matching persisted entity found.

Figure 1: Example of a logging statement and output gen-
erated at runtime

features such as uniform verbosity levels [5], reduced per-
formance overhead for logging [7, 9, 11] and management
of logs in distributed systems [17]. As a result, developers
tend to migrate from older logging libraries to newer logging
libraries as, e.g., observed within the Maven repository [27].

By understanding how logging library migrations were
proposed, discussed and performed in other projects, devel-
opers can better plan for logging library migration in their
projects. Developers can account for the needed effort and
the obtained benefits from migration. Developers can also
be aware of the post-migration risks (i.e., bugs) that they
might encounter. In this paper, we empirically study the log-
ging library migration in projects from the Apache Software
Foundation (ASF). We focus on ASF projects due to the va-
riety of projects, their impact on today’s computing practice
(many of the projects are extensively used in data centers
worldwide), and the availability of rich historical repositories
for these projects due to the well defined processes.

Our paper makes the first attempt (to the best of our
knowledge) to understand logging library migrations. Be-
low, we highlight our most important findings.

1. We identify 49 logging library migration at-
tempts in ASF projects, of which 33 were suc-
cessfully completed. We find that it takes a median
of 26 days to complete a logging library migration. We
also find that the Cassandra and Jackrabbit projects
migrate their logging libraries twice.

2. The 14 cases of abandoned migrations are due
to failure to reach a concensus about whether
to migrate or not (28%), and failure to provide
the necessary code changes (42%).

3. Flexibility (in 57% of the projects) and perfor-
mance improvement (in 37% of the projects)
are the primary drivers for logging library mi-
grations.

4. In 60%, i.e., 21 of the migrated projects, the
necessary code changes are performed by the
top three committers of that project.

5. Logging library migrations are error-prone and



over 70%, i.e., 24 of the migrated projects, en-
counter an average of two post-migration bugs.
These bugs are due to unexpected interactions between
the old and new logging library, missed dependencies
where the new libraries are not included and configu-
ration bugs where the new libraries are misconfigured.
These results suggest that logging library migrations
are not straightforward and developers have to be more
cautious during migrations.

6. The achieved performance improvement post-

migration in Camel and Cassandra is negligible.
The improvement in performance is statistically signif-
icant with a large effect size only when the number of
generated logs is large. However, when info level logs
(i.e., the default level that affects most users) are en-
abled, we observe that the number of generated logs is
relatively small and the effect sizes of the performance
improvement are small or negligible. These results sug-
gest that performance improvement should not be one
of the primary drivers for logging library migrations in
most projects.

The rest of this paper is organized as follows. Section 2
presents background information about logging and relevant
prior research. Section 3 presents the methodology for ex-
tracting the needed data for our analysis. Section 4 dis-
cusses the prevalence of logging library migration within
ASF projects. Section 5 shows the necessary effort for log-

ging library migrations and the different types of post-migration

bugs that are encountered. Section 6 describes the perfor-
mance improvement analysis results. Section 7 discusses the
threats to validity and Section 8 concludes the paper.

2. BACKGROUND AND RELATED WORK

In this section, we present an overview of the evolution
of logging libraries, the process of migration and the prior
research related to this topic.

2.1 Evolution of Logging Libraries

The history of logging libraries can be divided into four
eras. Figure 2 gives an overview of the logging libraries that
are developed in each era. We focus on logging libraries
for C and Java as these libraries have exhibited the most
important evolutionary changes, and are the most actively
used in data centers today.

Ad Hoc Logging: Before the advent of logging libraries,

developers primarily relied on ad hoc methods such as System.

out.println in Java or syslog in Linux for generating outputs
and monitoring the projects. However, these ad hoc meth-
ods suffered from various issues such as no verbosity settings,
difficulties in configuring the output, non-uniform format of
output and being difficult to maintain for large deployments.

String concatenation versus parameterized form: Another
problem of using ad hoc logging, particularly in Java, is the
use of string concatenation. When multiple variables are
logged by a System.out.printin statement in Java, for each
logged variable a string concatenation must be performed.
Since string concatenation in Java is a slow operation [14],
this method of logging is inherently slow. A faster way is
using a parameterized form as used by printf in C, as this
method avoids concatenation but uses string replacement.
Both methods are demonstrated below. In ad hoc logging,
developers do not get any guidance in writing parameterized
logging statements in Java.

155

String concatenation:
System.out.printin(“Variables: "+varl+%" +var2);
Parameterized form:

printf (“Variables: %s, %s”, varl, var2);

Basic Libraries: Two of the oldest logging libraries are
Log4j (2001) and Java utility logging JUL (2002). These
logging libraries introduced verbosity levels such as ‘Error’,
‘Fatal’, “‘Warn’, ‘Info’; ‘Debug’ and ‘Trace’, and were easy to
configure. Developers can configure the logging properties
for the entire project through one file. Amongst properties
that can be configured are the date and time format for the
logs and the output location of the logs, (i.e., console, file
and remote server) [6]. These logging libraries also provide
additional features such as asynchronous logging, a com-
mon format for the generated logs and adding appenders,
(i.e., package where the logging statement is located) to the
generated logs, which assists developers during debugging.
In addition, these libraries provide wrapper methods for pa-
rameterized logging.

Developers in C followed the example of Java and devel-
oped basic libraries such as Log4c (2002) and BoostLogV2
(2003). These libraries provided similar features to Java li-
braries.

In the wild, a variety of logging libraries were developed [4].
However, as most of these libraries were not licensed under
ASF standards, projects within in ASF typically adopted
Log4j since it was developed under ASF, and JUL since it
was the default logging library from Java 1.4 onwards.

As the number of logging libraries increased, developers

faced difficulties when using different logging libraries in one
project. To embed a project using JUL into another project
using Log4j, developers had to change their logging library
to Log4j, which resulted in changing thousands of lines of
code. It also makes integrating newer releases of the project
difficult, as newer releases also have to be migrated to Log4j
before integration.
Log Abstraction Libraries: To overcome the problem of
having multiple libraries in a large system, library abstrac-
tions were developed. Apache commons logging JCL (2003),
was the first logging library that supports log abstraction.
In JCL, developers write their logging statements in the JCL
format, but have the option of calling any other library such
as Log4j or JUL in the back-end. In essence, log abstrac-
tion provides a skeletal structure on which developers could
leverage a logging library of their choice.

Slf4j is also a log abstraction library similar to JCL with
one major difference being that it does not suffer from class
loading problems as commonly observed in JCL [1]. Sif4j
also has lower performance overhead than its predecessors
because it uses parameterized form of logging statements
instead of string concatenated form [11] and helps write
cleaner code by avoiding the use of isLogLevelEnabled checks.

However, the main drawback of such log abstraction li-
braries was that they need other libraries for generating logs
and it is challenging to configure the interaction between the
different libraries that are used within a project.

Log Unification Libraries: To solve the problems faced
by log abstraction, log unification libraries were developed
and they contained the best of both worlds, i.e., it provides
both a basic library and a log abstraction library. Logback
(2011) was the first unification logging library for Java, as
it had a basic library and a log abstraction library, (i.e.,



St

Adhoc Logdi ][ JuL_] JCL
. Basic ) ) )
Ad hoc Logging . ) Abstraction Libraries
Libraries
1990's 2002 2004 2006 2008

[ ¢ Logging Libraries
[ JavaLogging Libraries

Figure 2: The eras of logging library development in C and Java

Sif47) built into it. Similarly, libraries named Pantheios and
Google log (G3log) were developed for C.

Log4j 2 (2014) is the latest unification logging library,
which builds on top of Logback. Log4j 2 incorporates all
the features of Logback and improves the performances of
generating logs. However, unlike Logback, Log4j 2 is licensed
under ASF. Hence, the studied ASF projects are more likely
to integrate it into their code base.

2.2 Library Migration Process

As more advanced logging libraries emerge and evolve,
projects migrate to these libraries to reap the benefits of
their new features. To understand the process of logging
library migration, we focus our study on Java projects as
more than 200 [10] out of 322 ASF projects are Java based.

Though the process of logging library migration can vary
from one project to another, any logging library migration
requires the following three stages:

1. Proposal stage: The proposal stage includes the iden-
tification of the drivers for migrating to another logging li-
brary. In ASF projects, the discussion is typically conducted
on JIRA, where developers explain the problems with the
existing library and the benefits of new logging library.

2. Planning stage: The planning stage involves the dis-
cussion of which library to migrate to and deciding who will
provide the migration patch. The planning stage is broken
into two steps namely:

1. Finding the appropriate logging library: After agreeing
on migration, developers select the appropriate logging
library for their project.

2. Identifying the people to provide migration patch: Upon
agreeing which library to migrate to, developers decide
on the people who will work on the migration patch.

3. Implementation stage: After selecting the appropriate
logging library, one or more developers offer to make the
necessary code changes for migration. The implementation
stage includes two steps:

1. Adding library dependencies and modifying library prop-

erty files: Adding dependencies involves adding the
necessary library files (e.g., jar files) into a project.
Though the process seems straightforward, developers
have to select the correct library files when the project
has dependency with other libraries. As there can be
multiple libraries being used within a project, devel-
opers have to be careful when introducing new depen-
dencies by including new libraries.
Modification to properties files includes setting the de-
fault verbosity level, where to log, the output log for-
mat and configuring log appenders (i.e., whether out-
put logs to a file or to remove servers). Developers also
have to configure the interaction between the different
logging libraries (i.e., which basic library interacts with
the abstraction library) within the project.

2. Updating the logging method invocations throughout
source code files: Developers must update the logging
method invocations in the source code to utilize the

156

new logging library.

Automated tools [13] are available for assisting develop-
ers with logging library migration. These tools automati-
cally perform parts of the necessary code changes such as
updating import statements and log invocations as shown
below.

Updating import statements
- import org.apache.commons.logging.Log;
- import org.apache.commons.logging. LogFactory;
+ smport org.slf4j.Logger;
+ import org.slf4j. LoggerFactory;
Updating log invocations
public MyClass {
- Log logger = LogFactory.getLog();
+ Logger logger = LoggerFactory.getLogger();

However, these tools have major limitations since they are
not capable of doing the following: 1) transforming the log-
ging statements from string concatenated form to parame-
terized form, 2) adding the necessary dependencies and 3)
modifying the build and configuration files.

There exist several open source tools [3, 8, 12] that sup-
port updating logging statements from string concatenated
to parameterized form. However, these tools are not mature
(i.c., with less than five commits) and poorly maintained,
making them unsuitable for large projects.

The elaborate stages necessary for logging library migra-
tion and the absence of mature automated tools to assist in
migration make the migrations of logging libraries a chal-
lenging task. The need for these elaborate stages motivates
us to understand what drives logging library migrations, the
migration process in different projects and the faced post-
migration bugs.

2.3 Related Work

In this subsection we present the prior work done on log-
ging library migrations.

Prior research empirically studies the migration of libraries
within open source projects. Lidmmel et al. [21] uses ab-
stract syntax trees to detect API usage in open source Java
projects. They find that Log/j and JCL are amongst the
top 10 most frequently used APIs in Java projects. Cedric
et al. [27] study the migration of libraries in projects by min-
ing the Maven repository. They find that logging library
migrations are the most frequent migrations within Maven.
A follow-up work done by the same authors [28] shows that
Log4j is being replaced in favor of different libraries such as
commons-logging, Sif4j and Logback. The authors try to in-
vestigate the drivers for logging library migration, however
due to insufficient data and absence of data from JIRA-like
issue tracking systems for Maven projects, the authors only
perform a preliminary analysis on the drivers for logging
library migrations.

Yana et al. [24] study the trends of library usage within
ASF projects and find that developers tend to upgrade the
logging libraries to newer version. Kapur et al. [20] present



- . JIRA
1. Identifying logging | discussions
i library migrations about library

JIRA

Repository migrations

JIRAlissue ID

volutiona

3. Identifying migration | Code churn,

Extract
frequency

of logging —
library .
migrations Drivers for
(Section 4.1) successful
migration
2. Identifying the (Section 4.2)
drivers of logging Analyze
library migrations JIRA
issues Q
Drivers for
Examine unsuccessful
developer mlg_rauon
lexperience and (Section 4.3)
migration effort

commits log churn and
developer
metrics

Git
Repository

history

(Section 5)

Figure 3: Provides an overview of data extraction and analysis

a tool named Trident that supports library migrations by
helping developers change the method invocations and ar-
guments. The aforementioned work shows that logging li-
brary migrations occur frequently within software projects.
However, prior work has never investigated the drivers for
logging library migrations in a thorough manner nor did
they investigate the effort involved in such migrations. Our
work is the first to investigate the drivers, needed effort and
challenges of such migrations.

3. METHODOLOGY

In this section, we describe our methodology for identi-
fying the logging library migrations in ASF projects. In
addition, we explain the main drivers and the needed effort
for such migrations.

3.1 Studied Projects

To identify projects that attempt logging library migra-
tions, we select all Java based ASF projects. We select ASF
as it contains more than 200 Java based projects which are
actively used in most data centers today. These projects
also have issue tracking systems in JIRA, which helps in
identifying logging library migrations within these projects.

3.2 Data Extraction Approach

For our study, we need the following data:
1. JIRA issue reports. JIRA issues contain informa-
tion about the changes made to a project throughout its
development and are suitable for identifying projects which
migrated their logging libraries.
2. Git commit history. We use the Git commits to
analyze the source code changes made during logging library
migrations.

The data extraction approach consists of three steps, which
are further explained in this section.

1. Identify all issues in JIRA which attempt to migrate
logging libraries.

2. Manually analyze the collected JIRA issues to find the
drivers for logging library migrations.

3. Collect churn metrics such as code churn and developer
metrics such as developer experience to understand the
effort spent on logging library migrations.

Figure 3 shows a general overview of the extraction pro-

cess and we detail below the aforementioned steps.

Identifying Logging Library Migrations: To identify

projects that undergo logging library migration, we search
the JIRA issues for keywords such as switch, migrate or
change in conjunction with SIf4j, Log4j, JCL, logback or
log. We collect over 450 issues from our search and manually
analyze them to identify all the issues that relate to logging
library migrations.

Identifying the Drivers of Logging Library Migra-

157

tions: To understand the drivers of migrations, we manually
analyze all the issues in JIRA which attempt logging library
migration. In addition, we examine whether the issue was
fixed and closed in order to know whether the logging library
migration was completed.

Finally, we identify issues in which logging library migra-
tion is considered but not carried out (the issues that are not
fixed). We analyze the reasons for these failed attempts at
migration, as they can help developers avoid such mistakes.

Identifying Migration Commits: To find the code
churn during the migration of a logging library, we extract
the JTRA issue IDs of the issues that discuss logging library
migrations. We clone the projects corresponding to the is-
sue locally. Using git log, we match the JIRA issue IDs to
commit messages to identify the commits related to logging
library migration.

We use the git diff command to extract all the changes
made during migration commits. With the extracted com-
mits, we calculate code churn, touched files and changed
logging statements to measure the effort spent on logging
library migrations. Using the information in the JIRA is-
sues, we calculate the number of involved developers in the
discussion posts, the experience of developers and the time
taken to resolve the issue.

To measure the experience of the developers involved in
the JIRA discussions, we use the Git repository to calculate
the number of commits by each developer until the resolu-
tion of the JIRA issue and rank the developers based on the
number of commits (i.e., the developer with most commits
gets the highest rank). Next, we match the unique developer
IDs from JIRA issues to the committer IDs in the Git repos-
itory. Using such ranks, we can find the experience of the
developers that are involved in the JIRA issue and the one
providing the migration patch. If there is no match found
between the JIRA developer IDs and Git committer IDs, we
manually search the project contributor pages to identify if
they are contributors to the project.

4. LOGGING LIBRARY MIGRATIONS IN
ASF PROJECTS

In this section, we present the results of our manual anal-
ysis of issues attempting migration. First, we look at how
often logging library migrations occur in ASF projects and
the drivers for logging library migrations. We also identify
the reasons behind abandoned logging library migrations.
By learning from abandoned migrations, developers in other
projects can save time and effort .

4.1 Frequency of Logging Library Migrations
Finding 1: We identify 49 attempts of logging li-
brary migration in ASF projects, out of which 33



projects (i.e., 14% of 223 main projects) underwent
at least one logging library migration. From Table 1
we find that the majority of the projects (26 out of 33) mi-
grate to SIf}j followed by migrations to JCL in 6 projects
(Open Web Beans is the only exception, were developers
implement a custom logger APT as discussed in the OWB-
674 issue). This trend of migration to Slf4j and JCL, may
be because older projects used basic libraries and developers
opted for migration to abstraction libraries upon recognizing
their new features.

‘We observe that multiple migrations can occur within a
project. In Cassandra and Jackrabbit, developers migrate
from Log4j to Sif4j, followed by the migration to Logback.
In both projects, developers opt for migration to Logback
as it incorporates Slf4j and provides additional features [9],
making it an attractive choice for migration. We also ob-
serve that several other long running projects like HBase
and Hadoop attempt to migrate their logging libraries twice
as seen in the HBASE-10092 issue and the HADOOP-9864
issue respectively, but are abandoned.

Finding 2: Logging library migrations take a me-
dian of 26 days to complete (time taken between
opening of a JIRA issue until it is closed), involving
an average of three developers in the JIRA discus-
sion posts. We find that there are about nine posts on av-
erage for completed logging library migrations. The longest
discussion post is in the Zookeeper project (ZOOKEEPER-
850'), with over 63 discussion posts and involving 15 devel-
opers as there is a confusion over completely removing all
dependencies of the older Log4j library as several tests rely
on Log4j to verify if the tests passed or failed.

We observe that in abandoned logging library migrations,
developers discuss the merits and drawbacks of migration,
as there is no common consensus. We find that abandoned
migrations have more developers involved (1.6 times higher
than completed migrations) and longer discussion posts (1.5
times longer than completed migrations). Finding 2 sug-
gests that logging library migrations require team effort and
developers actively participate during discussions because
developers may not fully understand the positive and nega-
tive effects of migration.

Finding 3: In 22 of the migrated projects (66%), at
least one of the top three committers participates in
the discussions. A top committer is always involved
in projects that abandon migration. Our finding sug-
gests that logging library changes impact all developers and
require experienced developers for the migration.

4.2 Library Migration Drivers

To understand what drives logging library migrations, we
manually examine all the 49 JIRA issues that attempt a
migration. We find the common drivers between different
projects and find that projects can have multiple drivers for
migration. The main drivers are listed below.

1. Flexibility: For a project to be easy to integrate, it
should not force developers to use its logging library. Newer
libraries provide a library abstraction feature, which pro-
vides a skeletal structure, allowing developers to easily in-
tegrate other projects using different logging libraries with-
out code changes. The other added benefit is that library

'Tn the rest of the paper we do not show weblinks for JIRA
issues, since the link always follow the same pattern as -
https://issues.apache.org/jira/browse/ZOOKEEPER-850

158

abstractions helps end-users unify the configuration of the
logging of all projects.

2. Performance improvement: Logs are generated faster
with minimal overhead. For example, Sif4j supports the
parameterized from of logging which avoids the overhead
from string concatenations.

3. Code maintenance: As a project matures, it may rely
on several components from other projects for additional
features. However, these different logging libraries can have
different verbosity levels and logging formats. To reduce
the cost incurred due to code maintenance, developers opt
for migrating to newer libraries that have a unified logging
format which is easy to configure and code, and produces
cleaner looking code.

4. Functionality: Developers migrate to newer libraries to
obtain very specific functionalities which are beneficial for
their projects. Some of these features are mapped diagnostic
support, (i.e., encoding a log with a unique identifier to help
debugging in distributed systems) in Sif4j, auto reloading of
configurations in Logback.

5. Dependency: Developers are forced to migrate logging
library when a newer version of a package on which they
depend on moves to a different library.

6. Undefined: Developers do not provide any information
on JIRA about the drivers for migration.

Table 2 shows the different drivers for logging library mi-
gration and the percentage of projects that mention these
drivers in the JIRA discussion.

Finding 4: Flexibility offered by a new logging li-
brary is the most important driver for logging li-
brary migrations. From Table 2, we find that develop-
ers reference flexibility in more than 57% of the projects
attempting migration. For example, in the HADOOP-211
and ZOOKEEPER-850 issues, developers migrate to JCL
and Sif}j respectively as these libraries provide logging ab-
straction. Developers quote that this migration is beneficial
as they can switch logging implementations without chang-
ing thousands of lines of logging code.

From an end-user perspective, in the PLUTO-553 issue, a
developer mentions that ‘a) only using Java logging (JUL)
or b) using Apache LogdlJ, directly forces end users (integra-
tors) of Pluto to leverage the same logging solution which
imo is too restricted’. Hence, developers opt for migration
to Sif4j as its more flexible for end-users.

From Table 1, we observe that the migrated projects are

mainly service providers (i.e., provide a service upon in-
tegration in other projects) and development frameworks
(i-e., help in developing applications). In the case of service
providers, migration to log abstraction libraries is benefi-
cial because it is necessary for the project be to integrable
in large systems. In the case of development frameworks,
the projects themselves may need to incorporate different
features from other projects, forcing migration to log ab-
straction libraries.
Flexbility Achieved Post-Migration. To measure the
flexibility achieved post-migration, we count the logging li-
braries used within a project. As a build file contains all
the dependencies of a project, we inspect the build files to
identify the number of used logging libraries in a project.

We find that pre-migration only 9 projects use a single
logging library. However, post migration we find that all
projects use more than one logging library after migration
and in 22 projects there is an increase (median increase of



Table 1: Statistics of the studied projects

Projects Project type Project # of Con- Migrating MigratingMigrating # of # of Total % of log % of affected
size tributors from to version discus- developers code churn in project files
sion providing churn  migration
posts migration commit
patch
Airavata Service provider 823 K 24 Logdj Sif4j 0.1 2 1 5,100 494 (9.66%) 212 (20.36%)
AMQ Service provider 293 K 18 JCL SIf4j 5.5.0 1 1 2,366 64 (2.70%) 572 (17.39%)
Bookkeeper Service provider 226 K 5 Log4j Slf4j 4.0.0 7 1 495 99 (20%) 98 (31.81%)
Bral Library 17K 6 JCL Sif4j 0.3 8 1 180 25 (13.88%) 17 (4.37%)
Camel Service provider 1.08 M 134 Log4j Slf4j 2.7.0 12 2 14,487 1,559 1,329 (18.55%)
(10.76%)
Cassandra Service provider 310 K 128 Log4j S1f4j 0.7 9 1 2,015 10 (0.49%) 116 (8.56 %)
(SIf4j)
Cassandra Service provider 340 K 128 Slfdj Logback  2.1.Beta 10 2 661 9 (1.36%) 21 (1.55 %)
(Logback)
Configuration Library 662 K 18 JCL JUL 2.0.0 19 281 17 (6.04%) 8 (2.48%)
DOSGi Service provider 16 K 4 JUL and Slf4j 1.4.0 1 934 188 (20.12%) 76 (23.6%)
Log4j
Empiredb Database service 43 K 5 Log4j Slif4j 2.1.0 4 1 974 43 (4.41%) 97 (23.37%)
Flume Service provider 87K 11 Log4j Slf4j 0.9.2 13 1 508 150 (29.52%) 165 (25.82%)
Hadoop Service provider 1.9 M 69 Log4j JCL 0.3.0 33 1 610 130 (21.31%) 55 (1.07%)
HDFS Database Service 158 K 5 Logdj JCL  20.0-Alpha 6 4 1,983 53 (267%) 45 (0.87%)
Hcatalog Database Management 112 K 2 Log4j Slf4j 0.4.1 40 1 606 76 (12.54%) 30 (9.58%)
Isis Web development framework 407 K 20 Log4j Slf4j 1.3.0 2 1 2,646 135 (5.10%) 304 (4.16%)
Jackrabbit ‘Web content framework 35T K 17 Log4j S1f4j 1.0 8 1 179 14 (7.82%) 106 (6.12%)
(S1f4j)
Jackrabbit ‘Web content framework 357 K 17 SIf4j JCL 2.2.0 2 2 1,188 12 (1.01%) 46 (2.65%)
(JCL)
JSPWiki Wiki engine 109 K 4 Logdj Sif4j 3.0.0 1 1 980 139 (14.18%) 182 (16.6%)
Karaf Service provider 228 K 44 Log4j Slf4j 2.2.0 3 1 399 12 (3.00%) 1(5.27%)
Mahout  Machine learning application 126 K 17 Log4j and JCL  SIf4j 0.1.0 6 1 13 0 (0%) 3 (2.41%)
Nutch Web crawler 117 K 10 Logdj JCL 0.8.0 3 1 1,426 271 (19%) 105 (8.94%)
ODE Process management 151 K 9 JCL Slf4j 1.3.7 5 1 570 31 (5.43%) 40 (1.36%)
OpenEJB Service provider 534 K 7 Log4j Slf4j 4.0 3 1 108 15 (13.88%) 108 (1.78%)
OWB Library 94 K 7 JUL Custom 1.1.5 2 1 1,112 371 (33.36%) 4 (5.15%)
PDFBox PDF creator 132 K 6 JUL JCL 0.8.0 9 1 210 3 (1.42%) 29 (4.54%)
Pluto Service provider 138 K 7 JCL Slf4j 2.0.0 6 1 401 11 (2.74%) 74 (11.38%)
Santuario XML security provider 21TK 4 JCL S1f4j 2.0.0 1 1 665 29 (4.36%) 126 (6.36%)
Shiro Security framework 60 K 2 JCL Slf4j 1.0.0 3 1 553 5 (0.90%) 83 (16.11%)
Struts-1 Web framework 60 K 2 Log4j JCL 1.3 1 1 503 46 (0.91%) 12 (8.11%)
Sling Web framework 453 K 14 JCL Logback  4.0.0 s 3 7,867 141 (L79%) 94 (3.10%)
ServiceMix Integration framework 708 K 18 JCL SIf4j 3.4.0 3 3 6,879 37 (0.53%) 53 (11 57%)
Thrift Cross language development 226 K 71 JUL Sif4j 0.1.0 14 1 72 29 (40.27%) (L.17%)
framework
Tiles Web framework 32K 3 JCL Slf4j 2.2.9 1 1 336 0 (0%) 48 (4.51%)
Zookeeper  Configuration framework 143 K 9 Log4j Slf4j 3.4.0 63 1 587 86 (14.65%) 176 (20.92%)
Median 9 610 37(5.43 %) 76 (6.12%)

50%) in the number of used logging libraries after migration.

Finding 5: Performance improvement is one of the
primary drivers for logging library migration in 37%
of the projects attempting migration. For example, in
the HADOOP-6884 issue, developers run a performance test,
where they run a unit test over 10,000 times to measure the
performance gained by avoiding isLogLevelEnabled checks
and string concatenations. Similar discussions are seen in
the ODE-983, and HCATALOG-68 issues.

Finding 6: Code maintenance forces developers to
migrate to a single library in 33% of the projects
attempting migration. From Table 2, we observe that
33% of the migrations are driven by the desire to reduce
the effort spent on code maintenance within the project. By
using library abstractions such as Sif4j or JCL, developers
can avoid the complexity of maintaining multiple configura-
tion and build files for each logging library. For example, in
the KARAF-427, DOSGI-135 issues, developers use multi-
ple logging formats and decide to migrate to Sif4j to provide
homogeneity in the project. In the PDFBOX-472 issue, de-
velopers migrate to Slf4j as its easier to code and prevents
the creation of large log dumps. In the HTTPCLINET-416
issue, developers migrate to Sif4j as it helps avoid isLogLeve-
[Enabled checks which makes the code clean and easier to
follow.

4.3 Reasons for Abandoned Migrations

We find 14 abandoned attempts for logging library migra-
tion and the main reasons for these failed attempts are listed
below.

1. Consensus is not reached: In four projects, develop-
ers do not reach a common consensus about logging library

159

Table 2: Drivers for migrating logging libraries in ASF.

Drivers behind migration (%)
Flexibility 57.4
Performance improvement  37.0
Code maintenance 33.3
Dependency 7.4

Functionality 11.1
Undefined 11.1

migration. For example, in the project PDFBOX, develop-
ers migrate to JCL initially. However, when migration to
Slf4j is suggested in the PDFBOX-693 issue, developers do
not like the idea of adding additional dependencies to the
project. Moreover, a senior developer quotes  Yes, there are
things that other logging packages do that JUL does not. 1
have yet to be involved in any project where those additional
‘features’ have had any impact at all.’. Due to these reasons
migration is not carried out.

In the HTTPCLIENT-416 issue, developers argue about
the performance benefits that are achieved by migration to
Sif4j. To settle the argument the developers vote on the
migration to SLf4j, however a majority is not achieved.

2. Failure to provide a patch: In six projects, no devel-
oper takes responsibility for the migration or provides the
initial patch. For example, in the HBASE-2608 issue, devel-
opers agree that migration to Sif4j is beneficial. However,
nobody submits a patch with the initial migration work and
the issue is closed as “Won’t Fix”. A similar case occurs in
the KAFKA-105 issue, where developers suggest migration
to Sif4j. However, nobody provides a patch and the issue is
closed years later.

3. Delayed for upcoming library: We find that in two



projects (HBase and Pivot) the migration is delayed until a
better library is released. In the PIVOT-882 and HBASE-
2608 issues, developers opt for migration to JCL and Sif}j
respectively. However, in Pivot developers decide to wait
and migrate to Log4J 2. In HBase, developers decide on
migration to Sif{j however, no developer submits the patch
for migration and the issue is closed as developers decided
to migrate to Log4J 2 in HBASE-10092 issue.

4. Dependency issues: We find that in two projects
(HBase and Droids), dependency on other projects prevents
migrating to new logging library. For example in the HBase
project, developers consider migration to Sif4j in the HBASE-
11334 issue to standardize logging. However, as HBase is
closely related to Hadoop? which itself uses many logging
libraries, migration to Sif4j is not pursued.

These findings show that 1) library migrations are not
straightforward, 2) migrations can be beneficial to both end-
users and developers and 3) the process of migration is not
trivial and requires experienced developers

5. EFFORT SPENT ON MIGRATIONS

In the previous section, we find that 33 projects underwent
at least one logging library migration. However, we find
that 6 out of the 14 abandoned attempts for logging library
migrations fail because no-one provides the migration patch.
The failed migrations suggest the non-trivial effort that is
required for logging library migrations. Hence, to further
understand the needed effort for logging library migrations,
we calculate the code and log churn during the migration
process and the bugs faced post-migration.

To calculate the effort spent by developers (i.e., code and
log changes made) we extract the commits that are related
to logging library migration as explained in Section 3. As de-
velopers may have used library migration tools, we exclude
the library import and log invocation changes from the total
churn. The remaining changes in a commit are made by the
developers during logging library migration.

Finding 7: Logging library migrations have sig-
nificant log and code churn in the studied projects.
From Table 1 we observe that in 33 migrated projects, close
to 10% of all the project files are changed during the mi-
gration. We find that the majority of these files are Java
and XML files. The XML files are changed to include the
dependencies on the new logging library, and Java files are
modified to remove custom log levels, such as ‘finer’; ‘finest’
and ‘warning’.

Finding 8: In 84% (i.e., 27) of migrated projects,
only one developer contributes in the logging library
migration patch. In the remaining projects, a patch for
library migration is contributed by multiple developers.

Over 60% of logging library migration commits are pro-
vided by at least one of the top three committers. This
result suggests that logging library migrations may need the
knowledge of experienced developers who have a thorough
understanding of the project.

Finding 9: Developers do not have any guidelines
to assist them during logging library migrations. We
observe that 35% of the migrated projects are split into mul-
tiple sub-issues (i.e., several JIRA issues); while in the re-
maining projects, we cannot find evidence of splitting the
migration to sub-tasks. Finding 9 suggests that there exists
no guidelines to help developers perform the migration. This

2https://hadoop.apache.org/

160

discrepancy is also apparent from Table 1, where we find that
some projects have higher log churn and files affected as they
change the logging code from string concatenated to param-
eterized form. However, majority of the studied projects do
not change their logging code as it involves significant code
changes and the performance benefits from parameterized
from is not obtained.

Findings 7 and 8 show that logging library migrations re-
quire significant log and code churn and Finding 9 suggests
that there exists no proper guideline which developers can
follow to assist in the migration. The absence of guidelines
can lead to post-migration bugs which might cripple the sys-
tem. To identify such bugs, we first collect new issues which
have keywords such as ‘log’, ‘logging library’, ‘Slf4j’, ‘Log4j’,
‘JCL’ and ‘logging migration’ from the migrated projects,
within 6 months after the logging library migration. Next,
we manually look at all the collected issues to identify the is-
sues caused by logging library migrations. We use 6 months
because most ASF projects have a 4 to 6 month software
release cycle and users face post-migration bugs after the
release. In the remainder of this section, we discuss the
types of bugs that occur after logging library migration. We
also study the effort spent on resolving these bugs.

Finding 10: 24 projects out of the 33 migrated
projects face an average of two post-migration bugs.
We find that the median resolution time for these bugs is
three days and the bugs involve an average of three develop-
ers. By analyzing the post-migration bugs and the Git com-
mits that fix the bugs, we categorize the 48 post-migration
bugs that are identified into three categories namely 1) Un-
expected interactions, 2) Forgotten dependencies and 3) Con-
figuration bugs.

1. Unezpected interactions: 13 (27%) post-migration
bugs arise because of unexpected interactions between log-
ging libraries in the studied projects. Such interactions arise
when the older logging library and the new added library
override one another. For example, in the CAMEL-4568 is-
sue, developers intend to use Sif4j library for generating the
logs and a JDBC library for storing them. However, due to
unexpected interaction between JDBC and Sif4j libraries,
JDBC library is used for both generating and storing logs
which is not desired.

2. Forgotten dependencies: 21 (45%) post-migration
bugs arise because of missing to add dependencies during mi-
gration. Such bugs arise when developers fail to add the mi-
grated libraries or remove the older libraries from build files.
For example, in the post-migration bug ZOOKEEPER-1371,
developers remove dependencies on Log4j in the source code
after migration. In the BOOKKEEPER-128 issue, develop-
ers forget to add the new logging libraries as dependency
which causes release bugs.

8. Configuration bugs: 14 (28%) post-migration bugs
occur due to misconfiguration during migration. Miscon-
figuration can be due to misconfigured path to output logs
as in HADOOP-272 or poorly configured properties as in
NUTCH-318.

6. BENEFITS OF MIGRATION

We find that the performance improvement is one of the
two primary drivers behind logging library migrations. To
understand the benefits obtained post-migration, in this sec-
tion we measure the performance improvements observed.

6.1 Performance Improvement Post-Migration



Logging
enabled
Logging
disabled

Pre-Migration
Release

Configure,
[oad test

Load Test |

Collect
performance
counters

Measure performance
difference

Logging
enabled

String concatenated

logging statements Load Test

Configur
6ad Tos!

Collect
performance
counters

Measure performance
difference

Change logging
statements

Parameterized logging | Configure
statements load test

Post-Migration
Release

Load Test

N

Logging
disabled

- AN
Performance

improvement
post-migration

Logging
enabled

Collect
performance
counters

Measure performance
difference

Logging
disabled

Figure 4: Overview of load test setup, in the studied projects

Table 3: Overview of projects used in performance study

Projects Version Release date Logging library
Camel Pre-migration 2.6.0 2011-01-30 Log4j
¢ Post-migration ~ 2.7.0 2011-03-17 SIf4j
Cassandra Pre-migration 2.0.9 2014-06-30 Log4j
Post-migration 2.1.0 2014-09-16 Slf4j
. Pre-migration 2.0.7 2010-12-12 Log4j
EmpireDB o migration  2.1.0  2011-03-06 SIf4j

In Section 4.2 we find that in 37% of the migrated projects
performance improvements is one of the drivers for logging
library migrations. However, there exists no study that
quantifies the gain in performance post-migration. To mea-
sure whether using performance improvement as motivation
is justified, in this section we analyze the performance that
is gained by three projects which migrate logging libraries.
Figure 4 shows an overview of our approach.

6.1.1 Studied Projects

We use the following criteria to pick the projects for our
performance study:

1. Presence of load tests or examples: Projects must
have load tests or examples, in order to run the project
and to emulate real world scenarios.

Project activity: Projects must be actively main-
tained (i.e., more than three years of commit history
and still active), to make sure that the project is cur-
rently used and has large development history.

Slf4j or Logback migration: Projects must migrate
to the Sif4j or Logback library, as Sif4j is associated
with performance benefits and Logback uses the Sif4j
library.

‘We find three projects, which fit the above mentioned cri-
teria. Camel is an open source integration platform, Cas-
sandra is an open source database project and EmpireDB is
a relational database abstraction layer with data persistence
component. Table 3 shows an overview of the releases of the
project pre and post-migration.

6.1.2 Test Setup

To measure the performance improvement after logging
library migration, we run the performance tests twice, i.e.,
pre and post logging library migration.

As improvements can be made to the projects during log-
ging library migration, we establish a baseline by running
the project with logging disabled. We run the load test with
‘Error’ level enabled to establish the initial baseline.

To measure the performance gain, we run the same load
test twice with ‘Debug’ and ‘Info’ level logs enabled. De-
bug level is used by developers for debugging purposes dur-
ing development and info level is the default level when the
project is released for end-users. By measuring the time
taken for generating logs at both debug and info levels we
can understand the performance improvements achieved for
developers and end-users.

We measure the time taken from the time a load test starts
until the time all logs are generated for the load test. By
subtracting the execution time of the debug level test from
the baseline test (i.e., error level test), we obtain the time
taken for generating the logs in the debug enabled tests.

As the time taken for generating logs can be affected by
the number of logs generated and the number of variables
printed in logs, we calculate these two factors pre and post-
migration. To calculate the number of logs generated dur-
ing a load test we dump the load test logs into a file and
count the number of log lines within the file. To find the
average number of variables printed in the logs, we analyze
the source code of the load tests to find all the logging state-
ments and the number of variables in each logging statement.
Next, we run the load test once and match the logging state-
ments from source code to generated logs and identify which
logging statements are run multiple times. We tally all the
logging statements executed during our load tests and cal-
culate the average number of variables generated during a
load test.

To control for the number of logs generated and average
number of variables printed pre and post-migration, we di-
vide the time taken for generating logs, by the number of logs
generated during a load test (the number of variables remain
the same for our load tests). This ratio is the time taken
for generating one log, pre and post-migration. We multiply
this taken time against the total number of logs generated
during the pre-migration release to obtain controlled values
for our load tests. Table 4 shows the number of generated
logs and the average number of variables printed during our
load tests.

In EmpireDB and Cassandra projects, we find that de-
velopers do not change the logging statements from string
concatenated form to the parameterized form. It is already
established that string concatenations have a high perfor-
mance overhead [2]. To reduce this overhead we use an open
source script [12] to change the format of all logging state-
ments to a parameterized form to optimize the performance
for post-migration. As these migration tools are not tested,

161



EmpireDB EmpireDB

g

7 s

g

-] z

£ 7 £ g

g Pre—Migratior g -

g 2

-1 Post—Migration £ g Post—Migration

£ 8 &

E I

= o g 31

s 52

< E k-

5

?s -

g Z <
B

Effect Size = 0.836 (large) *** Effect Size = 0.797 (large) ***
Debug level enabled Info level enabled
Camel Camel

‘Time taken for logging operation (ms)
200 250 300 350 400 450 500
|
“Time taken for logging operation (ms)

Effect Size = —0.050 (trivial) ***

Effect Size = ~0.107 (trivial) ***
Info level enabled

*p < 0.05, % p < 0.01, ***p < 0.001

Debug level enabled

Figure 5: Comparing the difference in time to execute the
load tests pre and post-migration, with their respective effect
sizes

Table 4: Log output generated during load tests

Projects Log level Pre-migration Post-migration

EmpireDB  Debug # of generated log lines 42,325 50,397
Avg. # of printed variables 3 3

Info # of generated log lines 14,148 1,168

Avg. # of printed variables 3 3

Camel Debug # of generated log lines 5,095 5,076
Avg. # of printed variables 1 1

Info # of generated log lines 245 256

Avg. # of printed variables 1 1

Cassandra  Debug # of generated log lines 200,783 450,265
Avg. # of printed variables 2 2

Info # of generated log lines 350 371

Avg. # of printed variables 1 1

we manually debug all the warnings and errors which occur
after converting the logging statements from string concate-
nated to parameterized form in the two projects.

6.1.3 Used Load Tests

EmpireDB Advanced Example: To load test EmpireDB,
we use the provided advanced example, which showcases
many database operations such as database creation, inser-
tion and deletion of records, modification of records, bulk
read and processing of records. We run a load test with the
advanced example application by increasing the number of
records to 1,000 and running the application for 1,000 iter-
ations, measuring the time taken to complete the load test
and generate the logs at each iteration.
Camel Loan Broker Application: We load test the Camel
loan broker application [? | by increasing the number of
servers and run the application for 1,000 iterations, record-
ing the time taken for generating logs at each iteration.
Cassandra Stress Test Application: We use the stress
test application available in Cassandra to run the load test.
This stress test can insert, read and index a large number
of records within the Cassandra cluster.

We load test the application by inserting 100,000 records
into the Cassandra cluster at each iteration and run 1,000 it-

EmpireDB EmpireDB

2800
L
1600
L

Parameterized form

Parameterized form String
concatenated form

String
q concatenated form

2400
L

1200 1400
L

2000
L

1000
n

Time taken for logging operation (ms)

Time taken for logging operation (ms)

1600
L

Effect Size = 0.541 (large) *** Effect Size = 0.148 (small) ***

Debug level enabled Info level enabled

Camel Camel

Parameterized forn)

String
concatenated form

Parameterized form

80 100 120 140 160 180

String
concatenated form

“Time taken for logging operation (ms)
300 320 340 360 330 400

Time taken for logging op

Effect Size = 0.203 (small) *+

Debug level enabled Info level enabled

*p < 0.05, % p < 0.01, ***p < 0.001

Effect Size = 0.040 (trivial)

Figure 6: Comparing the difference in time to execute the
load tests for string concatenated v.s parameterized logging
statements, with their respective effect sizes

erations, recording the time taken for generating logs during
each run.

6.1.4 Test Evaluation

To find if there is a statistically significant difference be-
tween the time taken to complete a load test pre and post-
migration, we use the MannWhitney U test (Wilcoxon rank-
sum test) [16]. The MannWhitney U test is a non-parametric
test, hence it does not have any assumptions about the dis-
tribution of the sample population. A p-value of < 0.05
means that the difference of the time taken to generate logs
between the pre and post-migration releases is statistically
significant and we may reject the null hypothesis. By re-
jecting the null hypothesis, we can accept the alternative
hypothesis, which tells us that there is a statistically signif-
icant difference of the time taken to generate logs between
pre and post-migration releases.

We also calculate the effect sizes in order to quantify the
differences in performance, pre and post-migration. Unlike
the MannWhitney U test, which only tells us whether the
difference between the two distributions is statistically sig-
nificant, the effect size quantifies the difference between the
two distributions. Researchers have shown that reporting
only the statistical significance may lead to erroneous results
(i.e., if the sample size is very large, the p-value are likely
to be small even if the difference is trivial). We use Cliff s
Delta to quantify the effect size [22] and use the following
thresholds for Cliff’s Delta [25]:

for |d] < 0.147
small for 0.147 < |d| < 0.33
medium for 0.33 < |d| < 0.474
large for 0474 < |d| <1
6.1.5 Results

Finding 12: We find a 28-44% improvement in
performance in two of the studied projects post-
migration. Figure 5 and Table 5 shows that there is an

trivial

(1)



Table 5: Effect sizes of the time taken to complete a load
test during info and debug enabled in the studied projects.
Effect sizes are bold if P-values are smaller than 0.05

Projects Debug Info
EmpireDB  Pre vs post-migration 0.83 (large) 0.79 (large)
String Concatenated vs
Parameterized from 0.54 (large) 0.14 (small)
Camel Pre vs post-migration ~ -0.05 (trivial) -0.10 (trivial)
String Concatenated vs L
Parameterized from 0.04 (trivial) 020 (small)
Casandra  Pre vs post-migration 0.91 (large) 0.32 (small)

String Concatenated vs

Parameterized from 0.32 (small)

0.89 (large)

improvement in performance (statistically significant with
large effect size) post-migration in EmpireDB and Cassan-
dra when debug level logs are enabled (due to constrained
space only the plots of EmpireDB and Camel are displayed).

From Table 4 we observe that performance improvements
are observed in EmpireDB and Cassandra which produce a
larger number of log lines in comparison to Camel. We also
observe that the average number of variables in EmpireDB
and Cassandra is higher than Camel which suggests that
performance improvements depend on the number of logs
and the number of variables in the output.

We find that parameterized logging statements are faster
than concatenated logging statements for both debug and
info level enabled. Table 5 shows that there is an improve-
ment in performance post-migration in all the projects. How-
ever, we find that improvement is statistically significant
only in Cassandra and EmpireDB with small to medium
effect sizes. This may be because parameterized form of
logging statements only improves the performance of those
logging statements which have more than one output vari-
able as see in Table 4. This result suggests that changing
from string concatenated to parameterized form can increase
performance only in specific cases.

Finding 13: We find that performance improve-
ment is negligible in two of the studied projects,
when info level is enabled. Table 5 shows that the
improvement in performance is statistically significant with
large effect size only in EmpireDB. In Camel and Cassandra,
we find that the difference in performance is small, implying
that the improvement is too small to be noticeable for most
users.

From Findings 12 and 13, we conclude that improvement
in performance should not be the main criteria for consid-
ering logging library migration, as the results are negligible
when the default logging level (i.e., info) is enabled.

7. THREATS TO VALIDITY

External Validity. Like all empirical studies, our analysis
is subject to the representativeness of the studied projects.
To address this threat, we looked into all the projects within
the ASF foundation. Our projects are all open source and
from different domains. More studies on other open source
foundations, with other programming languages are needed
to see whether our finding can be generalized.

We study logging library migrations for only Java projects,
as many logging libraries exist for Java making migrations
more likely to occur. More studies on other languages are
needed to see whether our findings can be generalized.
Construct Validity. Our heuristics to extract logging li-

163

brary migrations may not be able to extract every migration
within ASF. A manual evaluation on extracted migrations
and expanding our keyword based heuristics is necessary to
address this threat.

The JIRA issue IDs may not match all the commits related
to logging library migrations. A manual evaluation of the
commits is necessary in future work to identify the recall of
our approach.

The tags for the main drivers of migration are based on
our manual analysis of the JIRA issues and therefore can be
biased. However, each issue was verified by two authors and
common consensus was reached before tagging each issue if
there is disagreement between the authors.

Internal Validity. Our analysis is based on data from Git
and JIRA repositories. The quality of data contained in the
repositories can impact the internal validity of our study.

Our analysis of performance, measures the difference in
time when the system is load tested against debug and info
level. However, the I/O speed in our environment can be
very different from the I/O speed in the field, where several
different process may be competing for resources. In such
scenarios the performance improvements observed may be
even lesser than observed in our environment.

We measure the performance of projects pre and post-
migration. However, in the long run, developers may add
more logging statements into the code and the migration to
newer logging library might be useful.

8. CONCLUSION

Logging libraries assist developers in logging their code by
providing a clean API to configure where to log, when to log
and in what format to log.

Due to the plethora of logging libraries developed in recent
years, developers face the challenge of migrating from one
library to another to leverage new features. To understand
such logging library migrations, in this paper, we study the
migrations within Apache Software Foundation (ASF). The
goal of our work is to first identify how frequent are log-
ging library migrations, the effort necessary for migrations
and the drivers for migrations. We also aim to understand
why migration attempts are abandoned and to identify the
common post-migration bugs and the benefits gained after
migration. With such knowledge, developers would have a
more realistic view of the post-migration benefits, in order
to better plan for migrations. The highlights of our work
are:

1. We identify 33 projects within ASF which migrate log-
ging libraries, which take a median of 26 days to per-
form and involve at least one top developer in the dis-
cussions.

2. Flexibility and performance improvement are the pri-
mary drivers for logging library migrations referenced
in 57% and 37% of the migrated issues respectively.

3. Migrations are non-trivial: 28% of attempted migra-
tions in ASF are abandoned and 70% of migrated projects
face an average of two post migration bugs.

4. Performance benefits from logging library migration
are not readily visible for most users.

These highlights suggest that logging library migration is
not a trivial task. Developers should better estimate the
effort needed and the performance improvements achieved
from migration. They should also evaluate the risks of mi-
gration and plan for mitigating post-migration bugs.



References

[1]
[2]

Class loader - http://articles.qos.ch/classloader.html.
Concatenated Vs parameterized form.
http://www.javacodegeeks.com/2013/03/
java-stringbuilder-myth-debunked.html.
https://github.com /rosarinjroy /log4j-to-slf4;.

Java logging libraries :. http://java-source.net/
open-source/logging.

Log level :. https://logging.apache.org/logdj/1.2/
apidocs/org/apache/log4j/Level .html.

Log4j manual :. https://logging.apache.org/log4j/
1.2/manual.html.

Log4j2- https://logging.apache.org/logdj/2.x /perfor-
mance.html.

Log4j2-migrator https://github.com/
mulesoft-labs/log4j2-migrator.

Logback — http://logback.qos.ch/reasonstoswitch.html.
Projects in asf :. https://projects.apache.org/
projects.html?language.

Slf4j — http://www.slf4j.org/faq.html.

Slf4j—migrator. https://github.com/ghosert/
SLF4J-Migrator.

S1f4j tool - http://www.slf4j.org/migrator.html.

String concatenation performance
{http://blog.eyallupu.com/2010/09/
under-hood-of-java-strings.html}.

Q. Fu, J-G. Lou, Y. Wang, and J. Li. Execution
anomaly detection in distributed systems through un-
structured log analysis. In ICDM’09: Proceedings of
the 9th IEEE International Conference on Data Min-
ing, pages 149-158. IEEE, 2009.

E. A. Gehan. A generalized wilcoxon test for comparing
arbitrarily singly-censored samples. Biometrika, 52(1-
2):203-223, 1965.

17] M. . http://logback.qos.ch/manual /mdc.html.

[19]

[20]

Z. M. Jiang, A. Hassan, G. Hamann, and P. Flora. Au-
tomatic identification of load testing problems. In ICSM
"08: Proceedings of the IEEE International Conference
on Software Maintenance, pages 307-316, IEEE, 2008.
Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automated performance analysis of load tests. In ICSM
’09: Proceedings of the IEEFE International Conference
on Software Maintenance, pages 125-134. IEEE, 2009.
P. Kapur, B. Cossette, and R. J. Walker. Refactoring
references for library migration. In ACM SIGPLAN

164

[21]

[22]

23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Notices, volume 45, pages 726-738. ACM, 2010.

R. Lammel, E. Pek, and J. Starek. Large-scale, ast-
based api-usage analysis of open-source java projects.
In SAC’11: Proceedings of the ACM Symposium on Ap-
plied Computing, pages 1317-1324. ACM, 2011.

J. D. Long, D. Feng, and N. Cliff. Ordinal analysis of
behavioral data. Handbook of psychology, 2003.

J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining
invariants from console logs for system problem detec-
tion. In USENIX‘10: Proceedings of 10th Conference
on USENIX Annual Technical Conference, pages 24—
24. USENIX Association, 2010.

Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller.
Mining trends of library usage. In Proceedings of the
joint international and annual ERCIM workshops on
Principles of software evolution (IWPSE) and software
evolution (Evol) workshops, pages 57-62. ACM, 20009.

J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek,
and L. Devine. Exploring methods for evaluating group

differences on the nsse and other surveys: Are the t-test
and cohens’d indices the most appropriate choices. In
annual meeting of the Southern Association for Institu-
tional Research, 2006.

W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W.
Godfrey, M. Nasser, and P. Flora. An exploratory study
of the evolution of communicated information about the
execution of large software systems. Journal of Soft-
ware: Evolution and Process, 26(1):3-26, 2014.

C. Teyton, J.-R. Falleri, and X. Blanc. Mining library
migration graphs. In WCRE ’12: Proceedings of the
19th Conference on Reverse Engineering, pages 289—
298. IEEE, 2012.

C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc. A
study of library migrations in java. Journal of Software:
Evolution and Process, 26(11):1030-1052, 2014.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jor-
dan. Detecting large-scale system problems by mining
console logs. In SOPS 2009: Proceedings of the 22nd
Symposium on Operating Systems Principle, pages 117—
132.

D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pa-
supathy. Sherlog: Error diagnosis by connecting clues
from run-time logs. In ASPLOS ’10: Proceedings of
the 15th Edition of Architectural Support for Program-
ming Languages and Operating Systems, pages 143—154.
ACM, 2010.



